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Abstract
3Dmotion tracking is a challenging task when both the tracked object and the observer are moving. In this paper, we present a multi-
behavioural social force-based particle filter to track a group of moving humans from a moving robot using a limited field-of-view
monocular camera. The application is a robotic guide and while moving, the robot often loses visibility of one or more people in the
group, who must still be tracked. As an example, due to limited space, when the robot takes a sharp turn to avoid an obstacle or
circumvent a corner, the visibility of the people at the rear is lost for some time. Therefore, several human social behavioural aspects
have been implemented to predict the human’s motion in a group. Themodel accounts for attraction and repulsion between the people
of the group and those with the robot, to maintain a comfortable social distance with each other at equilibrium. Additionally, when any
person leaves the group then the track is deleted and after joining the track is automatically re-initialized. In the literature, the time of
invisibility is a criterion to detect a personwho has left the system,which however cannot be used here since the invisibilitymay be due
to a limited field of view or the robot making a sharp turn to avoid an obstacle or circumventing a corner. Social heuristics are used to
accurately detect people leaving the robotic system. The tracked trajectory is compared with ground truth and our system gives a very
less error when compared with several baseline approaches. False positives are reduced, and the accuracy also increased with our
proposed model as compared to other baseline methods. This method has been tested on several scenarios to ensure its validity.

Keywords 3D tracking . Socialistic behaviour . Particle filter . Autonomous navigation . Social robot motion planning . Service
robotics . Social potential field
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t;p ¼ h ið Þ

t;p:x; h
ið Þ
t;p:y

� �
Hypothesis of the pose of person
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The guessed control input for
person p hypothesized by par-
ticle i at time t
The kinematic equation of motion

ƴnoise Motion noise used for uncer-
tainty in the motion model

c Correspondance function (tells
which observed person is
which person in the database)

qt, p = (qt, p. x, qt, p. y) The current tracked state of the
person p

Motion model

f attr Rt ;h
lð Þ
t;p

� ����������!
Attraction force between the
person represented by the parti-
cle h ið Þ

t;p and the robot at Rt

f rep Rt ; h
lð Þ
t;p

� ����������!
Repulsion force between the
person represented by the parti-
cle h ið Þ

t;p and the robot at Rt

f attr qt;p0 ; h
lð Þ
t;p

� �����������!
The attraction force between
the person represented by the
particle h ið Þ

t;p and another person
p’ at qt;p0
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� �����������!
The repulsion force between
the person represented by the
particle h ið Þ

t;p and another person
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� ��������!
Random force
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� ��������!

¼ f total h ið Þ
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:x; f total h ið Þ

t;p

� �
:y

� �
Total social force for ith particle
of the person p at time t

w1, w2, w3, w4, w5 Constants that denote the relative
importance of all above forces

d(a, b) Distance between a and b
α(b, a) Orientation between a and b
ρ(R) The radius of the robot
ρ(p) The radius of the person p
σ Constant used to determine how

quickly the repulsive force with
robot fades with an increase of
the distance

σ′ Constant used to determine how
quickly the repulsive force with
people fades with an increase of
the distance

r~U[a,b] A random sample r taken from a
uniform distribution between a
and b

r~N[a,b] A random sample r taken from
a normal distribution of mean a
and standard deviation b

Wt∈[0,1] Relative importance/weight of
social forces

Wth and σth Mean and standard deviation of
selectingWt when the person is
visible

Wmin and Wmax Range of selectingWt when the
person is not visible

ϑ h ið Þ
t;p

� �
The linear speed of ith particle
for human p at time t

vmax Maximum velocity of the per-
son

θ h ið Þ
t;p

� �
Desired angle of motion for
person p as per the ith particle

δt The time between the consecutive it-
erations or the inverse of the tracking
frequency

Observation model
∁ Calibration matrix
⨍x, ⨍y Focal length of the camera
(¢x, ¢y) The principal point offset of the camera
Ƿs Axis skew or shear distortion in the

projected image
Height of the camera in the Z-plane

TW
camera0 The transformation between the

camera’ and the world coordinate axis
Tcamera0
camera The transformation between the

camera’ and camera coordinate frame
ðu ið Þ

t;p, v
ið Þ
t;pÞ Expected position in the image plane

for the person p at time t as per particle i.
zt,p=(ut,p,vt,p) Actual observed position in the image

plane for the person p at time t
H Height of the image
η Normalization factor
visible(t) Whether the person was detected

at time t or not
left(t) A function to find whether the person

has left the group or not
Δ Threshold of time within which if

the person is not seen, the person
is said to have left the group

Gt=(Gt. X, Gt. Y) The sub-goal that the robot is
currently seeking

turn(t) Function to determine whether
the robot is making a sharp turn or not

αe(t) Robot orientation towards the sub-goal
ð The maximum angular deviation in

the natural navigation of the robot
Acronyms
TI Tracking in Image
RPF Random Particle Filter
KF Kalman Filter
LSTM (wr)
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Long Short Term Memory
(with re-initialization)

LSTM (w/o r) Long Short Term Memory
(without re-initialization)

3D-PSFM 3D Particle Social Force Model
RMSE Root Mean Squared Error
TP True Positive
TN True Negative
FP False Positive
FN False Negative
P Precision
R Recall
A Accuracy
F F-measure / F-score

1 Introduction

With the development of the technology in the area of the
robotics, the robots are now seen in every field such as med-
ical robotics, robots as an assistant in home and office envi-
ronments, robots to take care of the specially-abled, etc. A
social robot is used to navigate along with humans for multi-
ple tasks such as a guide at tourist places, assistants in stores
and shopping malls, carrying human subjects in hospitals for
X-ray, pathology, MRI, etc. In these navigation scenarios a lot
of changes occur such as illumination changes, humans some-
times need to come close to the robot due to limited space, the
humans and robot may both need to make sharp changes due
to a very less breadth of the corridor (also known as the prob-
lem of the narrow corridor), etc. In all such cases, accurate
detection of the human is not possible everywhere and so we
have to apply human tracking to overcome these situations.

The major application of focus here is a robotic guide. The
robot takes a human group on a tour. The robot stops at its
goal and explains the relevant facts of that site to the visitors.
The robot does not need to stop somewhere if relevant facts
might be complete in few words. The complete application
was demonstrated in an earlier work of the authors [1]. The
work was based on a heuristic that the robot should continue
the motion till all people are visible, while in case of invisibil-
ity the robot was instructed to first slow down and then stop.
The long-term aim is to make the robot interact personally
with the people (that requires their accurate position),
affirming the absence of the person by turning (for which an
indicative position is required), deciding the segments in
which the persons need to be mandatorily present and seg-
ments where not all humans may be required, etc. Tracking
is the hardest challenge in all these aspects, which is centrally
taken as a problem in this paper. In such a context, the prior
work faces two problems. The first problem is that the noise
and false negatives make it impossible for a robot to know the
position of a human to face it, for which tracking the solution.

Secondly, the robot’s navigation decision is also a function of
the persons not visible, for which again tracking is a solution.
Previously the authors also performed tracking from a station-
ary camera to track multiple entities [19].

Many techniques exist to anticipate or predict the motion of
a person, based on the knowledge of the other people, robots,
and the task that the person is performing. As a naïve imple-
mentation, the person may be expected to be moving with the
same speeds as observed previously. Accurately predicting the
immediate motion of the persons has a lot of applications in
social robotics, as the social robot can adapt its behaviour with
knowledge of the anticipated behaviour of the neighbouring
persons. A motion model is a generic term used to predict the
future state of a system, with a knowledge of the current state
and sometimes with additional knowledge of the control input
to the system. Knowledge of the intent of the person indicates
the normal motion that the person should perform. However, a
knowledge of the static and dynamic obstacles also indicates
the hindrances that must be accounted for. The person may not
have a clear intent but either of many intents may be stochas-
tically possible, which also needs to be accounted for. The
system, or some of its parts, may even be observable. Like
the robot may have anticipated the person’s future position,
but with time it can also observe the position using the onboard
cameras. This constitutes the observation that is often used to
correct the predictions. An amalgamation of both motion and
observation is called the problem of tracking.

In recent years, 3D human tracking in indoor environments
has become a research hotspot in the domain of computer
vision and social robotics. However, 3D tracking from a mo-
bile robot becomes challenging when both the robot and
humans are moving. It is vital to predicting the accurate posi-
tion of the human and robot’s target continually for different
actions. Hence, to track the human in the challenging environ-
ments, it is required to localize the human by the robot which
differentiates that human’s target from the other objects. One
of the competing approaches to ours is byWang et al. [2], who
proposed a method to track the human position in 3D by an
ultrasonic sensor and a monocular camera in indoor and out-
door scenarios. Here, a real-time visual tracking approach was
shown to handle various situations like object re-detection,
missing objects, and occlusion. The monocular camera sensor
tracking model was installed on the top of the ultrasonic sen-
sors and fixed on the robot. The visual tracking method was
based on the Kernelized Correlation Filter [3] tracker. The
Ultrasonic sensor module was introduced for tracking where
the sonar sensor array was considered to obtain the range
information and improved the predicted accuracy of the target.
For multi-sensor fusion, the Extended Kalman Filter was ap-
plied to fuse the measurements which were obtained from the
vision and ultrasonic sensors.

In our application, the humans in a social group also follow
the robot while having an affinity towards each other, which
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makes the tracking hard. The motion module of the tracker
may predict that the humans continuously move towards the
robot, however, it may not be possible due to a larger number
of people needing more personal space. Similarly, people of-
ten form groups within themselves and move as a cluster. This
social attraction between human beings brings erratic trends
that the tracker must accept. Such social conventions have not
been considered in the domain of social tracking of a group of
humans in the literature and the proposed work models all
such factors for accurate tracking of the humans in a group.

The robot used for the work uses a limited field-of-view
monocular camera for detection and tracking of the humans in
a group. Therefore, it is evident that humans often get outside
the field of view of the camera, although they are still in the
group following the robot. Consider the example that the robot
is navigating through a narrow corridor and needs to make a
sharp turn in the corridor, or to avoid an oncoming obstacle. In
such a case, the humans in the group will not be visible to the
robot for a prolonged amount of time while the robot is
circumventing the sharp turn. Furthermore, the humans fol-
lowing the robot will have to make the same turn, during
which also they will not be within the field of view of the
robot. Unlike some literature using multiple cameras or ro-
bots, here for budgetary reasons only one robot is available
to guide the human group and to track them continuously, so
the robot must perform both jobs simultaneously without any
erroneous. The robot must thus be able to predict the motion
of the humans and make navigation decisions autonomously.

Our proposed work is based on 3D tracking where the
humans are in a group and follow the robot. The robot knows
only the initial position of the humans and tracks them con-
tinuously. Since the detection of the human is not possible
everywhere due to illumination changes and the need to take
sharp turns, so the tracking methodology has been developed
to overcome these problems. In this paper, the multi-
behaviours 3D particle social force model is proposed to solve
this problem which includes various socialistic forces like
attraction and repulsion between humans to humans and be-
tween humans to the robot. If the humans are far from the
robot while following, then the social attraction force is active
to know the further position of the humans in the 3D real
world. While the human is following the robot, they can also
come too close to the robot, in which case the humans are
repelled by the robot. Similarly, people may neither be too
far or too close to each other. The socialistic tracking is based
on the principles that all the entities shall come at a social
equilibrium and attempt to maintain the same equilibrium.
The equilibrium conditions were derived from a set of social
experiments with human subjects.

