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Abstract
In this paper, a production–distribution scheduling problem with non-identical batch machines and multiple vehicles is
considered. In the production stage, n jobs are grouped into batches, which are processed on m parallel non-identical batch
machines. In the distribution stage, there are multiple vehicles with identical capacities to deliver jobs to customers after the
jobs are processed. The objective is to minimize the total weighted tardiness of the jobs. Considering the NP-hardness of
the studied problem, an algorithm based on ant colony optimization is presented. A new local optimization strategy called
LOC is proposed to improve the local exploitation ability of the algorithm and further search the neighborhood solution to
improve the quality of the solution. Moreover, two interval candidate lists are proposed to reduce the search for the feasible
solution space and improve the search speed. Furthermore, three objective-oriented heuristics are developed to accelerate
the convergence of the algorithm. To verify the performance of the proposed algorithm, extensive experiments are carried
out. The experimental results demonstrate that the proposed algorithm can provide better solutions than the state-of-the-art
algorithms within a reasonable time.

Keywords Parallel batch machines · Non-identical machine capacities · Production and distribution · Ant colony
optimization algorithm · Total weighted tardiness

1 Introduction

As a new branch of scheduling, batch scheduling problems
(BSPs) [1] extensively exist in industrial manufacturing
systems, such as metal manufacturing, pharmaceuticals,
aeronautics, semiconductor manufacturing, and logistics,
among others [2]. Different from the classical scheduling
problems, one typical feature of scheduling on batch
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processing machines (BPMs) is that several jobs can be
processed as a batch on one BPM simultaneously as long
as the total size of jobs in the batch does not exceed the
capacity of the BPM.

In recent years, the coordination of production schedul-
ing and product transportation has become increasingly
important in supply chain management. With the advance-
ment of the make-to-order (MTO) business model in
which products are customized and delivered from fac-
tory to customer and no finished product inventory is held
between them, the production and distribution are therefore
more closely linked and jointly scheduled. The integrated
scheduling models are often used in time-sensitive supply-
chain management, such as the production and delivery
of perishable products [3] and industrial adhesive mate-
rial [4]. In such examples from practical life, because of
the time-sensitive characteristics of these products, orders
should be delivered to the customers directly without inter-
mediate inventory. Additionally, the delay in the delivery
of these products may not only incur a tardiness penalty
due to customer dissatisfaction and potential loss of repu-
tation, but also lead to failure of the supply chains. How-
ever, with the increasingly fierce competition in the case
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of MTO manufacturing, productivity related to due dates
has become more significant for manufacturers. Therefore,
the integrated scheduling problem involving due-date con-
siderations becomes very crucial for most of today’s the
businesses, and how to effectively integrate the production
and delivery stages at the operational level to lower oper-
ational costs and improve customer service become very
important to company success.

A large number of companies globally rely on third-party
logistics (3PL) providers for their daily transportation of
products and other logistics needs. 3PL providers usually
follow a fixed daily or weekly service plan to serve
their customers. The objective of integrated scheduling is
generally to achieve an overall optimization for the supply
chain and the obtained schedule can offer effective guidance
for operations management.

There are two different modes related to vehicle capacity.
In the first mode, it is assumed that each job occupies one
unit of the capacity, without loss of generality. On the one
hand, if the sizes of jobs are identical, each job is assumed
to occupy one unit of the capacity. On the other hand, if the
jobs have non-identical sizes, each job is assumed to take up
one standard-size pallet for delivery convenience, regardless
of the sizes of jobs. Hence, each vehicle can transport a
fixed number of jobs in the first mode. In the second mode,
the amount of capacity occupied by each job is assumed to
equal the size of the job, which is suitable for addressing
BSPs with unequal-size jobs. Therefore, the second mode is
employed in addressing the studied problem.

In this paper, the problem of integrated scheduling
of production and distribution is investigated, and the
objective of the studied problem is to minimize the total
weighted tardiness (TWT) of the jobs. Furthermore, an ant
colony optimization (ACO) algorithm with a novel local
optimization is proposed to group the jobs into batches in
the production stage. Moreover, a heuristic is developed
to transport the completed jobs to customers during the
distribution phase. The main contributions of the proposed
algorithm are the following.

(1) A new local optimization strategy called LOC is
proposed to improve the local exploitation ability of
the algorithm and further search the neighborhood
solution to improve the quality of the solution.

(2) Two interval candidate lists (ICLs) are proposed to
reduce the search for the feasible solution space and
improve the search speed.

(3) Three objective-oriented heuristics are developed to
accelerate the convergence of the algorithm.

The rest of this paper is organized as follows. In Section 2,
the literature on batch scheduling and the integrated
scheduling model is reviewed. In Section 3, the studied
problem is formulated. Thereafter, an ACO algorithm with

a novel local optimization based on efficient solution
construction is proposed in Section 4. In Section 5, results
and analysis on comparative experiments are provided.
Conclusions and future research directions are presented in
Section 6.

A list of all abbreviations used in this paper can be found
in Appendix A.

2 Literature review

With the emergence of manufacturing, the BSP has been
widely investigated [5–7]. Furthermore, makespan, one of
the common objectives of scheduling problems, is usually
used to evaluate the productivity of companies from many
different scenarios. Reference [8] studied BSP with non-
identical job sizes on a single machine and proposed an
artificial bee colony (ABC) approach to minimize the
makespan. Reference [9] designed two improved heuristics:
(1) the first-fit longest processing time (FFLPT) rule is
improved by considering identical job size and (2) the best-
fit longest processing time (BFLPT) rule is improved by
using an enumeration scheme. The objective of the problem
was to minimize makespan on a BPM with non-identical
job sizes and unequal job processing times. Reference [10]
dealt with the problem of scheduling jobs with arbitrary
sizes on the parallel BPMs with non-identical capacities
and presented a heuristic based on the first-fit-decreasing
(FFD) rule, as well as a meta-heuristic based on max-min
ant system (MMAS), to minimize the makespan. Reference
[11] proposed a branch-and-bound algorithm to minimize
the makespan of the problem of scheduling jobs with unit
size, different processing times, and arbitrary release dates
on parallel BPMs. Reference [12] studied the problem of
scheduling jobs with dynamic arrival times on parallel
BPMs with arbitrary capacities to minimize makespan and
proposed two meta-heuristics based on ACO to tackle it.

The objective of total (weighted) completion time
(TCT/TWCT) is related to measure customer satisfaction
in general. Therefore, with the rise of MTO manufacturing,
an increasing number of BSP researchers have begun to
consider this objective. Reference [13] proposed a dynamic
programming approach to minimize the TCT of the problem
of scheduling jobs on an unbounded BPM. Reference [14]
investigated the problem of scheduling jobs in incompatible
families and dynamic arrivals on a single BPM to minimize
the TCT. They put forward a decomposed branch-and-
bound algorithm according to the characteristics of dynamic
job arrivals. Reference [15] studied the problem of serial
batch scheduling on uniform parallel machines to minimize
TCT and presented a polynomial-time procedure with the
complexity of O(m2 · nm+2). Reference [16] proposed two
ACO-based algorithms with different coding methods to
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minimize the TCT of the BSP. The two coding methods
are based on job sequence and batch sequence, respectively.
Reference [17] investigated the problem of minimizing the
total weighted completion time on parallel BPMs with
identical capacities, non-identical job sizes, and unequal
weights. They presented an ACO-based meta-heuristic, as
well as a mixed-integer programming (MIP) formulation, to
address it.

