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Abstract
Negative selection algorithm is the core algorithm of artificial immune system. It only uses the self for training and generates
detectors to detect abnormalities. Holes are feature space areas that the detector fails to cover, it is the root cause of
the performance degradation of the negative selection algorithm. The conventional method generates a large number of
detectors randomly to repair the holes, which is time-consuming and not effective. To alleviate the problem, we propose
a V-Detector-KN algorithm in this paper. V-Detector is the abbreviation of the real-valued negative selection algorithm
with Variable-sized Detectors, KN represents Known Nonself. The V-Detector-KN algorithm uses the known nonself as the
candidate detector to further generate the detector based on the V-Detector randomly generated detector, so as to realize the
repair of holes. Compared with the conventional method to randomly generate detectors to repair holes, our proposed V-
Detector-KN method uses known nonself to repair holes, reducing the randomness and blindness of hole repair. Theoretical
analysis shows that the detection rate of our algorithm is not lower than that of the conventional V-Detector algorithm. The
results of experiment comparing with other 6 algorithms on 7 UCI data sets show the superiority of our proposed algorithm.

Keywords Artificial immune system · Negative selection algorithm · V-Detector · Anomaly detection

1 Introduction

Artificial immune system is an adaptive system developed
from the mechanism and theory of biological immune
system [1]. Once proposed, it quickly became a hot
topic of extensive discussion and attention in academia,
Nature [2] and Science [3] had carried out special reports
on it. Negative Selection Algorithm (NSA) is the core
algorithm of artificial immune system [4]. It was proposed
by professor Forrest of the university of new mexico in
1994 [5]. In biological immunity, T cells must undergo
a self-tolerance process in the thymus to mature, and T
cells that recognize any self will die. Therefore, mature T
cells do not recognize self and can be used for nonself

� Tao Li
taoli scu@163.com

Zhiyong Li
lizhiyong@uoh.edu.cn

1 School of Cyber Science and Engineering, Sichuan University,
Chengdu, 610065, China

2 Information Technology Center, Honghe University, Mengzi,
661199, China

detection. Inspired by the self-tolerance of T cells, NSA
randomly generates candidate detectors and deletes those
that recognize self (normal sample) during the training
process, and uses detectors that do not recognize self to
detect nonself (abnormal sample).

Negative Selection Algorithms has experienced two
breakthroughs from binary space to real value space and
from fixed radius detector to variable radius detector [5–
7]. Early NSA used binary strings to define antibodies
(detectors) and antigens (sample), and calculated the
similarity between them through r-continuous bit matching
rules [5]. In 2003, Gonzalez and Dasgupta extended NSA
to real-valued space and proposed a Real-valued Negative
Selection Algorithm (RNSA) to normalize antigens and
antibodies to [0, 1]n real value space, and use minkowsky
distance to calculate the affinity [6]. In 2004, Zhou Ji
proposed real-valued negative selection algorithm with
variable-sized detectors (V-Detector) [7]. V-Detector still
uses the binary tuple < cd, rd > to represent the detector,
but the detector radius rd no longer uses the preset fixed
value, but changes dynamically according to the position
of the nearest self. Due to the variable size of radius,
detectors with larger radius can cover nonself space more
efficiently, thus reducing the number of detectors; detectors
with smaller radius can better cover holes, thus increasing
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the coverage of nonself space. V-Detector became the state-
of-the-art NSA at that time [8]. To our knowledge, so far,
many scholars are still improving the V-Detector [9–12].

Since no prior knowledge is needed, unlimited abnormal
data can be detected only with a limited number of normal
samples, making the NSA gradually become one of the most
popular tools in the research fields of network intrusion
detection [9, 13–15], network anomaly detection [16–
18], malicious code detection [19], fault detection [20–22]
and civil engineering damage detection [23]. The above
application fields can all be regarded as the problem of
distinguishing self from nonself. For example, by defining
normal network traffic as self, we can train detectors to
detect network intrusions (nonself) [9, 13–15]. By defining
the normal state of the network, we can train the detector to
detect network anomalies (nonself) [16–18]. In the field of
fault detection, we usually define the normal state as the self
and the abnormal state as the nonself [20–22].

NSA is widely used, but the hole problem has not been
solved well, which restricts its development. Holes are
feature space areas that the detector fails to cover. In the
testing phase, the NSA classifies the samples covered by
the detector as nonself, and the samples not covered by
the detector as self. The nonself in the hole is incorrectly
classified as the self because it is not covered by the
detector, resulting in a decrease in the detection rate.
Therefore, hole problem is a major factor causing the
performance degradation of V-Detector algorithm [24].

In order to reduce holes and increase the coverage
of nonself space, so as to improve the detection rate,
many scholars have conducted extensive and in-depth
research. In 2014, Idris proposed a differential evolution
based NSA (referred to as NSA-DE), which optimizes
the distribution of detectors through differential evolution
to reduce the number of holes [25]. In 2015, Cui Lin
proposed a bidirectional inhibition optimization r-variable
negative selection algorithm (BIORV-NSA). BIORV-NSA
includes self set edge inhibition strategy and detector self
inhibition strategy. Self set edge inhibition strategy defines
a generalized radius for self individual area, making self
individual radius dynamically be variable, so it is possible
to cover more nonself space to reduce holes [26]. In 2016,
Saurabh put forward the concept of self-tuning detectors
and detector power in NSA with the intension to make
a detector evolve and facilitate better and correct self
and nonself coverage [18]. In 2017, targeted that in the
high-dimensional space, antigens (data samples) distribute
sparsely and unevenly, and most of them reside in low-
dimensional subspaces, which makes it difficult to generate
detectors in high-dimensional space and there are a large
number of holes. Tao Yang proposed the antigen space
density based real-value NSA (ASD-RNSA), guide the
candidate detector to evolve and eventually generate in

a relatively dense subspace of antigen distribution, so as
to achieve the repair of holes in high-dimensional space
[11]. In 2018, Ziwen proposed an improved V-Detector
algorithm: Detectors with big radius are firstly generated
to cover most of the nonself space and detectors with
small radius are later generated to cover small holes
around self samples. Therefore, two detector generation
rules are defined and applied in two different stages. Finally,
a detector optimization processing is proposed to delete
redundant detectors for reducing the storage consumption
and improving the detection efficiency [9]. In 2018, when
Tianliang Lu used V-Detector for Shellcode detection, he
encoded the immune detector as a hyperellipsoid to reduce
holes and improve the coverage of nonself space [19]. In
2019, Fan Zhang employed delaunay triangulation method
to divide the self space into simplicial cells for determining
the position of the detector, thereby reducing the number of
holes and detectors [27]. In 2020, Chao Yang proposed a
negative selection algorithm that is based on antigen density
clustering (ADC-NSA). The algorithm divides the process
of detector generation into three steps: the first step is to
calculate the density of the antigens by using the method
of antigen density clustering to select nonself clusters. The
second step is to prioritize the abnormal points (nonself
antigens that are not clustered) as the centers of candidate
detectors and to generate the detectors via calculation. The
third step is to generate the detectors via the traditional
algorithm [12].