Through the navigation process of the robot, the human can
also behave erratically, like they can interchange their position
with someone in a group, one human overtakes or crosses
another one, and it is a possibility that human may be beyond

the robot while following it. Specifically, one additional be-
haviour can occur that humans do not follow the robot and still
stand at their previous state to look at that place for a longer
time. These social aspects are hard to model as their triggering
conditions are non-observable. The tracker should be able to
handle such situations still.

Many times, the human can get any telephonic call and to
attend it, the human must leave the group. If one human leaves
the group, another human may also leave the group due to the
conformity of each other. Often it happens that a human can leave
the group forever because they might get some emergency call.
Our proposedmodel detects such situations and deletes the tracker
if any human leaves the group and as the human re-joins his
group, the tracker is automatically determined by computing the
visitors’ position in the 3D real word and tracking them forward.

In the literature, the problem of deleting tracks is solved largely
by the time for which the person is not visible. If a human is not
detected for a prolonged time, it is assumed that the human has
left, and the track is deleted. In our application, while the robot is
moving and navigating the human there may be several sharp
turns and corners. So due to a lack of space behind the robot,
humans may not exactly stand behind the robot and may be out
of the field of view of the camera. Here the human cannot be
detected by the robot. So, the time of invisibility is not a suitable
metric. In this paper, we detect the possible intents of the robot and
the person. If there is enough evidence that the person can follow
the robot and the person is not doing the same, only then the track
is deleted. This saves a lot of false positives that can have severe
advantages from an application perspective.

If the human leaves the group and re-joins the group, then
the tracker is also deleted and re-initialized. In the initial
phase, the robot is assigned the initial position of the human,
and when the tracker is re-initialized, the robot detects the
human in the 2D image plane and then converts this 2D image
plane coordinate into a 3D real-world coordinate, following
which a continuous tracking is performed. In this approach,
we have used a monocular camera only to track the human
and to determine the position of the human in the 3D real-
world. The 3D position can be estimated with knowledge of
the 2D position in the image with the assumption that the
height of the person is known.

The recent works and development in social robot motion
planning in navigation have not substantially investigated the
behaviour where humans follow a leader robot, while the
works are largely centralized on socially avoiding the humans
by a robot or a robot following humans. The crucial challenge
that isolates this problem from the rest of the variants is that
humans can show non-cooperative and strange behaviours
like missing out at times from their group for long durations
and the robot must still socially accommodate the behaviour.
The robot must understand human behaviour in a group when
the robot is navigating. Here humans perform different social-
istic behaviour such as leaving the group, swapping their
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position with each other, overtaking each other, unnecessary
wait at one place for a certain time, etc. The robot must handle
these situations and continuously track the humans without
any position loss. The other major challenge is that such
implementations have a huge number of corner cases consid-
ering the limited field of view of the robot. The humans’
visibility gets loss when the robot is making a sharp turn at a
corner and human detection is not possible. Consider the ex-
ample of a robot turning at a sharp corner. The human will be
out of view of the camera as the robot makes the sharp turn,
and if the robot assumes that the human is missing, it will end
up waiting at a sharp corner and thus causing a blockage. The
humans are found at the back-side, while the robot navigates
in the forward direction. This is not a natural human behav-
iour, and therefore the general heuristics of the social robot
motion planning applications fail to recognize the difference
in needs in the modelling of this behaviour. So, we propose a
novel model based on social force and particle filter which can
overcome the above-discussed noisy human behaviour and
track humans at the corner where detection is not possible.
Beside this, only a less expensive monocular camera (like a
webcam) is sufficient to perform 3D tracking in real-time.
High expensive cameras (such as stereo cameras, lidar, etc.)
are not needed for our proposed model.

Our proposed model has been tested on three different sce-
narios to check its validity. For verification, we have recorded
the actual subject’s trajectory in 3D in each scenario using a
simulation and compared it from the anticipated human tra-
jectory. Experiments confirm that the proposed methodology
detects people leaving the group more accurately and tracks
the people more accurately as compared to several baseline
approaches. The differences are particularly large when the
robot has a limited field of view of the subjects for a long time
within the experiment.

The objectives of the paper are:

& To track multiple humans from a moving mobile base
& To track the humans from a limited field of view camera,

wherein it is eminent that the humans will often be outside
the field of view of the camera.

& To handle the noises arising out of the low precision
camera.

& To handle the cases when the person temporarily leaves
and re-joins the group, while tracking should not happen
during this time.

& To accurately predict whether the loss of visibility is due
to the person unable to come within the visible region (in
which case the tracking must continue) or due to the per-
son leaving the group (in which case the tracking must
discontinue).

& To re-initialize tracking when the person re-joins the
group.

We propose a strategy for 3D socialistic tracking in a real-
time environment. The main contributions are:

i. The paper studies a new paradigm of social robotics,
where multi-human tracking is performed from a budget
and limited field of view monocular camera. This enables
using social robots at a budget, while the robot can still
make decisions based on the tracked location of the
humans. The challenge lies because humans will often
get outside the field of view of the camera.

ii. The system can detect persons leaving the group based
on heuristics that incorporate the current context and
intends. When any human leaves the group the track is
automatically deleted and if the person re-joins, the track
is also re-initialized, and tracking continues.

iii. A socialistic human following behaviour is developed
that accounts for social attraction and repulsion forces
between the people and those with the robot. The model
can predict the motion of the person even with a lack of
visibility. The force constants are obtained realistically
using real-life socialistic experiments with human
subjects.

iv. The robot can handle the loss of visibility due to sharp
turns and corners where detection is not possible attribut-
ed to the strong social prediction model. Further, the ro-
bot anticipates such a loss of visibility is contextual and
the track is not deleted.

v. The proposed approach more accurately detects people
leaving the group and performs a better socialistic track-
ing when compared to several baseline approaches.

2 Related work

This section lists some of the recent related works from the
literature. Our work focuses on the development of a 3D hu-
man motion tracking framework where a robot is navigating
with humans in a group.

Humans are astute agents and behave accordingly to
decision-based strategies. Here the social robot guides humans
in a cluttered and dense pedestrian environment. So, the robot
can freeze itself [4] if the path is not safe and the probability of
collision is high. In [5], the latest phenomenon was proposed
for socially adaptive path planning in a non-static environment
which included the inverse reinforcement learning, feature
extraction, and path planning modules. Furthermore, in [6],
the authors developed a new approach that allowed a social
robot to learn a model of navigation behaviour of the pedes-
trians and this approach used the Hamiltonian Markov chain
Monte Carlo sampling. In a more advancement and achieve-
ment of the socially-aware navigation, a new algorithm was
proposed called the SocioSense which was based on the social
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constraints [7]. In a recent paper [33], we implemented a hy-
brid framework to avoid humans according to social conven-
tions followed by the humans, keeping a socialistic distance
while avoiding humans. Even though a lot of socialistic stud-
ies on human navigation are done, the studies on the specific
case of human motion in a group while following a robot is
sparse. The research, therefore, models the behaviours and
implements the same for tracking.

The robots can be applied to different servicing areas if they
are reliable and safely follow humans. The authors in [8] ad-
dressed the tracking of humans in a cluttered and dynamic sce-
nario where the tracking algorithm considered the interdepen-
dence among the targets. The design module of this tracking
was a grouped target which additionally consisted of a leg-pair
target. So, the grouped target and target was considered as a
human and human leg. When the human legs are observed from
the LRF (Laser Range Finder), then the targets (human legs) are
not independent. Specifically, in a crowed and cluttered environ-
ment, the human has to be sorted among the measurements
which are observed. Here the authors developed HSJPDAF (hi-
erarchical sample-based joint probabilistic data association filter)
for robust tracking, which was able to predict the state of the
target corresponding to their legs and could also find the posi-
tions of the human. HSJPDAF was divided into two levels, low
and high. At a low level, the observation model was used to
predict the state of targets legs while at the high level, the states
of group target id were determined with the association of the
observationmodel. The robot was activated to move towards the
human if the target of humans was available via a data associa-
tion. In contrast, our approach focuses on cases where there is no
detection at all for parts of the tracking process, which can only
be corrected by accurate socialistic modelling of human
behaviour.

A mobile robot should be designed with a system capable of
detecting the target person, integrating different types of sur-
rounding information, and finding the optimal control scheme.
The human following framework consists of three attributes:
human detection, human recognition, and human tracking [10].
In these circumstances, target recognition is a challenging task
for human following. In [11], the principal component analysis
was combined with tracking learning detection and applied on
the human face (Face-TLD) to achieve an improvement which is
called IFace-TLD. The IFace-TLD improved the discrimination
ability of the Face-TLD, like ambiguous facial appearances.
Motion uncertainty was dealt with by a skeleton-based model
which improved the robustness and accuracy of the target rec-
ognition. A particle filter was used to achieve the human follow-
ing system. The particle filter predicted the human motion state.
A controller was modelled to maintain a relative distance be-
tween the target and the robot, and this controller made a satis-
factory performance for the human following. Similarly, head
pose estimation [18] was utilized for 3D tracking pose estima-
tion. In [19] authors performed a face tracking approach with

different height of the camera that can be applied to know the
best field of view of the camera. A multitask convolution net-
work [21, 22] was applied for face detection and alignment. Our
work instead models group behaviours where a group of people
follows a robot, including an accurate detection of people leaving
the group and tracking even in low-field-of-view conditions. The
group leaving detection is primarily driven by an understanding
of the context of the robot operation.

Trajectory prediction is a problem related to tracking. A lot of
recent works use deep learningmodels to predict the trajectory of
several human agents. In [29] a 3D network model was devel-
oped for the trajectory prediction using LSTMwhich was based
on the human pose. In an unconstrained environment, a CNN
model [30] was proposed for human detection and tracking.
Additionally, memory augmented network [32] has been
modelled and utilized for multiple trajectory predictions on the
road and side-walk with the injection of CNN encoder. The
problem with the methods is the need for a large quantity of
noise-free training data, that is not available as per ourmodelling.
We assume that the humanwill not always be visible, the human
intents will be highly noisy, and the captured image of the
humans will also be highly noisy. This makes it impossible to
learn the human behaviours and we instead use heuristic social
potential field methods.

Some traditional methods have also been used for prediction
and tracking. In [31], Physics and maneuver based model was
utilized with the integration of unscented Kalman filter and
Monte-Carlo method for the prediction of the vehicle trajectory.
Moreover, a vehicle kinematic model and driving behaviour
awareness network have been developed. In a paper [34], a fuzzy
neural network with the kinematic model and parameter learning
was used for the tracking of a robot trajectory. In a real-time
scenario, pedestrian model-based reactive planning was per-
formed for assistive robots [35]. Human pose clustering over
multiple motion sequences and its encoding has been applied
for tracking data to visualize the motion flow [36]. Here motion
pattern was also applicable to predict the split, merge, and lock
situation of tracking data. Silhouette image and edge detection
are widely used for human motion tracking. In [37] a filtering
algorithm with stereo calibration was applied with the Markov
model to perform human tracking. Further, in a paper [38], hu-
man detection and tracking were performed in a distinct envi-
ronment. These approaches solve the problems associated with
correspondence, detection, and handling noises during tracking.
Our challenge is amplified since the data is recorded from a
moving base and it records another moving object, and further
the limited field of view cameras make the human often lie
outside the visibility of the cameras. These are new challenges
not accounted for in the related works.

