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Abstract
Bundle adjustment is a fundamental problem in computer vision, with important applications such as 3D structure reconstruction
from 2D images. This paper focuses on large-scale bundle adjustment tasks, e.g., city-wide 3D reconstruction, which require
highly efficient solutions. For this purpose, it is common to apply the Levenberg-Marquardt algorithm, whose bottleneck
lies in solving normal equations. The majority of recent methods focus on achieving scalability through modern hardware
such as GPUs and distributed systems. On the other hand, the core of the solution, i.e., the math underlying the optimizer
for the normal equations, remains largely unimproved since the proposal of the classic parallel bundle adjustment (PBA)
algorithm, which increasingly becomes a major limiting factor for the scalability of bundle adjustment.
This paper proposes parallel preconditioned conjugate gradient (PPCG) method, a novel parallel method for bundle
adjustment based on preconditioned conjugate gradient, which achieves significantly higher efficiency and scalability than
existing methods on the algorithmic level. The main idea is to exploit the sparsity of the Hessian matrix and reduce its
structure parameters through an effective parallel Schur complement method; the result of this step is then fed into our
carefully designed PPCG method which reduces matrix operations that are either expensive (e.g., large matrix reverse or
multiplications) or scales poorly to multi-processors (e.g., parallel Reduce operators). Extensive experiments demonstrate
that PPCG outperforms existing optimizers by large margins, on a wide range of datasets.
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1 Introduction

Given a set of 2D projections of the same 3D structure,
e.g., each captured by a camera from a different viewpoint,
bundle adjustment [1–3] simultaneously calculates the 3D
world points and the camera view parameters that best fit
these 2D projections. Bundle adjustment finds important
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applications in 3D reconstruction [4] from 2D images, such
as structure from motion (SfM) [5, 6] and simultaneous
localization and mapping (SLAM) [7]. This paper focuses
on large-scale bundle adjustment, e.g., 3D reconstruction of
an entire city from a very large collection of 2D images.
For such tasks, a key consideration is the efficiency and
scalability of the bundle adjustment solution, which rules
out computationally expensive solutions such as those based
on deep neural networks, e.g., [8–11]. Instead, in practice
it is common to apply the Levenberg-Marquardt (LM)
algorithm, which involves solving a large system of normal
equations. Further, recent trends in the development of
computational infrastructure indicate that it is critical to
design a solution that well utilizes parallel computation
resources. Hence, this paper focuses on building a scalable
parallel optimizer that solves the normal equations in LM.

A classic solution for our problem is PBA [12, 13], which
involves two key ideas to reduce the computational costs
of the optimizer: Schur complement and preconditioned
conjugate gradient. The latter (but not the former) is
parallelized to utilize the capabilities of multicore CPUs
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and GPUs. Note that in PBA, the parallelization is done on
a low level, i.e., on the level of matrix operations. To our
knowledge, the core of this algorithm (i.e., its underlying
math) has remained largely unimproved since its proposal
almost a decade ago. Further, as our experimental evaluation
shows, on some data-sets, PBA scales poorly with the
number of processors, whose performance peaks at around
12-20 processors. To improve the scalability of bundle
adjustment tasks, recent approaches have instead focused
on higher-level parallelism (i.e., on the level of scenarios),
which decompose a large bundle adjustment problem into
smaller ones based on 3D world points, cameras, maps, and
domains, and solve these smaller sub-programs in parallel
[14, 15]. Meanwhile, several methods have addressed
bundle adjustment computation in distributed settings with
high communication costs (e.g., across data centers).

For instance, [16] proposes a consensus-based frame-
work for distributed bundle adjustment based on proximal
splitting, and a distributed alternating direction method
of multipliers (ADMM) framework is proposed for very
large-scale bundle adjustment problems [17–19], where an
over-relaxation technique and self-adaption schemes are
employed to improve the convergence rate. These solu-
tions, however, tend to be less efficient since they often
have linear or even sub-linear convergence rate, leading
to numerous iterations and, thus, high computation and
communication overhead. Additionally, robust parallel bun-
dle adjustment (RPBA) [20] extends the consensus based
optimization methods with covariance information to get a
better convergence bahavior. Though RPBA is implemented
upon covariance information which is very effective, the
naive ADMM has slow convergence rate and produces more
communication overhead.

This paper presents PPCG, an efficient and scalable
low-level parallel optimizer for solving the LM normal
equations in large-scale bundle adjustment, which is a
direct improvement over the PBA algorithm. Specifically,
PPCG is based on a novel parallel Schur complement
method that effectively decomposes the Hessian matrix,
exploiting its special sparsity conditions to reduce structure
parameters. Note that the Schur complement module in
PPCG is fundamentally different from that in PBA (i.e.,
the decomposition results can be considered as locally
individual subsystems, which are different); meanwhile, we
stress that unlike PBA, our Schur complement module runs
in parallel on multiple processors, with a single Reduce
operation to collect the results. Based on the decomposition
results, PPCG then proceeds to perform preconditioned
conjugate gradient, which is carefully designed to avoid
expensive matrix operations and parallel Reduce steps. We
formally prove the correctness of PPCG, and evaluate its
performance through extensive experiments on the BAL

benchmark datasets [2]. The evaluation results demonstrate
that PPCG significantly outperforms PBA in terms of both
acceleration and scalability.

