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Abstract
Multi-modal medical image fusion brings many benefits to clinical diagnosis and analysis because it creates favorable
conditions for diagnostic imaging practitioners to make a more accurate diagnosis. According to our current knowledge,
there are still some disadvantages to current image fusion approaches. The first one is that the fused images often have low
contrast. The reason for this is several approaches use a weighted average rule for fusing low-frequency components. The
second drawback is that the loss of detailed information in the fused image. This can be explained by the fact that the high-
frequency components synthesized by the rules are not really effective. In this paper, two novel algorithms are proposed
to tackle the above two disadvantages. The first algorithm is based on the Equilibrium optimizer algorithm (EOA) to find
optimal parameters to fuse low-frequency components. This allows the fused image to have good contrast. The second
algorithm is based on the sum of local energy functions using the Prewitt compass operator to create an efficient rule for the
fusion of high-frequency components. This allows the fused image to significantly preserve details transferred from input
images. Experimental results show that the proposed approach not only effective in significantly enhancing the quality of
the fusion image but also preserving edge information carried from input images.

Keywords Medical image fusion · Equilibrium optimizer algorithm (EOA) · Two-scale image decomposition (TSD) ·
Compass operator (CO)

1 Introduction

The fusion of multi-modal medical images is the combina-
tion of useful information frommultiple images individually
to create a single image. This allows the fusion image to not
only contains various types of information but also enhan-
ced significantly in terms of quality. Currently, there are var-
ious medical images, such as single photon emission tomog-
raphy (SPECT), computed tomography (CT), positron emis-
sion tomography (PET), and magnetic resonance imaging
(MRI). Each kind of medical image can only contain one
type of information. For instance, SPECT image provides
functional and metabolic information with low spatial res-
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olution, while MRI images contain anatomical information
with high spatial resolution.

Currently, approaches proposed to fuse multi-modal
medical images are grouped into two primary domains,
namely spatial and transform domain [30]. The spatial
domain-based approaches process directly on the pixels,
blocks, or regions of the input images without making the
transformation from the spatial domain to the transform
domain. In this category, there are various proposed
methods, such as pixel-based [24], region-based [34, 65],
and block-based methods. The spatial approaches utilize
various techniques, such as the maximum selection rule
(MSR), the minimum selection rule, weighted-average rule
[44]. The advantage of these methods is often implemented
simply, and they have low computational complexity. The
drawback of these methods is the loss of useful information
in the composite image as they produce spectral distortion
and color distortion. This disadvantage is overcome by
transform-domain based approaches.

The transform domain-based methods are more com-
monly used in recently proposed methods, and they consist
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of three main stages, including image transformation, the
fusion of components in the transform domain, and inverse
transformation [30]. Firstly, the input medical images are
transformed into a transform domain by adopting a certain
method of image transformation. Secondly, the components
in the transform domain are fused by a certain fusion rule.
Finally, the fusion image is reconstructed by utilizing the
corresponding inverse transformation on the fusion compo-
nents. In general, transform domain-based approaches can
be further divided into Pyramid methods, Wavelet trans-
form methods, and Multi-scale geometric analysis (MGA)
methods.

There are some disadvantages of the above transform
domain-based methods. Pyramid-based approaches as the
Laplacian pyramid (LP) [10, 14, 51] can cause the loss of
considerable sourced information and suffer from the block-
ing effect since they supply only spectral information with-
out having the directional information. Wavelet-based meth-
ods, such as Discrete wavelet transform (DWT) [58] and
Dual-Tree Complex Wavelet Transform (DTCWT) [62], do
not use phase information, so the main disadvantage of them
is unable to preserve the edges and texture regions. MGA-
based methods, such as Contourlet transform [57], Curve-
let transform [37], Non-subsampling contour transform
(NSCT) [23, 50, 64], Non-subsampled shearlet transform
(NSST) [6, 27], provide both spectral and directional infor-
mation, so they can transcend the limitations of pyramid-
based and wavelet-based approaches. Nevertheless, the dis-
advantage of MGA-based methods is high computational
complexity.