Many general robot behaviours have been studied in the
literature, especially in the planning context. In [12], a mech-
anism was proposed for path planning which included the
reinforcement learning, and path planning modules for a
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mobile robot. In [13], a real-time 3D trajectory planner was
proposed in the context of an autonomous vehicle for leader
following. Here the planner was based on the basic concept of
trailer body whose hinge point was attached with the leader
and every follower was assigned to a different point of the
trailer. The Lyapunov analysis was used to represent the trailer
body reference frame which ensured that the planning could
be separately designed by each follower. So, the application of
this designing system made the need for communication
among followers negligible. Trajectory planning and trajecto-
ry tracking were the main steps of this phenomenon.
Furthermore, the trajectory planner generated a natural trajec-
tory for the followers which was not similar to the trajectory of
a leader. Whenmultiple robots move and behave like a swarm
group, then they can follow a leader robot in a straight line and
sort themselves to stand in a line according to alpha-numeric
name (identity) as demonstrated in [14]. In [17], a framework
was developed for robotic exploration in a given static envi-
ronment. In the development of swarm robotics [20], particle
swarm optimization, and fruit fly optimization algorithm are
also used. A related domain of work is the motion planning of
the robots. In [26], mathematical modelling and construction
of the potential field function for the obstacle avoidance and
dynamic modelling of the car were done. Our approach adds
social primitives in the potential field algorithm to track
humans. Furthermore, the robot motion model based on the
artificial potential field by adding deliberation to reactive al-
gorithms is an efficient method for indoor path planning [15].
In the context of the social robot navigation, the group split
and again merge and this thing can be predicted by the 3D
convolution neural network [16].

Social robotics is attaining interest from different application
perspectives. In [27], a medical application was modelled onto
the serving robot that can assist in surgery. The authors also
produced reliable and fast control signal which can deal with
different changing environmental conditions. The robot can also
be employed in medical operation and surgeries. The movement
of the robot is an essential task for doing a successful job. It is
also called as Remote Center of Motion (RCM) [9]. The authors
used a combination of RCM and path following controller. In
general, the robot goes into the patient body via incision point
and performs its surgeries. Here a surgical robot rotates along the
three axes (X, Y, Z) on the penetration point, but it is also limited
to translate in one direction. To perform such type of task with
the robot, a special kinematic structure design is required. For the
robot motion control, two kinds of controllers are needed for
navigating the manipulator over a reference curve, either a tra-
jectory tracking, or path following. Here trajectory tracking was
considered as time-dependent, where the reference curve was
parameterized with the time. The path following behaviour
was time-invariant, where the curve was interpreted without
any temporal constraints. RCM issue was introduced to imple-
ment control software for performing fulcrum tasks along with

time-invariant 3D path following which was based on a visual
controller. Here different reference frames were used. The two-
dimension motion of the tool (linear) was restricted, and only
one-dimension translation was allowed. In our experiments, the
robotic leader needs to follow such a trajectory that for similar
reasons is filled with sharp and non-ideal turns.

There are other broad problems often discussed related to
social robotics and navigation. In a development context of the
social robotics application, in [28] an emotional classification
was performed using the ECG, GSR, and BA sensors.
Moreover, a hand gesture segmentation approach [24] has been
developed for feature fusion in a complex background. Beyond
this fuzzy logic [23], text detection and tracking [25], can also
be applied for navigation and notification. Our application in-
stead is to make the robot lead a human group using a limited
field of view sensors, which has its different challenges.

3 Particle filter

In this paper, a 3D particle filter is used for multi-human tracking.
Here a set of particles or samples is used to represent the proba-
bility density function. Each particle represents the state variable
with some numerical value. It is an efficient and alternative meth-
od to demonstrate and keep the probability density function non-
stationary and non-linear. Here the robot tracks humans who are
moving in a group and thus the pose is given by Eq. (1)

s ¼ x
y

� �
ð1Þ

where (x, y) is the 2D coordinate of the person.
In the particle filter [39, 40], the posterior density function

P(ht, p| Ƶ1 : t, S1 : t) is given by all the previous observations 1:t

and an unknown control signal which is ultimately derived
from every previous positions of the robot (R1 : t) and other
people (q1 : t, p), together making the system state S1 : t = {q1 : t,
p, R1 : t}. The subscript t is for time and p is for the person
being tracked. The particle filter is defined (in Eq. (2)) as a
set of weighted particles.

ð2Þ

In Eq. (2), h ið Þ
t;p represents the ith particle sample which is the

position or state of the human p at time t. Here subscript t is used
for a time, p for the person being tracked, and n denotes the

number of the particles. w 1ð Þ
t;p is the corresponding weight of the

particle.
The first step in the implementation of a particle filter is to

initialize the particles based on the known state of the system.
In our case, it is assumed that the initial position of the persons
is known and therefore the particles are spread around the
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known initial positions based on the knowledge of the noise in
measuring the initial positions. The initial weights are as-
sumed to be the same for all particles. The filter continuously
updates the positions and weights of the particles.

The filter applies the motion model to update the knowledge
of the state of the system. Our 3D motion model is based on
multiple social forces and anticipates the position of every hu-
man in the group. The problem is, given the positions of all
people and the robot, the system must anticipate the control
input that the personwill invoke given by Eq. (3) and the update
state of the person because of the control given by Eq. (4).

ð3Þ

ð4Þ

Together Eq. (3–4) represent the motion model of every

particle. In the above expression, U ið Þ
t;p is the anticipated control

for humans which consists of the linear and angular speeds.
Here function “anticipate” tries to capture humans’motion on

a given current state h ið Þ
t;p corresponding to the ith particle.

Moreover, ƴnoise is the motion noise used for uncertainty in
model anticipation and is the kinematic equation of motion.

The particle filter then takes an observation Ƶt, c(o). Here c
is the correspondence function that maps the oth observation to
the corresponding person p = c(o) and t is the time. The ob-

servation is used to weight the particles. The weight ( w ið Þ
t;p ) is

directly proportional to the likelihood function p Zt;c oð Þjh ið Þ
t;p

� �
.

This likelihood function is the probability of observing Ƶt, p,

given the current state as h ið Þ
t;p.

The implementation of such a particle filter will soon have
many particles in poor areas. Hence a re-sampling is done
where the particles at good areas with high weights are repli-
cated many times, while the ones at poor areas with low
weight values die off, representing a new particle distribution
with more particles at good areas.

In our proposed model of the 3D particle filter, the current
state qt, p of the human p is anticipated by the weighted mean
of the particle as expressed in Eq. (5)

qt;p ¼ ∑n
i¼1w

ið Þ
t;ph

ið Þ
t;p ð5Þ

4 Design philosophy

Section 3 discussed an overall approach of using a particle filter
to solve any tracking problem. This section aims to solve the
problem as per the stated objectives using a particle filter. The
implementation of the particle filter specifically asks for amotion

model to first anticipate the motion of the person hypothesized
described in a generic sense by using Eq. (4) and then to move
the particle using the same anticipated model described in a
generic sense by using Eq. (5). The motion model has a high
value for our work since the person will often be outside the
visible region and the accuracy of the system largely depends
upon the motion model to accurately predict the motion of all
persons. The motion model discussed in Sec. 4.1 uses the con-
cept of a social potential field that measures how much a person
is attracted and repelled by the other people in the vicinity and
the robot to predict the person’s motion.

The next important aspect of a Particle Filter is to correct
the errors developed in the motion model and is done by using
an observation model. Every particle mentions a hypothesised
position of the person. The observation model projects the
hypothesized positions of the persons onto the image taken
by the camera, given the location of the robot and hence the
location of the camera. If the hypothesis was good, the
projected position of the person will match the observed po-
sition on the image and vice versa. This is used to re-weight
the particles. After re-weighing the particles are re-sampled
that increases the particle density at good areas and decreases
the particle density in poorer areas.

We have developed a framework using multi-behaviour 3D
particle social force model which consists of human detection,
analysis of human behaviour, and different force applied to com-
pute human position in 3D real-world and 2D image plane. The
different modules are discussed in the following sub-sections.

4.1 Motion model

The purpose of the motion model is to predict the control input

U ið Þ
t;p for particle i and person p at time t, given the state of the

system is being continuously tracked. The person may not be
visible for a long time and therefore the onus of correctly track-
ing the person relies upon the motion model alone. The motion
model is made using the social potential field algorithm, where
essentially every particle witnesses a social force from different
factors that govern the overall motion of the particle. A particle
representing a person’s position feels an attraction towards the
robot that is dominant when the person is far away. The person
also feels a repulsion on being too close to the robot. Similarly,
the person feels an attraction from the other people in the vicinity
on being far away. This behaviour makes the group stay intact.
Similarly, the people feel repulsion between each other on being
too close, which is also often observed as the people like to have
some personal space. The particle is moved based on the cumu-
lative effect of all these forces. This model is used to anticipate
the state of the person at the next time instant. A representation of
the notations is shown in Fig. 1.

The first force is the attraction between the person represented

by the particle h ið Þ
t;p and the robot whose accurate pose Rt is known
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by the onboard localization system. An only attraction may make
the person come too close to the robot, almost kissing the surface
of the robot, which is not practical. Therefore, an additional repul-
sive force is modelled that becomes dominant when the robot is
too close. Together the attraction and repulsive forces between the
person and robot make the person follow the robot maintaining a
comfortable socialistic distance. The attraction and repulsion force
between the robot and human is computed as in Eq. (6) and Eq.
(7) respectively

f attr Rt ; h
lð Þ
t;p

� ����������!
¼ w1d Rt; h

ið Þ
t;p

� � cosα Rt; h
ið Þ
t;p

� �
sinα Rt; h

ið Þ
t;p

� �
2
4

3
5 ð6Þ

f rep Rt ; h
lð Þ
t;p

� ����������!
¼ −w2exp

−d2 Rt; h
ið Þ
t;p

� �
2σ2

0
@

1
A cosα Rt; h

ið Þ
t;p

� �
sinα Rt; h

ið Þ
t;p

� �
2
4

3
5 ð7Þ

w1 and w2 are constants that denote the relative importance of
the two forces. σ is another constant that determines how
quickly the repulsive force fades with an increase of the dis-

tance. Here the distance between the particle h ið Þ
t;p and robotR is

given by Eq. (8)

d Rt; h
ið Þ
t;p

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rt:x−h

ið Þ
t;p:x

� �2
þ Rt:y−h

ið Þ
t;p:y

� �2
r

− ρ Rð Þ þ ρ pð Þð Þ ð8Þ

ρ (R) is the radius of the robot and ρ(p) is the radius of the

human p. α Rt; h
ið Þ
t;p

� �
is orientation between the robot and

human, given by Eq. (9)

