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Abstract
Based on the dual-inheritance framework of cultural evolution, an improved multiobjective cultural algorithm (IMOCA)
with a multistrategy knowledge base is presented in this paper. Inspired by the original versions of the cultural algorithm
(CA), four basic types of knowledge sources, i.e., normative, situational, topographical and historical knowledge, are
effectively utilized in the proposed IMOCA. Several modifications with the knowledge base of the IMOCA are made to
tackle the characteristics of the multiobjective problem. Situational knowledge is used as an external repository for storing
elite individuals, and the redesigned topographical knowledge functions as a search engine to broaden the expansion of
the obtained solution set. The historical knowledge used in the IMOCA aims to select a productive knowledge source to
generate new individuals. Furthermore, a simple mutation scheme is introduced into the knowledge base as an influence
function for the purpose of fine tuning in the late stage of search. After configuring the parameters used in IMOCA, two
classic benchmark suites, i.e., WFG and MaF, are used to assess the performance of the IMOCA in approaching the Pareto
fronts (PFs) with accuracy and diversity. Nondominated solution sets obtained by the IMOCA are compared with 8 state-
of-the-art multiobjective algorithms available in the literature. A statistical analysis is conducted, which reveals that, by
modifying the basic knowledge structure of the CA, the proposed multiobjective cultural algorithm is competent enough to
handle multiobjective problems with competitive performance.

Keywords Multiobjective optimization · Evolutionary algorithm · Cultural algorithm · Dual-inheritance framework ·
Knowledge-based evolutionary computation · Nondominated sorting

1 Introduction

After John Holland presented the genetic algorithm (GA) as
an abstraction of biological evolution and gave a theoretical
framework for adaptation under the GA in his book [23], for
the last four decades, a large amount of research focusing
on nature-inspired optimization algorithms has been con-
ducted, leading to the emergence of a series of classic
metaheuristic optimization algorithms, such as simulated
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annealing, tabu search, ant colony optimization, and particle
swarm optimization.

In 1994, a conceptual model of the cultural algorithm
(CA) was first proposed by [34], which was further
developed by Reynolds and his students in the following
years [9, 25, 36, 37]. As a novel evolutionary framework
with the principle of dual-inheritance between culture and
individuals, the CA soon attracted much attention and was
proved to be of practical success in a variety of problem
domains [20, 44, 45].

When considering the CA, it is necessary to mention
the memetic algorithm (MA), which was put forward by
[31]. In essence, the key difference between the CA and
MA lies in the way in which the individuals search and
evolve. Specifically, the MA can be seen as a combination
of a global search of the whole population and a local
search of individuals, which is based on imitation from a
certain subset of the population [32], while in the CA the
learning process of each individual is based on the belief
space, and the knowledge source stored in the belief space
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during the evolution can be any information that benefits
progress.

Nevertheless, returning to optimization problems, deci-
sion makers usually need to consider more than one objec-
tive (which are often conflicting) when addressing practical
optimization problems. For instance, minimization of the
operational costs of a certain plant is one objective, while
the quality of products is another aspect that should be taken
into account. Though an intuitive approach to handling mul-
tiobjective problems is to add all the objectives together
under a set of weighting coefficients according to the impor-
tance of each objective, the configuration of the preference
vector is difficult, as it is inevitably problem-specific. More-
over, the outcome of using a classical optimization method
is a single optimized solution. Benefiting from the ability of
intelligent optimization algorithms to find multiple optimal
solutions in one single simulation run, however, multi-
objective optimization problems (MOOPs) can be solved
without converting the task of finding multiple trade-off
solutions into finding one single solution; thus, the task of
decision makers is to simply pick out one solution among
the resulting set of optimal trade-offs according to their
preference.

Both evolutionary and swarm-based optimization algo-
rithms have been successfully extended to multiobjective
fields and quite a few of them have shown satisfactory
performance on test and/or practical applications. Deb
et al. [17] introduced a fast nondominated sorting approach
called the NSGA-II based on the previous nondominated
sorting genetic algorithm (NSGA) by [40] to reduce the
computational complexity. Additionally, an elitism and the
notion of crowding distance were incorporated for the pur-
pose of preserving elites and omitting solutions located in
overcrowded regions, respectively. As a successful improve-
ment to the NSGA, the NSGA-II was one of the most
popular multiobjective optimization algorithms in the two
decades following its inception. In 2001, on the basis of
their Pareto envelope-based selection algorithm (PESA, pre-
sented by [14]), [15] used a new selection technique in their
improved algorithm PESA-II, in which selective fitness is
assigned to the hyperboxes in the objective space instead
of to individuals. Compared to the individual-based selec-
tion used in the PESA, the hyperboxes-based selection was
shown to be more able to ensure a good spread of develop-
ment along the Pareto front. In the same year, the strength
Pareto evolutionary algorithm 2 (SPEA2), which integrates
a fine-grained fitness assignment strategy, a density estima-
tion technique, and an enhanced archive truncation method
into its predecessor the SPEA in [49], was proposed by
[51] and performed competitively on both combinatorial
and continuous test problems compared with the SPEA,
NSGA-II and PESA. One of the most famous swarm-based

optimization algorithms, i.e., the particle swarm optimiza-
tion (PSO) algorithm, was also extended to address MOOPs
in [13]. In the multiobjective particle swarm optimization
(MOPSO), the Pareto dominance is adopted, and the pre-
viously found nondominated vectors are maintained in an
external repository to guide the flight of other particles. In
2007, [46] proposed a multiobjective evolutionary algorithm
based on decomposition (MOEA/D), which decomposes an
MOOP into a number of scalar optimization subproblems
and optimizes them simultaneously. The application of the
MOEA/D with three different decomposition methods on
both multiobjective 0/1 knapsack problems and multiob-
jective continuous test instances was compared with the
MOGLS and NSGA-II, respectively.

Over the past five years, several newer multiobjective
evolutionary algorithms (MOEAs) have been proposed,
with competitive performance compared to the representa-
tive ones mentioned above. A new multiobjective optimiza-
tion framework, comprising nondominated sorting, local
search and the farthest-candidate approach, named the non-
dominated sorting and local search (NSLS) algorithm was
introduced by [5]. Tian et al. [42] proposed an MOEA
based on an enhanced inverted generational distance met-
ric (termed MOEA/IGD-NS) that can omit noncontributing
solutions during the evolutionary search. In the same year,
[27] proposed a framework containing a bicriterion evolu-
tion (BCE) with an indicator-based evolutionary algorithm
(IBEA) embedded into its non-Pareto criterion (NPC) evo-
lution part (termed BCE-IBEA). The effectiveness of this
framework was shown by experiments on seven groups of
test problems with various characteristics.

Moreover, the potential of the CA, which is an expand-
able framework that allows communication between the
population and knowledge base, in solving MOOPs has
attracted researchers’ attention [11]. However, there is still
a lack of clear demonstrations of the merits of multiobjec-
tive cultural algorithms (MOCAs) compared to other classic
multiobjective optimization algorithms. Furthermore, few
comprehensive statistical analyses of the performance of
MOCAs in solving a sufficient number of benchmark prob-
lems are available in the existing literature. In addition, there
is still a large space in which to explore the potential of
MOCAs in terms of the usage of various types of knowledge
sources.

In this work, an improved multiobjective cultural algo-
rithm (IMOCA), as a variant version of the previously
proposed MOCAs, is presented. Following Reynolds’ basic
framework of the CA in [34], the IMOCA incorporates
several strategies into the basic knowledge sources in the
belief space, which aim to balance convergence and cov-
erage in finding a proper set of Pareto optimal solutions
with efficiency. The situational knowledge is designed as an
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elite repository to avoid losing promising solutions during
the search process, whereas the topographical knowledge
is utilized to expand the spread of solutions. The histori-
cal knowledge functions as a selector that determines which
influence function will be used to generate offspring. A
mutation scheme is also included as one of the influence
functions to improve the diversity of the solution set.

The remainder of this paper is organized as follows.
Some related studies on MOCAs are reviewed in Section 2.
Section 3 briefly introduces a basic description of an
MOOP. Section 4 gives a concise description of the basic
cultural algorithm. Section 5 presents the proposed IMOCA.
Section 6 presents configurations of the experimentation on
a series of standard test problems. The experimental results
and a statistical analysis are given in Section 7. Section 8
concludes this paper and suggests some directions for future
studies.

2 Related work

In this section, some of the recent studies on expanding CAs
from solving single-objective to multiobjective problems
are reviewed.

In 2003, the first extension of the CA to solving MOOPs
was presented by [12]. In their approach, named the multi-
objective cultural algorithm with evolutionary programming
((MO)CAEP), evolutionary programming (EP) is used as
the search engine, and the belief space comprises a pheno-
typic normative part and a segmentation scheme that aim
to improve the distribution of the solutions along the PF.
In the belief space of the (MO)CAEP, the phenotypic nor-
mative part is not updated at every iteration, as doing so
involves the rebuilding of the grids once the upper and lower
bounds stored in the normative part are changed. On the
other hand, the counters of the nondominated individuals
contained within each cell are updated in every generation.