Minimizing total (weighted) tardiness, one of the
important objectives that reflect the production performance
of the time-sensitive jobs, has widely been considered in
scheduling problems with order due dates. Reference [18]
studied the scheduling problem of minimizing earliness–
tardiness (E/T) on a single BPM, in which jobs have
non-identical sizes and a common due date. They presented
a heuristic called the minimum attribute ratio of the
batch (MARB), a hybrid genetic algorithm (GA), and
a mathematical model to solve the problem. Reference
[19] dealt with scheduling problems in two-stage hybrid
flow shops in which jobs have different due dates and
each machine has identical capacities. They proposed a
MIP model and three iterative algorithms to address the
problem. Reference [20] provided a mathematical model
considering dynamic starting conditions and developed
heuristic algorithms to solve the scheduling problem for
minimizing TWT under the constraint of unequal release
times, incompatible job families, non-identical job sizes,
and heterogeneous BPMs. Reference [21] studied the
scheduling problem on non-identical parallel BPMs with
job release times and non-identical job sizes to minimize
the TWT and presented several heuristics, a MIP model,
dynamic programming methods, and simulated annealing
(SA) algorithms to resolve the problem.

The above studies only considered the production stage
of products but ignored the transportation process. With the
development of the logistics industry, the transportation of
products plays an important role in this field. Reference
[22] studied the vehicle scheduling problem of minimizing
the required transportation time and presented two meta-
heuristic methods, variable neighborhood search (VNS) and
greedy randomized adaptive search procedure (GRASP),
to solve the problem. Reference [23] proposed a novel
dynamic public transport vehicle allocation scheme based
on the emergent intelligence (EI) technique and built math-
ematical models for estimation of resources, utilization, and
reliability parameters for solving public transport system
problems. Reference [24] dealt with transportation vehi-
cle scheduling problems in a supply-chain network and
presented a collaborative transportation scheduling strat-
egy, as well as a meta-heuristic algorithm called chemical
reaction optimization(CRO), to minimize the total trans-
portation cost. Reference [25] investigated the problem of

minimizing the total transportation cost in urban cold chain
transportation logistics. They presented an improved GA
to address it. Reference [26] dealt with the vehicle routing
problem of minimizing the traveling cost. The hybridiza-
tion of the particle swarm optimization (PSO) and adaptive
large neighborhood search (ALNS) algorithms was first
developed for solving the problem.

In the past, the optimized objectives of BSPs with a single
phase were related to production efficiency, and included
makespan, total completion time, and total delay time,
among other objectives. With the rise of the service and
manufacturing industries, two-stage integrated scheduling
problems have played an increasingly important role in
reducing operating costs and improving service level and
customer satisfaction in those industries. In addition, to be
closer to real world applications, the completion time of
an order extended from the completion time of processing
in a single production stage to the delivery time to the
customer in the transportation phase. This problem was
often faced by manufacturers that made time-sensitive
products such as fashion apparel and toys, which was sold
only during specific seasons. Therefore, it was necessary
for these manufacturers to make the production and
distribution scheduling decisions. In addition, the customers
often set due dates on the orders they placed with the
manufacturer and there was typically a penalty imposed
on the manufacturer if the orders were not completed and
delivered to the customers on time. Hence, the manufacturer
was incentivized to meet the due dates as close as possible.

With the rise of supply-chain management technology, a
growing number of studies on production scheduling with
simultaneous order distribution have appeared. Reference
[27] presented a branch-and-bound algorithm for small-
scale problems and a tabu search and a hybrid GA for
large-scale problems of minimizing the total tardiness
of a set of jobs to be scheduled on identical parallel
machines for which jobs can only be delivered on
certain fixed delivery dates. Reference [28] considered the
production-distribution scheduling problem of minimizing
total weighted delivery times on parallel BPMs with non-
identical job sizes and equal processing time. They proposed
a deterministic heuristic and two hybrid meta-heuristics
based on MMAS to solve the problem. Reference [29]
studied an integrated production and distribution problem
considering homogenous vehicles with capacity constraints
to minimize the total weighted delivery times of orders
and presented an improved large neighborhood search
algorithm with a local search. Reference [30] developed an
approximation algorithm with a worst-case ratio of 3/2 to
minimize the total delivery times of jobs for the problem that
considers both production and job delivery simultaneously
with the consideration of machine availability. Reference
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[31] dealt with the problem of minimizing total weighted
delivery time of scheduling a set of jobs with identical
processing time, non-identical sizes, and unequal weights
on parallel BPMs with arbitrary capacities. They presented
two heuristic algorithms and an algorithm based on ACO
to address the problem. Reference [32] investigated several
integrated problems of production, inventory, and delivery.
After being processed, the orders were delivered to the
customers by transporters at fixed delivery departure times.
They considered two classes of problems based on whether
the order delivery was splittable or not. For every class of
problems, they analyzed the computational complexity, and
pointed that each problem is NP-hard. For a detailed review
on integrated scheduling, the reader is referred to [33, 34].

Since the completion time of each job in the production
stage is the start time of jobs in the transportation phase for
two-phase integration scheduling problems, the processing
completion time of each job is diverse for different
production scheduling schemes. Thus, in the transportation
stage, jobs that are transported on each delivery are
different and the distribution scheduling scheme obtained
is also different. In addition, it is difficult to coordinate
the integrated scheduling of the two stages of production
and transportation, especially considering the parallel BPM
environment in the production stage. Hence, the relationship
between the production and transportation stages is rarely
studied. In summary, studies on integrated scheduling
considering TWT, especially on parallel non-identical
BPMs with different job sizes, unequal job weights, and
arbitrary job due dates, are still far fewer those of traditional
objectives. Since the objective of TWT is widely applicable
in the service and manufacturing industries, the integrated
scheduling problems considering TWT are still worth
further study.

3 Problem formulation

The problem studied in this paper can be denoted by
Pm | p-batch, delivery, pj = p, wj , sj , dj , Si, CV, DTl,

V Al | ∑n
j=1 wj · Tj . It is assumed that all parameters are

integers and known in advance. The assumptions of this
problem are the following.

There are a set of n jobs, denoted by J = {Jj |j =
1, 2, ..., n}, to be grouped into b batches that are scheduled
on m parallel BPMs, denoted by M = {M1, M2, . . . , Mm}.
Each job Jj ∈ J has four attributes, i.e., processing time
pj = p, size sj , weight wj , and due date dj . The generated
batch set is denoted by B = {Bu|u = 1, 2, . . . , b}. Each
batch Bu ∈ B generally includes more than one job. All
jobs in the same batch are processed simultaneously without

interruption. Note that b is not determined in advance. The
capacity of the machines are non-identical. Each machine
Mi has a capacity Si . There are z different machine capacity,
denoted by S1, S2, · · · , Sz (1 ≤ z ≤ m). Without loss of
generality, it can be assumed that S1 < S2 < · · · < Sz. The
number of machines whose capacity equals to Sξ (1 ≤ ξ ≤
z) is denoted by mξ , where m1 + m2 + · · · + mz = m and
Si ∈ {S1, S2, · · · , Sz}. The size of each job is not more than
the maximum capacity of machines, i.e., Sz. All machines
and jobs are available at time zero. In the studied problem,
some jobs can only be processed on the machines with
large capacity due to the constraint of machine capacity.
Moreover, the total size of all jobs in one batch cannot
exceed the capacity of the machine that processes the batch,
and the k-th batch scheduled on Mi is denoted by Bki . The
processing time of the batch Bki , denoted by Pki , is equal to
p.