α Rt; h
ið Þ
t;p

� �
¼ atan2 Rt:y−h

ið Þ
t;p:y;Rt:x−h

ið Þ
t;p:x

� �
ð9Þ

For larger groups, it is further observed that every person in
the group cannot follow the robot as there is little space and
people cannot overlap. Furthermore, people tend to keep a
comfortable space between themselves even though they
may not be towards a collision. Many times people stick to-
gether as a group due to an attraction between themselves. In
such a case a person may not only follow the robot but also
wait for lagging members of the group. Therefore, there is
repulsion and attraction between every two people in the
group. The attraction and repulsive force among every human
in the group is given by Eq. (10–11)

f attr qt;p0 ; h
lð Þ
t;p

� �����������!
¼ w3d qt;p0 ; h

ið Þ
t;p

� � cosα qt;p0 ; h
ið Þ
t;p

� �
sinα qt;p0 ; h

ið Þ
t;p

� �
2
4

3
5 ð10Þ

f rep qt;p0 ; h
lð Þ
t;p

� �����������!
¼ −w4exp

−d2 qt;p0 ; h
ið Þ
t;p

� �
2σ02

0
@

1
A cosα qt;p0 ; h

ið Þ
t;p

� �
sinα qt;p0 ; h

ið Þ
t;p

� �
2
4

3
5

ð11Þ
w3 and w4 are the proportionality constant denoting the im-
portance of the force. σ′ determines how quickly the repulsive

force fades with an increase of the distance. d qt;p0 ; h
ið Þ
t;p

� �
and

α qt;p0 ; h
ið Þ
t;p

� �
are distance and orientation between the person

p’ (as tracked by the system) to the human being tracked

represented by the particle h ið Þ
t;p, given by Eq. (12–13)

d qt;p0 ; h
ið Þ
t;p

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qt;p0 :x−h

ið Þ
t;p:x

� �2
þ qt;p0 :y−h

ið Þ
t;p:y

� �2
r

− ρ pð Þ þ ρ p0ð Þð Þ

ð12Þ

Fig. 1 Multi-behaviour based
computative geometry of 3D-
PSFM
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α qt;p0 ; h
ið Þ
t;p

� �
¼ atan2 qt;p0 :y−h

ið Þ
t;p:y; qt;p0 :x−h

ið Þ
t;p:x

� �
ð13Þ

The above-mentioned forces create a strong bias on the
motion of the people. The people when following a robot also
show behaviours that are seldom found and cannot be directly
accounted for. As an example switching places, overtaking the
robot, overtaking another person, lagging behind to spend
more time at the older place, etc. To account for all such
forces, a random force has been also utilized here (Eq. (14)),

f rand h lð Þ
t;p

� ��������!
¼ w5r

cosθrand
sinθrand

� 	
ð14Þ

Here r ~U[0,1] is a random magnitude of the force taken
from a uniform distribution between 0 and 1; and
θrand~U[−π, π] is a random direction of the force taken from a
uniform distribution. w5 is the relative importance of the force.

The attractive and the repulsive forces add up. However,
the random force is uncertain. The force is seldom applied, but
once applied has a strong effect. Therefore, a weighted fusion
of the random force is made with all the other forces, where
the weight is taken as Wt∈[0,1]. The different particles shall
have a different weight of the fusion and therefore different
particles shall represent different hypotheses, while the one
that matches the observation shall eventually have a large
weight. The total social force is given as Eq. (15)

f total h lð Þ
t;p

� ��������!
¼ Wt f att Rt ; h

lð Þ
t;p

� ���������!
þ f rep Rt ; h

lð Þ
t;p

� ����������!
þΣp0 f att qt;p0 ; h

lð Þ
t;p

� ����������!
þ f rep qt;p0 ; h

lð Þ
t;p

� �����������!� �� �
þ 1−Wtð Þ f rand

��! ð15Þ

When the human is being continuously detected, the
weight has a high value favouring the attraction and repulsive
forces as per modelling and is thus given by a normal distri-
butionWt ~N(Wth,σth) with a large magnitudeWth and a small
variance σth. However, once if the person is not being contin-
uously detected, randomness needs to be added to indicate the
increasing uncertainty in the system and is done by favouring
the random forces by setting the weight as a uniform distribu-
tion as Wt ~U(Wmin, Wmax) with relatively smaller values.

The force values are converted into the desired linear and
angular speeds. The linear speed is given by the magnitude of
the force, which is subjected to the constraints of the human
walking speed, given by Eq. (16)

ϑ h ið Þ
t;p

� �
¼ min f total h lð Þ

t;p

� ��������!








; vmax

� �
ð16Þ

The humans are holonomic and do not have kinematic
constraints with respect to orientation. Therefore the humans
are said to move in the desired angle modelled by the force,
given by (Eq. (17))

θ h ið Þ
t;p

� �
¼ atan2 f total h ið Þ

t;p

� �
:y; f total h ið Þ

t;p

� �
:x

� �
ð17Þ

The anticipated position of the human is (Eq. (18))

h ið Þ
tþ1;p ¼ h ið Þ

t;p þ ϑ h ið Þ
t;p

� �
δt

cosθ h ið Þ
t;p

� �
sinθ h ið Þ

t;p

� �
2
4

3
5 ð18Þ

Here δt is the time period between the consecutive itera-
tions and is the inverse of the tracking frequency.

4.2 Observation model

Our particle social force model anticipates the human position
in the 3D real world. The role of the observation model is to
weigh or evaluate every particle for its goodness. The weight
is high if the particle agrees with the observation and poor
otherwise. We have a rear looking camera and an observation
model is applied whenever the camera detects the human. It is
assumed that the robot’s pose is known and hence the pose of
the camera is computable. The particle represents the position
of the person. The position represented by the person is
projected onto the known image plane of the camera. If the
particle represents an accurate position of the person, the
projected position on the image plane and the actual observa-
tion should closely match and vice versa. The error between
the projected position of the person on the image and the
actual observed position on the image is used to weigh the
particle.

Let us study the projection of the actual human’s face into the
2D image plane as observed by a camera attached to the robot
and facing at the rear.We have used amonocular camera for this
model. Firstly, calibration is performed. A distinct image of the
chessboard image has been captured with different view angles
and distances for finding various camera intrinsic parameters and
lens distortion. Hence standard calibration matrix (∁) is given by
Eq. (19) which is used in our camera model,

ð19Þ
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Here (¢x, ¢y) is the principal point offset and ⨍x and ⨍y

represents the focal length while Ƿs is axis skew (shear distor-
tion in the projected image).

The robot coordinate frame is fixed to the centre of the
differential wheel drive of the robot. The localization module
available with the robot gives the transformation between the
robot and the world coordinate axis system at any point of
time. The camera is facing the rear and thus has a rotation of
π along the Z-axis, and is at a height of . This gives the
transformation between the camera and the world coordinate
axis as expressed as Eq. (20)

ð20Þ

Here Rt. θ is the robot’s orientation.
As per conventions, the Z-axis of the camera goes out of

the camera and faces the human. Correction to the same con-
ventions is expressed by the transformation given as Eq. (21),

Tcamera0
camera ¼

0 0 1 0
1 0 0 0
0
0

1
0

0 0
0 1

2
64

3
75
T

ð21Þ

The human prospectively at position h ið Þ
t;p should hence be

visualized at a position TW
camera0h

ið Þ
t;p in the camera coordinate

axis system which is further corrected to Tcamera0
camera T

W
camera0h

ið Þ
t;p to

correct the axis. Here projection onto image takes place by
passing through the camera calibration matrix and producing
the image point as to given in the Eq. (22–24)

u0

v0

s
0

2
4

3
5 ¼ ∁Tcamera0

camera T
W
camera0h

ið Þ
t;p ð22Þ

u ið Þ
t;p ¼

u
0

s0
ð23Þ

v ið Þ
t;p ¼ H−

v
0

s0
ð24Þ

Here H is the height of the image and the subtraction is
used to denote the change that the object detection uses the
top-left as the origin, while the camera uses the bottom left as
the origin.

The robot takes an image from the camera which passes
through face detection and recognition module to identify the
different people. Suppose the pth person is observed in the
image as zt,p = (ut,c(o),vt,c(o)), where c is the correspondence
function. The weight of the particle is taken proportional to

the error in observation given by Eq. (25)

w ið Þ
t;p ¼ ηexp

ut;c oð Þ−u
ið Þ
t;p

� �2
þ vt;c oð Þ−v

ið Þ
t;p

� �2

2σ′′2

0
B@

1
CA ð25Þ

Here η is the normalization term set such that the sum of all
weights is unity.

4.3 Detecting people leaving the group

The people in the group may often leave, which needs to be
detected and the tracks need to be deleted. In this section, we
examine this human behaviour and find out whether a human
has left the group or not. The intuition is that a person not
visible for a long time in the camera is assumed to have left
the group. However, sometimes the invisibility would be be-
cause of contextual reasons. If the robot is making a sharp
turn, it is evident that the person would not be able to run
behind the robot. Similarly, if the person is following the
robot, the person would be making a similar sharp turn after
the robot. In such cases, the invisibility is contextual and such
cases are filtered out from being deleted.

Let visible(t) denote whether the human was detected at
time t or not. ¬visible(t) does not mean that the person has left
the group, as the detection algorithm may have temporarily
failed. If any human is not available in a group for a long
duration of time then the human is said to have left the group
at time t, given by Eq. (26).

left tð Þ ¼ :visible t0ð Þ∀t−Δ≤ t0≤ t ð26Þ

Here Δ is the threshold of time within which if the person
is not seen, the person is said to have left the group. A large
value of the parameter reduces false positives; however, the
system deletes the track a long time after the person has left the
group. A small value of the parameter may state the person to
have left the group even if the detector temporarily failed due
to a sudden glare.

This condition is widely used in research. The condition
will delete people when the robot is circumventing an obstacle
or making a turn, during which time the visibility of the person
is lost. The robotic journey also includes various turns and
corners to achieve its goal while leading a group of humans.
The workspace may have very less space to allow people to
ideally follow the robot. When the robot is taking a turn to
achieve its next sub-goal, even due to the limitation of space
the human cannot stand exactly at the rear end of the robot and
also cannot follow it ideally. In these circumstances the robot
can be misled that the “human has left the group” or “not
following it”, however, the human is following a robot and
has not left his group.
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Thus the situations are detected when the robot is making a
turn due to either of these reasons. Let the (Gt. X, Gt. Y) be the
sub-goal that the robot is currently seeking. One expects the
robot to always keep an angle of approximately, atan2(Gt. Y −
Rt. Y,Gt. X − Rt. X) to directly seek the goal under normal
obstacle-free criteria. Some diversion is possible due to noises.
However, if the current orientation of the robot is very differ-
ent from this value, it means that the robot has made or is
making a sharp turn for whatever reason possible.

turn tð Þ ¼ true iff cos αe tð Þð Þ < ð27Þ
αe ¼ atan2 Gt:Y−Rt:Y ;Gt:X−Rt:Xð Þ−Rt:θ ð28Þ

Here the coordinates of the sub-goal that is being pursued
by the robot are denoted by (Gt. X,Gt. Y) while the coordinates
of the robot are denoted by (Rt. Y, Rt. Y) with the orientation of
the robot as Rt. θ. ð is the maximum deviation in the natural
navigation of the robot and a deviation more than this amount
is said to denote a turn.

The leaving condition is therefore modified as Eq. (29)

left tð Þ ¼ :visible t0ð Þ∧:turn t0ð Þ∀t−Δ≤ t0≤ t ð29Þ

It is important to note that after the robot has completed the
turn, the people will still not be visible as they are nowmaking
the turn, following the footsteps of the robot. However,
humans are fast in doing so and the cumulative relaxation of
Δ gives enough time for humans to re-join the group.