Instead of utilizing only one type of knowledge source,
[3] introduced another multiobjective version of the CA,
in which situational, domain, normative, historical and
topographical knowledge are incorporated in the belief
space. The five knowledge sources were defined as follows:
situational knowledge was recognized as a set of exemplary
individuals that were nondominated; domain knowledge
was designed to perform an incremental search of a
certain region in the search space; normative knowledge
provided a promising region based on the interval for
each dimension over a set of high-performing individuals;
historical knowledge recorded the progress of the elites
for each objective separately; topographical knowledge was
designed to divide the search space and identified regions
containing well-performing solutions. In each generation,

only one of the five is chosen to influence the solutions in
the population by the corresponding influence function. The
test function DTLZ1 was used to investigate the capability
of this version of the MOCA, and a detailed analysis of the
productivity of the five knowledge sources was carried out.
It appeared that the topographical knowledge performed far
from satisfactorily in producing nondominated solutions,
which indicated that certain adjustments should be made to
the influence function of topographical knowledge.

Then, in the following year, [38] provided another exten-
sion of the CA called cultural algorithms for multiobjective
optimization (MOCAT), in which all of the available cate-
gories of knowledge sources are fully utilized. In MOCAT,
the normative, situational, domain and historical knowl-
edge are generally inherited from the MOCA of [3], while
the implementation of topographical knowledge is reversed
from top-down to bottom-up to avoid high computational
consumption in higher-dimensional objective space. How-
ever, the application of MOCAT on the test function ZDT1
did not reflect a good distribution on the Pareto front.
Unfortunately, neither an experimental comparison with
other multiobjective algorithms nor a thorough analysis was
presented in this article.

Several other contemporary variations of the cultural
algorithm for solving multiobjective problems were pro-
posed in the past decade. Qin et al. [33] presented a multiob-
jective cultured differential evolution (MOCDE) algorithm
based on the cultural algorithm framework and used it to
deal with reservoir flood control operation (RFCO) prob-
lems. In MOCDE, situational, normative and historical
knowledge are used to influence the evolution of a popu-
lation, where the historical knowledge stores the coverage
metrics of the past h generations and the adaptive Cauchy
mutation operation is carried out on a certain dimension
when the change in the coverage record is smaller than a
predefined threshold. Before being applied to a case study
of RFCO, the MOCDE algorithm was tested on benchmark
problems ZDT1/3/4/6, SRN and TNK, and competitive
results were obtained compared with six well-known multi-
objective optimization algorithms. A hybrid multiobjective
cultural algorithm (HMOCA) was introduced by [29], and
a performance comparison with the NSGA-II was made
in an application to two case studies of a short-term envi-
ronmental/economic hydrothermal scheduling problem. In
their method, a self-adaptive mutation operator taken from
DE is used in the population space, and the preservation
of the elite Pareto optimal solutions found along with the
evolution process, which is similar to the archive strategy
in the SPEA2, is incorporated in the belief space. In addi-
tion, the historical knowledge in the HMOCA was redefined
as a local search operator based on the dominance con-
cepts and crowding distance to carry out a guided local
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fine tuning process on the Pareto optimal solutions in the
archive set to enhance the convergence properties. Zhang
et al. [47] proposed an enhanced multiobjective cultural
algorithm (EMOCA) that integrates PSO into the evolution-
ary process in the population space of the cultural algorithm.
Situational knowledge was used as an external repository
to preserve elite particles, whereas the historical knowledge
in the EMOCA was redesigned as a local search opera-
tion to search the area around the particles in situational
knowledge. The EMOCA was implemented on an economic
environment dispatch optimization problem and the simula-
tion results were compared with those of the NSGA-II. Liu
et al. [28] introduced the cultural evolution mechanism into
the multiobjective quantum-behaved particle swarm opti-
mization framework and proposed the cultural MOQPSO
algorithm. In the belief space of the cultural MOQPSO, a
local-search-based strategy and a combination-based update
operator were utilized to guide the search in the popula-
tion space. In [21] and [22], the cultural evolution frame-
work was combined with particle swarm optimization and
quantum-inspired evolution for solving uncertain multiob-
jective optimization problems and interval multiobjective
optimization problems respectively. Stanley et al. [41] pro-
posed a parallelized multiobjective cultural algorithm par-
ticle swarm optimizer, CAPSO, which is a hybrid system
composed of a particle swarm and the vector-evaluated
genetic algorithm population component operating under
the control of the cultural algorithm framework. In their
work, the relative contribution of different CA knowledge
sources was analyzed under the deployment of PSO swarms
in solving constrained multiobjective optimization prob-
lems. In [1], an enhanced cultural algorithm using only
normative and situational knowledge was applied to solve
the multi-objective attribute reduction problem, which was
a discrete problem. In the work of [30], the evolution
scheme of a multiobjective five-element cycle optimization
algorithm (MOFECO) was successfully incorporated into
the population space of the CA, and this novel combina-
tion, named MOCAFECO, was proved to be feasible and
efficient in solving MOOPs based on statistical results.

In the research of [3, 12] and [38], a set of basic knowl-
edge sources was utilized to solve multiobjective problems;
however, the results did not reflect satisfactory perfor-
mance of the knowledge sources. The lack of thorough
experimentation and analysis is another key problem. In
the rest of the aforementioned research, some novel search
strategies were adopted in the framework of the CA to
tackle multiobjective problems. However, the productiv-
ity of each knowledge source in the belief space of the
CA was rarely analyzed or discussed, and the performance
of the proposed MOCAs was seldom evaluated or com-
pared with that of other multiobjective algorithms using

Pareto-compliant metrics. In this paper, we aim to intro-
duce a simple but effective multiobjective cultural algorithm
framework using the most basic knowledge source without
adopting other novel evolutionary notions or strategies, say,
to keep the algorithm as vanilla as possible, and to validate
the effectiveness of each knowledge source, and analyze its
performance in comparison with that of other algorithms
under several Pareto-compliant metrics.

3 Description of themultiobjective
optimization problem

The definition of an MOOP addressing more than one
objective function is given. Consider, without loss of gener-
ality, a multiobjective minimization problem with n decision
variables, M objectives, J inequality constraints and K

equality constraints:

Minimize y = f (x) = (f1(x), · · · , fM(x))

subject to gj (x) ≤ 0, j = 1, 2, · · · , J

hk(x) = 0, k = 1, 2, · · · , K

where x = (x1, · · · , xn) ∈ X

y = (y1, · · · , yM) ∈ Y.

(1)

Here, the n-dimensional vector x is called the decision
vector with n decision variables in it, X is called the decision
space, y is the objective vector, and Y is the objective space.

4 Basic notions of the cultural algorithms

The cultural algorithm was proposed and developed by [34]
as a dual-inheritance process that occurs simultaneously at
the micro-evolutionary level (population space) and at the
macro-evolutionary level (belief space), which metaphori-
cally models the cultural evolution of human society. The
basic framework of the CA is shown in Fig. 1, from which
we can see the two main components of the CA: a pop-
ulation space where the regeneration of individuals takes
place and a belief space where individual experiences are
preserved and passed from generation to generation. Com-
munication between the two components is realized through
protocols that enable not only knowledge extraction from
the population space to the belief space but also knowledge
to exert influence on the population in turn. We call the
two protocol functions the acceptance function Accept ()

and the influence function Inf luence(), respectively. Fur-
ther explanations of the CA framework are given in the rest
of this section.

For the purpose of illustration, in the rest of this paper,
we use an N × n matrix p to denote the population space
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Fig. 1 Framework of the cultural algorithm

with capacity N , in which element xij is the j -th decision
variable of the i-th individual in the current population:

p =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x11x12 · · ·x1n

x21x22 · · ·x2n

...
...

. . .
...

xN1xN2 · · ·xNn

⎤
⎥⎥⎥⎥⎥⎦

, (2)

where xi = (xi1, xi2, · · · , xin), with i ∈ {1, 2, · · · , N},
denotes one of the N solutions to the MOOP at hand.

4.1 Population space

At the micro-evolutionary level of cultural algorithms, there
is a population of individuals, each of which represents a
solution to the problem to be optimized. The number of
individuals that the population accommodates, namely, the
size of the population, is defined by the user as a predefined
parameter of the algorithm. In the population space,
the individuals evolve following a certain evolutionary
mechanism over the course of an iteration.