Previous research mainly repaired holes by optimizing
the distribution of detectors [11, 21, 25–27], adopting
new detector generation method [9, 14, 18, 23], and
changing the shape representation of detectors and antigens
[19]. The purpose was to increase the coverage of the
nonself space by the detector to improve the detection rate.
However, previous studies have not considered the use of
known nonself. In real scenarios such as network intrusion
detection and anomaly detection, some nonself samples
are actually available. These known nonself samples can
better reflect the distribution of real nonself space than
randomly generated detectors. In addition, machine learning
algorithms such as SVM [28] and KNN [29] use both self
and nonself for training in the training phase. However,
conventional NSA only uses the self for training, which
makes it often at a disadvantage when compared with
machine learning algorithms. In this paper, we propose a
V-Detector-KN algorithm. V-Detector is the abbreviation of
the real-valued negative selection algorithm with Variable-
sized Detectors, KN represents Known Nonself. The V-
Detector-KN algorithm first uses V-Detector to generate
detectors. On this basis, considering that the known nonself
can better reflect the true distribution of the nonself than
the randomly generated detector, we take the known nonself
as candidate detector center to generate the detector. Not
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only can the detector be generated in the spatial region
where it is difficult to generate the detector in a random
manner, but also due to the clustering of the nonself, the
known nonself generated detector can be used to detect the
unknown nonself.

To summarize, the main contributions of this paper are as
follows:

1. For the first time, we make use known nonselfs as
candidate detectors to generate detectors to improve the
V-Detector algorithm.

2. The use of known nonself can generate detectors in the
feature space where the random generation method is
difficult to generate detectors, thereby filling the holes
formed between randomly generated detectors.

3. Compared with randomly generated detectors, known
nonself-generated detectors can better reflect the true
distribution of nonself, and can be used to detect
unknown nonself around known nonself.

2 V-Detector with known nonself algorithm

In this section, we first introduce the V-Detector algorithm,
which is the baseline of our proposed algorithm. On this
basis, we introduce our proposed V-Detector-KN algorithm.

2.1 V-Detector algorithm

The negative selection algorithm consists of two phases:
training phase and detection phase. In the training phase,
a randomly generated candidate detector is compared with
the self set. If the candidate detector identifies any self,
that is, the affinity of the candidate detector and the self
sample meets a certain threshold, the candidate detector will
be deleted; otherwise, the candidate detector will become a
mature detector for subsequent detection. In the detection
phase, the mature detector can be used to detect the antigen
to be detected. if the antigen matches any mature detector,
it is nonself, otherwise it is self. The main concept of the
negative selection algorithm is shown in Fig. 1 [30].

The main concepts of V-Detector algorithm are consis-
tent with NSA, but its detector radius adopts the variable
radius idea. The pseudocode in Algorithm 1 describes the
detector generation process of the V-Detector algorithm
[7]. A candidate detector is randomly generated in the n

dimensional feature space (step 6). The candidate detector
must successfully go through two tolerance stages before
becoming a mature detector. The first stage is tolerated with
existing mature detectors (step 7-12), and candidate detec-
tors covered by any mature detector are deleted to avoid
overlapping coverage of nonself space. Candidate detec-
tors that successfully go through the first stage are tolerated

with the self in the second stage (step 13-18), and candi-
date detectors that recognize any self are deleted to prevent
the detector from recognizing the self [7]. The three con-
vergence conditions of the V-Detector algorithm are: first,
the expected coverage rate for nonselfs has been reached
(step 11); second, a predetermined number of detectors have
been generated (step 19); third, the maximum self coverage
(MSC) has been reached (step 18), which means that after
repeated multiple times, no detector can be generated, that
is, the newly generated detector is not covered by the exist-
ing mature detectors, but it is covered by the self samples, so
it is difficult to continue generating detectors in the feature
space.

2.2 V-Detector-KN algorithm

In real application scenarios, we can often get some
negative samples, which we call the known nonselfs. For
example, in the field of network anomaly detection, we
can regard known abnormal samples as known nonself.
These known nonself not only reflect the true distribution of
nonself, but there may be other unknown nonself around the
known nonself, that is, nonself may be clustered together.
Therefore, we can use a known nonself generated detector
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Fig. 1 Main concepts of
negative selection algorithms

to detect unknown nonself around it. In addition, the known
nonself can generate a detector in a feature space where it
is difficult to generate a detector in a random manner. For
example, as the number of detectors increases, the coverage
of the nonself space by the detectors increases, while the
coverage area of the holes decreases. The probability of a
randomly generated detector falling into the hole will be
reduced, making it difficult to generate a detector in the
hole. However, it is easy to generate a detector by a known
nonself that is not covered by the detector. The framework
of the V-Detector-KN algorithm is shown in Fig. 2.

The V-Detector-KN algorithm uses known nonselfs as
candidate detectors to generate mature detectors on the
basis of V-Detector generating detectors. Like randomly
generated candidate detector, known nonself as candidate
detector must undergo two tolerance stages to become a
mature detector. First, tolerate with randomly generated
mature detectors, and delete candidate detectors covered
by any mature detector to avoid overlapping coverage
of nonself space. Secondly, the candidate detector that
successfully undergoes the first tolerance stage tolerates
with self. If the candidate detector is within the coverage of
any self, delete it; otherwise, take the candidate detector as
the center and the distance to the nearest self as the radius
to generate the detector. Algorithm 2 shows the pseudocode
for generating the detector by known nonselfs. First, take
out known nonself as candidate detector one by one (step1);
Second, tolerate with existing mature detectors to avoid
overlapping coverage (step2-step5); Finally, tolerate with
the self, and delete candidate detectors that recognize the
self. Candidate detectors that successfully go through the

two tolerance stages will become mature detectors and be
added to the detector set (step6-step9).