4.4 Track re-initialization

Imagine a human left the group and is not seen by the camera.
Naturally, the human would have left for any reason, however,
since the human has now re-joined, the tracking must continue.
Since the track was deleted when leaving the group, a new track
is initialized based on the visible position of the human on the
image. As the human re-joins the group, the track is re-initialized
to start continuous tracking. Here the initial position of the hu-
man is to be determined from the 2D image plane, as the human
is detected in the 2D image plane. The particle filter is initialized
which needs to determine the position of the person in the 3D
real world. An inversion of the observationmodel gives Eq. (30)

h ið Þ
t;p ¼ TW

camera0
� �−1

Tcamera0
camera

� �−1
∁−1

u0

v0

s
0

2
4

3
5 ð30Þ

Knowing the height of the person directly gives the scale

factor (s′). Knowing the position (u ið Þ
t;p; v

ið Þ
t;p ) where the person

was observed in the image gives Eq. (31–32)

u
0 ¼ s

0
u ið Þ
t;p ð31Þ

v
0 ¼ s

0
H−v ið Þ

t;p

� �
ð32Þ

Plugging these values also gives the X and Y coordinates
of the person.

5 Algorithm design

We have implemented a multi-behavioural social particle fil-
ter for 3D human tracking performed from a mobile robot
while the human is also following the robot. Here our model
initializes from the initial position of the humans and starts
tracking. When any human leaves the group then the track is
deleted and as the human re-joins its group, the track is re-
initialized, and the tracking continues. The model is described
in Fig. 2. The term “Social force based motion model” is used
to refer to the computations described in Sec. 4.1. The model
is used to compute the new position of a particle (hypothesis
of the human) given the positions of the other persons and the
robot. The previous position of the particle is known. The
particle experiences attraction and repulsion forces from all
other persons and robot. The particle is moved based on the
same forces, that represents the new position of the particle.

If the person is detected in the image, the particles are re-
weighted and re-sampled. The particles that as per the hypoth-
esis project the person into the image closer to the observed
location of the person are likely better and have a larger
weight. This increases the particle density near the true posi-
tion of the human. In case of an occlusion or a lack of detec-
tion for any other reason, no re-weighing is done. This means
that the particles will keep moving as per the motion model,
however, there will be no way to correct for a deviation that
may arise along with time. Once the occlusion is removed, the
re-weighing and re-sampling continue to correct the sample
density around the true position of the person.

If a person is far off, he/she is unlikely to be detected by the
face recognition library [41, 42]. Furthermore, a person far off
will also not be visible in the camera. In such cases, the robot
will not detect the person for a long time and the track may get
deleted. Practically, the robot moves slower than the person.
When the person comes closer and gets visible, a new track
will be initialized.

The complete pseudo-code is given as Algorithm 1. The
algorithm uses a timer to check the time period within which
the person p was not visible. The flag deleted associated with
every person checks if the person is within the group and
being tracked, or its track is deleted for leaving the group.
qt,p is the tracked position of the person p at time t, which is
used to compute the attraction and repulsion forces between
the people.

Algorithm 1: Tracking
Algorithm 1 demonstrates the entire procedure of the

3D-PSF model for multi-humans, trajectory prediction
and tracking in a real-time. Initially, every human is

ð
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detected by their faces in the 2D image plane and our
proposed model converts the initial position of every
human in the 3D real-world coordinates in lines 5–7.
Lines 1–3 start timers useful for the deletion function,
however, line 8 resets the timers for the persons visible
initially. If a deleted person is further detected in the
2D image plane, then their 3D position is computed
from the inverse camera transformation method in lines
13–17. This 3D position is used to re-initialize the
tracker for again performing tracking and prediction af-
ter track’s deletion. If a person is not deleted, lines 20–
26 apply the motion model by using the social force
method. Lines 28–31 handle the condition when a per-
son should be deleted because of a lack of visibility for
consecutively Δ times. Lines 29–30 handle the special
case when the robot is making a turn, while line 31
implements the deletion logic. As persons are detected
in the subsequent frame then their position in the 2D
image plane is determined using 3D real world to 2D
image plane transformation (conversion) using lines 31–
35. Line 34 uses the visibility information to update the
weights while line 35 resamples using the updated
weights. Lines 37–40 compute the most probable person
location based on the particle’s position.

6 Experiment evaluation and result analysis

The proposed work is tested on real-life settings at the Centre
of Intelligent Robotics, IIIT Allahabad with the AmigoBot
robot and a rear-facing webcam, where a few lab members
were asked to casually follow the robot, while behaving errat-
ically at times. The Amigobot robot was fixed at a pre-
determined source. The camera was mounted on top of the
robot. AmigoBot robot was used to track humans. AmigoBot
robot was stationed at the origin (0,0) and the humans stand
behind the robot with a certain distance. The coordinates of
the humans are taken as the (x, y) position of the humans and
the height of humans is replaced as the z coordinate. The
transformation between the robot base and the camera was
manually measured. Camera calibration was done that helps
to convert the 3D point (real-plane) into the 2D point (image-
plane). Thereafter, different processes run nearly independent-
ly on the same system. The first process is the teleoperation of
the robot. The teleoperation is done by using robot-specific
libraries. As the robot moves, a service provided by the vendor
keeps computing the position of the robot. The position is
computed by using the high-precision encoders on the robot.
Finally, a separate module runs the particle filter proposed in
the paper. The development is done using the Python
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programming language. The camera continuously takes im-
ages. The humans are detected by their faces using a convo-
lution neural network [21, 22]. The initial position of the par-
ticles is computed using an inverse transform of image coor-
dinates to a person’s position for each person. Thereafter, the

program runs the Particle Filter logic inside a loop. At every
iteration, the camera takes a new image as input and the face
detection is done. The particles are moved based on the posi-
tion of the robot computed from the encoders and the pub-
lished positions of the different persons. If the person is

Table 1 Parameters values

SN Parameters Value Remarks

1. Number of particles 200 Set by trial and error

2. Robot radius 0.2533 m As per actual measurement

3. Person radius 0.2533 m As per actual measurement

4. Average velocity of the human 1.500 m/s As per actual measurement

5. Height of the camera 1.220 m As per actual measurement

6. Calibration matrix 718:46 0:0 314:62 0:0
0:0 719:49 265:41 0:0
0:0 0:0 1:0 0:0

0
@

1
A Obtained from calibration

7. Image resolution (640×480) As per actual

8. Coefficient of person to robot
attraction force (w1)

1.3181 Set so that the attraction force is at a set threshold
when the person is at a pre-determined social
distance from the robot

9. Coefficient of person to robot
repulsion force (w2)

2473.082 Set so that attraction and repulsion forces cancel
each other when the person is at a pre-determined
social distance from the robot

10. Coefficient of person to person
attraction force (w3)

2.0251 Set so that the attraction force to the person is 1/3rd
of the attraction force to the robot when the person
is at a pre-determined social distance from the
robot and another person

11. Coefficient of person to person
repulsion force (w4)

824.361 Set so that attraction and repulsion forces cancel
each other when two persons are at a pre-determined
social distance from each other

12. Coefficient of random force (w5) 1500.0 Set to make the force in the same range as the other forces

13. Coefficients related to the total force Wth=0.9, Wmin=0, Wmax=0.2; As per program logic

14. Minimum angle to qualify a
turn (ð), as a Cosine value

0.6 Set by measuring the angle that the robot makes at
different turns in the environment

15. Minimum time of invisibility to
delete a track (Δ)

4 s. Set by measuring the actual time that the humans left
in the experiments due to invisibility due
to genuine reasons apart from corners

Table 2 Comparisons of the proposed approach

Scenario
ID

Person
ID

Proposed
(mm)

Random Particle
filter (mm)

Tracking in Image
(mm)

Kalman Filter
(mm)

LSTM (with re-
initialization) (mm)

LSTM (without re-
initialization) (mm)

I 1 629.28 662.26 4135.63 998.69 1950.71 2249.56

2 618.69 670.93 4410.85 985.54 3147.95 3448.09

3 258.24 601.85 5128.56 958.67 3400.55 3682.45

II 1 234.88 303.87 10,577.32 802.64 4802.54 5604.49

2 229.96 284.24 1767.64 706.27 8638.65 9129.27

3 388.56 468.88 2894.84 1508.49 8612.41 8932.18

III 1 406.27 738.69 7212.76 959.64 3126.22 6702.37

2 676.32 739.63 30,610.39 1202.34 5465.19 8312.73

3 385.18 810.94 6215.89 1284.75 9265.74 7798.63

Best results are shown in bold
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detected, the observation model is applied. The deletion of
track and the re-initialization happens by handling the differ-
ent timers set for the purpose as per the logic. Every human in
a group usually follow the robot and due to their socialistic
behaviour when any human leaves its group, then the track is

deleted for that human. In the continuation of the navigation
process as the human join their group, the human is detected in
the 2D image plane. This 2D image plane coordinate is con-
verted into 3D real-plane using inverse camera calibration and
inverse transformation. This 3D coordinate is the re-initialized

Table 3 F-score for detection of
human leaving the group Scenario ID Person ID Proposed (with corner detection) Proposed (without corner detection)

I 1 0.98 0.07

2 0.98 0.46

3 0.94 0.09

II 1 0.96 0.81

2 0.98 0.78

3 0.96 0.79

III 1 0.97 0.68

2 0.98 0.55

3 0.98 0.61

Best results are shown in bold

Table 4 Confusion matrix

Scenario ID Person ID Proposed (with corner detection) Proposed (without corner detection)

TP TN FP FN TP TN FP FN

I 1 98 10,827 0 42 90 8777 2020 80

2 1026 9911 0 30 1079 7392 2425 71

3 960 9897 77 33 125 8589 2174 79

II 1 3138 12,541 0 200 3128 11,364 1177 210

2 2247 13,552 0 80 2245 12,389 1163 82

3 2967 12,712 0 200 3018 11,303 1409 149

III 1 2500 22,659 2 120 2495 20,466 2193 125

2 2283 22,916 2 80 2285 19,388 3528 78

3 2142 23,059 0 80 2135 20,477 2580 87

Best results are shown in bold

Table 5 Probabilistic
interpretation Scenario ID Person ID Proposed (with corner detection) Proposed (without corner detection)

Precision Recall Accuracy Precision Recall Accuracy

I 1 1.00 0.70 0.99 0.04 0.30 0.05

2 1.00 0.97 0.99 0.52 0.93 0.61

3 0.92 0.96 0.98 0.80 0.77 0.79

II 1 1.00 0.94 0.98 0.72 0.93 0.91

2 1.00 0.96 0.99 0.65 0.96 0.92

3 1.00 0.93 0.98 0.68 0.95 0.90

III 1 0.99 0.95 0.99 0.53 0.95 0.90

2 0.99 0.96 0.99 0.39 0.96 0.85

3 1.00 0.96 0.99 0.45 0.93 0.89

Best results are shown in bold
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point of the human and re-assigned to the tracker for further
tracking. After all computations, the weighted addition of all
particles is used to compute the position of the person, and the
same is logged and published.

The real-life experiments do not have the ground truth of
the tracked persons. Therefore, the experiments were also
done on simulated robots where one robot enacted the real
physical robot with a simulated rear-facing web-camera, and

Fig. 3 Root mean square error (TI: Tracking in Image, RPF: Random
Particle Filter, KF: Kalman Filter; LSTM (wr): LSTM (with re-
initialization), LSTM (w/o r): LSTM (without re-initialization)) (a)
Scenario ID: I Person 1 (b) Scenario ID: I Person 2 (c) Scenario ID: I

Person 3 (d) Scenario ID: I Person 1 (e) Scenario ID: II Person 2 (f)
Scenario ID: II Person 3 (g) Scenario ID: III Person 1 (h) Scenario ID:
III Person 2 (i) Scenario ID: III Person 3

Fig. 4 F-score (a) Scenario ID: I (b) Scenario ID: II (c) Scenario ID: III
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the other robots enacted by the following people. These robots
were teleoperated and the teleoperating humans were asked to
maintain as many social norms as possible. To make the

simulations realistic, the map used was that of the same place
in which the socialistic experiments were done. The 2D map
was made using a SLAM library using the Pioneer LX robot.