As Reynolds stated in [34], as a class of computational
models of cultural evolution that support the dual-inheritance
perspective, cultural algorithms provide a framework in
which to describe all of the current models of cultural
evolution from a computational point of view. More specifi-
cally, as illustrated by [12], any evolutionary computational
technique in which a population is adopted could be used
in the population space of cultural algorithms. For exam-
ple, [8] introduced a cultural-algorithm-based testbed with
the genetic algorithm and evolutionary programming as the
evolutionary technique in the population space to achieve
constrained numerical optimization. It was also addressed in
their paper that evolution strategies are another alternative to
be embedded in the population space. In addition, [2] incor-
porated differential evolution into the population space and

applied the cultural algorithm to constrained optimization
problems.

4.2 Belief space

One of the most distinguishing characteristics of the CA
compared with other nature-inspired metaheuristic evo-
lutionary algorithms is its information-sharing scheme
among individuals through five major knowledge types,
namely, normative knowledge, situational knowledge,
domain knowledge, historical knowledge, and topograph-
ical knowledge. Normative, topographical, and situational
knowledge have been used to solve real-valued function
optimization problems under static environments [39]. The
other two knowledge sources, i.e., historical and domain
knowledge, were added because of their particular use in
solving dynamic problems [4]. It should be noted that either
the way the data structures are employed or even how
the knowledge sources are defined changes along with the
development of the CA.

Among the two basic knowledge sources, situational
knowledge provides a set of exemplars that represent spe-
cific individual experience, and normative knowledge pro-
vides standards for individual behavior and sets guidelines
within which individual adjustments can be made [7]. When
it was first proposed in [26], topographical knowledge was
used to handle constraints in solving single-objective opti-
mization problems (SOOPs). Within the region given by
the intervals saved in normative knowledge, the topograph-
ical knowledge segments the search space into (nGrid)M

hypercubes; the promising areas are then re-split into sub-
hypercubes, while poorly performing areas are fused back
into larger ones. Historical knowledge was originally pro-
posed for dynamic objective functions and was used to
record the location of the best individual ever found before
each environmental change to find patterns in the environ-
mental changes [39]. Domain knowledge was proposed to
cope with dynamic optimization problems.

4.3 Acceptance function

As one of the two protocol functions between the population
space and the belief space, the acceptance function is
used to glean the experience of the selected individuals,
just as in human society, where knowledge is generalized
by certain experts or elites [26]. Simply speaking, the
acceptance function determines which individuals in the
current population can be used to impact the update of the
belief space knowledge. It is usually defined as a percentage
so that a certain proportion of the population is selected
to exert the impact. There is also a dynamic acceptance
function with an acceptance percentage that can be adjusted
to manipulate the pace of the belief space update [35].
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4.4 Influence function

The influence function is a vehicle for reproducing individ-
uals in the population under the guidance of the knowledge
in the belief space. In general, each knowledge source has its
influence function, which can be modified according to the
nature of the problem at hand. The influence functions can
be based on more than just one knowledge source. To save
space, the influence functions for the different knowledge
structures in the CA are presented, along with an illustra-
tion of the IMOCA, in the next section, and some of the
classic configurations of influence functions of the basic
knowledge sources can be found in the literature [4].

5 The improvedmultiobjective cultural
algorithmwith amultistrategy knowledge
base (IMOCA)

As an improved multiobjective version of the basic CA
(which was originally designed for SOOPs), the proposed
IMOCA integrates necessary modifications in the knowl-
edge base to cope with MOOPs, taking advantage of various
knowledge sources. First, the structure of historical and
topographical knowledge is redesigned to improve the effi-
ciency of the knowledge selection scheme and to gain a
better spread of the obtained PF, respectively. Thus, there
is a corresponding adjustment in the influence functions
of the two sources of belief space knowledge. Second, in
addition to the influence functions of the four knowledge
sources, a straightforward mutation method is used as an
“influence function” in the influence step instead of in the
evolution step of the population. In other words, the muta-
tion operation affects the population only when it is selected
in the influence phase. Third, due to the fact that multi-
objective problems involve more than one single objective,
the Pareto dominance relationship should be introduced in
the comparison between solutions. Furthermore, the non-
dominated sorting method, which firstly proposed for the
NSGA-II [17], is adopted in the IMOCA for ranking indi-
viduals efficiently. Finally, another modification, i.e., an
elite maintenance mechanism, is included in the IMOCA to
avoid losing promising solutions during the search process.
Apart from the adjustments mentioned above, the evolu-
tionary scheme adopted in the IMOCA population space is
inherited from the prototype of [8]. The details of the proposed
IMOCA algorithm are given in the rest of this section.

5.1 Evolution scheme in the population space
of the IMOCA

Based on the simplified EP algorithm suggested by [8],
a framework analogous to the EP algorithm is adopted

as the evolution mechanism of the population space in
the IMOCA, except that the standard mutation operator is
replaced by one of the five influence functions driven by
knowledge sources and a simple mutation scheme.

5.2 Knowledge sources in the belief space
of the IMOCA

5.2.1 Situational knowledge

When dealing with SOOPs, situational knowledge contains
a set of exemplars that are used to guide the search.
Accordingly, in the IMOCA, the situational knowledge
serves as an external archive /repository preserving elite
solutions, i.e., nondominated solutions found during the
search process. This tactic is analogous to the use of an
external repository in quite a few classic multiobjective
algorithms such as the SPEA2, MOPSO, etc.

Similar to the basic configuration of situational knowl-
edge in the CA for SOOPs, the situational knowledge S
adopted in the IMOCA is represented in the following form:

S = {E1, E2, · · · , Es} , (3)

where s is the predefined capacity of situational knowledge,
which here we make equal to the size of the population
N , and Ek is the k-th nondominated individual, with k ∈
{1, 2, · · · , s}. The nondominated exemplars in situational
knowledge are arranged in ascending order from the
most preferable one to the least preferable, where the
ordering operation is performed according to their crowding
distances, as demonstrated in Section 5.4.

Since the situational knowledge functions as a leader for
the other individuals in the population to follow, when it is
selected to influence the population, its influence function
is to push each individual towards a certain exemplar that
is randomly selected from the situational repository. For
the j -th decision variable xij of an arbitrary individual xi

in the current population, the increment/decrement Δxij is
computed as follows:
{

σs = 0.1 × (xmax
j − xmin

j )

Δxij = σs × r
, (4)

where xmax
j and xmin

j are the j -th elements of xmax and

xmin (the upper and lower bounds of the decision variables
given by the optimization problem), respectively, and r is
a random scalar drawn from the standard normal distribu-
tion N(0, 1). Then, the new individual influenced by the
situational knowledge, xnew s

ij , can be produced by (5):

xnew s
ij =

⎧⎪⎨
⎪⎩

xij + |Δxij |, if xij < Ecj

xij − |Δxij |, if xij > Ecj

xij + Δxij , if xij = Ecj

, (5)
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where Ecj is the j -th variable of a randomly chosen elite Ec

from repository S.
The influence function driven by both normative and

situational knowledge is illustrated in the next subsection on
normative knowledge.

When the situational knowledge is updated, all non-
dominated individuals in the current population space are
inserted into the repository. Then, the fast nondominated
sorting method (see Section 5.4) is implemented on the
new archive, and the dominated ones and repeated ones
are discarded. Finally, if the number of the current exem-
plars exceeds the maximum size N , the individuals with
the smallest crowding distances (which is also explained in
Section 5.4) will be omitted.

5.2.2 Normative knowledge

Normative knowledge preserves the intervals where non-
dominated solutions located. Specifically, it saves the upper
and lower bounds of both the decision and the correspond-
ing objective space of the nondominated individuals in the
current population. In the IMOCA, the data structure and
update function of the normative knowledge are inherited
from the dissertation of [7]. The structure of normative
knowledge in the IMOCA can be described as follows:

N = {l, u, L, U} , (6)

where l = (l1, · · · , ln) and u = (u1, · · · , un) are the
minimum and maximum values of each decision variable
that are found in all the individuals sorted out by the
acceptance function, while L = (L1, · · · , LM) and U =
(U1, · · · , UM) are the minimum and maximum values of
each objective found in all the accepted individuals.

When only normative knowledge itself is chosen to
influence the population, increment/ decrement can simply
be applied to individuals that are smaller/larger than the
lower/ upper bounds l and u saved in the normative
knowledge. Here, the increment/decrement is computed
based on the interval [l, u] using a coefficient α and random
scalar r drawn from the standard normal distribution
N(0, 1):
{

σn = α × (uj − lj )

Δxij = σn × r
. (7)

Hence, the adjustment produced by the normative knowl-
edge can be expressed by (8):

xnew n
ij =

⎧⎪⎨
⎪⎩

xij + |Δxij |, if xij < lj

xij − |Δxij |, if xij > uj

xij + β × Δxij , otherwise

. (8)

Under the other circumstance, when the influence func-
tion of the combination of the normative knowledge and

the situational knowledge is selected, we apply a normative-
knowledge-based increment/decrement to the current indi-
vidual if it is smaller/larger than the exemplar, which is
randomly selected from the situational knowledge. For the
j -th decision variable xij of an arbitrary individual xi to be
improved in the population, as in the case where norma-
tive knowledge is used alone, the increment/decrement is
computed as follows:

{
σns = α × (uj − lj )

Δxij = σns × r
, (9)

where uj and lj are the j -th elements of l and u, the first
two vectors stored in normative knowledge, defined as the
lower and upper bounds of the closed interval that contains
all the accepted exemplar individuals, respectively, and r is a
random scalar drawn from the standard normal distribution
N(0, 1). Then, the new individual generated by normative
and situational knowledge can be computed as follows:

xnew ns
ij =

⎧⎪⎨
⎪⎩

xij + |Δxij |, if xij < Ecj

xij − |Δxij |, if xij > Ecj

xij + Δxij , if xij = Ecj

, (10)

where Ecj is the j -th variable of Ec, a randomly chosen elite
from the situational repository S.