Once the processing of a job is finished, this job is
delivered to the customer by one of the vehicles at d(l =
1, 2, . . . , d) different departure times. At the l-th departure
time, denoted by DTl(l = 1, 2, . . . , d), there are V Al

vehicles to be used for transportation, and each vehicle has
the identical capacity CV .

To describe the studied problem more accurately, the MIP
model of this problem is presented in Appendix B.

In [1], the scheduling problem of minimizing makespan
on a single BPM with arbitrary job sizes was studied and the
proof of strong NP-hardness of the problem was provided.
Since the due dates and weights of the jobs, as well as the
capacity of machines, are all non-identical in the studied
problem, which is more complicated than the problem in
[1], the problem investigated in this paper is also NP-hard.

4 Proposed algorithm

Considering that the studied problem is NP-hard, a meta-
heuristic based on ACO is proposed to address the
studied problem. The ACO algorithm is inspired by the
communication mechanism of ant foraging behavior, where
individual ants communicate with each other by secreting
pheromones. As the ants move, they leave pheromones
in their path, and the ones behind choose their path
by sensing the concentration of pheromones. Since the
collective behavior of the ant colony shows the phenomena
of positive feedback, self-organization, strong robustness,
and distributed calculating. ACO has been successfully used
to handle a great deal of complex discrete combinatorial
optimization problems.

In this paper, the problem under study can be solved in
two stages. In the production stage, the jobs are grouped
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into batches that are scheduled on the parallel BPMs. In
the transportation stage, an effective heuristic method is
proposed to obtain the optimal schedule.

This section contains the following contents. First, the
solution construction scheme is introduced. Second, the way
the pheromones update is presented. Third, to obtain the
best solution, the local optimization strategy is developed.
Fourth, a detailed description of the proposed algorithm is
presented.

4.1 Solution construction

Encoding is the first step in ACO being applied to solve
the combinatorial optimization problem. In this study, each
solution is encoded as a 2×n vector, where n represents the
number of jobs. For the production phase of the integrated
scheduling problem, jobs must be grouped into batches
before the jobs can be processed on the BPMs. Once a job
is assigned to a batch, the batch index and machine index of
the job are determined simultaneously.

To clearly describe the state of each job being accessed,
an access list, denoted by AL, is employed to record the
access state of each job, and the initial value of AL is set
to (1, 2, . . . , n), indicating that all jobs are not scheduled.
The number at the corresponding position on the access
list becoming zero denotes that the job has been scheduled.
After all jobs are processed, AL = (0, 0, . . . , 0), indicating
that one schedule to be delivered in the stage of production
is built.

4.1.1 Interval candidate list

In the solution construction (SC) algorithm of the studied
problem, since the selection of the first job in the new empty
batch on the machine has a great influence on the quality
of solution. ICLs based on four attributes, i.e., capacity of
batches, size of jobs, due dates of jobs, and departure times,
are designed to reduce the search for the feasible solution
space and improve the search speed. Specifically, there are
three steps to construct the interval candidate list ICL1

lki :
(1) Build a set of jobs that meet the size of current batch
Bki on the machine Mi ; (2) divide an interval into different
sub-intervals according to the departure time; and (3) assign
jobs to different sub-intervals according to their due dates.
ICL1

lki is used to randomly select a job from the sub-
intervals in order from front to back and assign it to the new
empty batch Bki on machine Mi . In addition, the process
of constructing interval candidate list ICL2

lki is to remove
jobs that do not meet the remaining space of the current
batch Bki on machine Mi based on ICL1

lki . ICL2
lki is used

to select a job from the sub-intervals in order from front to
back and assign it to the current batch Bki on machine Mi

according to (7). ICL1
lki and ICL2

lki are defined as (1) and
(2), respectively.

ICL1
lki = {Jj |sj ≤ Ski ∧ dj ≥ DTl ∧ dj ≤ DTl+1} (1)

ICL2
lki ={Jj |sj ≤(Ski −

∑

h∈Bki

sh)∧dj ≥DTl ∧dj ≤DTl+1}

(2)

where Jj in (1) and (2) represents any one unscheduled job.

4.1.2 Pheromone trails

Pheromone trails are of great importance in constructing
solutions by ants. Each ant selects the unscheduled jobs
and assigns the selected jobs into one batch based on the
state-transition probability. Moreover, pheromones usually
represent past experiences of the ants in building solutions.
Moreover, an unsuitable definition of pheromones generally
leads to poor solutions. In this study, pheromone ψhj

represents the desirability to place jobs Jh and Jj in the
same batch, and θjki represents the average desirability of
candidate job Jj being assigned into batch Bki . To improve
the accuracy of the algorithm, θjki is defined as follows:

θjki =
∑

Jh∈Bki
ψhj

| Bki | (3)

where ψhj denotes the expectation of candidate jobs Jj and
Jh being grouped into the same batch; | Bki | denotes the
number of jobs in Bki .

4.1.3 Heuristic information

As a crucial component of the ACO algorithm, heuristic
information enables guiding the search direction during the
search process. Specifically, it can provide the problem-
specific knowledge, thereby accelerating the convergence
of the algorithm. In the problem described herein, jobs
with large weight, tight due date, and small size should be
processed with a higher priority. Thus, η1

j is defined as (4).
Additionally, since the job with a tight due date should be
selected with a higher probability, η2

j is defined as (5). To
reduce the number of batches and make the jobs able to
be processed as early as possible, each batch should be as
full as possible to reduce the idle space of the batch on the
machine. Therefore, the third heuristic information η3

jki is
defined as (6):

η1
j = wj

dj · sj + γ
(4)

η2
j = 1

dj

(5)
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η3
jki = 1

Si − (
∑

Jh∈Bki
sh + sj ) + 1

(6)

where γ is a constant.

4.1.4 Decision rules

To build each batch, two decision rules are required,
namely decision making in selecting the machine and job,
respectively. In the decision rule for machine selection,
the machine with the smallest completion time is selected
to decrease the makespan of production. If more than
one machine has the same smallest completion time, the
machine with the smallest index number is selected. In the
decision rule for job selection, when an empty batch is
constructed on the selected machine, one unscheduled job is
randomly selected from ICL1

lki and added into the current
batch as the first job first. Then, the unscheduled jobs are
chosen from ICL2

jki and added into the current batch one
by one according to the state-transition probability, defined
as (7):

pjki =

⎧
⎪⎨

⎪⎩

(θjki )
α ·(η1

j )β1·(η2
j )β2·(η3

jki )
β3

∑
Jh∈ICL2

lki
(θhki )

α ·(η1
h)β1·(η2

h)β2·(η3
hki )

β3 , if Jj ∈ ICL2
lki

0, otherwise.

(7)

According to (7), the selection of jobs is influenced
by four parameters, i.e., α, β1, β2, and β3, determining
the relative importance of pheromone trails and heuristic
information.