Fig. 5 Confusion matrix elements (a) Scenario ID: I True positives (b)
Scenario ID: II True positives (c) Scenario ID: III True positives (d)
Scenario ID: I True negatives (e) Scenario ID: II True negatives (f)
Scenario ID: III True negatives (g) Scenario ID: I False positives (h)

Scenario ID: II False positives (i) Scenario ID: III False positives (j)
Scenario ID: I False negatives (k) Scenario ID: II False negatives (l)
Scenario ID: III False negatives
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The 3rd dimension was added by assuming the obstacles have
a fixed common height. The simulated camera was restricted
to the same constraints as the real camera, using the same
projection matrix. The camera was programmed so as not to
see through the obstacles. The camera was noised to imitate
the large errors, including errors in detection and recognition,
associated with the real camera. We used the Robot Operating
System (ROS) library as a generic framework and MobileSim
simulator for the Amigobots. First, the environment map was
loaded on the MobileSim simulated. Four robots were placed
in the MobileSim simulator. RosAria library was utilized
which provides the basic functionalities of the simulated ro-
bots including integration with ROS. All the four robots have
their coordinates, and one robot was made to behave like a
leader robot and the remaining three robots acted like humans.
Robots were traversed by teleoperation. Here four different

computing systems were needed to teleoperate the four robots
(1 imitating the leader robot and 3 imitating the humans). One
system was made as a ROS master system (that imitated the
leader robot) and the remaining three systems connected to the
ROS master system. We know the actual trajectory of all
robots from the simulator and this trajectory was used as the
ground truth for comparing our motion model. The trajectory
was continuously logged. The same program of the particle
filter was used, except that the camera image was taken by the
simulated camera.

We first discuss the comparisons with the simulated setup
and then discuss the experiments with the real-life humans
under socialistic settings. All the behaviours are implemented
in several scenarios and further our model is employed onto
those different scenarios. Here three scenarios are presented
which consist of all different commonly recurring human

Fig. 6 Interpretation graphs (a) Scenario ID I Precision (b) Scenario ID II Precision (c) Scenario ID III Precision (d) Scenario ID I Recall (e) Scenario ID
II Recall (f) Scenario ID III Recall (g) Scenario ID I Accuracy (h) Scenario ID II Accuracy (i) Scenario ID III Accuracy
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behaviours such humans swapping, humans overtaking each-
other, human leaving the group, adjustment of humans ac-
cordingly due to limited availability of the space at corridors
and corners, humans are too busy at the previous site, etc. The

general behaviour is the humans following the robot for their
navigation. The robot knows only the initial position of the
humans and anticipates the humans’ trajectory in both the 3D
real world and the 2D image plane.

Fig. 7 Scenario ID: I 3D trajectory anticipation on a different plane using
a Multi-behavioural 3D Particle Social Force Model (a) Robot trajectory
v/s human 1 actual v/s anticipated trajectory (b) Robot trajectory v/s
human 2 actual v/s anticipated trajectory (c) Robot trajectory v/s human
3 actual v/s anticipated trajectory (d) Robot trajectory v/s human 1 actual
v/s anticipated trajectory on X-plane (d) Robot trajectory v/s human 2
actual v/s anticipated trajectory onX-plane (f) Robot trajectory v/s human

3 actual v/s anticipated trajectory on X-plane (g) Robot trajectory v/s
human 1 actual v/s anticipated trajectory on Y-plane (h) Robot trajectory
v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot trajec-
tory v/s human 3 actual v/s anticipated trajectory on Y-plane (j) Visibility
graph of human 1 (k) Visibility graph of human 2 (l) Visibility graph of
human 3
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One of the important aspects is the parameter setting.
Some parameters were directly measurable like the radial
occupancy of the robot and the person, the average walking
speed of the humans, and the camera calibration matrix.
There are numerous coefficients related to the forces and
trial and error between all the coefficients could have been
difficult. Hence, we first measured the distance that a hu-
man prefers to keep with the robots by doing some social
experiments. At this social distance value, it is known that
the attraction and repulsion forces between the person and
the robot should cancel each other. We arbitrarily fix the
attraction force coefficient value at this distance and set the
repulsion force coefficient value to cancel the attraction
force. Similarly, we also measured the social distance that
two people tend to keep between themselves. Similar equi-
librium conditions were considered between two people
and the robot. Heuristically, we set the attraction between
two people to be 1/3rd in contrast to the attraction between
a robot and a person. This is based on the observation that
while following, the people are primarily attracted towards
the leader with a small attraction towards each other. The
repulsion force coefficient is set such that the repulsion
force cancels the attraction force between people at the
social distance. The random force is scaled to the same
scale. We performed several experiments to set the number
of particles parameter. In general, a higher number of par-
ticles is preferable, which however also increases the

computation time. The parameter values are described in
Table 1.

6.1 Performance evaluation and its comparison

To benchmark the dataset, we use 4 baseline approaches. The
first baseline approach is a particle filter with a randommotion
model. The filter deletes track when the person is non-
observable for a long time and re-initializes the track when
the person is visible again. The second approach directly
tracks the subjects into the image. However, knowing the
height of the person, the conversion of the position from the
2D image to a 3D position in real-world is additionally done
for comparisons. The next method is the Kalman Filter.

The other competent methods are from the trajectory pre-
diction approaches. The LSTM based implementations are
increasingly getting popular. In our experiments, the assump-
tion is that the humans are only partially observable when they
are within the field of view of the camera, and hence the
training data is highly limited that does not cover most of
the interesting cases when the human is outside the field of
view. Even if it is critiqued that external sensors can be used to
make training data, in our assumption the humans have un-
clear intents and stochasticity in their behaviour. Hence for the
same situation, the person could react differently. Moreover,
the persons occasionally leave and re-join groups which is a
displayed behaviour but should not be learnt. Initially, an

Fig. 8 Scenario ID: I Humans constraints (a) First human desired orientation (b) Second human desired orientation (c) Third human desired orientation
(d) Velocity of first person (e) Velocity of second person (f) Velocity of third person (g) Corner angle error
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Fig. 9 Scenario ID: I Social forces modelling (a) Humans’ attraction
force towards the robot in the X-direction (b) Humans’ attraction
force towards the robot in the Y-direction (c) Humans’ repulsive
force towards the robot in the X-direction (d) Humans’ repulsive
force towards the robot in the Y-direction (e) Person 1 to another
person’s attraction force in the X-direction (f) Person 1 to another
person’s attraction force in the Y-direction (g) Person 1 to another
person’s repulsive force in the X-direction (h) Person 1 to another
person’s repulsive force in the Y-direction (i) Person 2 to another
person’s attraction force in the X-direction (j) Person 2 to another
person’s attraction force in the Y-direction (k) Person 2 to another
person’s repulsive force in the X-direction (l) Person 2 to another

person’s repulsive force in the Y-direction (m) Person 3 to another
person’s attraction force in the X-direction (n) Person 3 to another
person’s attraction force in the Y-direction (o) Person 3 to another
person’s repulsive force in the X-direction (p) Person 3 to another
person’s repulsive force in the Y-direction (q) Random force on X-
plane (r) Random force on Y-plane (s) Total social force applied on
human 1 in the X-direction (t) Total social force applied on human
1 in the Y-direction (u) Total social force applied on human 2 in the
X-direction (v) Total social force applied on human 2 in the Y-
direction (w) Total social force applied on human 3 in the X-
direction (x) Total social force applied on human 3 in the Y-
direction
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attempt was made to see if the LSTM can reject such noises
and learn using simulated data. However, training on one per-
son’s data performed poorly when tested on the data of anoth-
er person. This also highlights a known observation that dif-
ferent people behave differently. Hence, training was repeated
when training and testing on the same person’s data. The
LSTM took the positions of the robots and all persons to
predict the motion of the person under study.

An unfair disadvantage of the LSTM was that the other
methods benefited from the continuous observations from
the camera, while the LSTM only used the initial conditions
along with the known position of the robot. Hence another

method was used where the LSTM was actively re-
initialized from the position calculated from the image. The
LSTM was used to predict a short sequence. Thereafter, the
LSTM was fed a small trajectory computed from the detec-
tions in the image, and the LSTMwas made to predict another
short sequence.

Table 2 gives the error calculated for the humans’ actual
and tracked trajectory in 3D. The metric of comparison is the
root mean squared error (RMSE) between the actual and the
tracked positions of the humans. Each algorithm has an option
of denial of service where it deletes the track assuming that the
person has left. While calculating the RMSE, a penalty of

Fig. 9 (continued)
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Fig. 10 Scenario ID: I 3D trajectory anticipation on a different plane
using a Random particle filter (a) Robot trajectory v/s human 1 actual
v/s anticipated trajectory (b) Robot trajectory v/s human 2 actual v/s
anticipated trajectory (c) Robot trajectory v/s human 3 actual v/s antici-
pated trajectory (d) Robot trajectory v/s human 1 actual v/s anticipated
trajectory on X-plane (d) Robot trajectory v/s human 2 actual v/s

anticipated trajectory on X-plane (f) Robot trajectory v/s human 3 actual
v/s anticipated trajectory on X-plane (g) Robot trajectory v/s human 1
actual v/s anticipated trajectory on Y-plane (h) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on Y-plane (i) Robot trajectory v/s
human 3 actual v/s anticipated trajectory on Y-plane

Fig. 11 Scenario ID: I 3D trajectory anticipation on a different plane using a
Tracking in image (a) Robot trajectory v/s human 1 actual v/s anticipated
trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory
(c) Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane
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1400 is added for all cases when the person did not leavewhile
the algorithm predicted so. Otherwise, the algorithms can de-
cline service for the whole motion to get the least errors. We
have done a statistical analysis of all the experiments reported.
Pairwise T-test was used to understand the statistical signifi-
cance of the proposed approach with all the other approaches.
Based on statistical testing it was observed that the proposed
algorithm is better than all other methods used for compari-
sons with a significance level of at least 95%.

We have tested our proposed method on three different sce-
narios to ensure the validity of our 3D particle model. In the
comparison with other methods, our model gives very less error
between 0.2 m to 0.6 m and other methods give a much larger
error. Random particle filter method cannot be applied every-
where because it gives a large error for Scenarios I and III,
while the errors are lower in Scenario II, still higher than the
proposed approach. The performance of the random particle

filter deteriorates when the person is outside the visibility, while
the filter soon erroneously deletes the track while the robot may
have been combating a corner. When tracking in the image, the
errors are extremely high because of the moving camera. The
errors become very large as soon as the person is outside the
visibility of the robot, in which case the position is guessed
under the assumption of smoothness in the image, which is
void considering that the robot was actually making a sharp
turn and no motion of the human shall also result in a sharp
motion in the image, which the filter erroneously smoothens
out. The Kalman Filter performs poorly due to a linearity as-
sumption that does not hold good in this model. As the robot
rotates, the non-linearity significantly increases that invalidates
the model. It must be stressed that the motion model in our
approach is based on heuristics that act stochastically and hence
there is no easy way to get the derivative for the implementation
of the Extended Kalman Filter.