The update operation of the normative knowledge is
performed in every iteration by recovering the lower and
upper bounds of the decision and objective values according
to the accepted individuals selected by the acceptance
function.

5.2.3 Topographical knowledge

To obtain a nondominated solution set with better coverage
and diversity, rather than promoting the promising regions,
in the IMOCA we utilize the topographical knowledge to
expand the spread of solutions in the objective space.

Taking a simple bi-objective problem as an example,
topographical knowledge locates all the individuals into
nGrid ·nGrid cells and chooses the ones that accommodate
on the edge of the objective space. As Fig. 2 presents
below, suppose that we have partially reached the true PF
(denoted by the orange dashed line) of the optimization
problem of minimizing f1 and f2; thus, the next step is to
expand the spread of the obtained individuals to cover the
unsearched part of the orange dashed line. Both the blue and
red triangles denote the solutions in the first rank obtained in
the current iteration, among which the red ones are selected
by topographical knowledge as they are located in the edge
areas. Thus, in the IMOCA we sort out all the individuals
located in the edge cells (cells in light blue in Fig. 2) to
which adjustment is performed.
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Fig. 2 Implementation of topographical knowledge in the IMOCA

The influence function of topographical knowledge is
implemented to exert a certain mutation operation on the
individuals “in red” to achieve better diversity among edge
solutions. For each individual located in the edge cells, we
randomly select μt × n of its decision variables to perform
fine tuning, where μt is a percentage parameter. Then, the
adjustments to the μt × n decision variables of the edge
individual xi are made by
{

σt = 0.1 × (xmax
j − xmin

j )

Δxij = σt × r
, (11)

where j ∈ {1, 2, · · · , n}. Thus, the j -th decision variable of
an arbitrary individual xi located in the edge cells is updated
by

xnew t
ij = xij + Δxij . (12)

It should be pointed out that, topographical knowledge is
not updated in every generation, but only when it is chosen
to influence the population to conserve computation resources.
When topographical knowledge is selected, the search region
spanned by the current elites in the situational knowledge
is re-split into (nGrid)M grids, and each individual in the
population is relocated to its own residence grid.

5.2.4 Historical knowledge

Here, we redesigned the historical knowledge as a meta-
knowledge source that records the performance of the four
influence functions generated by the other three knowl-
edge sources and the mutation strategy. In other words,
the historical knowledge saves the total number of surviv-
ing individuals in the situational knowledge over the past
h generations produced by each influence function or the
mutation strategy to manipulate the selection operation of
the knowledge source to be used in generating offspring.

In the previous h generations, i.e., when the current
iteration number has not reached a predefined threshold h,
one of the five influence functions randomly selected to
generate new individuals. Under this condition, we have

pn = ps = pns = pt = pm = 0.2, (13)

where pn, ps, pns, pt, and pm are the probabilities of each
knowledge to be chosen.

Otherwise, the probability for each influence function to
be chosen in the selection phase is then calculated according
to the number of corresponding survivals recorded. For
this purpose, for each of the N elites stored in the
situational knowledge, through which knowledge source it
was generated is also saved in the situational knowledge.
Then, the probability of each knowledge to be chosen,
which is based on the productivity of each knowledge in the
previous iterations, can be simply calculated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn = cn

N

ps = cs

N

pns = cns

N

pt = ct

N

pm = cm

N

, (14)

where cn, cs, cns, ct, and cm are the numbers of indi-
viduals generated from normative knowledge, situational
knowledge, a combination of normative and situational
knowledge, topographical knowledge, and the mutation
strategy, respectively. Furthermore, to prevent starvation of
any knowledge source, here, we introduce a parameter ε =
0.03, and thereby, an adjustment of each probability p is
made as follows:

p′ = p + ε

1 + 5ε
, (15)

where p ∈ {pn, ps, pns, pt, pm}, which guarantees that
every knowledge source has the opportunity to produce new
individuals while keeping p′

n + p′
s + p′

ns + p′
t + p′

m =
1. By doing so, from the (h + 1)-th generation, when
selecting influence functions, the selector has a reference
based on the performance of the influence functions in the
past h generations. At the same time, even the most poorly
performing influence function has chance to impact the
current population.

As illustrated in (16), in the influence phase, among nor-
mative knowledge, situational knowledge, the combination
of normative and situational knowledge, and the mutation
scheme, one influence strategy is chosen to accomplish
the evolution of the current population in each generation.
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The selection is based on the performance of the influence
strategies stored in the historical knowledge.

xnew
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xnew s
ij , if situational knowledge is selected

xnew n
ij , if normative knowledge is selected

xnew ns
ij , if normative and situational knowledge is selected

xnew t
ij , if topographical knowledge is selected

xnew m
ij , if mutation scheme is selected

,

(16)

where xnew m
ij denotes the new value for the j -th decision

variable of the individual xi , as illustrated in Section 5.3.
To update the historical knowledge, simply add the

number of the current survivals in the situational knowledge
generated by each influence function to its corresponding
counter.

5.3 Amutation scheme

As illustrated previously, the mutation scheme is also among
the influence strategies used to alter the individuals living in
a population. The mutation operation used here is analogous
to the one in the GA and is described as follows. First,
for each individual xi in the current population (i ∈
{1, 2, · · · , N}), randomly select nμ decision variables from
the total n ones to apply the mutation operation to, where
nμ is calculated by

nμ = n × μm, (17)

where n is the number of decision variables and μm is the
mutation percentage. Then, use the equation given below to
obtain σm, i.e., the mutation step size on the j -th decision
variable:

σm = 0.1 × (xmax
j − xmin

j ). (18)

Thereafter, execute the mutation operation on the j -th
variable of the individual xi :

xnew m
ij = xij + σm × r, (19)

where r is a random scalar drawn from the standard
normal distribution N(0, 1). Finally, if any dimension of the
mutated individual exceeds the corresponding constraints,
set it to the boundary value.

Here, it should be noted that the topographical knowl-
edge and the mutation scheme use the same form of equa-
tions to produce offspring, but the key point here is the
selection of individuals to be operated on. In other words,
the difference between the two strategies lies in which kind
of individual is selected for variation. The topographical
knowledge is used to find promising solutions and broaden
the obtained front, the influence function of which is there-
fore applied to the individuals located on the edge of the
objective space, while the mutation scheme aims to carry
out fine tuning in the late stage of search, which is applied to

every individual in the current population. The results prove
that these two influence functions are superior in in produc-
ing nondominated solutions at different stages of evolution
(see Fig. 4).

In the IMOCA, the mutation operation is not applied
to the population in every generation. Instead, it plays
the same role as that of the other influence functions of
knowledge sources. That is, the use of mutation depends on
its performance in terms of productivity in the preceding
h generations stored in the historical knowledge. As
the simulation results (shown in Section 7) indicate, the
evolution process makes full use of the mutation operation
in the last stage of search.

5.4 Pareto dominance and the fast nondominated
sorting approach

For MOOPs, since there is more than one decision value
to be considered, it is not as simple as for SOOPs to
compare the performances of different solutions with less
computational effort. Hence, adopting an efficient sorting
strategy among solutions is one of the significant aspects of
an MOOP optimization algorithm. To address this problem,
we utilize the fast nondominated sorting approach together
with the notion of crowding distance inspired from the
NSGA-II. For a detailed explanation of the two techniques,
refer to [17].

5.5 Elite preservation

In the competition of individuals in a population space,
because newborn individuals are always merged into the
parent population once generated, no excellent parent indi-
viduals are omitted. On the other hand, during the update
procedure of the situational knowledge, the nondominated
solutions sorted out from the current population are in com-
petition with all the elites previously saved in the repository
to prevent the best solutions in the first PF from dying out.
Furthermore, when the algorithm is terminated, the repos-
itory of the situational knowledge is saved as the final
solutions to the problem at hand. In general, the IMOCA
avoids any loss of the well-performing individuals that have
emerged in the population space.