2 Preliminaries on bundle adjustment

Before the application of bundle adjustment, the structure
and camera parameters are roughly calculated by multi-view
geometry methods. Since there are various distortions for
uncalibrated camera models, the reprojection error is widely
accepted to measure the accuracy. Generally considered as
the back-end of SfM applications, bundle adjustment is an
approach for estimating more accurate structure and camera
parameters.

Let x ∈ R
ms , y ∈ R

mc and z ∈ R
mp be the vectors of

structure parameters, camera parameters and coordinates of
feature points in the images respectively. If the 3D points
(structure parameters) are reprojected into images through
the same cameras, the new reprojected feature points z∗ ∈
R

mp can be obtained by

z∗ = Φ(x, y) (1)

where Φ(·, ·) is the reprojection function, including three-
dimensional translations, rotations and projections. Due
to optical distortions of cameras and truncation errors,
the original feature points does not coincide with the
reprojected feature points. Therefore, bundle adjustment can
be represented by a least squares optimization problem,
which is given by

arg min
z∗ ‖z−z∗‖2 = arg min

Δx,Δy

‖z−Φ(x+Δx, y+Δy)‖2. (2)

where Δx ∈ R
ms , Δy ∈ R

mc are the increments of x, y

respectively. As long as z represents the original featured
points which are all constant, we can adjust Δx and Δy

iteratively to satisfy the minimum reprojection error.
Assuming that f (x, y) = z − z∗, Jx = ∂f (x, y)/∂x

and Jy = ∂f (x, y)/∂y, The LM algorithm improves the
original Gauss-Newton algorithm through gradient descent
directions, then we can represent the above optimization
problem approximately by

arg min
Δx,Δy

∥
∥
∥
∥
f (x, y) + [

Jx Jy

]
[

Δx

Δy

]∥
∥
∥
∥

2

+λ

∥
∥
∥
∥
∥

diag

([√

J T
x Jx0

0
√

J T
y Jy

])[

Δx

Δy

]
∥
∥
∥
∥
∥

2

(3)

= arg min
Δx,Δy

∥
∥f (x, y) + JxΔx + JyΔy

∥
∥

2

+λ diag
(

J T
x Jx

)

‖Δx‖2 + λ diag
(

J T
y Jy

)

‖Δy‖2 (4)
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where λ ∈ R is the damping factor. While setting the
derivative of (3) to zero, we can obtain the following normal
equations,

[

U W

WT V

] [

Δx

Δy

]

= −
[
J T

x f (x, y)

J T
y f (x, y)

]

, (5)

where the sub-blocks U = J T
x Jx + λ diag

(

J T
x Jx

)

, V =
J T

y Jy + λ diag(J T
y Jy), W = J T

x Jy , and the coefficient
matrix is the augmented Hessian matrix. Then U is an
ms ×ms block diagonal and positive definite matrix, V is an
much smaller mc × mc block diagonal and positive definite
matrix, and W is an ms × mc matrix.

Providing that the augmented Hessian matrix is highly
sparse and the Hessian matrix U is block diagonal, the
computation of the inverse of U is very cheap. Furthermore,
the Schur complement trick [21] eliminates the structure
parameters Δx through Gaussian Elimination. Therefore,
the normal equations including only camera parameters, are
highly reduced and become

(V − WT U−1W)Δy = WT U−1J T
x f (x, y) − J T

y f (x, y).

Let R = V − WT U−1W and v = WT U−1J T
x f (x, y) −

J T
y f (x, y), we then obtain the following system of linear

equations,

RΔy = v. (6)

The coefficient matrix R is the Schur complement called
the Reduced Camera Matrix (RCM), which is much smaller
and symmetrical and positive definite, and v is the Reduced
Camera Vector (RCV). Δy can be solved through various
iterative algorithms, then Δx can be obtained by

Δx = −U−1
(

J T
x f (x, y) + WΔy

)

(7)

3 Proposed solution

The bundle adjustment introduced in Section 2, contains
great potential parallelization, and can be accelerated by
parallel computing for large scale problems. This section
firstly presents a parallel Schur complement method to elim-
inate the structure parameters by enhancing the matrix
inverse and multiplication operations, and improves the
classical preconditioned conjugate gradient (PCG) method
through parallelization in the second place. Before dis-
cussing the parallel methods, we present the definitions of
memory coherence and consistency.

Definition 1 (Memory Coherence) On a shared-memory
parallel computing system with multiprocessors, there is
only one processor (process or thread) can read from/write
to a memory location such that the updated value can
be observed by all the subsequent read operations of the
corresponding memory location. We call this characteristic
as memory coherence.

Definition 2 (Memory Consistency) On a distributed-
memory parallel computing system where each node has its
own memory space, if a memory location is written to, its
copies on other nodes will be updated such that the updated
values can be observed in their own local memory spaces.
This characteristic is called memory consistency.