4.2 Update of pheromone trails

Pheromone update is a vitally significant step in ACO to
explore and exploit better solutions and search the solution
space efficiently. For ant colonies, pheromone update is
used to dynamically adjust the search direction based on
the ants’ previous experiences. There are generally two
types of strategies for updating pheromones, namely the
local and global updates. In the local update, only the best
solution found by the colony in the current generation is
used to update pheromones. However, the best solution
found from the first generation to the current generation is
employed in the global update of pheromones. To decrease
the complexity of the proposed algorithm and elevate the
quality of solutions, only the global update strategy of
pheromones is utilized in this study. Moreover, pheromones
evaporate at a fixed rate to hinder them from accumulating
indefinitely. Specifically, the pheromone trails are updated
according to (8):

ψhj (t + 1) = (1 − ρ) · ψhj (t) + Δψhj (t) · mhj (t) (8)

where ρ denotes the fixed evaporation rate, ranging from 0
to 1. mhj (t) represents the number of times that jobs Jh and
Jj are grouped into the same batch at the current iteration
t . Δψhj (t), representing the increment of pheromones
generated by the global best solution at iteration t , is defined
as (9):

Δψhj (t) =
⎧
⎨

⎩

Q
T WT ∗(t)

, if jobs Jh and Jj are grouped into the same batch

0, otherwise.

(9)

In the t-th generation, if jobs Jh and Jj are assigned in
the same batch, Δψhj (t) = Q/T WT ∗(t), where Q is an
input parameter, then T WT ∗(t) denotes the objective value
of the global best solution at the t-th generation; that is, the
minimum TWT is found at the t-th generation. If Jh and Jj

are not grouped in the same batch, Δψhj (t) = 0.

4.3 Local optimization strategy

Ants can search for a feasible solution under the guidance
of historical and heuristic information. However, it is
difficult to explore the entire solution space exhaustively
due to the complexity of the problem. Thus, it is quite
possible to find a better neighbor solution of the constructed
solution. To improve the local exploitation ability of the
algorithm, and further search the neighborhood solution to
improve the quality of the solution, a swap-based local
optimization strategy, called LOC, is proposed. In LOC,
the jobs in different batches are exchanged so that the jobs
can be finished before or close to their due dates as much
as possible. Before introducing the LOC, the following
definition is provided.

Definition 1 For the studied problem, the sequence number
of batches on a machine is called the rank of the batch.
Furthermore, the first batch on each machine is called the
first-rank batch, the second batch on each machine is called
the second-rank batch, and so on.

Since jobs being processed and transported earlier
benefits the objective, the jobs with larger weights and
smaller due dates should be processed as early as possible.
In other words, these jobs should be assigned lower-rank
batches. In LOC, one job with smaller weight and larger
due dates in one lower-rank batch is exchanged with one job
with larger weight and smaller due date in the higher-rank
batch under the constraint of machine capacity.

To make LOC more readable, an example is given as
follows. In the production stage, suppose there are two
machines and five jobs, the information of which is listed
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in Table 1. In Table 1, the first row represents the indices of
the jobs, while the second, third, and fourth rows denote the
weights, sizes, and delivery times of each job, respectively.
In the transportation stage, it is assumed that there are two
departure times, denoted by 3 and 6, there are two available
vehicles, the capacity of which are five at every departure
time, and the interval between the two departure times is
three.

The distribution of jobs in batches before and after
using the LOC algorithm are displayed in Figs. 1 and 2,
respectively.

From Figs. 1 and 2, it can be found that job J2 is in
the second-rank batch and J5 is in the first-rank batch.
Moreover, w2 > w5 and d2 < d5. Therefore, J2 is
exchanged with J5 after LOC is executed, causing the
objective value of TWT to be reduced from 34 to 20.

The LOC algorithm described as Algorithm 1.

4.4 Description of proposed algorithm

To make the proposed algorithm easier to understand, the
processes of algorithm SC and job transportation (JT) are
described as Algorithms 2 and 3, respectively.

Algorithm SC consists of four parts. To begin, some
parameters are initialized. Second, an empty batch is built
on the selected machine and the first job for the current
batch is chosen. Third, the unscheduled jobs are selected
and grouped into the current batch based on the state-

Table 1 Infomation of jobs

j 1 2 3 4 5

wj 3 5 2 4 1

sj 1 3 2 3 4

dj 4 2 3 1 5

transition probability pjki . Fourth, the solution to the
production sub-problem is output.

Let F lagj denote the shipped states of jobs; that is,
F lagj = 0 indicates that job Jj is not shipped, while
F lagj = 1 means that Jj is shipped. Let cj represent the
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Fig. 1 Gantt chart of feasible
schedule before using LOC

completion time of job Jj . Jtrp denotes the set of jobs that
are transported. Algorithm JT is described as Algorithm 3.

The proposed algorithm, i.e., ant colony optimization
with local optimization (LACO), is described as Algorithm
4. In line 1, the parameters, such as the maximum iteration
Imax ; index of the current iteration, g; evaporation rate of
pheromones, ρ; global best solution GS; number of ants,
Nant ; and pheromone matrix, among others, are initialized
separately. In lines 2–11, the best solution is generated. In
line 4, Algorithm SC is called to construct a production
schedule. In line 5, Algorithm LOC is called to improve
the production schedule. In line 6, Algorithm JT is called
to generate the solution. In lines 7 and 9, GS, the best
solution from the first generation to the current generation,
and pheromone trails, are updated separately. In line 12, the
global best solution GS is output.

4.5 Complexity analysis

For each iteration of the proposed LACO algorithm, the
computation time consists of three separate parts, i.e.,

building the batches, local optimization, and transporting
the jobs, the complexities of which are O(n2), O(b2), and
O(d · n2), respectively. Since the maximum number of
batches, b, is not more than the number of jobs, n, and
the local optimization strategy is executed by every ant,
the computational complexity of the LACO algorithm is
O(Imax×Nant ×d×n2), where Imax , Nant , and d denote the
maximum number of iterations, number of ants, and number
of departure times, respectively.

5 Computational experiments

To evaluate the performance of the LACO algorithm com-
prehensively, it is compared with three other representative
algorithms, i.e., PSO [35], the random-keys genetic algo-
rithm (RKGA) [36], and SA [37]. To verify the effectiveness
of the local optimization strategy in LACO, WACO (LACO
without local optimal strategy) is also implemented as one
of the benchmark algorithms. Moreover, to apply the bench-
mark algorithms to the problem studied in this paper, several
modifications are required.

To make a fair comparison, the strategy of job
transportation in all algorithms is the same. Additionally,
the method of batching in this paper is incorporated
into the benchmark algorithm SA, meanwhile, machine
environment in [37] is modulated according to the studied
problem.

All algorithms are programmed in C++ using the
software Visual Studio 2017 and executed on a Windows 7
PC with an Intel Core i3 3.20GHz processor and 8 Gb of
RAM.

5.1 Experimental designs

In this paper, eight categories of test instances are
determined by the combination of four factors such as

1759An ant colony-based algorithm for integrated scheduling on batch machines with non-identical capacities...



Fig. 2 Gantt chart of improved
schedule after using LOC

number of jobs (n), number of machines (m), tightness of
due dates (A), and departure modes (DW ). Specifically,
two combinatorial values of n and m are considered, i.e.,
(n = 100, m = 5) and (n = 200, m = 10), denoted by
NM1 and NM2, respectively. Parameter A is set according
to [38] to adjust the urgency degrees of the due dates of
jobs. The value of A is selected from set {0.5, 1}, denoted by
A1 and A2, respectively. Two kinds of departure modes are
designed, denoted by DW1 and DW2, respectively. Hence,
eight categories of test instances are generated totally,
denoted by NM1A1DW1, NM1A1DW2, NM1A2DW1,
NM1A2DW2, NM2A1DW1, NM2A1DW2, NM2A2DW1,
and NM2A2DW2, respectively. For each category, ten
instances are generated randomly, according to the settings
in Table 2, where P and U represent poisson distribution
and uniform distribution, respectively.