5.6 Communication channel

5.6.1 Acceptance function

The acceptance function is used to accept a proportion of
high-performing individuals to update the knowledge in
the belief space. Here, we use a very simple acceptance
function: 35% of the individuals in the current population
with the best nondominated ranks are accepted.
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5.6.2 Influence function

The influence functions of situational, normative and
topographical knowledge have already been described in
detail in Section 5.2. The influence function generated from
the mutation scheme is demonstrated in Section 5.3.

5.7 Implementation framework of the IMOCA

Within the EP framework mentioned above, the IMOCA
works as follows:

INPUT:

– a multiobjective problem with n decision variables and
M objectives;

– a stopping criterion;
– the population size N .

OUTPUT: individuals stored in the current situational
knowledge.

Step 1) Initialization:
Step 1.1) Set generation counter t = 0.
Step 1.2) Generate N individuals x1, · · · , xN randomly

within the range of decision variables as the initial
population, where N is the size of the population. Here, each
individual xi = (xi1, · · · , xin)

T , with i ∈ {1, 2, · · · , N},
where n is the number of decision variables.

Step 1.3) Evaluate the N individuals in the initial
population by the objective functions and obtain N

corresponding objective vectors y1, · · · , yN , where yi =
(yi1, · · · , yiM)T , with i ∈ {1, 2, · · · , N}, and M is the
number of objectives.

Step 1.4) Initialize the knowledge sources in the belief
space according to the knowledge structure of each source,
which is described in Section 5.2.

Step 2) Population Space Evolution:
Step 2.1) If the generation counter t has not exceeded

h, randomly choose one influence function (among nor-
mative knowledge, situational knowledge, normative and
situational knowledge, topographical knowledge, and the
mutation scheme) to influence the evolution of the current
population. Otherwise, carry out the selection according
to the former performance of the five influence functions
stored in the historical knowledge. If the topographical
knowledge is chosen, update it before utilizing.

Step 2.2) For the N individuals xi with i ∈
{1, 2, · · · , N}, generate N offspring xN+1, · · · , x2N using
the chosen influence function. Then, evaluate the new indi-
viduals and merge the old and the new ones; thus, we have
2 × N individuals in total.

Step 2.3) Conduct the nondominated sorting method
on the entire 2 × N population and discard the last N

individuals with larger rank values. Accordingly, the best N

ones survive as the new population of the next generation.

Step 2.4) Set t = t + 1.
Step 3) Belief Space Update: Update the 3 knowledge

sources (except topographical knowledge) in the belief
space using the accepted individuals in the new population.

Step 3.1) Update situational knowledge.
Step 3.2) Update normative knowledge.
Step 3.3) Update historical knowledge according to the

productivities of the other four influence functions in the
last generation.

Step 4) Stopping Criterion: If the stopping criterion,
i.e., the generation counter t exceeds the maximum amount,
is satisfied, stop and output the current individuals stored in
the situational knowledge as the results of the optimization.
Otherwise, go to Step 2).

The implementation flowchart of the algorithm is shown
in Fig. 3.

6 Experimentation and related
configurations

6.1 Multiobjective continuous test suites

For simulation, two classic benchmark suites WFG [24]
and MaF [6] are used in the comparison between the
IMOCA and 5 classic multiobjective algorithms and 3
recently proposed MOEAs. It should be noted that since the
problems of WFG1, WFG2 and WFG9 are used in the MaF
suites as MaF10, MaF11 and MaF12 without any change,
in the experiment, we omit the redundant ones in the WFG
suites. All of the 21 test instances are tri-objective problems
and involve minimization of the objectives, including
problems with a variety of characteristics.

6.2 Parameter configuration of the IMOCA
for simulation

The parameters used in each knowledge source of the
IMOCA are configured as shown in Table 1.

First, we tested a set of values for the parameters α and β,
which were used in the influence function of normative
knowledge and the influence function of normative and situ-
ational knowledge in (7), (8) and (9). As shown in Tables 2,
3 and 4, the performance of the IMOCA when adopting
six different combinations of the parameters α and β was
evaluated by the MaF functions. In the three tables, the
best indicator values are marked in bold. The results reveal that
when α = 0.3 and β = 0.5, the best performance
of the IMOCA could be achieved compared to the other com-
binations.

Then, for the influence function of topographical knowl-
edge, the segmentation number on each dimension nGrid

is specified as 10 in accordance with the literature [38]. For
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Fig. 3 Framework of the
IMOCA

the parameter μt , which decides the number of decision
variables to be adjusted, it is specified as 0.02 so that only
one decision variable is tuned for problems with less than
50 decision variables; for problems with (50, 100] decision
variables, two decision variables need to be changed. For the
same reason, the value 0.02 is also assigned to the parameter
μm in the mutation scheme. Last, for historical knowledge,
we assign h as 50 so that at every iteration, the productivity

of each influence function in the last 50 iterations is a ref-
erence for selecting the influence function to be used in the
current iteration. The parameter ε is set to avoid starvation
of any knowledge source.

6.3 Algorithms for comparison

In this paper, we choose eight multiobjective algorithms,
including five classic multiobjective algorithms (NSGA-II,

Table 1 Parameter
configuration in the IMOCA The influence function the

parameters are used in
Parameter names Values used in the IMOCA

Influence function of normative
knowledge

α (see (7)) 0.3

β (see (8)) 0.5

Influence function of situational
and normative knowledge

α (see (9)) 0.3

Influence function of topographical knowledge nGrid 10

μt 0.02

Influence function of historical knowledge h 50

ε (see (15)) 0.03

Mutation scheme μm (see (17)) 0.02

1167An improved multiobjective cultural algorithm...



Table 2 Medians of the inverted generational distance (IGD) of 20 runs under different settings of the parameters α and β

α = 0.3 α = 0.3 α = 0.3 α = 0.5 α = 0.5 α = 0.7

β = 0.3 β = 0.5 β = 0.7 β = 0.3 β = 0.5 β = 0.3

MaF1 0.073218 0.069127 0.068027 0.069014 0.067049 0.069049

MaF2 0.596158 0.596457 0.596310 0.595035 0.594968 0.595377

MaF3 0.347454 0.325043 0.318657 0.400711 0.459670 0.428111

MaF4 3.736833 3.810884 3.762974 3.730497 3.717573 3.748048

MaF5 4.014352 3.999706 4.024609 3.994386 3.995444 3.994142

MaF6 0.179881 0.179307 0.179071 0.179427 0.179267 0.179529

MaF7 2.957703 2.964635 2.963736 2.964219 2.965030 2.961734

MaF8 0.620189 0.628236 0.624343 0.623818 0.625612 0.639203

MaF9 5.435639 0.754918 0.912336 1.254550 2.852567 1.381800

MaF10 1.262508 1.260272 1.267940 1.259995 1.262095 1.268234

MaF11 2.254036 2.256029 2.259387 2.257765 2.259533 2.258941

MaF12 3.147283 3.15109 3.147852 3.147987 3.147441 3.144435

MaF13 0.094895 0.094385 0.095658 0.095362 0.093508 0.093514

MaF14 0.441295 0.430414 0.434587 0.441788 0.433716 0.446452

MaF15 0.128081 0.127588 0.127100 0.128951 0.127435 0.129540

IGD 1.685968 1.376539 1.385506 1.409567 1.518727 1.422541

Rank of IGD 6 1 2 4 5 3

PESA-II, SPEA2, MOPSO and MOEA/D) and three well-
performing algorithms (NSLS, MOEA/IGD-NS and BCE-
IBEA) selected from more recent research, to compare with
the IMOCA in terms of the performance.

Referring to the recommendations regarding the experi-
mental setup in the literature [6], for all nine algorithms, the

population size was set to 25 times the number of objectives
of the problems, and for the IMOCA, PESA-II, SPEA2 and
MOEA/D, which are algorithms with external repositories,
the size of the repositories was set equal to the population
size. The other parameter settings of the 8 algorithms are as
follows.