Fig. 12 Scenario ID: I 3D trajectory anticipation on a different plane using a
Kalman Filter (a) Robot trajectory v/s human 1 actual v/s anticipated trajec-
tory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory (c)
Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot tra-
jectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane

V. Malviya and R. Kala7182



Fig. 13 Scenario ID: I 3D trajectory anticipation on a different plane using a
LSTM (with re-initialization) (a) Robot trajectory v/s human 1 actual v/s
anticipated trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated
trajectory (c) Robot trajectory v/s human 3 actual v/s anticipated trajectory (d)
Robot trajectory v/s human 1 actual v/s anticipated trajectory on X-plane (d)

Robot trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f)
Robot trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g)
Robot trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h)
Robot trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i)
Robot trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane

Fig. 14 Scenario ID: I 3D trajectory anticipation on a different plane
using a LSTM (without re-initialization) (a) Robot trajectory v/s human
1 actual v/s anticipated trajectory (b) Robot trajectory v/s human 2 actual
v/s anticipated trajectory (c) Robot trajectory v/s human 3 actual v/s
anticipated trajectory (d) Robot trajectory v/s human 1 actual v/s antici-
pated trajectory on X-plane (d) Robot trajectory v/s human 2 actual v/s

anticipated trajectory on X-plane (f) Robot trajectory v/s human 3 actual
v/s anticipated trajectory on X-plane (g) Robot trajectory v/s human 1
actual v/s anticipated trajectory on Y-plane (h) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on Y-plane (i) Robot trajectory v/s
human 3 actual v/s anticipated trajectory on Y-plane
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Fig. 15 Scenario ID: II 3D trajectory anticipation on a different plane
using a Multi-behavioural 3D Particle Social Force Model (a) Robot
trajectory v/s human 1 actual v/s anticipated trajectory (b) Robot trajec-
tory v/s human 2 actual v/s anticipated trajectory (c) Robot trajectory v/s
human 3 actual v/s anticipated trajectory (d) Robot trajectory v/s human 1
actual v/s anticipated trajectory on X-plane (d) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on X-plane (f) Robot trajectory v/s

human 3 actual v/s anticipated trajectory on X-plane (g) Robot trajectory
v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot trajec-
tory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane (j)
Visibility graph of human 1 (k) Visibility graph of human 2 (l)
Visibility graph of human 3

Fig. 16 Scenario ID: II Humans constraints (a) First human desired orientation (b) Second human desired orientation (c) Third human desired
orientation (d) Velocity of first person (e) Velocity of second person (f) Velocity of third person (g) Corner angle error
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Fig. 17 Scenario ID: II Social forces modelling (a) Humans’
attraction force towards the robot in the X-direction (b) Humans’
attraction force towards the robot in the Y-direction (c) Humans’
repulsive force towards the robot in the X-direction (d) Humans’
repulsive force towards the robot in the Y-direction (e) Person 1 to
another person’s attraction force in the X-direction (f) Person 1 to
another person’s attraction force in the Y-direction (g) Person 1 to
another person’s repulsive force in the X-direction (h) Person 1 to
another person’s repulsive force in the Y-direction (i) Person 2 to
another person’s attraction force in the X-direction (j) Person 2 to
another person’s attraction force in the Y-direction (k) Person 2 to
another person’s repulsive force in the X-direction (l) Person 2 to

another person’s repulsive force in the Y-direction (m) Person 3 to
another person’s attraction force in the X-direction (n) Person 3 to
another person’s attraction force in the Y-direction (o) Person 3 to
another person’s repulsive force in the X-direction (p) Person 3 to
another person’s repulsive force in the Y-direction (q) Random
force on X-plane (r) Random force on Y-plane (s) Total social force
applied on human 1 in the X-direction (t) Total social force applied
on human 1 in the Y-direction (u) Total social force applied on
human 2 in the X-direction (v) Total social force applied on human
2 in the Y-direction (w) Total social force applied on human 3 in the
X-direction (x) Total social force applied on human 3 in the Y-
direction
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The LSTM performed poorly because it also learnt the
noisy behaviours of intents to leave the group, getting
distracted, etc. In our assumption, humans often act errat-
ically, and the same behaviours cannot be filtered out.
Training LSTM on the entire subject-specific makes it
impossible for LSTM to decide which are the erratic be-
haviours and which are the genuine behaviours, and the
performance is thus reasonably poor. After re-initializa-
tion, the LSTM performance improved reasonably well.
However, overall, the performance was still not good
due to the same reasons. The initial position given to the
LSTM was itself noisy since it came from a noisy camera.
Observing multiple such noisy sequences gave a

reasonably large initial error to the LSTM. The LSTM
was not trained on such data and thus continued to per-
form even more poorly. It must be stressed that we do not
intend to show that the LSTM is ineffective for solving
the problem. Our intention behind the comparison is to
show that the LSTM fails to perform under the settings
of noisy sensor readings and highly noisy data where
people often do not follow the robot. Under ideal settings,
the LSTM could have given a reasonable performance.

We proposed a mechanism to detect the robot turning and
use the same to anticipate the person going out of view, in
which case the track was not deleted despite a loss of visibility
for a prolonged time. Overall, the detection of a person leaving

Fig. 17 (continued)
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Fig. 18 Scenario ID: II 3D trajectory anticipation on a different plane using
a Random particle filter (a) Robot trajectory v/s human 1 actual v/s antic-
ipated trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated
trajectory (c) Robot trajectory v/s human 3 actual v/s anticipated trajectory
(d) Robot trajectory v/s human 1 actual v/s anticipated trajectory on X-
plane (d) Robot trajectory v/s human 2 actual v/s anticipated trajectory on

X-plane (f) Robot trajectory v/s human 3 actual v/s anticipated trajectory on
X-plane (g) Robot trajectory v/s human 1 actual v/s anticipated trajectory on
Y-plane (h) Robot trajectory v/s human 2 actual v/s anticipated trajectory
on Y-plane (i) Robot trajectory v/s human 3 actual v/s anticipated trajectory
on Y-plane

Fig. 19 Scenario ID: II 3D trajectory anticipation on a different plane using a
Tracking in image (a) Robot trajectory v/s human 1 actual v/s anticipated
trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory (c)
Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot tra-
jectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane
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Fig. 20 Scenario ID: II 3D trajectory anticipation on a different plane using a
Kalman Filter (a) Robot trajectory v/s human 1 actual v/s anticipated trajec-
tory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory (c)
Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot tra-
jectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane

Fig. 21 Scenario ID: II 3D trajectory anticipation on a different plane using
a LSTM (with re-initialization) (a) Robot trajectory v/s human 1 actual v/s
anticipated trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated
trajectory (c) Robot trajectory v/s human 3 actual v/s anticipated trajectory
(d) Robot trajectory v/s human 1 actual v/s anticipated trajectory onX-plane

(d) Robot trajectory v/s human 2 actual v/s anticipated trajectory onX-plane
(f) Robot trajectory v/s human 3 actual v/s anticipated trajectory on X-plane
(g) Robot trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane
(h) Robot trajectory v/s human 2 actual v/s anticipated trajectory onY-plane
(i) Robot trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane
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the group was an integral part of the algorithm and hence its
performance is also benchmarked. Comparisons are done with
the naïve implementation of the particle filter that does not
anticipate the loss of visibility due to corners and turns. F-
score is used for detecting people leaving the group and the
results are presented in Table 3.

The results suggest that the proposed method gives
significantly better results with the corner detection mod-
ule. Here the count of true positives (TP) and true nega-
tives (TN) is increased and due to these false negatives
(FN) have been reduced as shown in Table 4. Specifically,
false positives (FP) have rapidly decreased and close to
zero as compared to without corner detection. The pro-
posed algorithm anticipates that since the robot is making
a corner, the visibility will be lost, while without this

module the person is deleted from being tracked on al-
most every corner. It may be counterintuitive that this
does not result in an increase in false negatives, which
is because the heuristic is strong and misclassification
due to the heuristic is a rarity. The little increase in true
positives and true negatives; and the reduction in false
positives is attributed to the accuracy of tracking.
Furthermore, in Table 5 the precision, recall, and accuracy
have also improved. Accuracy is 98% and above in each
scenario. The precision is also high and these interpreta-
tions also prove the validity of our multi-behaviour 3D
particle social force model. Verification of our model is
done by the actual trajectory of the multi-agent system
where we know the ground truth and the actual leaving
of humans is manually annotated.

Fig. 22 Scenario ID: II 3D trajectory anticipation on a different plane using a
LSTM (without re-initialization) (a) Robot trajectory v/s human 1 actual v/s
anticipated trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated
trajectory (c) Robot trajectory v/s human 3 actual v/s anticipated trajectory (d)
Robot trajectory v/s human 1 actual v/s anticipated trajectory on X-plane (d)

Robot trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f)
Robot trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g)
Robot trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h)
Robot trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i)
Robot trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane
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Fig. 23 Scenario ID: III 3D trajectory anticipation on a different plane
using a Multi-behavioural 3D Particle Social Force Model (a) Robot
trajectory v/s human 1 actual v/s anticipated trajectory (b) Robot trajec-
tory v/s human 2 actual v/s anticipated trajectory (c) Robot trajectory v/s
human 3 actual v/s anticipated trajectory (d) Robot trajectory v/s human 1
actual v/s anticipated trajectory on X-plane (d) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on X-plane (f) Robot trajectory v/s

human 3 actual v/s anticipated trajectory on X-plane (g) Robot trajectory
v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot trajec-
tory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane (j)
Visibility graph of human 1 (k) Visibility graph of human 2 (l)
Visibility graph of human 3

Fig. 24 Scenario ID: III Humans constraints (a) First human desired orientation (b) Second human desired orientation (c) Third human desired
orientation (d) Velocity of first person (e) Velocity of second person (f) Velocity of third person (g) Corner angle error
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Fig. 25 Scenario ID: III Social forces modelling (a) Humans’
attraction force towards the robot in the X-direction (b) Humans’
attraction force towards the robot in the Y-direction (c) Humans’
repulsive force towards the robot in the X-direction (d) Humans’
repulsive force towards the robot in the Y-direction (e) Person 1 to
another person’s attraction force in the X-direction (f) Person 1 to
another person’s attraction force in the Y-direction (g) Person 1 to
another person’s repulsive force in the X-direction (h) Person 1 to
another person’s repulsive force in the Y-direction (i) Person 2 to
another person’s attraction force in the X-direction (j) Person 2 to
another person’s attraction force in the Y-direction (k) Person 2 to
another person’s repulsive force in the X-direction (l) Person 2 to

another person’s repulsive force in the Y-direction (m) Person 3 to
another person’s attraction force in the X-direction (n) Person 3 to
another person’s attraction force in the Y-direction (o) Person 3 to
another person’s repulsive force in the X-direction (p) Person 3 to
another person’s repulsive force in the Y-direction (q) Random
force on X-plane (r) Random force on Y-plane (s) Total social force
applied on human 1 in the X-direction (t) Total social force applied
on human 1 in the Y-direction (u) Total social force applied on
human 2 in the X-direction (v) Total social force applied on human
2 in the Y-direction (w) Total social force applied on human 3 in the
X-direction (x) Total social force applied on human 3 in the Y-
direction
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Figure 3 shows the error between the actual and the
anticipated trajectory for all humans in different scenarios.
Here our model renders very less error as compared to
other methods. F-score is represented in Fig. 4. Multiple
confusion parameters can be visualized in Fig. 5 where
our model gives a good confidence score. Precision, re-
call, and accuracy have been represented in Fig. 6 for
different scenarios and it is compared with corner and
non-corner detection heuristic.