To test the effect of the number of jobs on the
performance of the LACO algorithm, two levels of the

Table 2 Factors and levels of the test instances

Factors Levels

n N1 = 100, N2 = 200

m(m1, m2) 5(3, 2), 10(6, 4)

pj 3

sj sj ∼ P(λq), λ1 = 5, λ2 = 12.5

wj U [1,10]

A A1 = 0.5, A2 = 1

dj U [2p, A × Cmax ]

Sξ S1 = 10, S2 = 25

CV 80

DTl DT1 = 6 × 1, DT2 = 6 × 2, . . . , DTd = 6 × d

V A1,3,...,d−1 U [1, 2] for N1DW1, U [3, 4] for N2DW1

V A2,4,...,d U [3, 4] for N1DW1, U [4, 5] for N2DW1

V A1,2,...,d U [2, 3] for N1DW2, U [4, 5] for N2DW2

number of jobs are considered. The processing times of
jobs (pj ), the weights of jobs (wj ), the types of machine
capacities (Sξ ), and the number of machines (m) are set
according to the method in [31]. The due date of each job
(dj ) is generated by U [2p, A×Cmax], where Cmax denotes
the makespan obtained by the first fit (FF) rule. The sizes
of jobs are set according to the method in [39]. In the
distribution stage, the capacity of each vehicle (CV ) is set
to 80. The vehicles are set to depart at d different departure
times, where d is determined until all jobs have been
transported in the transportation stage. At the l-th departure
time, denoted by DTl(l = 1, 2, · · · , d), the corresponding
number of vehicles is denoted by V Al . Additionally, in
DW1, the number of vehicles for departure times with
odd and even indexes is generated by U [1, 2] and U [3, 4]
for 100 jobs, respectively. Correspondingly, the number of
vehicles for departure times with odd and even indexes is
generated by U [3, 4] and U [4, 5] for 200 jobs, respectively.
In DW2, the number of vehicles for each departure time
is set by U [2, 3] for 100 jobs and U [4, 5] for 200 jobs,
respectively.

5.2 Parameter settings

In the proposed LACO algorithm, the setting of several
parameters has great influence on solution quality and
computation time. Therefore, to achieve better performance,
it is necessary to determine appropriate values for these
parameters. The LACO parameters include Nant , Imax , ρ,
α, β1, β2, and β3. To balance between solution quality
and computation time, the values of several parameters are
set, according to the preliminary experiments, as follows:
Nant = 20, Imax = 200, ρ = 0.5, and Q = 1.
Meanwhile, to compare the algorithms fairly, the number
of particles, number of chromosomes, and number of
iterations at the same temperature are set to 20 in PSO,

1760 Z.-h. Jia et al.



RKGA, and SA, respectively; that is, the number of fitness
function evaluations in each iteration for all algorithms is
20. Moreover, the maximum number of iterations for all
algorithms is set to 200. Therefore, the numbers of fitness
function evaluations of all the algorithms are the same and
equal to 4,000.

To determine the effect of the values of the other
four key parameters on the performance of LACO, the
Taguchi design-of-experiment (DOE) method is employed.
The combinations of selected values of these parameters are
listed in Table 3.

To determine the effect of the four parameters, i.e., α,
β1, β2, and β3, on pheromone trails and heuristic informa-
tion, the values of pheromones and heuristic information
are set within (0, 1). Moreover, the input parameter γ is
set to 5 to ensure the value of heuristic information η1

j

is within (0, 1). As shown in Table 3, five levels of val-
ues are set for each parameter. As a result, an orthogonal
array L25(54) is selected. To test the robustness of the pro-
posed LACO algorithm and simplify the simulated exper-
iments, one group of representative instances, denoted by
NM2A1DW1, is chosen, in which 200 jobs with urgent due
dates are processed on 10 machines and transported in the
first mode of departure. Furthermore, five out of 10 instances
are randomly selected and each selected instance is inde-
pendently tested 10 times. Finally, the average TWT value
obtained on each instance is regarded as the response variable
(RV ). Apparently, the smaller the value of RV , the better
the combinatorial values of the four parameters. The orthog-
onal array and obtained RV values are listed in Table 4.

The average RV values on the numbers in the rows with
the same level of each parameter in Table 4 are listed in
Table 5 and illustrated in Fig. 3. In Table 5, Delta represents
the difference between the maximum and the minimum numbers
in the rows for each column. The numbers in the row of Ranks

are determined according to decreasing order of Delta.
The smaller the value of Ranks, the greater the influence
of the corresponding parameter on the objective value.

From Fig. 3 and Table 5, it can be seen that β1 is the
most significant one among the four parameters. Moreover,
a smaller value of β1 can degrade the performance of the
algorithm. This is because the jobs with loose due dates and
larger weights being given higher priorities to be processed
and transported, which can result in greater delays for the

Table 3 Combinations of parameter values

Parameters Factor levels

1 2 3 4 5

α 1/5 1/3 1 3 5

β1 1/5 1/3 1 3 5

β2 1/5 1/3 1 3 5

β3 1/5 1/3 1 3 5

Table 4 Orthogonal array and RV values

Test indexes Paramter values RV

α β1 β2 β3

1 1 1 1 1 31212.1

2 1 2 2 2 31234.5

3 1 3 3 3 31241.5

4 1 4 4 4 31272.4

5 1 5 5 5 31242.6

6 2 1 2 3 33770.8

7 2 2 3 4 34041.2

8 2 3 4 5 33804.6

9 2 4 5 1 29426.9

10 2 5 1 2 29329.0

11 3 1 3 5 34315.6

12 3 2 4 1 31349.1

13 3 3 5 2 30610.5

14 3 4 1 3 29268.6

15 3 5 2 4 30033.6

16 4 1 4 2 31572.1

17 4 2 5 3 32343.5

18 4 3 1 4 33283.1

19 4 4 2 5 32513.2

20 4 5 3 1 29196.6

21 5 1 5 4 33846.8

22 5 2 1 5 34086.3

23 5 3 2 1 30037.9

24 5 4 3 2 29459.9

25 5 5 4 3 29433.9

jobs with tight due dates. As for β3, if it is too large the
idle space in each batch on the machine increases. On
the one hand, if the value of α is set to be too large,
the algorithm converges faster without guaranteeing better
solution quality. On the other hand, a smaller value of α

can cause the solution space searched by the algorithm to
decrease. Therefore, to ensure better performance of LACO,
an appropriate value for α is required. It can be seen that
the influence of β2 on the algorithm is insignificant, so

Table 5 Average response values

Levels α β1 β2 β3

1 31240.62 32943.48 31435.82 30244.52

2 32074.50 32610.92 31518 30441.2

3 31115.48 31795.52 31650.96 31211.66

4 31781.70 30388.2 31486.42 32495.42

5 31372.96 29847.14 31494.06 33192.46

Delta 959.02 3096.34 215.14 2947.94

Ranks 3 1 4 2
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Fig. 3 Trends of factor levels of
α, β1, β2, and β3

only a reasonable value is preferred. According to the above
analysis, the values of the four parameters are set to α = 1,
β1 = 5, β2 = 0.2, and β3 = 0.2, which are used in the
following experiments.