3 Algorithm analysis

In this section, we first analyze and compare the perfor-
mance of the proposed V-Detector-KN algorithm and the
V-Detector algorithm, and then analyze the time complex-
ity of the proposed V-Detector-KN algorithm. To increase
readability, we summarize the notations used in this section
in Table 1.

Fig. 2 V-Detector-KN algorithm framework
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Table 1 Notations
Notation Description

Data Data samples in the data set

Self Normal samples in the data set

nonself Abnormal samples in the data set

N The number of samples in the Data

Ns The number of self

Nn The number of nonself

α The proportion of the self used for training

β The proportion of known nonself in nonself

Pm The probability of matching between any given detector and any data sample

Pn The probability of the detector identifies the self that is not included in the self training set

Ps The probability of the detector successfully undergoing self-tolerance phase

Nd The number of detectors

Vdetector The volume of detectors

Vcube The volume of the antigen space

rdi
The detector radius

3.1 Performance comparison and analysis
of V-Detector and V-Detector-KN

We first analyzed the probability of the candidate detector
successfully experiencing self-tolerance. Secondly, we
analyzed the false alarm rate of mature detectors, and finally
compared the detection rates of V-Detector and V-Detector-
KN.

3.1.1 Probability of candidate detector successfully
experiencing self-tolerance

Supposing that Data is the sample set to be classified, it
includes self subset Self and nonself subset NonSelf , we
have Self ∪NonSelf = Data, Self ∩NonSelf = ∅. The
number of samples in Data is N , the number of samples
in the self subset Self and the nonself subset NonSelf are
Ns and Nn respectively, then we have N = Ns + Nn. The
V-Detector algorithm only uses the self for training. Since
the proportion of the self for training is α, 0 ≤ α ≤ 1,
the number of self used for training is Ns · α. Suppose that
Pm is the matching probability between any given detector
and any data sample, Ps is the probability that the detector
successfully undergoing self-tolerance stage, we have,

Ps = (1 − Pm)Ns ·α (1)

Proof Let event A be “the given detector does not match
any self in the self training set”. Obviously, the detector
in the event A is the detector that successfully undergone
self-tolerance, i.e., the detector does not match any self. In
event A, the number of occurrences of matching between
the detector and self meets the binomial distribution, i.e.,
Y ∼ b(n, p) [31], where n = Ns · α, p = Pm, hence,

P(A) = P(Y = 0) = (Pm)0 · (1−Pm)Ns ·α = (1−Pm)Ns ·α ,
proved.

In the V-Detector algorithm, Pm can be obtained by
calculating the proportion of the detector capacity in the
total capacity of the entire antigen space [32].

Pm = Nd · Vdetector

Vcube
= Nd · Πn

i=1rdi
· π

n
2

Γ
(

n
2 + 1

) (2)

In (2), Nd is the number of detectors, Vdetector is the
volume of detector, Vcube is the volume of the antigen space,
and rdi

is the detector radius. Γ is the gamma function,
defined as [32]:

Γ
(n

2
+ 1

)
=

⎧
⎨

⎩

(
n
2

)! if n is even
πn/2·n!

2n
(

n−1
2

)
! if n is odd (3)

3.1.2 Analysis of false alarm rate of mature detector

In the self set Self , the number of self not used for training
is Ns · (1 − α), the probability that a given detector can
detect at least one self that is not used for training is
1−(1−Pm)Ns ·(1−α). Hence, for any mature detector that has
successfully undergone self-tolerance, the probability that
the detector identifies the self that is not included in the self
training set is Pn:

Pn = (1 − Pm)Ns ·α ·
[
1 − (1 − Pm)Ns ·(1−α)

]

= (1 − Pm)Ns ·(α−1) (4)

Proof Let event A be “the given detector does not match
any self in the self training set”, and event B be “the
given detector matches at least one self that is not used
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for training”. Obviously, the detector described by event
A are detectors that have successfully experienced self-
tolerance, and the probability Ps can be calculated by (1).
The detector in event B can detect at least one self that is not
used for training. According to the definition of Pn, there
is Pn = P(A) · P(B), where P(A) = (1 − Pm)Ns ·α . In
Event B, the number of occurrences of matching between
the detector and self also satisfies the binomial distribution,
namely Y ∼ b(n, p), where n = Ns · (1 − α), p = Pm, we
have,

P(B) = 1 − P(Y = 0) = 1 − (Pm)0 · (1 − Pm)Ns ·(1−α)

= 1 − (1 − Pm)Ns ·(1−α)

Therefore,

Pn =(1−Pm)Ns ·α ·
[
1−(1−Pm)Ns ·(1−α)

]
=(1−Pm)Ns ·(α−1)

proved.

3.1.3 Comparative analysis of detection rate

For any given nonself data sample, the probability of being
recognized as nonself by a mature detector, that is, the
detection rate Ptp is:

Ptp = 1 − (1 − Pm)Nd ·(1−Pn) (5)

Proof Let C be the event “nonself data sample matches
any detector”. According to the definition of detection rate,
Ptp = P(C). In event C, the number of matches between the
nonself data sample and the detector satisfies the binomial
distribution Y ∼ b(n, p), where p = Pm. Since Nd · Pn is
the number of mature detectors that identify self, Nd · (1 −
Pn) is the number of mature detectors that do not identify
self, i.e., n = Nd ·(1−Pn), hence, Ptp = P(C) = 1−P(Y =
0) = 1 − (1 − Pm)Nd ·(1−Pn), proved.