Table 3 Medians of the hypervolume (HV ) of 20 runs under different settings of the parameters α and β

α = 0.3 α = 0.3 α = 0.3 α = 0.5 α = 0.5 α = 0.7

β = 0.3 β = 0.5 β = 0.7 β = 0.3 β = 0.5 β = 0.3

MaF1 1.099999 1.099999 1.099999 1.099999 1.099999 1.099999

MaF2 0.712305 0.787706 0.724117 0.723971 0.713761 0.744828

MaF3 1.099998 1.099998 1.099998 1.099998 1.099998 1.099998

MaF4 2.199998 2.199998 2.199998 2.199998 2.199998 2.199998

MaF5 8.800000 8.800000 8.800000 8.800000 8.800000 8.800000

MaF6 0.777817 0.777817 0.777817 0.777817 0.777817 0.777817

MaF7 0.945341 0.945341 0.945341 0.945341 0.945341 0.945341

MaF8 1.665953 1.715514 1.662875 1.707283 1.700960 1.702080

MaF9 1.572484 1.590801 1.569413 1.575329 1.550658 1.568517

MaF10 1.376749 1.363852 1.398516 1.362191 1.370329 1.397717

MaF11 2.190963 2.191980 2.190273 2.187861 2.188651 2.190273

MaF12 2.181592 2.178299 2.165982 2.169219 2.170965 2.162307

MaF13 1.100000 1.100000 1.100000 1.100000 1.100000 1.100000

MaF14 1.100000 1.100000 1.100000 1.100000 1.100000 1.100000

MaF15 1.099999 1.099999 1.099999 1.099999 1.099999 1.099999

HV 1.861546 1.870087 1.862289 1.863267 1.861232 1.865925

Rank of HV 5 1 4 3 6 2
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Table 4 Medians of the unary ε-indicator (Iε1) of 20 runs under different settings of the parameters α and β

α = 0.3 α = 0.3 α = 0.3 α = 0.5 α = 0.5 α = 0.7

β = 0.3 β = 0.5 β = 0.7 β = 0.3 β = 0.5 β = 0.3

MaF1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

MaF2 0.066895 0.008506 0.055083 0.055229 0.065439 0.034372

MaF3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

MaF4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

MaF5 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002

MaF6 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

MaF7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

MaF8 0.222136 0.172575 0.225214 0.180806 0.187129 0.186009

MaF9 0.055197 0.036880 0.058267 0.052352 0.077022 0.059163

MaF10 0.817039 0.829937 0.795272 0.831597 0.823459 0.796071

MaF11 0.009037 0.008020 0.009727 0.012139 0.011349 0.009727

MaF12 0.018406 0.021699 0.034016 0.030779 0.029033 0.037691

MaF13 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

MaF14 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

MaF15 0.732228 0.000000 0.540390 0.309080 0.628766 0.561862

Iε1 0.079248 0.071841 0.078506 0.077527 0.079562 0.074869

Rank of Iε1 5 1 4 3 6 2

– NSGA-II: crossover rate Pc = 0.7, mutation rate Pm =
0.4, mutation step size σ = 0.1;

– PESA-II: number of grids per dimension nGrid = 7,
grid inflation factor IF = 0.1, crossover rate Pc = 0.5,
crossover parameter γ = 0.15, mutation rate Pm = 0.5,
mutation step size σ = 0.3;

– SPEA2: crossover rate Pc = 0.7, crossover parameter
γ = 0.1, mutation rate Pm = 0.3, mutation step size
σ = 0.2;

– MOPSO: inertia weight w = 0.4, inertia weight
damping rate wdamp = 0.99, personal learning
coefficient c1 = 1, global learning coefficient c2 = 2,
number of grids per dimension nGrid = 30, inflation
rate α = 0.1, leader selection pressure β = 2, deletion
selection pressure γ = 2, mutation rate Pm = 0.5;

– MOEA/D: crossover rate Pc = 0.5, number of
neighbors: 15% of the population but no larger than 15;

– NSLS: mean value of the Gaussian distribution μ =
0.5, mutation strength σ = 0.1;

– MOEA/IGD-NS: the archive size NA is set to 5 times
the population size;

– BCE-IBEA: the scaling factor κ = 0.05.

6.4 Experimental configurations

The IMOCA and the other 8 algorithms are written in MAT-
LAB scripts and the testing experiments were implemented
in MATLAB R2018a on a 3.1 GHz Intel Core i7 proces-
sor under macOS Mojave 10.14.4. The source codes of
the NSGA-II, PESA2, SPEA-II, MOPSO and MOEA/D are

available from the EMOO repository [10], and the imple-
mentations of the NSLS, MOEA/IGD-NS, and BCE-IBEA
are carried out on the PlatEMO [43].

All the algorithms were run 20 times independently for
each benchmark problem. Additionally, to conduct a fair
comparison among the nine methods, instead of adopting a
maximum number of iterations as the termination condition,
we terminate each algorithm once the calculation times of
the objective functions reach max(100000, 10000 × n).

6.5 Performancemetrics

Six performance metrics are adopted in this paper to
evaluate the performances of all 9 algorithms in terms of
both diversity and convergence.

1. Set Coverage (C(A, B)) [16]. It calculates the propor-
tion of solutions in B, which are weakly dominated by
the solutions in A:

C(A, B) = |{b ∈ B | ∃ a ∈ A : a � b}|
|B| .

The metric value C(A, B) = 1 means that all members
of B are weakly dominated by A. On the other hand,
C(A, B) = 0 means that no member of B is weakly
dominated by A. It can be noted that C(A, B) is
not necessarily equal to 1 − C(B, A) because the
domination operator is not a symmetric operator. It is
thus necessary to calculate both C(A, B) and C(B, A)

to investigate how many solutions of A are covered by
B and vice versa.
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2. Inverted Generational Distance (IGD). This measure
was proposed by [52]. It is similar to the generational
distance (GD) and formulated as follows:

IGD =
∑n

i=1 d2
i

n
,

where n is the number of true Pareto optimal solutions
and di indicates the Euclidean distance between the i-
th true Pareto optimal solution and the closest obtained
Pareto optimal solutions in the reference set. The
Euclidean distance between obtained solutions and
the reference set is different here. For the IGD, the
Euclidean distance is calculated for every true solution
with respect to its nearest obtained Pareto optimal
solutions in the objective space.

3. Hypervolume (HV ) [48]. This metric calculates the
volume (in the objective space) covered by members of
the solution set A. For each solution x ∈ A, a hypercube
vi is constructed with a reference point W and the
solution itself as two diagonal corners of the hypercube.
Thereafter, the hypervolume of all the hypercubes is
calculated as

HV = volume
(
∪|A|

i=1vi

)
.

Obviously, an algorithm with a larger HV is desirable.
4. Unary ε-indicator (Iε1) [52]. This indicator is based on

the binary ε-indicator, which is defined as

Iε(A, B) = inf
ε∈R{∀ z2 ∈ B, ∃ z1 	ε z2}

for any two approximation sets A, B ∈ 	. For the
unary ε-indicator, substitute the set B with a reference
set of points:

Iε1(A) = Iε(A, P ),

where P is the true PF set. If P is unknown, any
reference set R can be used instead.

5. Spacing (S) [16]. This is a relative distance measure
between consecutive solutions in the obtained nondom-
inated set:

S =
√√√√ 1

|Q|
|Q|∑
i=1

(di − d̄)
2
,

where di = mink∈Q∧k �=i

∑M
m=1 |f i

m − f k
m| and d̄ =∑|Q|

i=1 di/|Q|. Obviously the metric S calculates the
standard deviations of different di values. Therefore,
an algorithm finding a set of a nondominated solutions
having smaller spacing S is better.

6. Spread (Δ) [16]. This metric reflects the extent of
spread:

Δ =
∑M

m=1 de
m + ∑|Q|

m=1 |di − d̄|∑M
m=1 de

m + |Q|d̄ ,

where di can be any distance measure between
neighboring solutions, d̄ is the mean value of these
distance measures, and de

m is the distance between the
extreme solutions of P ∗ and Q in the m-th objective
function. For an ideal distribution of obtained solutions,
Δ = 0.

The set coverage metric is a binary measure, while the
inverted generational distance, hypervolume and unary ε-
indicator are unary Pareto-compliant indicators [19]. The
other two indicators, spacing and spread, are unary but non-
Pareto-compliant metrics evaluating the distribution and
diversity, respectively.

7 Results and discussions

7.1 Performance of knowledge sources in the IMOCA

To examine the performances of the knowledge sources
used in the IMOCA, we examine the elite solutions saved
in the situational knowledge in different search phases in a
random run when solving a basic test problem ZDT1 from
the classic multiobjective test suite ZDT [50].

We use a population size of 50 and take a number
of objective functions M = 2 and number of decision
variables n = 30 for ZDT1. Figure 4 plots the minimum
values of the sum of all the objective functions among all
the solutions saved in the current situational knowledge.
The abscissa is based on the logarithm of the iteration
so that the performance of each knowledge source in the
early stage of the iteration can be seen clearly. It should
be stated here that in this experiment, we set the terminal
condition as a maximum generation of 300 because for
ZDT1, convergence can be achieved by the IMOCA before
the 300th iteration; in the competition experiments between
the IMOCA and the other chosen algorithms, to guarantee
that most of the algorithms have enough chances to search
for solutions, we terminate the algorithms according to the
calculation times of the objective functions.

To better analyze how each knowledge source guides
the search process, in Fig. 4, the knowledge sources that
produce the minimum sum of objective functions are indi-
cated in different colors and shapes. It is obvious from the
figure that all five influence functions made efforts to find
new promising individuals. At the 5th iteration, topograph-
ical knowledge first found promising solutions different
from the initial ones, which were generated randomly in the
first iteration. As the optimization process progressed, the
five influence functions took turns generating individuals
with small values of

∑M
m=1 fm(x). From the 30th iteration,

the mutation scheme and the influence functions of topo-
graphical knowledge began to take up a larger portion of the
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Fig. 4 The minimum values for∑M
m=1 fm(x) when optimizing

ZDT1 using the IMOCA
(iteration t ∈ [1, 300])
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producers of promising individuals. From the 43th to the
90th iterations, situational knowledge also played a signif-
icant role in generating new elite solutions. Similar perfor-
mances of the five influence functions were also observed
when solving the 15 MaF instances (see Appendix).