The parameters of all the benchmark algorithms are set
as in Table 6. As shown in Table 6, for each algorithm,
the maximum iteration number Imax is set to 200. In PSO,
npop denotes the number of particles, and c1 and c2 denote
the cognitive and social learning coefficients, respectively.
w and α denote the inertia weight and decrement factor,
respectively. Meanwhile, the range of velocity and position
for each particle are set within [-4.0,4.0] and [0.0,4.0],
respectively. There are three main parameters in RKGA, i.e.,
population size N , crossover probability pc, and mutation
probability pm. In SA, K and Tmin denote the iterative
number under the same temperature and lower bound of the
temperature, respectively. At the same time, θ denotes the
cooling rate. Additionally, the values of other parameters of
the benchmark algorithms are set according to their original
papers [35–37].

Table 6 Parameter settings

PSO RKGA SA LACO

npop = 20 N = 20 K = 20 Nant = 20

Imax = 200 Imax = 200 Imax = 200 Imax = 200

c1 = 1 pc = 0.5 θ = 0.95 ρ = 0.5

c2 = 1 pm = 0.2 Tmin = 10−6 Q = 1

w = 0.6 α = 1

α = 0.99 β1 = 5

Vmax = 4.0 β2 = 0.2

Vmin = −4.0 β3 = 0.2

Xmax = 4.0

Xmin = 0.0

5.3 Evaluationmetrics

To guarantee the fairness of comparison between the
algorithms, the following performance metrics are adopted.

(1)Relative distance (RAlg): This metric is used to mea-
sure the quality of the obtained solution [31]. Specifi-
cally, RAlg indicates the distance between the obtained
solution and best objective value, denoted by T WT Best ,
among those obtained by all algorithms, including
LACO, WACO, PSO, RKGA, and SA, to each test
instance. RAlg is formulated as (10):

RAlg(%) = T WT Alg − T WT Best

T WT Best
× 100 (10)

where T WT Alg denotes the average value of each
algorithm on its 10 runs Alg for each instance. It is clear
that the smaller the value of RAlg , the closer the objective
value of algorithm Alg to the T WT Best .

(2) Run time (t): This metric is generally used to com-
pare the time performance of different algorithms under
the same execution environment.

5.4 Experimental results and analysis

The experimental results of different combinations
are shown in Tables 7–14. In each table, the first column
represents the indexes of instances in the corresponding
instance group. Each algorithm is run on each instance 10
times and the average values of R̄ and t̄ are calculated to
measure the performance of the algorithms. The last row
denotes the average results on the 10 instances of each
instance group. Note that the best result of R̄ on each test
instance is shown in bold type.
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Table 7 Average results on NM1A1DW1

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 4.703 1.99 9.260 1.78 6.126 0.71 23.263 1.26 26.672 4.60

2 2.269 2.03 8.261 1.78 15.819 0.36 25.544 1.25 21.215 4.79

3 3.493 2.06 8.501 1.77 5.873 0.53 14.227 1.26 16.935 5.03

4 2.227 2.00 6.053 1.73 13.612 0.30 19.029 1.30 23.501 4.65

5 3.769 2.09 9.285 1.78 15.420 0.30 35.003 1.36 31.510 4.47

6 2.998 2.06 8.771 1.75 7.555 0.30 21.785 1.43 17.659 4.47

7 6.798 2.16 12.162 1.89 6.512 0.29 21.216 1.48 22.009 4.45

8 2.363 2.05 6.005 1.74 5.874 0.31 24.083 1.55 23.415 4.55

9 0.988 1.99 6.168 1.68 12.527 0.29 23.163 1.39 29.647 4.58

10 4.797 1.93 9.291 1.64 6.168 0.30 17.584 1.34 19.763 4.46

avg 3.440 2.04 8.376 1.75 9.549 0.37 22.490 1.36 23.233 4.61

Table 8 Average results on NM1A1DW2

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 4.229 1.97 9.535 1.79 13.034 0.29 27.011 1.32 23.397 4.33

2 2.238 2.01 7.916 1.80 14.839 0.26 27.501 1.35 25.144 4.33

3 3.864 2.04 8.562 1.77 16.566 0.25 28.416 1.36 26.895 4.27

4 2.936 2.00 6.886 1.73 12.330 0.26 19.874 1.32 21.611 4.37

5 3.741 2.09 9.135 1.78 15.631 0.26 27.273 1.32 34.745 4.32

6 4.673 2.04 7.272 1.76 12.353 0.26 24.763 1.32 18.166 4.29

7 1.090 2.15 6.298 1.89 3.101 0.26 15.676 1.32 24.185 4.28

8 5.059 2.04 10.279 1.76 15.729 0.26 36.162 1.33 40.382 4.31

9 4.202 1.98 8.303 1.69 15.610 0.25 28.511 1.34 35.842 4.37

10 2.772 1.92 6.888 1.65 15.718 0.26 19.122 1.33 23.241 4.25

avg 3.481 2.02 8.107 1.76 13.491 0.26 25.431 1.33 27.361 4.31

Table 9 Average results on NM1A2DW1

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 12.576 1.63 17.102 1.50 139.932 0.26 99.644 1.51 115.051 4.51

2 5.007 1.68 14.779 1.57 141.469 0.26 105.906 1.37 104.736 4.51

3 3.662 1.62 7.767 1.53 47.463 0.26 54.745 1.37 52.471 4.54

4 2.529 1.62 8.581 1.45 62.153 0.26 63.880 1.36 55.019 4.53

5 6.985 1.57 18.371 1.44 134.663 0.26 144.363 1.36 179.419 4.53

6 8.876 1.63 13.618 1.47 100.065 0.30 110.788 1.37 95.220 4.48

7 6.494 1.62 11.950 1.44 71.290 0.34 92.833 1.36 95.961 4.58

8 2.692 1.67 8.431 1.49 48.371 0.34 38.477 1.35 37.866 4.56

9 16.502 1.63 19.040 1.44 128.189 0.33 101.893 1.36 117.366 4.52

10 4.975 1.60 7.250 1.45 44.737 0.33 54.844 1.38 35.246 4.54

avg 7.030 1.63 12.689 1.48 91.833 0.29 86.737 1.38 88.836 4.53
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Table 10 Average results on NM1A2DW2

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 9.730 1.64 20.180 1.48 185.383 0.30 148.401 1.36 136.171 4.35

2 8.938 1.70 15.852 1.55 163.912 0.30 134.958 1.40 180.675 4.36

3 4.328 1.67 6.968 1.48 73.435 0.30 77.429 1.41 78.469 4.37

4 4.605 1.67 7.580 1.42 63.600 0.30 61.620 1.35 65.054 4.35

5 6.386 1.63 8.768 1.35 153.491 0.32 140.411 1.35 148.131 4.37

6 8.644 1.66 11.034 1.41 107.866 0.30 104.268 1.34 115.570 4.33

7 5.147 1.61 6.399 1.39 78.253 0.32 103.740 1.35 97.913 4.38

8 17.604 1.66 27.150 1.44 78.797 0.33 68.873 1.34 79.432 4.37

9 15.430 1.64 22.341 1.42 131.848 0.31 99.676 1.34 108.801 4.47

10 4.746 1.60 8.145 1.41 60.386 0.33 83.446 1.38 83.315 4.47

avg 8.556 1.65 13.442 1.43 109.697 0.31 102.282 1.36 109.353 4.38

Table 11 Average results on NM2A1DW1

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 2.025 7.33 8.531 6.71 38.914 0.82 30.034 5.01 34.779 13.13