To prevent failures and errors caused by parallel comput-
ing systems, we assume that both of the following parallel
methods are presented under the constraints of memory
coherence and consistency.

3.1 Parallel Schur complement

The augmented Hessian matrix is approximately a block-
diagonal arrow-head matrix, and the diagonal submatrices
are independent from each other. Considering this particular
structure, the augmented Hessian matrix can be divided
into three parts depending on whether the local data are
calculated from structure parameters, camera parameters or
observations. The augmented Hessian and its divisions can
be represented by

H ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Us
1 W1

Us
2 W2

Us
3 W3

. . .
...

Us
n Wn

WT
1 WT

2 WT
3 · · · WT

n Uc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒

⎧

⎪⎨

⎪⎩

U = diag
[

Us
1 , Us

2 , ..., Us
n

]

,

V = Uc = ∑n
i=1U

c
i ,

W = [W1, W2, ..., Wn]T
(8)

where Us
1 , Us

2 , ..., Us
n are Hessian matrices of structure

parameters for n 3D world points, Uc
i is the Hessian

matrix of the i-th camera, whereas Uc is the Hessian
matrix of all cameras, and W1, W2, ..., Wn are derived from
the observations between 3D world points and cameras.
Sequentially, the RCM R can be presented as

R = V − WT U−1W =
n
∑

i=1

(Uc
i − WT

i (Us
i )−1Wi). (9)
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Given a parallel computing system with p concurrent
computing units, we can distribute (5) into p subsystems,
and the j -th subsystem can be summarized by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Us
j Wj

. . .
...

Us
lp+j Wlp+j

. . .
...

Us
φ(j) Wφ(j)

WT
j · · · WT

lp+j · · · WT
φ(j) V (j)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δxj

...
Δxlp+j

...
Δxφ(j)

Δy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J T
xj

f (xj , y)

...
J T

xlp+j
f (xlp+j , y)

...
J T

xφ(j)
f (xφ(j), y)

J T
y f (xj :p:φ(j), y)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

where V (j) = Uc
j + · · · + Uc

lp+j + · · · + Uc
φ(j)(1 ≤

l ≤ �n/p�), φ(j) = �n/p�p when j > n mod p

and φ(j) = (�n/p�)p + j when j ≤ n mod p. If

we denote U(j) = diag
[

Us
j , · · · , Us

lp+j , ..., Us
φ(j)

]

and

W(j) = [Wj, · · · , Wlp+j , · · · , Wφ(j)]T , the related Schur
complement is V (j) − WT (j)U−1(j)W(j).

Theorem 1 If the 3D world points of a bundle adjustment
system are divided into p subsystems and these 3D world
points are evenly observed by cameras, the distribution
method achieves the best load balance for parallel Schur
complement when the 3D points are distributed equally.

Proof We use the function ψ(·) to map the global 3D world
points to local 3D world points in subsystems, i.e. ψ(1) is
the first local 3D world point from the ψ(1)-th global 3D
world point, ψ(2) is the second local 3D world point from
the ψ(2)-th global 3D world point, and et al.

Supposing that nj (1 ≤ j ≤ p) 3D world points
are assigned to the j -th subsystem, the j -th divisions are

denoted by U ′(j) = diag
[

Us
ψ(1), U

s
ψ(2), · · · , Us

ψ(nj )

]

,

W ′(j) = [

Wψ(1), Wψ(2), · · · , Wψ(nj )

]T , V ′(j) = Uc
ψ(1) +

Uc
ψ(2) + · · · + Uc

ψ(nj ), ψ(1) ≤ ψ(2) ≤ · · · ≤ ψ(nj ). Then,
the Schur complement Rj for the j -th subsystem can be
inferred out like the form of (8), which implies

Rj =
ψ(nj )
∑

i=ψ(1)

(

Uc
i − WT

i (Us
i )−1Wi

)

.

As these 3D world points are evenly observed by
cameras, the sparsity of W1 to Wn are considered to be
equivalent such that Uc

i − WT
i (Us

i )−1Wi takes the same
amount of time for all i = 1, 2, · · · , n. Therefore, we can

use the number of Uc
i − WT

i (Us
i )−1Wi to represent the

load of the subsystems. Thus, the overall load for the j -th
subsystem is determined by maxj nj . When nj = �n/p�,
we obtain the minimum overall load and achieves the best
load balance.

Furthermore, without the assumption that 3D world
points are evenly observed by cameras, W ′(j) = [Wψ(1),

Wψ(2), · · · , Wψ(nj )]T are not equally distributed. The
observations are always dense at one place, and sparse
at another place, which is the locality of observations.
Taking advantage of the locality, the distribution method
presented in (10), achieves better load balance than other
equal distribution methods.

Note that direct computation of the RCM still involves
expensive operations such as matrix multiplications, parallel
reductions, and sparse matrix subtractions. The operations
that are all geometrical in time complexity, can be greatly
reduced or avoided by associating with the following
preconditioning approach.

3.2 Parallel PCG

When the number of images and cameras grows, the size of
RCM increases quadratically. The sparsity of RCM mainly
depends on the observations, and it turns to be much smaller
and much denser after Schur complement, which becomes
an important part with respect to overall performance.
Before proposing the PPCG algorithm, we put forward the
following theorem.