In [3], the productivity of different knowledge sources
was also observed by plotting the minimum value of

∑M
m=1

fm(x) for all the individuals x in the population in each
iteration. By comparing the figures given in both [3] and
our paper, the implementation of topographical knowledge
in [3] produced very few promising individuals, while
that in the IMOCA contributed to finding better solutions,
especially in the middle and late stages of evolution.

In a nutshell, it can be concluded that the effectiveness
of all the adopted influence functions is verified. In the late
stage of evolution, the mutation scheme seems to be more
productive in promoting the quality of a population. It can be
also noted that the productivity of the adapted topographical
knowledge in the proposed IMOCA is much better than that
of the topographical knowledge used in the MOCA in [3].

7.2 Results on the test functions

7.2.1 Obtained nondominated solutions

According to the simulation experimentation, in which the
obtained Pareto optimal solutions of the 9 algorithms in 20
runs are compared, the IMOCA is able to converge to the
true PFs of most of the 21 test problems. Here, three typical
simulation results of the test problems MaF4, MaF14 and
WFG6 are given in Fig. 5a, b and c, respectively. In the three
figures, the true PFs of these three functions are plotted
as gray surfaces, and the nondominated solutions obtained
in the 20 runs are represented by small circles in different
colors (the solutions of each run correspond to each of the
different colors).

MaF4 is a concave, multimodal, and badly scaled opti-
mization problem with no single optimal solution in any

subset of the objectives. Its PF surface is a part of a sphere
that intersects at the following coordinates: (0, 4, 8), (2, 4,

0), and (2, 0, 8). From Fig. 5a, it can be observed that hardly
any of the solutions found by the algorithms occurred on or
near the true Pareto front in the 20 runs, but the axis tick
values in each subfigure in Fig. 5a indicate that the solu-
tion set obtained by the IMOCA is the one nearest the true
Pareto front of MaF4. This reveals that the IMOCA is more
capable of dealing with badly scaled PFs.

The test problem of MaF14 is linear but with a compli-
cated fitness landscape. Its decision variables are nonuni-
formly correlated with different objectives, and the decision
variables are partially separable. Similarly, from the axis
labels in Fig. 5b, it can be inferred that only the proposed
algorithm and NSLS approached the Pareto front of MaF14,
which is a triangle plane spanned by the points [0, 1, 0],
[1, 0, 0] and [0, 0, 1]. Compared to those of the NSLS, the
solutions obtained by the IMOCA seemed to cover a larger
portion of the Pareto front and were relatively evenly dis-
tributed, as there were at least four sets of solutions that
reached the upper part of the Pareto plane instead of falling
into a single straight line in the xy-plane.

WFG6 is a concave problem with nonseparable reduc-
tion. The obtained solutions of the 9 algorithms on WFG6
are depicted in Fig. 5c, where almost all 9 algorithms found
solutions near the Pareto sphere surface in the 20 runs.
Under this circumstance, the distribution of the solutions
becomes notable when comparing the performances of the
multiobjective algorithms. According to the figure, the solu-
tions obtained by the IMOCA covered most of the Pareto
front without any omission, while there was always more
or less space without coverage in the cases of the other 8
algorithms.

7.2.2 Statistical results on the pareto-compliant metrics

To quantitatively observe the quality of the solutions obtained
by the proposed IMOCA, the median values of the three

1171An improved multiobjective cultural algorithm...



Fig. 5 Non-dominated solutions
obtained by 9 algorithms in 20
independent runs in the
objective space of MaF4,
MaF14 and WFG6. a
Non-dominated solutions
obtained by 9 algorithms in 20
independent runs on MaF4. b
Non-dominated solutions
obtained by 9 algorithms in 20
independent runs on MaF14. c
Non-dominated solutions
obtained by 9 algorithms in 20
independent runs on WFG6
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Pareto-compliant indicators (IGD, HV and unary ε-
indicator) for the 21 test problems over 20 runs were
computed, as shown in Tables 5, 6 and 7, respectively.
The Friedman test was also performed on the results, as
recommended in [18].

In Table 5, the result of the Friedman test reflected the
IGD values of the 9 algorithms on the 21 test problems
from an overall perspective, and the proposed IMOCA
seemed to have an average performance on this metric.
However, the p-value on the Friedman test was larger
than 0.01 (but still smaller than 0.05), which indicated
that there was not an explicit significance in terms of the
difference between the IGD values of the 9 algorithms.
Moreover, if we consider the Friedman mean rank, there
was not a large difference between the rank values of the
first five algorithms, while the rank differences in Tables 6
and 7 were considerably large. This occurred because the
algorithms performed disparately in terms of the IGD for
the different test problems. For example, the IMOCA also
had a better IGD performance on several problems, such
as MaF3, MaF5, and MaF10, than that of the first-ranked
algorithm NSLS.

All of three metrics could measure both the diversity and
convergence of an obtained nondominated set in a sense.
Specifically, the IGD indicator calculates the average
distance from the uniformly distributed points along the
PF to the obtained approximation set; HV calculates the
area covered by the approximation set with respect to a set
of predefined reference points; and the unary ε-indicator
calculates how far the obtained set should move to cover
every part of the true PF. If an algorithm has a superior
performance in terms of the HV and unary ε-indicator
but an average performance on the IGD indicator, the
reason may be the uneven distribution of the obtained
nondominated set.

Therefore, combined with the results in Tables 6 and 7,
which show that the IMOCA outperformed its competitors
in terms of the HV and unary ε-indicator with statistical
significance, it could be concluded that the solutions
obtained by the IMOCA have a wider distribution along the
whole PF with better diversity but are distributed somewhat
unevenly on some of the test problems. The superiority
of the proposed algorithm over the other ones may be
generally attributed to its full use of different knowledge

Table 5 Medians of the inverted generational distance (IGD) and the ranks achieved by the Friedman test (A: Algorithms, P: Problems)

P

IGD A
IMOCA NSGA-II PESA2 SPEA-II MOPSO MOEA/D NSLS MOEA/ IGD-NS BCE- IBEA

MaF1 0.069127 0.059033 0.117887 0.095604 0.162825 0.076905 0.048571 0.044996 0.048476

MaF2 0.596457 0.589407 0.631322 0.618410 0.647875 0.594880 0.586274 0.591409 0.586845

MaF3 0.325043 15.22894 149661.8 46156.26 182644.9 52661.12 24.77425 0.050707 0.045855

MaF4 3.810884 1.966237 152.3839 43.95356 195.7980 65.30562 2.045685 4.122527 4.087418

MaF5 3.999706 4.056822 3.137925 3.423809 3.673384 4.070455 4.000472 3.999068 3.995224

MaF6 0.179307 0.179086 0.313292 0.186830 0.190383 0.182843 0.178456 0.178496 0.178222

MaF7 2.964635 2.964138 1.343458 1.978762 2.810360 1.923563 2.962115 2.975142 2.963811

MaF8 0.628236 0.713789 20.19838 0.777988 4.114733 153.9574 0.674722 0.710802 0.684543

MaF9 0.754918 0.417066 0.621625 0.381577 0.685884 0.329862 0.283492 0.312261 0.299580

MaF10 1.260272 1.322007 1.234122 1.234730 1.235308 1.422659 1.504999 1.505942 1.504176

MaF11 2.256029 2.241249 2.049511 2.106867 2.100148 2.454968 2.266790 2.295643 2.285038

MaF12 3.151090 3.158409 2.894917 2.948502 2.957855 3.180359 3.139051 3.164418 3.169480

MaF13 0.094385 0.144658 0.503394 0.243494 0.303238 0.115139 0.081957 0.167277 0.135415

MaF14 0.430414 0.436481 3.735738 1.884243 1.088949 5.728214 0.328652 0.274863 0.362551

MaF15 0.127588 0.197353 1.924609 0.742012 3.659655 0.399609 0.092445 0.105716 0.193129