2 1.224 7.43 5.618 6.78 16.104 0.85 21.094 4.48 27.763 12.82

3 0.825 7.34 5.682 6.63 10.988 0.86 22.496 4.43 22.922 12.77

4 1.492 7.06 4.256 6.39 17.097 0.82 18.693 4.38 13.769 12.69

5 1.427 7.24 8.482 6.53 32.351 0.86 22.059 4.42 24.853 12.74

6 2.384 7.02 9.003 6.34 35.006 1.09 35.927 4.38 34.604 12.90

7 1.445 7.16 6.346 6.37 12.066 0.92 29.035 4.37 31.031 12.76

8 2.111 7.03 7.502 6.31 19.205 0.92 20.235 4.38 20.120 12.79

9 1.074 7.24 5.096 6.60 16.015 0.90 25.151 4.42 25.155 12.69

10 1.049 7.25 7.277 6.50 20.083 0.90 31.640 4.39 32.965 12.96

avg 1.506 7.21 6.779 6.52 21.783 0.89 25.636 4.47 26.796 12.82

Table 12 Average results on NM2A1DW2

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 2.647 7.60 9.312 6.78 41.858 0.82 35.531 4.63 29.885 13.01

2 2.516 7.52 8.244 6.83 22.074 0.84 32.497 4.47 39.032 13.23

3 1.724 7.36 8.881 6.72 16.430 0.98 26.677 4.32 28.087 13.17

4 1.663 7.06 7.897 6.46 28.795 0.94 25.292 4.32 27.639 13.00

5 1.360 7.09 8.543 6.43 34.021 1.05 25.445 4.36 21.352 13.72

6 1.992 7.00 7.080 6.44 34.821 0.95 34.173 4.32 36.200 12.67

7 1.642 6.96 7.209 6.43 18.319 0.95 29.548 4.32 34.221 13.79

8 1.559 6.94 8.731 6.30 24.000 0.92 25.720 4.31 26.285 13.48

9 1.339 7.12 7.265 6.50 18.526 0.94 19.212 4.41 22.363 13.27

10 2.189 7.03 7.542 6.37 23.826 0.92 32.313 4.38 34.402 13.18

avg 1.863 7.17 8.070 6.53 26.267 0.93 28.641 4.38 29.947 13.25
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Table 13 Average results on NM2A2DW1

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 2.061 5.82 14.201 5.52 156.672 0.95 105.838 4.69 91.345 13.77

2 6.978 5.73 20.529 5.48 187.252 0.94 169.273 4.68 70.727 13.74

3 10.158 5.36 19.651 5.16 92.757 1.06 100.889 4.51 94.766 14.83

4 14.840 5.35 23.462 5.32 202.906 0.96 131.175 4.35 80.021 13.71

5 11.525 5.35 20.568 5.31 239.653 0.97 134.543 4.38 156.362 12.75

6 7.799 5.30 13.012 5.18 149.900 1.02 140.139 4.84 100.772 12.86

7 4.743 5.36 9.410 5.14 138.569 0.97 138.750 4.74 82.431 12.85

8 3.496 5.56 8.169 5.38 96.680 0.94 67.629 4.79 51.791 12.75

9 3.727 5.36 12.099 5.07 122.783 0.95 102.976 4.85 103.993 12.56

10 8.779 5.77 15.219 5.35 152.450 0.93 115.128 4.94 148.994 12.63

avg 7.411 5.50 15.632 5.29 153.962 0.97 120.634 4.68 98.120 13.25

Table 7 shows the experimental results on the instances
with n = 100, m = 5, A = 0.5, and DW1, denoted by
NM1A1DW1. Table 8 lists the results on instance group
NM1A1DW2. It can be observed from Tables 7 and 8 that
the LACO algorithm can obtain the smallest R̄ of any other
benchmark algorithm, except for the seventh instance in
NM1A1DW1, no matter what the departure mode is. This
shows that the quality of the solution obtained by LACO
is better than that of each other benchmark algorithm. In
other words, the solution found by LACO is much closer
to the best solution that can be found by all algorithms
for each instance. From Tables 7 and 8, it can be found
that the performance of each algorithm on instances with
the first mode, i.e., DW1, is different from that on the
mode of DW2. Specifically, the average values of R̄ in
Table 7 are slightly lower than those in Table 8. Although
the computation time of PSO is obviously less than that of
LACO, the solution quality of PSO is much worse than that

of LACO. This may be because the strategies adopted in
LACO, such as the local optimization, are relatively more
deliberate.

It can be seen from Tables 7 and 8 that the difference
between the runtime of LACO and that of WACO is
very small, meaning that the computation time of the
local optimization strategy is negligible. Furthermore, the
solution quality of LACO slightly outperforms that of
WACO. This means that the performance of LACO is better
than that of WACO as a whole.

Tables 9 and 10 present the results obtained by the
algorithms for instances with 100 jobs, five machines, A=1,
and combined with two modes of departure. It can be
observed from Tables 9 and 10 that the average values of
R̄ obtained by LACO in Tables 9 and 10 are larger than
the corresponding average values of R̄ in Tables 7 and 8,
respectively. The reason may be that the delays of most
jobs become smaller when the value of A increases, which

Table 14 Average results on NM2A2DW2

Ins. LACO WACO PSO RKGA SA

R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s) R̄(%) t̄(s)

1 6.553 5.89 19.087 5.49 165.493 1.06 114.931 4.55 93.545 13.55

2 10.058 5.80 18.709 5.38 202.388 1.09 157.146 4.53 147.573 13.73

3 4.357 5.43 10.622 5.11 77.879 0.99 79.077 4.44 72.988 13.78

4 7.157 5.44 15.278 5.25 174.148 0.96 114.878 4.37 134.080 13.03

5 16.796 5.47 26.908 5.27 265.996 0.97 144.983 4.37 152.314 12.48

6 14.551 5.40 18.679 5.17 166.052 0.99 129.176 4.45 145.604 12.82

7 11.045 5.37 18.692 5.11 162.038 0.96 140.767 4.37 149.451 13.86

8 3.892 5.58 7.452 5.35 97.598 0.96 75.742 4.38 82.717 13.72

9 3.260 5.33 10.640 5.03 121.849 0.97 96.811 4.38 94.475 13.68

10 2.135 5.63 6.018 5.32 124.055 0.96 96.794 4.42 92.523 13.30

avg 7.980 5.53 15.208 5.25 155.750 0.99 115.030 4.43 116.527 13.40
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results in a decrease in objective value. According to (10),
the average values of R̄ become slightly larger.

Tables 11–14 provide the experimental results on 200
jobs and 10 machines with A1DW1, A1DW2, A2DW1,
and A2DW2. It can be observed from the four tables that,
as the number of jobs increases, all algorithms take slightly
longer to find the solutions, which is still acceptable.
At the same time, the average values of R̄ obtained by
the LACO algorithm are still better than those of the
other benchmark algorithms. Additionally, according to the
experimental results in Tables 11 and 13, it can be seen that
the average values obtained by all algorithms in Table 11
are slightly better than those in Table 13. The reason for
this phenomenon may be due to the different setting of
parameter A. Furthermore, since the value of parameter
A in Table 10 is less than that in Table 12, there are
more jobs with tight due dates in instance A1DW1 than
in instance A2DW1, which results in the target values
obtained in instance A1DW1 being greater than those in
instance A2DW1. According to (10), one can conclude that
the average R̄ values of instance A1DW1 are slightly less
than those of instance A2DW1. The comparative results in
Tables 12 and 14 are consistent with those in Tables 11 and
13, respectively.