Theorem 2 If a bundle adjustment system with the aug-
mented Hessian matrix in the form of (5), is divided into p

concurrent subsystems with the augmented Hessian matri-
ces in the form of (10), then

n
∑

i=1

WT
i (Us

i )−1Wi =
p
∑

j=1

WT (j)U−1(j)W(j). (11)

Proof As the matrix U−1(j) is block diagonal and positive
definite, the inverse of it can be easily determined by U−1(j)

= diag

[(

Us
j

)−1
, · · · ,

(

Us
lp+j

)−1
, ...,

(

Us
φ(j)

)−1
]

, which

is purely block diagonal. We expand WT (j)U−1(j)W(j)

of the right hand in Theorem 2 for each subsystems, which
leads to

p
∑

j=1

WT (j)U−1(j)W(j)

=
p
∑

j=1

[

WT
j

(

Us
j

)−1
, · · · , WT

φ(j)

(

Us
φ(j)

)−1
]

W(j)
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=
p
∑

j=1

(

WT
j

(

Us
j

)−1
Wj + · · · +WT

φ(j)

(

Us
φ(j)

)−1
Wφ(j)

)

=
n
∑

i=1

WT
i

(

Us
i

)−1
Wi .

The PPCG approximates the accurate solution through
updating the actual solution iteratively. Assuming that Δyk

∈ R
mc is the solution vector for the k-th iteration, rk ∈ R

mc

is the residual vector, tk ∈ R
mc is the temporary vector,

pk ∈ R
mc is the direction vector where k = 0, 1, 2, · · · ,

and M is the preconditioned matrix, the initializations are
summarized by

r0 = v − RΔy0, t0 = M−1r0, p0 = t0. (12)

where Δy0 is zero or other reasonable vectors, and
preconditioned matrix M is assigned to be the block
diagonal of R. Since mc << ms , the communication
overhead will be dominant (discussed in Section 4.3) if we
distribute Δyk , rk , tk , pk and M into all the subsystems.
Thus, they are duplicated in every subsystem to avoid
frequent communications.

Given that the direction vectors p1, p2, · · · , pk are R-
orthogonal, the step size αk for the k-th iteration can be
determined by

αk = rT
k tk

pT
k Rpk

. (13)

As is demonstrated in Section 3.1, the RCM R is not
explicitly calculated due to the expensive parallel reduce
operations of sparse matrices. From the result of Theorem 2,
we can calculate Rpk through local Hessian matrices U(j),
V (j) and W(j) instead of the RCM R itself according to
the implicit Schur complement method [22], that is

Rpk =
(

n
∑

i=1

(

Uc
i − WT

i

(

Us
i

)−1
Wi

)
)

pk

=
(

n
∑

i=1

Uc
i

)

pk −
(

n
∑

i=1

WT
i

(

Us
i

)−1
Wi

)

pk

=
⎛

⎝

p
∑

j=1

V (j)

⎞

⎠pk −
⎛

⎝

p
∑

j=1

WT (j)U−1(j)W(j)

⎞

⎠pk

=
p
∑

j=1

(V(j)pk)−
p
∑

j=1

WT (j)(U−1(j)(W(j)pk)). (14)

With the step size αk and the result of Rpk , the new
solution vector Δyk+1 and the new residual vector rk+1 can
be generated by

Δyk+1 = Δyk + αkpk, (15)

rk+1 = rk − αkRpk (16)

where Δyk+1 and rk+1 are updated in conjugate directions.

The residual vector rk+1 is applied to determine the
exit conditions. Once ‖rk+1‖ drops below a predefined
threshold, we consider that Δyk+1 is a sufficiently accurate
solution. Otherwise, we use the new residual vector to
update the direction vector. The new temporary vector tk+1

can be obtained by

tk+1 = M−1rk+1. (17)

Consequently, the Gram-Schmidt constant βk for the k-th
iteration is given by

βk = tT
k+1rk+1

tT
k rk

. (18)

Finally, to ensure that the direction vectors p1, p2, · · · ,

pk+1 are R-orthogonal, the new direction vector pk+1 can
be calculated with βk by

pk+1 = tk+1 + βkpk . (19)

Until reaching the termination condition, each new iteration
generates a new solution with pk+1. The overall parallel
algorithm on a multi-process system for solving normal
equations is described by Algorithm 1.
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3.3 Comparisons of parallel acceleration

Lemma 1 (Amdahl’s law) [23] For a parallel bun-
dle adjustment system with p concurrent processors, the
fraction that can be enhanced is ρ, and the fraction that can
not be enhanced is 1−ρ, then the overall speedup ratio can
be determined by

γ (p) = 1

(1 − ρ) + ρ/p
. (20)

The fraction ρ is completely determined by what is the
aims of the task and how is the parallel algorithm designed.
If ρ = 1, the system can be perfectly parallelized, but
ρ < 1 in real applications. In this case, the speedup ratio is
bounded by

γ (p) ≤ lim
p→+∞

1

(1 − ρ) + ρ/p
= 1

1 − ρ
. (21)

Let N be the matrix dimension of the RCM. The
naive Cholesky decomposition solution incurs cubic time

complexity, i.e., O(N3

3 ). Let π be the number of nonzero
entries, and κ be the condition number of the RCM, the
time complexity of single-thread preconditioned conjugate
gradient (PCG) is then O(π

√
κ).