WFG3 1.496902 1.506820 1.294940 1.370189 1.300587 1.506385 1.491000 1.498191 1.504487

WFG4 3.156928 3.152629 3.023305 3.084248 3.037741 3.175135 3.174921 3.168637 3.171670

WFG5 3.144812 3.160057 3.044761 3.073862 3.078044 3.170920 3.158484 3.158342 3.156399

WFG6 3.162833 3.147130 2.922245 2.981786 3.009032 3.169542 3.167762 3.149022 3.144736

WFG7 3.128845 3.169453 2.985589 3.047090 2.987953 3.188021 3.120353 3.166467 3.172101

WFG8 3.124054 3.120201 2.949690 3.004771 2.960251 3.153578 3.128565 3.127279 3.123302

Friedman mean rank 4.8095 5.1905 4.3810 4.4286 5.2857 7.1429 4.2381 5.0476 4.4762

final rank 5 7 2 3 8 9 1 6 4

p-value 0.0238
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Fig. 6 Box plots of pairwise comparison of set coverage C(A, B) based
on 20 independent runs obtained by the 9 algorithms. a Box plots
of pairwise comparison of set coverage C(A;B) on MaF1-MaF8. b

Box plots of pairwise comparison of set coverage C(A;B) on MaF9-
MaF15. c Box plots of pairwise comparison of set coverage C(A;B) on
WFG3-8
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Fig. 7 Box plots of metric
Spacing S based on 20
independent runs obtained by
the 9 algorithms in solving MaF
and WFG problems. a Box plots
of metric Spacing S on MaF1-8.
b Box plots of metric Spacing S
on MaF9-15. c Box plots of
metric Spacing S on WFG3-8
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Fig. 8 Box plots of metric
Spread 
 based on 20
independent runs obtained by
the 9 algorithms in solving MaF
and WFG problems. a Box plots
of metric Spread (insert symbol
here) on MaF1-8. b Box plots of
metric Spread ( (insert symbol
here) on MaF9-15. c Box plots
of metric Spread ( (insert
symbol here) on WFG3-8
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categories at different stages of the evolution according to
their productivity.

7.2.3 Set coverage

As illustrated in Section 6.5, when evaluating the solution
sets obtained by algorithms A and B, it is necessary
to compute both C(A, B) and C(B, A). To compare the
quality of the solution sets obtained by the different
algorithms, or more specifically, to compare the dominance
relationship between the two final populations resulting
from two different algorithms, a pairwise comparison for the
metric C(A, B) is made based on the solutions obtained by
the IMOCA and four representative algorithms, i.e., NSGA-
II, NSLS, MOEA/IGD-NS and BCE-IBEA (see Fig. 6a,
b and c). In this comparison, we selected the first four
algorithms among the remaining 8 algorithms based on the
statistical results of the hypervolume and unary ε-indicator.

In Fig. 6a, the subfigures in the first row starting with
“IMOCA” are the box plots of the set coverage of the
IMOCA on test problems MaF1-MaF8. For example, the
subfigure in row 1 and column 2 (the box on the right side
of “IMOCA” in Fig. 6a) denotes the proportion of solutions
obtained by the IMOCA dominated by the ones obtained by
the NSGA-II on the 8 test problems. Similarly, the subfigure

in row 2 and column 2 (the box on the left side of “NSGA-
II”) denotes the proportion of solutions obtained by the
NSGA-II dominated by the ones obtained by the IMOCA.
According to these two boxes, it can be inferred that, except
for problem MaF8, the IMOCA found better solutions than
those found by the NSGA-II, especially for problems MaF3
and MaF4. The results on the other 13 test problems are
given in Fig. 6b and c.

From a comparison of the first rows and the first
columns in Fig. 6a, b and c, it can be concluded that the
solution sets of the IMOCA outperform those of the other
four competitive algorithms in producing nondominated
solutions when solving most of the 21 test problems,
whereas for MaF8/9/10 and WFG7, the solution sets of the
IMOCA are worse.

7.2.4 Spacing and spread

Last, we examine the performance of the proposed IMOCA
in terms of the distribution and diversity by the spacing and
spread metrics, respectively. The box plots of the spacing
S are given in Fig. 7a, b and c, while the box plots of the
spread Δ are given in Fig. 8a, b and c.

These figures show that the IMOCA has lower or nearly
equal values of both the spacing and spread indicators

Table 8 Medians of time
consumed by each algorithm
(A: Algorithms, P: Problems;
time unit: second(s))

P

Time (s) A

IMOCA NSGA-II PESA2 SPEA-II MOPSO MOEA/D

MaF1 194.57 184.08 230.62 144.16 55.25 257.18

MaF2 193.03 184.41 295.45 145.03 93.28 257.91

MaF3 207.48 223.32 163.50 143.94 36.80 142.26

MaF4 227.53 224.07 181.83 144.94 52.44 257.15

MaF5 189.04 193.80 247.37 146.88 45.53 243.55

MaF6 214.83 198.40 174.48 143.94 38.73 254.39

MaF7 349.10 343.59 391.82 265.15 89.61 301.17

MaF8 121.92 194.16 98.19 128.18 33.64 163.04

MaF9 154.24 171.14 188.64 122.02 22.93 215.73

MaF10 198.93 191.03 263.13 151.34 57.03 258.44

MaF11 200.87 191.50 215.97 148.35 57.06 261.35

MaF12 195.69 190.37 254.91 150.76 65.83 262.87

MaF13 169.94 168.35 152.03 122.52 40.06 217.11

MaF14 1080.16 1111.38 895.89 792.17 195.42 1056.53

MaF15 1077.76 1033.77 1082.49 821.96 311.65 1387.32

WFG3 197.52 189.83 251.22 149.45 78.94 262.84

WFG4 197.29 187.87 271.21 149.07 77.86 260.24

WFG5 196.36 186.94 283.32 149.13 88.52 261.83

WFG6 197.03 186.85 245.65 148.71 81.41 260.16

WFG7 198.58 189.14 263.49 151.57 73.41 264.33

WFG8 198.43 189.34 264.75 151.49 79.96 261.02
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compared with those of the other algorithms on most of
the problems. Considering the excellence that the IMCOA
reveals in terms of the hypervolume, unary ε-indicator
and set coverage metric C(A, B), the performance of the
IMOCA in terms of the spacing and spread indicates that
the solution sets obtained by the IMOCA approach the PFs
with both accuracy and diversity in most cases.

7.2.5 Time consumption

The time consumed by the IMOCA and other five algo-
rithms in the comparison is given in Table 8. Since the rest
three algorithms are carried out on another platform (the
PlatEMO platform), the time consumptions are not com-
mensurable and thus are not listed here. It can be seen from
Table 8 that there is no big difference between the time con-
sumptions of the IMOCA and the NSGA-II, which due to
the fact that the computational complexity of the influence
functions and the sorting part in the IMOCA is the same as
the corresponding operations in the NSGA-II.

Overall, the experimental results confirm that, with sev-
eral simple but necessary modifications, the IMOCA is
competitive in capturing well-distributed, near-optimal non-
dominated solutions under acceptable execution time when
solving MOOPs.

8 Conclusions and future work

In this paper, we proposed a modified version of the CA with
a multistrategy knowledge base for solving multiobjective
optimization problems. Four basic knowledge sources, i.e.,
normative, situational, topographical and historical knowl-
edge, are adopted in the knowledge base of the proposed

algorithm, and necessary modifications were made to the
situational, historical and topographical knowledge. In addi-
tion, a simple mutation scheme was integrated into the
algorithm to perform fine tuning in the late stage of evolu-
tion. The experimental results showed that, on most of the
selected test problems, the proposed IMOCA was able to
converge better to the true PFs and provided a wide and
well-distributed spread of solutions for most of the problems
compared to the other 8 multiobjective algorithms.

There is still abundant room to refine the proposed algo-
rithm in future work. Inspired by the performance metric
computation used in the elimination of noncontributing
solutions in the MOEA/IGD-NS, exploitation of the perfor-
mance evaluation in the selection operation in the IMOCA
may further improve the quality of the obtained solution
set. Moreover, given the fact that the framework of the CA
can integrate any form of evolutionary technique, explor-
ing other effective and efficient knowledge categories for
solving MOOPs will also be addressed in future work. Further-
more, attempts at applying the IMOCA to practical MOOPs
could be made in the near future. In addition, since the pro-
posed IMOCA is an unconstrained search approach, devel-
oping an efficient mechanism to deal with the constraints in
MOOPs could be a future direction of research.

Appendix : Performance of different
knowledge source as IMOCA solvingMaF
test suite

Here in Appendix, Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22 and 23 show the minimum values for∑M

m=1 fm(x) when the IMOCA optimizing the MaF test
suite in a random run.

Fig. 9 The minimum values for∑M
m=1 fm(x) when optimizing

MaF1 using the IMOCA
(iteration t ∈ [1, 300])
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Fig. 10 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF2 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 11 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF3 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 12 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF4 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 13 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF5 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 14 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF6 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 15 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF7 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 16 The minimum values
for

∑M
m=1 fm(x) as when

optimizing MaF8 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 17 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF9 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 18 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF10 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 19 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF11 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 20 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF12 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 21 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF13 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 22 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF14 using the
IMOCA (iteration t ∈ [1, 300])
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Fig. 23 The minimum values
for

∑M
m=1 fm(x) when

optimizing MaF15 using the
IMOCA (iteration t ∈ [1, 300])
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