V-Detector-KN algotithm first generate detectors through
the V-Detector algorithm. Supposing that the number of
mature detectors generated by the V-Detector is Nd1, the
detection rate is:

Ptp1 = 1 − (1 − Pm)Nd1·(1−Pn) (6)

Then, based on the V-Detector generation detectors, V-
Detector-KN generate the detector by using known nonself,
supposing that the number of mature detectors generated by
the V-Detector-KN is Nd2, then the algorithm detection rate
is:

Ptp2 = 1 − (1 − Pm)Nd2·(1−Pn) (7)

Ptp1 is the detection rate of the V-Detector algorithm,
and Ptp2 is the detection rate of our proposed algorithm V-

Detector-KN, next we compare the detection rates of the
two:

Ptp2−Ptp1 = 1 − (1 − Pm)Nd2·(1−Pn)

−
(
1 − (1 − Pm)Nd1·(1−Pn)

)

= (1−Pm)Nd1·(1−Pn)

− (1−Pm)Nd2·(1−Pn) (8)

In (8), Nd2 ≥ Nd1 is constant. When Nd2 = Nd1, it
means that the new detector cannot be generated by known
nonself, so Ptp2 − Ptp1 = 0, that is, the detection rate of
V-Detector-KN and V-Detector is equal; when Nd2>Nd1,
(1−Pm)Nd1·(1−Pn)

(1−Pm)Nd2·(1−Pn) = (1 − Pm)(Nd1−Nd2)·(1−Pn). since 0<(1 −
Pm)<1, and (Nd1 − Nd2) · (1 − Pn)<0. According to
the nature of the exponential function [33], we have (1 −
Pm)(Nd1−Nd2)·(1−Pn) > 1, hence, Ptp2 − Ptp1>0. This
shows that our V-Detector-KN algorithm is superior to the
conventional V-Detector algorithm in detection rate, and the
more detectors generated by known nonselfs, the greater the
advantage of our algorithm is.

3.2 Algorithm time complexity

In terms of algorithm time complexity, the V-Detector-KN
algorithm we proposed is consistent with the V-Detector
algorithm, which can be expressed as [24]:

O

(
Nd ∗ Ns

(1 − Pm)Ns

)
(9)

In (9) ,Nd is the number of detectors,Ns is the number of
self training set, and Pm is the matching probability between
any given detector and any data sample. Compared with
the V-Detector algorithm, the V-Detector-KN algorithm use
known nonself to generate new detectors. Therefore, the
number of self-sets Nd has increased.

4 Parameter analysis of the V-Detector-KN
algorithm

The main parameters of the V-Detector-KN algorithm
include the self radius rs , the expected coverage rate c0,
the maximum self coverage MSC, the proportion of self
used for training α, 0 ≤ α ≤ 1, and the proportion of
known nonself β, 0 ≤ β ≤ 1. The first 4 parameters are
the general parameters of the NSA algorithm, and we use
the synthetic data set (SDS) for experimental analysis. The
last parameter β is a unique parameter of our algorithm, we
will analyze it in the demonstration example in Section 5.
The SDS was proposed by the famous artificial immune
research institution, the intelligent security laboratory of the
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university of memphis, and has been generally accepted by
the international academic community [8, 27, 32]. The four
SDS data sets we used in this study are: Ring, Rectangle,
Pentagram and Cross. The composition of self antigens
and nonself antigens of these four data sets is shown in
Table 2. The data distribution is shown in Fig. 3, yellow dots
represent self antigens and the blue dots represent nonself
antigens.

Detection Rate (DR), False Alarm Rate (FAR), number
of detectors, detector training time and detection time are
often used to evaluate the performance of NSA [11, 12,
27]. In this paper, we continue to use these five evaluation
metrics for evaluation. The calculation methods of DR and
FAR are as follows:

DR = T P

T P + FN
(10)

FAR = FP

FP + T N
(11)

In (10) and (11), TP (True Positive) represents that
the nonself is correctly classified as nonself, FN (False
Negative) represents that the nonself is incorrectly classified
as self, and FP (False Positive) represents that the self
is incorrectly classified as nonself, TN (True Negative)
represents that the self is correctly classified as self [11].

The experiment uses the control variates method to
analyze the impact of each parameter on the algorithm
performance. The control variates method only changes one
of the parameters at a time, while controlling the rest of
the parameters unchanged, so as to study the impact of the
changed parameter on the performance of the algorithm,
study each parameter separately, and finally obtain the
algorithm parameters comprehensively. In the experiment,
the self radius rs ranges from 0.01 to 0.1; the proportion
of the self α used for training in the self set varies from
0.1 to 1; both the expected coverage rate c0 and the
maximum self coverage MSC are range from 0.90 to 0.99.
When analyzing a certain parameter, we set the remaining
parameters as default values, which are shown in Table 3.
The default parameters first obtain the corresponding value
range according to the literature [8, 11, 32], and then use the

Table 2 The detail of 4 Synthetic data sets

Data set Records number Self Nonself

Ring 10000 3710 6290

Rectangle 10000 3386 6614

Pentagram 10000 2850 7150

Cross 10000 5531 4469

controlled variable method to experiment to obtain specific
values.

4.1 The impart of self radius on algorithm
performance

Figure 4 shows the impact of self radius rs on the perfor-
mance of the V-Detector-KN algorithm. Figure 4a and b
respectively show that the detection rate and false alarm rate
decrease as the proportion of the self training set increases.
However, we expect the algorithm to have a high detec-
tion rate and a low false alarm rate. Therefore, we need to
achieve tradeoff between the detection rate and the false
alarm rate. Generally, in the scenarios sensitive to abnormal
samples, the value of the self radius can be reduced, and in
the scenarios sensitive to false alarms, the self radius can
be increased. Figure 4c, d and e respectively show that the
number of detectors, detector generation time and detection
time converge rapidly as the self radius increases, which is
consistent with the V-Detector algorithm.

4.2 The impact of the proportion of self used
for training on algorithm performance

Figure 5 shows the impact of the self proportion used
for training on the performance of the V-Detector-KN
algorithm. Figure 5a shows that the detection rate decreases
as the proportion of self increases. This is because the
candidate detector must undergo self-tolerance process to
become a mature detector. As the proportion of the self
increases, the number of self increases, the probability of
candidate detectors successfully experiencing self-tolerance
decreases, and the number of generated detectors decreases,
resulting in a decrease in the detection rate. Figure 5b shows
that the false alarm rate converges as the self proportion
increases. When the proportion of self is low, the number
of self is small, and the self area cannot effectively cover
all self samples. Some self samples fall into the non self
area and are incorrectly identified as nonself, resulting in a
high false alarm rate. As the proportion of self increases and
the number of self increases, the self area will completely
cover all self samples, so the false alarm rate converges to
0. Figure 5c shows that as the self proportion increases, the
number of detectors decreases. The reason is that as the
proportion of self increases, the number of self used for
training increases. The probability of successful tolerance
between candidate detectors and the self is reduced, which
leads to a decrease in the number of detectors. Figure 5d
and e respectively show that the detector generation time
and detection time decrease with the increase of the self
proportion. Detector generation time and detection time are
both related to the number of detectors.
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Table 3 Default values of parameters in V-Detector-KN