In recent years, many meta-heuristic optimization algo-
rithms have been introduced and applied to medical image
fusion. Some typical meta-heuristic optimization algorithms
can be mentioned as Particle swarm optimization (PSO)
[42], non-subsampled shearlet transform and particle swarm
optimization (NSST-PSO) [47], quantum-behaved particle
swarm optimization (QPSO) [55], gray wolf optimization
[5], hybrid genetic–grey wolf optimization (HG-GWO) [4],
modified central force optimization (MCFO) [12], chaotic
grey wolf optimization (CGWO) [3], binary crow search
optimization (BCSO) [39], the total variation (TV-L1) based
cartoon-texture decomposition with particle swarm optimi-
zation (TV-L1-PSO) [38], and modified shark smell opti-
mization (MSSO) [54].

The equilibrium optimizer algorithm was inspired by the
dynamic mass balance in physics, and it was a recently pro-
posed meta-heuristic algorithm. This algorithm was origi-
nally introduced by Faramarz [13] in 2020. Currently, this
algorithm has been applied successfully in various problems
such as feature selection [16], biological data classification
[48], and vehicle routing problem [15]. However, according
to our observation, there are no studies utilizing the EOA
for medical image fusion. This encouraged and motivated us

to propose a novel approach based on the EOA for medical
image fusion.

In addition, according to our current knowledge, there
are some limitations of current image fusion approaches.
The first one is that the use of a weighted average rule
for the fusion of low-frequency components. Some recent
approaches have this limitation such as convolutional sparse
representation (CSR) [28], convolutional sparsity with mor-
phological component analysis (CSMCA) [29], two-scale
image decomposition with sparse representation (TSID-SR)
[33], two-scale image decomposition with structure tensor
(TSID-ST) [11], and two-scale image decomposition with
guided filtering and sparse representation (TSID-GF-SR)
[40]. This limitation leads to a decrease in the intensity of
the brightness of the fused image. The second limitation is
that the use of fusion rules for high-frequency coefficients
cannot be optimal because the detailed information preser-
vation indexes are not really high. Some fusion rules can
be mentioned as Max selection [44], Local variance [2],
and Parameter-adaptive pulse coupled neural network (PA-
PCNN) [61]. This is likely to result in the loss of detailed
information in the fused image. In this paper, we propose
two novel algorithms to address the above-mentioned lim-
itations. Some advantages of the proposed approach are
highlighted as follows:

– The first algorithm makes use of the Equilibrium
Optimizer Algorithm (EOA) to find optimal parameters
with the aim of fusing the base layers. This allows the
fusion image to have good contrast.

– The second algorithm is based on the sum of local
energy functions using the Prewitt compass operator to
create an efficient rule for the fusion of the detail layers.
This allows the fusion image to preserve significantly
details transferred from input images.

The remaining of this paper is organized as follows:
Some background knowledge, such as the TSD method,
YCbCr color space, and the EOA algorithm, is introduced
briefly in Section 2. Section 3 introduces two novel
algorithms in the proposed approach: the first one based on
the sum of local energy functions using the Prewitt compass
operator is proposed to fuse detail layers, and the second
algorithm based on the EOA is introduced to combine base
layers. Section 4, the quality of fused images is evaluated
by different indexes. Finally, the conclusion and future work
are given in Section 5.

2 Background

Some background knowledge, such as TSD method, YCbCr
color space, and EOA algorithm, are introduced in this
section.
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2.1 TSDmethod

There are a number of different methods for decomposing
an image into two scales. These methods have been uti-
lized in many medical image fusion approaches such as
Convolutional sparse representation (CSR) [28], Two-scale
image decomposition with statistical comparisons [9], Two-
scale image decomposition with structure tensor (TSD-TS)
[11], Two-scale image decomposition and sparse represen-
tation (TSD-SR) [33], and Two-scale image decomposition
with guided filtering and sparse representation (TSD-GF-
SR) [40]. In this section, we present the TSD method used
in TSD-SR and CSR approaches. According to this method,
an input image (Iin) is decomposed into two components.
The first one is the base layer (I b) having large scale vari-
ations, and the second one is the detail layer (I d ) having
small scale variations.