According to Lemma 1, ideally a parallel version of
PCG would take O( π

γ (p)

√
κ) time with p processors.

In practice, however, there is often additional scheduling
and communication overhead, and different processors
are usually not perfectly balanced. Thus, in a parallel
environment whether by multiple processes or multiple
threads, we can conclude the proposition of Lemma 1,

Theorem 3 For a parallel bundle adjustment system with
p concurrent processors considering overhead μ(p), the
fraction that can be enhanced remains ρ, and the fraction
that can not be enhanced is 1 − ρ, then the overall speedup
ratio can be generated by

γ ′(p) = 1

(1 − ρ) + ρ/p + μ(p)
. (22)

Intuitively, the overhead μ(p) is strictly increasing as
the the number of processors increases, which affects the
overall speedup. There is an equilibrium between γ ′(p) and
the overhead μ(p), which is depicted by the the following
experiments through different scales of datasets.

To study the time complexity of multi-process and
multi-thread parallel methods, we compare the operations
included in Algorithm 1 by Table 1. When loading data
f (x, y), the startup overhead for multi-process is generally
a bit larger than multi-thread on Linux platform, which
is not dominant for high performance multi-node servers.
However, the shared memory architecture of multi-thread

will produce conflicts when reading or writing memory
during the procedure of the whole algorithm. That is, the
bandwidth of memory limits the concurrency of many
processors for multi-thread, and the conflicts between
threads will become the bottleneck as the number of
processors increases.

To account for the overhead, we introduce two functions
of p, γ ′−(p) and γ ′+(p) (0 < γ ′−(p), γ ′+(p) < 1/(1 −
ρ)), for the PBA and the proposed PPCG algorithm,
respectively. When p = 1, multi-process and multi-
thread will degenerate to single process, that is to say
γ ′−(p) = γ ′+(p). When very few processors (possibly 2
to 4 for our simulations, which depends on architectures
and algorithms), the memory conflicts of multi-thread are
comparable with multi-process, and γ ′−(p) ≈ γ ′+(p). When
p grows much larger (5 or more), the memory conflicts are
dominant as discussed above, which results to γ ′−(p) <

γ ′+(p). Then, the time complexity of PBA is O
(

π
γ ′−(p)

√
κ
)

,

and that of PPCG is O
(

π
γ ′+(p)

√
κ
)

.

Additionally, RPBA distributes the whole block into a
limited number of subblocks through consensus ADMM
framework. Without considering the communication over-
heads of ADMM, the ideal time complexity of RPBA

is O
(

π
p

√
κ
)

. Taking overheads into account, the actual

ADMM iterates with sublinear convergence rate such that

the time complexity of RPBA is O
(

π
γ ′(p)

√
κ
)

(0 <

γ ′(p) < 1/(1 − ρ)) when we define a function, γ ′(p),
to summarize it. Since the overhead of ADMM is very
different from overheads produced by the OS and architec-
tures, we can’t compare the time complexity of RPBA with
others in theory. The following experiments will compare
the actual performance in real bundle adjustment applica-
tions. The time complexity of PPCG and the referenced
algorithms are summarized by Table 2.

4 Experiments

We have implemented the proposed PPCG algorithm using
C++11, and developed it on an Intel Core i5 8250 quad-
core hyper-threading 1.6GHz personal computer running
Linux Mint 19 Operating System with kernel 4.15.0-20-
generic. The capacity of RAM is 8GB and the compiler
is GCC7.3.0. A Message Passing Interface (MPI) based
parallel framework is utilized for parallel implementation.
State-of-the-art linear algebra software packages, BLAS
and LAPACK, are employed for matrix computations. All
experiments are performed with double-precision floating
point numbers. The structure dimension is 3, and the
camera dimension is 7 including 1 intrinsic parameter
and 6 extrinsic parameters without considering distortion
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Table 1 Operations of
multi-process and multi-thread
methods

Operation Multi-Process Multi-Thread

Loading Data startup overhead and data transmission startup overhead and data transmission

Reading Memory exclusive memory, no conflict shared memory, with conflicts

All reduce O(N/p + lg(p)) O(N/p + lg(p)), ideally for bipartition

Computation Equivalent time Equivalent time

Writing Memory exclusive memory, no conflict shared memory, with conflicts

parameters. Moreover, we also assume that the number of
processes is not less than the number of processors to assure
effective parallelization.

4.1 Dataset details

BAL benchmark datasets [2], i.e., Ladybug-1723, Trafalgar-
257, Dubrovnik-356, Venice-1776, Final-961 and Final-
1936, are used in the experiments, as listed by Table 3.
As well, the sizes and the sparsity of Hessian matrices
built from these datasets are listed. The Hessian matrix are
enormously large, but very sparse. Considering the memory
limitation of SBA, we choose two subsets Final-961 and
Final-1936 instead of the whole Final dataset.