Parameter Default value Parameter Default value

ra
s 0.01 cb

0 0.99

αc 0.9 MSCd 0.99

βe 0.9

ars : self radius; bc0: expected coverage rate; cα: proportion of training
self in self ; dMSC: maximum self coverage; eβ:proportion of known
nonself in nonself

4.3 The impact of expected coverage rate
on algorithm performance

The expected coverage rate refers to the proportion of the
nonself space covered by the detector in the nonself space.
Due to the overlapping coverage of the detectors, it is
difficult to calculate the expected coverage rate. Therefore,
Zhouji proposed a “point estimation” Monte Carlo method
for estimate [8].

m ≥ 1/(1 − ε) (12)

In (12), m is the number of randomly sampled samples, and
ε is the expected coverage rate. If ε = 0.8, then m ≥ 5
can be calculated. That is, if 5 consecutive random sampling
points are covered by the mature detector set, it means
that the expected coverage rate of the nonself space by the
detector set has reached 80%.

Figure 6 shows the impact of expected coverage rate
on the performance of the V-Detector-KN algorithm. The
detection rate of the V-Detector algorithm increases with the
increase of the expected coverage rate, but in our algorithm,
the increase in the detection rate is not significant, as shown
in Fig. 6a. This is because our algorithm uses known nonself
generated detectors based on the detectors generated by
V-Detector, thus repairing the holes formed between the
detectors when the expected coverage is low. Figure 6b
shows that the false alarm rate increases with the expected
coverage rate. This is because as the expected coverage

rate increases, the number of detectors generated by V-
Detector increases, which not only increases the coverage
of the nonself space, but also increases the coverage of
the self space, leading to an increase in the false alarm
rate. Figure 6c and e respectively show that the number of
detectors and the detection time increase as the expected
coverage rate increases. The number of detectors determines
the detection time. Figure 6d shows that the detector
generation time increases with the increase of the expected
coverage rate, the reason is that the random sampling
number m increases.

4.4 The impact of maximum self coverage
on algorithm performance

In addition to tolerance with existing mature detectors,
candidate detectors must also tolerate with selfs. The
maximum self coverage rate reflects the probability of
randomly generated candidate detector falling into the self
region. It can also be estimated by Monte Carlo method of
point sampling [8], refer to (12).

Figure 7 shows the impact of the maximum self coverage
rate on the performance of the V-Detector-KN algorithm.
Figure 7a shows that the detection rate increases with the
increase of the maximum self coverage rate. The reason
is that with the increase of the maximum self coverage
rate, the number of generated detectors increases, and the
coverage rate of the detector to the non self space increases,
thereby increasing the detection rate. However, the increase
in the maximum self coverage rate also brings an increase
in the false alarm rate, because the detector may cover
the self area, as shown in Fig. 7b. Figure 7c shows that
the number of detectors increases as the maximum self
coverage rate increases. The reason is that as the maximum
self coverage rate increases, the number of random sampling
increases, thereby increasing the probability of generating
a detector. Figure 7d and e respectively show that the
detector generation time and detection time increase with
the increase of the maximum self coverage rate.
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Fig. 4 The impact of self radius on algorithm performance
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5 Example demonstration

In order to better understand our proposed V-Detector-KN
algorithm, haberman’s survival data set is utilized for further

explanation. Haberman’s survival data set contain cases
from a study that was conducted between 1958 and 1970 at
the university of chicago’s billings hospital on the survival
of patients who had undergone surgery for breast cancer. It
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contains 306 post-operative patient data records, including
225 post-operative survival patient data (class label=1) and
81 post-operative death data (class label=2). Each record
contains 3 attributes and 1 class label [34].

5.1 Demonstration of known nonself generating
detector

We first demonstrate that the known nonself can further
generate detectors based on the V-Detector algorithm. On
the haberman’s survival data set, we regard the dead patients
data as self, and the surviving patients data as nonself.
Figure 8a shows the distribution of self and nonself. The red

“*” represents self and the blue “+” represents nonself. On
the haberman’s survival data set, the data samples are not
uniformly distributed, but densely distributed in the bottom
area, and sparsely distributed in the top area. Moreover,
the self and nonself are interlaced in the dense area at the
bottom, making it difficult to randomly generate detectors
in this area. Figure 8b shows the distribution of the detectors
randomly generated by the V-Detector. In the top area where
the samples are sparsely distributed, large radius detectors
can be generated to cover larger nonself space, while in
the bottom area where the samples are densely distributed,
only small radius detectors can be generated. Many holes
are formed between these small radius detectors, as shown

Fig. 8 Demonstration example on haberman’s survival data set
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in the bottom view of Fig. 8c. To repair these holes, we
introduce known nonself, and generate detectors through
known nonself to achieve hole repair. Figure 8d shows the
detectors generated by known nonself. This shows that our
algorithm can generate detectors in a feature space where it
is difficult to generate detectors in a random manner.

5.2 The impact of known nonself proportion
on algorithm performance

The proportion of known nonself refers to the proportion
of known nonself in nonself. We take the haberman’s
survival data set as an example to analyze the impact of the
nonself proportion on the performance of the V-Detector-
KN algorithm. We assume that the proportion of the known
nonself in the nonself is β, 0 ≤ β ≤ 1. When β = 0,
it means that there is no known nonself, and all nonself
are unknown. At this time, our algorithm degenerates to the
V-Detector algorithm.

When the data set is small, k-fold cross-validation is
often used. This method divides the available data set into
k disjoint equal-sized data subsets, and then each subset
is taken as the test set, and the remaining k − 1 subsets
are taken together as the training set to learn the classifier.
This process is performed a total of k times and produces k

test accuracy. The final estimated accuracy on this data set
is the average of these k test accuracy. 10-fold and 5-fold
cross-validation are often used [35].