6.2 Visual representation of the anticipated trajectory
and its comparison with ground truth

We applied our 3D particle model in different scenarios and
each scenario elaborates the multi-behavioural humans track-
ing. Here the humans sometimes leave and re-join the group,
swap their positions, and also overtake each other which can
be visualized in the given figures. The tracker is deleted when
the human leaves the group and is automatically re-initialized

Fig. 25 (continued)
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when the humans re-joins the group to follow the robot.
Figures 7, 15, and 23 are the graphs for the anticipated trajec-
tory of the humans based on three different scenarios respec-
tively using the Multi-behavioural 3D Particle Social Force
Model.

The errors may seem larger than conventionally quoted
in the literature for a tracker with a mobile observer mod-
el. However, three differences need to be noted in our
proposed approach. First that the observer (robot) con-
stant loses the visibility of the human. In the conventional
approaches, the errors exponentially rise with time under
such settings. The proposed approach does a fair deal by
limiting the errors with time using the socialistic model.
Second, that if the person re-joins the group, only a mon-
ocular camera is available, and the position needs to be
guessed. The visibility of the person upon re-joining shall
be an extremity in the image, and the cameras are very

sensitive in that region. Therefore, the re-initialization has
a very large error that the tracker must overcome. Finally,
the humans’ teleoperators were asked to act erratically in
the control of the robot. Leaving the group for some time,
neither intentional nor detected by the algorithm leaves
with a long sequence of no visibility where the social
conventions do not hold and thus reflected upon in the
results. These limitations exist in all algorithms, however,
only the proposed algorithm can address these limitations
sufficiently well.

The human speeds and orientation are also considered
to best fit our proposed model which are represented in
Figs. 8, 16, and 24 for the different scenarios. Multiple
attraction and repulsive force are utilized to model this 3D
social force tracking module and are shown in the given
Figs. 9, 17, and 25. Tracking results based on random
particle filter are drawn and explained in Fig. 10, 18,

Fig. 26 Scenario ID: III 3D trajectory anticipation on a different plane
using a Random particle filter (a) Robot trajectory v/s human 1 actual v/s
anticipated trajectory (b) Robot trajectory v/s human 2 actual v/s antici-
pated trajectory (c) Robot trajectory v/s human 3 actual v/s anticipated
trajectory (d) Robot trajectory v/s human 1 actual v/s anticipated trajec-
tory on X-plane (d) Robot trajectory v/s human 2 actual v/s anticipated

trajectory on X-plane (f) Robot trajectory v/s human 3 actual v/s antici-
pated trajectory on X-plane (g) Robot trajectory v/s human 1 actual v/s
anticipated trajectory on Y-plane (h) Robot trajectory v/s human 2 actual
v/s anticipated trajectory on Y-plane (i) Robot trajectory v/s human 3
actual v/s anticipated trajectory on Y-plane
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Fig. 28 Scenario ID: III 3D trajectory anticipation on a different plane using a
Kalman Filter (a) Robot trajectory v/s human 1 actual v/s anticipated trajec-
tory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory (c)
Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot tra-
jectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane

Fig. 27 Scenario ID: III 3D trajectory anticipation on a different plane using a
Tracking in image (a) Robot trajectory v/s human 1 actual v/s anticipated
trajectory (b) Robot trajectory v/s human 2 actual v/s anticipated trajectory (c)
Robot trajectory v/s human 3 actual v/s anticipated trajectory (d) Robot tra-
jectory v/s human 1 actual v/s anticipated trajectory on X-plane (d) Robot

trajectory v/s human 2 actual v/s anticipated trajectory on X-plane (f) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on X-plane (g) Robot
trajectory v/s human 1 actual v/s anticipated trajectory on Y-plane (h) Robot
trajectory v/s human 2 actual v/s anticipated trajectory on Y-plane (i) Robot
trajectory v/s human 3 actual v/s anticipated trajectory on Y-plane
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and 26 which do not generate accurate human trajectory.
Furthermore ‘tracking in image’ method is not able to
track the humans in these scenarios and predicts very poor
trajectories as soon as the robot is beyond visibility,
which constitutes a reasonable part of the scenarios,
which can be visualized in Fig. 11, 19, and 27.
Additionally, we have also performed Kalman Filter ap-
proach for the trajectory prediction as shown in Figs. 12,
20, and 28 and this method is not able to anticipate the
positions of the humans in no visibility or at the corners.
To figure out the performance of the deep learning ap-
proach , we appl ied an LSTM method wi th re-
initialization and without re-initialization and the

outcomes of LSTM with re-initialization is visualized in
Figs. 13, 21, and 29 whereas the outcome of LSTM with-
out re-initialization is visualized in Figs. 14, 22, and 30.
Based on the figures it is eminent that the four methods
random particle filter, tracking in the image, Kalman
Filter, LSTM with re-initialization, and LSTM without
re-initialization are not robust to handle the corner prob-
lem and human tracking at the corner is not possible by
these approaches. Our proposed model is robust to handle
these situations, can easily detect when the robot is
circumventing a corner leading to no visibility and per-
forms tracking well (Figs. 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30).

Fig. 29 Scenario ID: III 3D trajectory anticipation on a different plane
using a LSTM (with re-initialization) (a) Robot trajectory v/s human 1
actual v/s anticipated trajectory (b) Robot trajectory v/s human 2 actual v/
s anticipated trajectory (c) Robot trajectory v/s human 3 actual v/s antic-
ipated trajectory (d) Robot trajectory v/s human 1 actual v/s anticipated
trajectory on X-plane (d) Robot trajectory v/s human 2 actual v/s

anticipated trajectory on X-plane (f) Robot trajectory v/s human 3 actual
v/s anticipated trajectory on X-plane (g) Robot trajectory v/s human 1
actual v/s anticipated trajectory on Y-plane (h) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on Y-plane (i) Robot trajectory v/s
human 3 actual v/s anticipated trajectory on Y-plane
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6.3 Real-time impression of 3D-PSF model

We have employed our 3D particle social force model for
socialistic 3D tracking on multiple behaviours of humans. In
Figs. 31 and 32, the different types of humans’ behaviour are
shown. Our model can perform tracking over different cir-
cumstances of these behaviours and at corner where the robot
is taking a sharp turn and the humans are following the robot.
Here the tracker is not present when any human leaves the
group. As the human joins the group, the tracker is re-
initialized and tracking is performed further. In Figs. 31 and
32, this phenomenon is pictured and demonstrated. Moreover,
the journey started in the indoor environment and after some
time the robot reaches a semi-indoor scenario where the

presence of sunlight becomes a reason for illumination change
and our model performs well for tracking, although detection
is not error-free here.

One of the uniqueness of the work was re-initialization once
a person re-joins a group. In Fig. 31(f), one person left the
group, so the track was deleted. As he joins the group again
as shown in Fig. 31(g), the track is re-initialized, and tracking
starts continuously. Another person again left the group and re-
joined as shown in Fig. 31(i-j). In Fig. 31(k) detection did not
happen for one person but tracking was continuously per-
formed. Two persons swapped their position in Fig. 31(d-e).
Further in Fig. 31(m-n), track for one person was again deleted
and re-initialized. Apart from this, all the humans left the group,
so the track was deleted as shown in Fig. 32(a), and as they

Fig. 30 Scenario ID: III 3D trajectory anticipation on a different plane
using a LSTM (without re-initialization) (a) Robot trajectory v/s human 1
actual v/s anticipated trajectory (b) Robot trajectory v/s human 2 actual v/
s anticipated trajectory (c) Robot trajectory v/s human 3 actual v/s antic-
ipated trajectory (d) Robot trajectory v/s human 1 actual v/s anticipated
trajectory on X-plane (d) Robot trajectory v/s human 2 actual v/s

anticipated trajectory on X-plane (f) Robot trajectory v/s human 3 actual
v/s anticipated trajectory on X-plane (g) Robot trajectory v/s human 1
actual v/s anticipated trajectory on Y-plane (h) Robot trajectory v/s hu-
man 2 actual v/s anticipated trajectory on Y-plane (i) Robot trajectory v/s
human 3 actual v/s anticipated trajectory on Y-plane
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joined their group (in Fig. 32(b)), the track was re-initialized,
and tracking was performed. Some more track deletion and re-
initialization can be visualized in Fig. 32.

7 Conclusion

In this paper, we presented a new social-force-based par-
ticle filter that allows 3D human tracking in a group from
a monocular camera placed on a mobile robot. The tracker
assumes that humans follow social conventions when nav-
igating as a group behind the robot. These behaviours are
used for socialistic tracking and trajectory anticipation.
The system can track humans under low visibility condi-
tions when the robot often loses sight of the persons due
to a small field of view. The system can predict a loss of

visibility due to context like traveling through a corner,
which assures the robot to continue tracking while
trackers are bound to delete tracks of humans in such a
case. The paper thus addresses the practical problems with
affordable robots operating in home and office environ-
ments alongside humans and solves the vision problem
which is often the backbone of robotics.

The model was compared with baseline trackers including
a particle filter, directly tracking humans in the image, LSTM
without re-initialization and LSTMwith re-initialization based
on the image. It must be noted that tracking under limited
visibility and contextualization of turns during tracking is a
new problem that has not been widely addressed in the liter-
ature. Thus, no direct suitable method was available for the
comparisons. The proposed model produces very less error as
compared with the baseline methods on the multi-agent

Fig. 31 Behavioural 3D tracking (a) Every person is detected and tracked
by the robot. (b-d) Detection is not possible for every person, but tracking
happens. (e) Two humans swapped their position and are following the
robot. (f) One person leaves the group, and the tracker is deleted. (g)
Person re-joins its group, and the tracker is re-uninitialized, and tracking
starts. (h) A robot is taking a rotation to achieve its goal and here detection

is not possible, but the tracking model performs its job. (i-j) One person
leaves the group and re-joins. (k-l) A robot continuously takes a sharp
turn and humans are also tracked by the 3D tracker model. (m-n) The
third person leaves the group and re-joins the group again. (o) Robot is at
a corner and determines the human position in 3D
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ground truth. An application requirement is to detect people
leaving the group when their tracking must stop. False posi-
tives are rapidly decreased with the employment of our model,
with no compromise on the true positives (which have a minor
increase). A set of experiments with a real social robot is also
done that emphasizes the appropriateness of our model to
socially compliant robot navigation in real-time with a low-
cost budget.

One of the major limitations of the current works is that
while the experiments are done under realistic settings with
the complete robotic setup including humans, the
benchmarking is done using simulators to get the ground truth.
Humans may not have socially simulated robots. The experi-
ments need to be done with external trackers to prepare the
ground truth. The major application was enabling the robot to
take an informed decision based on the tracked positions of
the people. The tracker uncertainty based active planning of
the robot needs to be explored. Overall, this paper has given a

sound technique for tracking humans using low-cost sensors
under limited visibility settings which leads to numerous ap-
plications that can be tried in the future.
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