Table 4 describes the characteristics of the six public
data-sets. Category is how are the images are organized in
the phase of feature extraction, and datasets with leaf images
contains more observation information. Intuitively, datasets
with leaf images contain more geometry information than
skeletal sets, which is more efficient for reconstructions.
Camera number are the number of cameras (or images)
used while Feature density is the average number of feature
points on one images. It is mentioned that datasets with
larger feature density will produce more accurate point
cloud.

The six public datasets are divided into 3 groups accord-
ing to their characteristics, and we randomly choose one
dataset from each of them for the following reconstructions,
i.e. Final-1936, Ladybug-1723 and Trafalgar-257.

4.2 Reconstructions

With the applications of our algorithm for bundle adjust-
ment, we perform the process of 3D reconstruction through
the structure from motion method, and present the results
of reconstructed point cloud. To verify the performance
of bundle adjustment, we compare the reconstructed point
cloud data before and after bundle adjustment. Figures 1,
2 and 3 depict the differences of the reconstructed point

cloud for Final-1936, Ladybug-1723 and Trafalgar-257. All
reconstructed point cloud data are observed in bird’s-eye
view.

Figure 1a and b present markedly the differences between
reconstructions after and before bundle adjustment for
Final-1936. It is shown that the reconstructed point cloud
after bundle adjustment is optimized where the edges
and figures are more clear. By contrast, the reconstructed
point cloud without bundle adjustment is very indistinct,
and nothing can be recognized except the contours. The
feature density of Final-1936 is relatively dense. Every
image has more features, which provides more geometry
information for the nonlinear optimization procedure of
bundle adjustment and produces more distinct point cloud.

Figure 1c and d present the differences between recon-
structions after and before bundle adjustment for Ladybug-
1723. There is significant improvements from our eye-sights
where objects and edges are explicitly augmented after bun-
dle adjustment. Scattering points are concentrated to their
real positions, and we can observe bold trees and paths.

Figure 1e and f compare the point cloud after bundle
adjustment with that before bundle adjustment for Trafalgar-
257. Since the feature density of Trafalgar-257 is sparse,
the point cloud without bundle adjustment is very sparse as
well. The object points are not optimized and concentrated
such that buildings and objects are extremely light. After
bundle adjustment, the contours and edges of the buildings
are augmented, the buildings and objects turn bold. As a
result, more distinct point cloud can be observed with the
optimization of bundle adjustment.

4.3 Convergence evaluation

The proposed PPCG algorithm is compared with the state-
of-the-art algorithms, PBA [12] and RPBA [20]. Both
single-thread and multi-thread algorithms are taken into
consideration in our evaluation. For simplicity, single-
thread PBA and RPBA are denoted by PBA-1 and RPBA-1
respectively, Two-thread PBA and RPBA are denoted by

Table 2 Time complexity
analysis Algorithm SBA PCG PBA PPCG RPBA

Complexity O(N3

3 ) O(π
√

κ) O( π
γ ′−(p)

√
κ) O( π

γ ′+(p)

√
κ) O( π

γ ′(p)

√
κ)
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Table 3 BAL datasets for
simulations Datasets Object Points Cameras Observations Hessian matrix Sparsity

Ladybug-1723 156502 1723 678718 481567×481567 0.0068%

Trafalgar-257 65132 257 225911 197195×197195 0.014%

Dubrovnik-356 226730 356 1255268 682682×682682 0.0061%

Venice-1776 993909 1776 5001859 2994159×2994159 0.0013%

Final-961 187103 961 1692975 568036×568036 0.012%

Final-1936 649673 1936 5213733 1962571×1962571 0.0030%

Table 4 Dataset discriptions
Public Datasets Category Camera number Feature density

Group #1 Final-961 with leaf images many dense

Final-1936 with leaf images many dense

Group #2 Ladybug-1723 skeletal set many sparse

Venice-1776 skeletal set many sparse

Group #3 Trafalgar-257 skeletal set few sparse

Dubrovnik-356 skeletal set few sparse

Fig. 1 Comparisons of the
reconstructed point cloud for
Final-1936, Ladybug-1723 and
Trafalgar-257. a, c and e are
reconstructed point cloud after
bundle adjustment, b, d and f
are reconstructed point cloud
before bundle adjustment

a b

c d

e f
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a b c

d e f

Fig. 2 Evaluations of convergence performance a Ladybug-1723 b Trafalgar-257 c Dubrovnik-356 d Venice-1776 e Final-961 f Final-1936

PBA-2 and RPBA-2, and et al. The convergence rates
of CholDec, PBA-1, PBA-2, PBA-4, RPBA-1, RPBA-2,
RPBA-4, PPCG-1, PPCG-2 and PPCG-4, are depicted by
Table 5.