In this experiment, we randomly selected the nonself
with the proportion of β as the known non-self, and
then select the self with the 10-fold cross-validation
method to verify the impact of the known nonself
proportion β on the performance of the algorithm.
Figure 9 shows the performance comparison between
V-Detector and V-Detector-KN under different known
nonself proportion. Figure 9a shows that the detection
rate of the V-Detector-KN algorithm increases with the
increase in the proportion of known nonself. Figure 9b
shows that the false alarm rate of our algorithm is
higher than that of the V-Detector algorithm, but not
more than 1%. Figure 9c shows that the number of
detectors generated by V-Detector-KN is more than
that of the V-Detector algorithm. This proves that our
method can generate detectors based on the V-Detector
algorithm to improve its performance. Figure 9d shows
that compared to the V-Detector algorithm, the detector
generation time of the V-Detector-KN algorithm has
increased, because the known nonself must successfully
tolerate with the self and the existing mature detectors
to become a mature detector. Figure 9e shows that the
detection time of V-Detector-KN is longer than that of
the V-Detector algorithm, because the detection time is
positive correlated with the number of detectors. The
detailed performance comparison between the V-Detector-
KN algorithm and the V-Detector algorithm is shown in
Table 4.
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Table 4 Performance comparison of V-Detector and V-Detector-KN on the haberman’s survival data set

βa V-Detector V-Detector-KN

DRb FARc NDd T e
train DR FAR ND Ttrain

avgf varg avg var avg var avg var

0.1 68.67% 4.11% 7.41% 1.65% 185 0.82 73.24% 3.68% 7.78% 1.84% 191.6 0.86

0.2 68.71% 6.04% 7.78% 1.02% 166.2 0.67 80.18% 4.05% 8.27% 1.31% 178.1 0.73

0.3 68.67% 6.87% 7.90% 2.19% 175.8 0.79 83.02% 3.90% 8.64% 1.43% 190.7 0.87

0.4 66.84% 7.38% 7.04% 1.65% 171.2 0.80 85.24% 1.99% 7.78% 1.93% 188.4 0.93

0.5 71.38% 3.07% 7.53% 1.97% 181.4 0.81 86.22% 1.92% 8.27% 1.43% 197.8 0.95

0.6 68.40% 9.98% 8.27% 1.17% 180.2 0.85 86.89% 2.17% 8.52% 0.91% 198 1.02

0.7 69.64% 6.66% 8.02% 1.20% 169.3 0.74 89.96% 1.58% 8.64% 1.01% 191.7 0.94

0.8 71.29% 6.94% 7.65% 1.13% 179.1 0.85 92.53% 1.73% 8.77% 1.36% 202.8 1.11

0.9 72.00% 7.59% 7.90% 1.19% 179.4 0.84 93.24% 0.81% 8.15% 1.04% 207.3 1.11

1 70.27% 7.82% 8.02% 1.33% 183.6 0.91 94.22% 1.13% 8.40% 1.13% 211.8 1.22

aβ: proportion of known nonself in nonself; bDR: Detection Rate; cFAR: False Alarm Rate; dND: Number of Detector; eTtrain: Detector training
time; f avg: avg is the average of 20 repeated experiments; gvar: var is the variance of 20 repeated experiments

As shown in Table 4, when the proportion of the known
nonself is 90%, the detection rate of V-Detector on the
haberman’s survival data set is 72.00%, while that our
algorithm is 93.24%, an increase of about 30%. As for the
number of detectors, compared with the 179.4 of the V-
Detector algorithm, the V-Detector-KN algorithm is 203.5,
an increase of 15.5%. The percentage increase in detection
rate (29.51%) is higher than the percentage increase in the
number of detectors (15.5%). This shows that the known
nonself generated detector can cover the unknown nonself.
In addition, the variance of detection rate becomes smaller,
indicating that the stability of the V-Detector-KN algorithm
is better than that of the V-Detector. However, compared to
the false alarm rate of V-Detector algorithm of 7.9%, the
false alarm rate of V-Detector-KN is 8.15%, an increase of
about 3%.

6 Comparative experiment on UCI data set

In this section, we compare our algorithm with other 6
algorithms on 7 UCI real data sets. The algorithms for
comparison include V-Detector [7], improved V-Detector
[9], ADC-NSA [12], BIORV-NSA [26], KNN [29] and
SVM [36]. The data set for comparison uses 7 real UCI
data sets, which are often used to evaluate and compare
artificial intelligence algorithms [37, 38]. Five performance
evaluation metrics are used to evaluate the performance of
the algorithm (see Section 4).

In the comparative experiment, we still use the 10-fold
cross-validation method described in Section 5.2. In this
study, in order to ensure that the number of self and non-self

acquired each time is equal, we first divide the data set into
self and nonself sets, and then use 10-fold cross-validation
for self and non-self sets respectively. Therefore, each test
set is the union of 1 self subset and 1 nonself subset, and the
training set is the union of the remaining 9 self subsets and
9 nonself subsets. The experiment is repeated 10 times until
all samples have been verified at least once. The parameters
used in the V-Detector-KN algorithm are shown in Table 3
in Section 4.

6.1 Iris data set

The Iris data set is perhaps the best known database to
be found in the pattern recognition literature. The data set
contains 3 classes of 50 instances each, where each class
refers to a type of iris plant [39]. The class labels of the iris
data set are 1-3. We treat instances with a class label equal to
1 as self, and the rest as non-self. The experimental results
are shown in Table 5.

On the iris data set, all 7 algorithms can reach a
detection rate of 100%. In terms of false alarm rate, both
SVM [36] and KNN [29] algorithms are 0, which has
advantages over negative selection algorithms. In terms
of the number of detectors, the improved V-Detector
[9] algorithm has the least number of detectors, because
the algorithm adopt detector optimization mechanism to
remove redundant detectors. The detector generation time
and detection time of the BIORV-NSA [26] algorithm are
longer than other algorithms, because the algorithm uses the
maximum number of detectors as the termination condition,
that is, the algorithm terminates when the number of
detectors reaches the preset value of 1000. The ADC-NSA

494



Using known nonself samples...