It is remarkable that the average values of R̄ obtained
by all algorithms on instances with a DW1 mode are
slightly better than those of all algorithms on a DW2
mode, according to Tables 7–14, which means that the
first departure mode is superior to the second mode for
the studied problem. Moreover, it can be seen from each
table that the average values of R̄ obtained by LACO are
slightly better those of WACO, due to the WACO algorithm
being unable to find a better schedule of assigning jobs on
machines than the LACO algorithm. In other words, in the
solution found by WACO, more jobs with loose due dates
or small weights are processed in advance, leading to the
jobs with tight due dates or large weights being delayed for
processing. Therefore, the objective values obtained by the
WACO algorithm is slightly larger than that of the LACO
algorithm.

In all, according to the results of comparative experi-
ments, the LACO algorithm is able to find better solutions
than any other benchmark algorithm, although the com-
putation time it takes is slightly longer than that of the
WACO algorithm, PSO algorithm, and RKGA. Moreover,
the computation time of the LACO algorithm is acceptable.

6 Conclusions

In this paper, an algorithm based on ACO, called LACO, is
proposed to address the integrated production distribution
scheduling problem on parallel BPMs and to minimize

the TWT of jobs. In the production stage, the jobs are
processed on the BPMs with non-identical capacities. In the
delivery phase, the jobs having finished their processing are
transported by vehicles with equal capacity. A new local
optimization strategy called LOC is proposed to improve the
local exploitation ability of the algorithm, and further search
the neighborhood solution to improve the quality of the
solution. Two interval candidate lists are proposed to reduce
the search for the feasible solution space and improve
the search speed. Additionally, three objective-oriented
heuristics are developed to accelerate the convergence of
the algorithm. To verify the performance of the proposed
algorithm, several algorithms are compared with LACO on
test instances designed deliberately. Experimental results
show that the proposed LACO can offer better solutions
than the other four benchmark algorithms in addressing the
studied problem.

In future research, the studied problem can be extended
to some other variations that are interesting and closer
to reality. However, the extended problems may be more
complex. For example, the production phase can be
extended to more complex environments, such as unequal
processing speeds of machines and jobs with dynamic
release times. Another more realistic extension is to
extend the equal capacity of vehicles to non-identical
vehicle capacity. Additionally, other objectives could also
be considered, such as the maximum tardiness and total
revenue.

Appendix A: Abbreviations

Abbreviation Method

ABC Artificial bee colony
ACO Ant colony optimization
AL Access list
ALNS Adaptive large neighborhood

search
BFLPT Best fit longest processing time
BPM Batch processing machine
BSP Batch scheduling problem
CRO Chemical reaction optimization
DOE Design of experiment
EI Emergent intelligence
E/T Earliness-tardiness
FF First fit
FFD First-fit-decreasing
FFLPT First-fit longest processing time
GA Genetic algorithm
GRASP Greedy randomized adaptive search

procedure
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GS Global best solution
ICL Interval candidate list
JT Job transportation
LOC Local optimization strategy
LACO Ant colony optimization with local

optimization
MARB Minimum attribute ratio of the

batch
MIP Mixed-integer programming
MMAS Max-min ant system
MTO Make-to-order
PSO Particle swarm optimization
RKGA Random-keys genetic algorithm
RV Response variable
SA Simulated annealing
SC Solution construction
TCT/TWCT Total (weighted) completion time
TWT Total weighted tardiness
VNS Variable neighborhood search
WACO LACO without local optimal strat-

egy

Appendix B: Mixed-integer programming
model

To present the MIP model of the studied problem, the
parameters and decision variables are listed as follows:

Parameters:

j index of each job, j = 1, 2, . . . , n

i index of each machine, i = 1, 2, . . . , m

k index of each batch, k = 1, 2, . . . , b

l index of each departure time, l =
1, 2, . . . , d

pj processing time of job Jj

sj size of job Jj

dj due date of job Jj

Si capacity of machine Mi

wj weight of job Jj

CV capacity of vehicle
DTl the l-th departure time
V Al number of vehicles depart at the l-th

departure time
Dj departure time of job Jj

Pki processing time of the k-th batch on
machine Mi

CTki completion time of the k-th batch
on machine Mi

STki start time of processing for the k-th batch
on machine Mi

cj completion time of job Jj

Ci completion time of machine Mi

Decision variables:

Xki =
{

1, If batch Bk is assigned to machine Mi

0, otherwise.
(11)

Yjki =
{

1, If job Jj is assigned to the kth batch on machine Mi

0, otherwise.

(12)

Zjl =
{

1, If job Jj is transported at the lth departure time DTl

0, otherwise.

(13)

The MIP model of this problem is formulated as follows:

Minimize T WT =
n∑

j=1

wj · Tj (14)

Subject to.
m∑

i=1

Xki = 1 k = 1, 2, . . . , b (15)

m∑

i=1

b∑

k=1

Yjki = 1 j = 1, 2, . . . , n (16)

n∑

j=1

sj · Yjki ≤ Si k = 1, 2, . . . , b; i = 1, 2, . . . , m (17)

Pki = pj · Yjki j = 1, 2, . . . , n; k = 1, 2, . . . , b; i = 1, 2, . . . , m

(18)

Xki ≥ Yjki j = 1, 2, . . . , n; k = 1, 2, . . . , b; i = 1, 2, . . . , m (19)

STki = CTk−1,i k = 1, 2, . . . , b; i = 1, 2, . . . , m (20)

CTki = STki + Pki k = 1, 2, . . . , b; i = 1, 2, . . . , m (21)

ST1i = 0 i = 1, 2, . . . , m (22)

CTki ≤ DTd k = 1, 2, . . . , b; i = 1, 2, . . . , m (23)

d∑

l=1

Zjl = 1 j = 1, 2, . . . , n (24)

n∑

j=1

sj · Zjl ≤ CV · V Al l = 1, 2, . . . , d (25)
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DTl = Dj · Xki · Yjki · Zjl j = 1, 2, . . . , n;
k = 1, 2, . . . , b; i = 1, 2, . . . , m; l = 1, 2, . . . , d (26)

b∑

k=1

Xki ≥ 1 i = 1, 2, . . . , m (27)

Tj = max{0, Dj − dj } j = 1, 2, . . . , n (28)

Xki, Yjki , Zjl ∈ {0, 1} (29)

The objective function (14) is used to minimize the TWT
of jobs. Constraints (15) ensure that each batch can only be
assigned to one machine. Constraints (16) ensure that each
job can only be assigned into one batch on one machine.
Constraints (17) indicate that the total size of all jobs in
one batch cannot exceed the capacity of the machine that
processes this batch. Constraints (18) define the processing
time of the batch. Constraints (19) guarantee that each job
can only be assigned into a batch after it has been created.
Constraints (20) define the start processing time of a batch.
Constraints (21) formulate that the completion time of each
batch equals the sum of the start time and processing time
of the batch. Constraints (22) define that the start time of the
first batch on each machine is zero. Constraints (23) ensure
that the completion time of each batch does not exceed the
last delivery time. Constraints (24) indicate that each job can
only be transported once. Constraints (25) guarantee that the
sum of the size of jobs transported at each departure does
not exceed the total capacity of the corresponding vehicles.
Constraints (26) determine the departure time of each job.
Constraints (27) ensure that the number of the batches
processed on each machine is not less than one. Constraints
(28) define the tardiness time of each job. Constraint (29)
define the binary restriction on the decision variables.
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