For each dataset, we run all algorithms until they con-
verge to comparable MSE. In other words, throughout this
section, all methods except RPBA, reach the same accu-
racy in all experiments. In a different way, RPBA uses the

normalized weighted squared residuals (NWSR) to estimate
global errors. The Iterations item summarizes iterations
needed for an optimized solution for an algorithm, includ-
ing successful LM iterations (the numerator) and total LM
iterations (the denominator), the Runtime item is the time
consumed for a whole bundle adjustment process while the
Speedup Ratio item presents the speedup with respect to
CholDec. Owing to the limitation that the source codes of

a b c

d e f

Fig. 3 Evaluations of parallel performance a Ladybug-1723 b Trafalgar-257 c Dubrovnik-356 d Venice-1776 e Final-961 f Final-1936
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Table 5 Comparisons of convergence rate

Algorithms Ladybug-1723 Trafalgar-257 Dubrovnik-356 Venice-1776 Final-961 Final-1936

Benchmark

CholDec

Iterations 7/8 26/29 18/37 15/18 14/19 11/13

Runtime 1423.50s 30.88s 173.56s 3979.25s 1191.53s 5903.62s

MSE 1.832 4.643 6.846 4.693 3.814 5.623

Single Thread PBA-1† Iterations 38/50 35/50 28/50 − 34/50 25/50

Runtime 10.78s 11.27s 60.91s − 81.54s 211.03s

MSE 1.794 4.537 6.949 − 3.813 5.600

Speedup 132.05× 2.74× 2.85× − 14.61× 27.98×
RPBA-1 Iterations 2/2 2/2 2/2 2/2 2/2 2/2

Runtime 8.06s 6.97s 64.18s 114.77s 243.16s 689.74s

NWSR 1.0e+10 1.0e+10 1.0e+10 1.0e+10 1.0e+10 1.0e+10

Speedup 176.61× 4.43× 2.70× 34.67× 4.90× 8.56×
PPCG-1 Iterations 9/11 22/24 18/24 10/10 10/15 11/11

Runtime 10.94s 20.07s 122.79s 111.74s 58.62s 127.84s

MSE 1.825 4.591 6.676 5.000 3.814 5.623

Speedup 130.12× 1.54× 1.41× 35.61× 20.33× 46.18×
2 Threads PBA-2† Iterations 35/50 37/50 34/50 − 39/50 25/50

Runtime 9.68s 12.06s 58.29s − 63.15s 197.98s

MSE 1.810 4.686 6.750 − 3.813 5.616

Speedup 147.06× 2.56× 2.98× − 18.87× 29.82×
RPBA-2 Iterations 4/4 5/5 4/4 6/6 4/4 4/4

Runtime 4.79s 1.91s 6.23s 72.84s 33.06s 108.43s

NWSR 1.084 0.896 0.765 0.721 1.142 1.062

Speedup 297.18× 16.17× 27.86× 54.63× 36.04× 54.45×
PPCG-2 Iterations 8/9 22/25 18/25 10/10 11/14 11/11

Runtime 5.68s 8.94s 64.26s 64.18s 28.75s 68.55s

MSE 1.825 4.675 6.626 5.000 3.815 5.623

Speedup 250.62× 3.45× 2.70× 62.00× 41.44× 86.12×
4 Threads PBA-4† Iterations 39/50 37/50 31/50 − 39/50 33/50

Runtime 8.73s 10.35s 53.72s − 57.71s 98.30s

MSE 1.807 4.703 6.933 − 3.814 5.626

Speedup 163.06× 2.98× 3.23× − 20.65× 60.06×
RPBA-4 Iterations 7/7 6/6 5/5 6/6 5/5 4/4

Runtime 9.05s 1.19s 5.09s 42.12s 16.31s 45.92s

NWSR 0.932 0.904 0.772 0.722 1.085 1.064

Speedup 157.29× 25.95× 34.09× 94.47× 73.06× 128.56×
PPCG-4 Iterations 8/9 22/23 18/31 10/10 9/12 10/10

Runtime 3.40s 5.44s 47.90s 36.43s 15.34s 39.99s

MSE 1.825 4.628 6.682 5.000 3.816 5.624

Speedup 418.68× 5.68× 3.62× 109.23× 77.67× 147.63×

†PBA is failed on the Venice-1776 dataset

PBA and RPBA are optimized for shared memory archi-
tectures, the comparisons of convergence rate are only
performed on a shared memory personal computer.

From the results of Table 5, it is demonstrated that
PPCG-4 achieves absolutely best convergence performance

among referred methods for most datasets. To measure the
performance of the iterative methods, we choose CholDec
as our baseline benchmark algorithm, and compares the
run-time of PBA, RPBA and PPCG with it. CholDec
converges much slower than other methods due to the fact
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that Cholesky decomposition is very complicated in time
when the Hessian matrix grows. In contrast, PBA, RPBA
and PPCG are globally faster than CholDec because each
iteration of these iterative methods consume much less time
for sparse problems, though more iterations are needed.

For datasets with more cameras, such as Ladybug-1723,
Venice-1776, Final-961 and Final-1936, there is significant
speedup for iterative algorithms over CholDec. Therefore,
it can be concluded that the iterative methods, PBA, RPBA
and PPCG, are highly effective for large problems, because
the time complexity of CholDec (6) grows cubically for
datasets with much more cameras and the iterative methods
act more excellent than the direct method, CholDec when
the RCM is very sparse. Without parallelization, PBA-1
gains speedup of 2.74 to 132.05, RPBA-1 gains speedup of
2.70 to 176.61 and PPCG-1 gains speedup of 1.54 to 130.12.