Table 5 Experimental results of iris data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 100 0 1 1.70 11 3.33 0.013 0.005 0.008 0.002

BIORV-NSA 100 0 3.8 0.02 1000 0 6.7 0.15 0.63 0.06

KNN 100 0 0 0

SVM 100 0 0 0

ADC-NSA 100 0 1 1.70 11 3.33 0.013 0.005 0.008 0.002

Improved V-Detector 100 0 1 1.40 4.1 1.2 0.06 0.004 0.01 0.001

V-Detector-KN 100 0 0.8 0.01 9.8 2.8 0.013 0.003 0.007 0.002

[12] algorithm divides the process of detector generation
into three steps: the first step is to calculate the density
of the antigens by using the method of antigen density
clustering to select nonself-clusters. The second step is to
prioritize the abnormal points (nonself-antigens that are
not clustered) as the centers of candidate detectors and to
generate the detectors via calculation. The third step is to
generate the detectors via the traditional algorithm. On the
iris data set, the ADC-NSA algorithm generates 2 clusters,
but since these two clusters are self clusters, the algorithm
degenerates to the V-Detector algorithm. The improved V-
Detector [9] algorithm firstly generated detectors with big
radius to cover most of the nonself space, and then generated
detectors with small radius to cover small holes around self
samples, finally, optimize the detector to remove redundant
detectors.

6.2 Banknote authentication data set

The banknote authentication data set contains 1372
instances, the class labels are 0 and 1, and the number of
attributes is 4 [40]. We regard the class label equal to 1 as
the self, and the class label equal to 0 as the nonself. The
experimental results are shown in Table 6. On the banknote

data set, BIORV-NSA [26], SVM [36] and V-Detector-
KN all achieve 100% detection rates, but the BIORV-NSA
algorithm requires far more detectors than the V-Detector-
KN algorithm, and the false alarm rate is higher than
the V-Detector-KN algorithm. In terms of the number of
detectors generated, the improved V-Detector [9] algorithm
still has the least number of detectors.

6.3 Skin segmentation data set

The skin segmentation data set contains 245057 instances,
the class labels are 1 and 2, and the number of attributes is
3 [41]. We regard the class label equal to 1 as the self, and
the class label equal to 2 as the nonself. The experimental
results are shown in Table 7. On the skin segmentation
data set, the V-Detector-KN algorithm we proposed has the
highest detection rate, reaching 99.97%. The SVM [36]
algorithm fails on this data set, and its detection rate is
only 36.80%. The ADC-NSA [12] algorithm degenerates
to the V-Detector algorithm on the skin segmentation data
set. The reason is that the algorithm needs to calculate
the distance between antigens when performing antigen
density clustering. However, when the number of instances
in the data set is too large, the distance matrix will exceed

Table 6 Experimental results of banknote authentication data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 98.50 1.05 0.33 0.23 89.5 20.3 0.70 0.20 0.71 0.14

BIORV-NSA 100 0 1.57 0.007 1000 0 11.1 0.28 6.6 0.13

KNN 99.74 0.55 0 0

SVM 100 0 0 0

ADC-NSA 99.28 1.2 0.38 0.26 104.9 19.4 1.73 0.52 0.79 0.13

Improved V-Detector 98.60 4.23 0.2 0.19 11 6.7 0.98 0.11 0.26 0.04

V-Detector-KN 100 0 0.28 0.26 95.1 18.8 0.84 0.22 0.74 0.16
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Table 7 Experimental results of skin segmentation data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 98.55 1.32 0.0007 0.001 79.6 25.9 46.6 17.4 57.7 13.4

BIORV-NSA 99.90 0.05 0.001 0.001 1000 0 493.9 12.0 580.7 13.3

KNN 99.93 0.02 0.014 0.019

SVM 36.80 0.32 1 0

ADC-NSA 98.55 1.32 0.0007 0.001 79.6 25.9 46.6 17.4 57.7 13.4

Improved V-Detector 95.96 3.58 0.0002 0.0006 10.0 4.2 82.57 5.45 27.54 4.42

V-Detector-KN 99.97 0.001 0.001 0.002 190.1 20.4 142.2 15.9 130.0 13.3

Table 8 Experimental results of pima indians diabetes data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 27.58 3.56 1.18 0.49 98.8 14.3 0.75 0.15 0.79 0.11

BIORV-NSA 45.26 3.22 2.28 0.33 1000 0 11.47 0.43 8.25 0.38

KNN 56.34 9.24 16.60 6.26 0.008 0.0002

SVM 100 0 0 0

ADC-NSA 27.58 3.56 1.18 0.49 98.8 14.3 0.75 0.15 0.79 0.11

Improved V-Detector 17.05 7.53 0.54 0.23 14.2 7.1 1.78 1.96 0.40 0.22

V-Detector-KN 95.93 1.00 2.70 0.53 223.9 13.3 1.64 0.16 1.61 0.10

Table 9 Experimental results of balance scale data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 95.43 0.97 7.81 0.60 501.0 51.1 6.66 1.71 2.05 0.20

BIORV-NSA 99.11 0.61 7.36 1.01 1000 0 9.24 0.48 3.72 0.17

KNN 80.12 3.15 0 0 0.006 0.001

SVM 100 0 0 0

ADC-NSA 95.43 0.97 7.81 0.60 501 51.1 6.66 1.71 2.05 0.20

Improved V-Detector 85.46 7.09 4.17 1.53 18.7 12.4 86.74 176.9 0.60 0.56

V-Detector-KN 99.85 0.21 7.95 0.78 507.2 60.1 6.39 2.10 1.89 0.19
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Table 10 Experimental results of breast cancer wisconsin (diagnostic) data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 81.84 4.84 0.22 0.18 38.9 11.5 0.19 0.06 0.18 0.05

BIORV-NSAa 9.76 2.18 4.88 0.01 10000 0 576.3 4.15 60.06 1.06

KNN 93.90 4.98 1.11 1.43

SVM 100 0 0 0

ADC-NSA 81.84 4.84 0.22 0.18 38.9 11.5 0.19 0.06 0.18 0.05

Improved V-Detector 79.67 3.97 0.20 0.27 6.0 4.6 0.58 0.05 0.12 0.02

V-Detector-KN 99.43 0.62 0.73 0.55 58.7 8.9 0.29 0.07 0.26 0.04

aBIORV − NSA: In WDBC data set, the maximum number of BIORV-NSA generative detectors is set to 10000

the maximum range and an error will be reported. The
Improved V-Detector [9] algorithm reduces the storage
space by deleting redundant detectors, but it also leads to a
decrease in the algorithm’s detection rate.