For parallel iterative methods, PBA, RPBA and PPCG
with multiple threads obtain more significant speedup ratio
than single-thread algorithms by reducing each iteration
time through multi-threading techniques. PBA-4 achieves
speedup of 2.98 to 163.06 times. PBA accelerates the
traditional preconditioned conjugate gradient (PCG) [2]
through multiple concurrent threads, but the efficiency is
relatively low compared with the CPUs it occupies. RPBA-
4 converges very fast with less iterations by improving
the measurement with NWSR, and achieves speedup of
25.95 to 157.29 times. PPCG-4 achieves speedup of 3.62
to 418.68 times, and achieves speedup of 1.12 to 3.76
times against PBA-4, and obtains a speedup ratio of 1.06 to
2.66 over RPBA-4 for datasets excluding Trafalgar-257 and
Dubrovnik-356 (Table 2).

Figure 2 describes the convergence curves of the
algorithms, which is more clear for the trajectory of
convergence. Since NWSR is a measurement which is very
different from MSE, RPBA is not included in Fig. 2. The
much steeper curve demonstrates much faster convergence
for each iteration, and the much earlier ending point
demonstrates much faster global convergence. For all of the
datasets, the curve of PPCG-4 converges fastest and ends
earliest among the referred algorithms excluding RPBA-1,
RPBA-2 and RPBA-4.

4.4 Parallelization evaluation

We evaluate the parallel performance of our algorithm on
a multi-node server. Each node in the server is equipped

with 24 Intel IA-64 cores running at 1.2GHz without hyper-
threading, 64GB shared RAM and 64bit Linux operating
system for each computing node. PPCG is not constrained
by share-memory architectures, and can be extended to
multiple computing nodes, which is evaluated on the server
to measure the parallel performance. The speedup ratio and
the efficiency from 1 to 72 processors (3 computing nodes)
are depicted by Fig. 3.

Based on the experimental results, we conclude that the
speedup ratio grows as the number of processors grows,
and approaches to a certain value due to the existences
of the bound and overhead while the efficiency acts in
the opposite way. It is shown that PPCG gains excellent
parallelization whether in small or large scale problems.
Moreover, the curves of speedup ratio and efficiency cross at
one point, where the equilibrium of them is guaranteed. The
real performance of computing nodes is fluctuating, which
results to the non-smooth curves, but the trends demonstrate
the deterministic or functional relationships.

4.5 Bound and overhead

Categories and descriptions for the overhead of a multi-node
server are listed by Table 6, as well as functions under
the MPI framework. The overhead of imbalanced workload
can be eliminated by well-designed parallel algorithm while
the others are determined by hardware architectures and
parallel framework. When transmitting data, the nodes
have to created connections to destination nodes. The
overhead caused by this whole procedure is connection
setup overhead, which is increased when the increasing
processors enlarge routing time. And the communication
overhead is the time consumed by data transmission after
connections.

Theoretically, even more computing nodes or processors
can be included to get much larger speedup ratio, but the
bound of the speedup ratio (discussed in Section 3.3) will
restrict the overall speedup ratio, as well as the overhead
of startup and communications among different processes.
Firstly, according to Lemma 1, the speedup ratio γ ′+(p) will
not increase as it approaches 1/(1 − ρ) when adding more
processors. This characteristic is owing to the algorithm
or the task it self. Secondly, assuming that γ ′+(p) <<

1/(1 − ρ), additional processors will speedup the whole
task when the computation burden is greater than related
overhead for each process. As adding more processors, the

Table 6 Overhead of
multi-node computers Category Description MPI Functions

Startup process initiation, connection setup MPI Init, MPI Send, MPI Recv, and etc.

Communication data transmission MPI Send, MPI Recv, and etc.

Workload barriers caused by imbalanced workload optimized by algorithm design
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computation burden decreases while overhead increases,
which will results lower efficiency. As a result, for very
large bundle adjustment problems, more computing nodes
can be added for higher speedup ratio with acceptable
efficiency.

5 Conclusion

This paper has proposed a PPCG algorithm to solve normal
equations involved in bundle adjustment problems. A par-
allel Schur complement algorithm is devised to reduce the
size of normal equations. Then, a parallel preconditioned
conjugate gradient method is developed is to solve the
reduced normal equations by parallelizing the original PCG
algorithm. Taking the global performance into account, the-
oretical results ensuring the equivalence of matrix decompo-
sition are presented with formal proof and the corresponding
algorithm is developed to avoid expensive matrix compu-
tations. The experiments on a multi-node server show that
PPCG achieves significant speedup ratios on several bench-
mark datasets compared to other algorithms, which reaching
comparable accuracy. Moreover, the speedup ratio and the
computational efficiency with respect to the number of pro-
cessors are also evaluated and reported. Regarding future
work, we plan to take PPCG as a local optimizer for con-
sensus optimization based large-scale distributed bundle
adjustment problems, and develop a distributed framework
for further improvements with efficiency and scalability.
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