6.4 Pima Indians diabetes data set

The pima Indians diabetes data set contains 768 instances,
the class labels are 0 and 1, and the number of attributes is
8 [42]. We regard the class label equal to 0 as the self, and
the class label equal to 1 as the nonself. The experimental
results are shown in Table 8. On the pima Indians diabetes
data set, the SVM [36] algorithm has the highest detection
rate, reaching 100%. The detection rate of our proposed
V-Detector-KN algorithm is 95.93%, ranking second. Note
that the remaining 5 algorithms fail on this data set, which
also shows the stability of our proposed algorithm.

6.5 Balance scale data set

The balance scale data set contains 625 instances, the class
labels are 1 to 3, and the number of attributes is 4 [43]. We
regard the class label equal to 3 as the self, and the rest as
the nonself. The experimental results are shown in Table 9.

The V-Detector-KN algorithm we proposed has the highest
detection rate, reaching 99.85%. The BIORV-NSA [26]
algorithm comes next with 99.11%. The detection rate of
KNN [29] algorithm is only 80.12%. In terms of the number
of detectors, the improved V-Detector [9] algorithm has an
average of 18.7 detectors, which has a great advantage over
other NSAs. The reason is that the algorithm uses a detector
optimization strategy to delete redundant detectors, but it
also leads to a decrease in detection rate. On the Balance
Scale data set, the ADC-NSA [12] algorithm generates 1
cluster, which is self-clustering. Therefore, the algorithm
degenerates to the V-Detector algorithm.

6.6 Breast cancer wisconsin (diagnostic) data set

The breast cancer wisconsin (diagnostic) data set contains
569 instances, the class labels are 0 and 1, and the number
of attributes is 31 [44]. We regard the class label equal to 0
as the self, and the class label equal to 1 as the nonself. The
experimental results are shown in Table 10. On the breast
cancer wisconsin (diagnostic) data set, the detection rate
of the V-Detector-KN algorithm we proposed is lower than
SVM, but higher than the other 5 algorithms. The BIORV-
NSA [26] algorithm fails in this data set. The reason is that

Table 11 Experimental results of haberman’s survival data set

Algorithm DR(%) FAR(%) Generated Detectors Detector Training Time(s) Detection Time(s)

Mean SD Mean SD Mean SD Mean SD Mean SD

V-Detector 71.82 5.61 8.15 1.04 185.5 18.7 0.93 0.26 0.43 0.03

BIORV-NSA 73.87 3.34 8.15 1.04 1000 0 6.53 0.19 2.06 0.16

KNN 76.05 8.77 62.78 10.61

SVM 100 0 0 0

ADC-NSA 71.82 5.61 8.15 1.04 185.5 18.7 0.93 0.26 0.43 0.03

Improved V-Detector 41.24 19.84 5.56 2.12 73.6 61.1 0.35 0.36 0.18 0.12

V-Detector-KN 93.16 1.88 8.52 1.23 204.5 26.2 1.12 0.31 0.45 0.05
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BIORV-NSA fails to effectively generate more detectors in
the high-dimensional feature space. On the breast cancer
wisconsin (diagnostic) data set, the ADC-NSA algorithm
generates 1 cluster, which is self clustering. Therefore, the
algorithm degenerates to the V-Detector algorithm.

6.7 Haberman’s survival data set

The haberman’s survival data set contains 306 instances, the
class labels are 1 and 2, and the number of attributes is 3
[34]. We regard the class label equal to 2 as the self, and
the class label equal to 1 as the nonself. The experimental
results are shown in Table 11. On the haberman’s survival
data set, since self and nonself are distributed in low-
dimensional subspace and interleaved with each other, as
shown in Fig. 8a, it is difficult for V-Detector to generate
detectors in dense spaces. Therefore, the performance of
V-Detector and its improved algorithm is not ideal. The V-
Detector-KN algorithm we proposed solves this problem
by using known nonself generating detectors. Although the
detection rate is not as good as SVM [36], it is higher
than the other 5 algorithms. The KNN algorithm fails on
haberman’s survival data set. Although it achieves a high
detection rate, it also has a high false alarm rate. The reason
is that the positive and negative examples in the haberman’s
survival data set are intertwined with each other, and it is
difficult to distinguish them by distance metric clustering.

7 Conclusion

The known nonselfs reflect the distribution of the real
nonself in the feature space, but the conventional NSA and
its improved algorithm did not make use of it, resulting
in these precious known nonself samples being wasted. In
this study, we proposed the V-Detector-KN algorithm. The
algorithm first uses the conventional V-Detector algorithm
to generate the detector, and then uses the known nonself
as the candidate detector center to generate the detector.
The V-Detector-KN algorithm has the following three
characteristics: First, the detector can be generated in the
feature space where the V-Detector algorithm is difficult
to generate the detector, such as Haberman’s survival data
set, 31-D breast cancer wisconsin (diagnostic) data set
and pima indians diabetes data set. On the above three
data sets, the V-Detector algorithm is difficult to generate
detectors due to the overlapping of self and non-self or the
high dimensionality of the data set, while the algorithm
we proposed can effectively generate detectors. Secondly,
the known nonself generated detector can achieve effective
coverage of the unknown nonself, thereby increasing the
detection rate. This also narrows the gap with machine
learning algorithms that use both positive examples (self)

and negative examples (nonself) for training. Last but not
least is the stability and interpretability of the algorithm.
Experimental results on 7 UCI real data sets show that
the detection rate of our proposed V-Dtector-KN algorithm
ranks first in 3 data sets and second in 4 data sets.
Note that, our algorithm is effective on 7 data sets, while
the other 6 algorithms are failed on at least one data
set. The SVM algorithm failed on the skin segmentation
data set, the BIORV-NSA algorithm failed on the breast
cancer wisconsin (diagnostic) data set. On the pima indians
diabetes data set, V-Detector, improved V-Detector, ADC-
NSA, BIORV-NSA and KNN 5 algorithms all failed,
and only the V-Detector-KN algorithm we proposed and
SVM algorithm are effective. In addition, our algorithm
is interpretable, that is, what is covered by the detector is
nonself, and what is not covered by the detector is self. We
believe that how to make better use of the known nonself
to improve the performance of the NSA algorithm is a
topic worth studying. In future work, we plan to apply our
algorithm to the field of network intrusion detection.
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