Figure 1 illustrates the use of TSD method for a input
medical image.

I b and I d components can be calculated as follows:
Firstly, the component I b is found by addressing the

following optimization problem (see Eq. (1)):

argmin
Ib

∥
∥Iin − I b

∥
∥
2
F

+ γ (
∥
∥dx ∗ I b

∥
∥
2
F

+ ∥
∥dy ∗ I b

∥
∥
2
F
) (1)

Where,

– γ is the regularization parameter.
– dx = [−1 1

]

is a gradient operator in the horizontal
direction.

– dy = [−1 1
]T

is a gradient operator in the vertical
direction.

The (1) is a Tikhonov regularization problem, and it can
be addressed efficiently by making use of Fast Fourier
Transform (FFT).

Secondly, the detail layer (I d ) is calculated from input
image Iin and the base layer (I b) as shown in Eq. (2):

I d = Iin − I b (2)

2.2 YCbCr color space

There are different types of color models proposed for the
fusion of color medical image, such as IHS [25, 38, 46],
HSV [20], YIQ [49], YUV [26, 31, 59], and YCbCr. Among
these color models, YCbCr color space is effectively
applied in various image processing problems, such as
Watermarking [22], Multi-Focus Image Fusion [1], and
Encryption for color images [60]. Therefore, this color
space is opted for the composition of medical images in the
proposed model.

The RGB-YCbCr transformation is represented as shown
in Eq. (3):
⎡

⎣

Yy
Cb
Cr

⎤

⎦ =
⎡

⎣

0.257 0.564 0.098
−0.148 −0.291 0.439
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⎤

⎦

⎡

⎣
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Gg
Bb

⎤

⎦+
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128
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⎤

⎦ (3)

The conversion of YCbCr colour model to RGB colour
model is represented as shown in Eq. (4):
⎡

⎣

Rr
Gg
Bb

⎤

⎦ =
⎡

⎣

1.164 0.000 1.596
1.164 −0.392 −0.813
1.164 2.017 0.000

⎤

⎦

⎡

⎣

Yy−16
Cb−128
Cr−128

⎤

⎦ (4)

2.3 EOA Algorithm

The EOA algorithm was inspired by the dynamic mass
balance in physics, and it was originally introduced by
Faramarzi [13] in 2020. More details about the EOA
algorithm can be found in Algorithm 1. Generally, the EOA
algorithm is described by the following six steps:

– Step 1: The population of particles is initialized
– Step 2: The fitness of particles in the population is

estimated.
– Step 3: The equilibrium pool is constructed.
– Step 4: Each exponential term (F) and the generation

rate (G) are updated using Eqs. (5) and (6), respectively.

F = β1sign(k − 0.5)[e−γ t − 1] (5)

G =
{

0.5.k1.(Keq − γK).F k2 ≥ GP

0 k2 < GP
(6)

Fig. 1 Illustration for the
two-scale image decomposition:
Iin, I b, and I d
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Fig. 2 Illustration for 8 masks
of Prewitt compass method

Where

t =
(

1 − I ter

I termax

)β2 I ter
I termax

β1 = 2, β2 = 1, GP = 0.5

– Step 5: Each particle concentration is updated using
Eq. (7):

K = Keq + (K − Keq).F + G

γV
(1 − F) (7)

– Step 6: Go to step 3 until the stopping criteria is
achieved.

3 The proposed approach

In this section, two novel algorithms are proposed. The first
one, based on the sum of local energy functions using the
Prewitt compass operator, is proposed to fuse detail layers.
The second algorithm is designed to fuse base layers based
on Equilibrium Optimizer Algorithm.

3.1 Fusion rule based on the sum of local energy
function with Prewitt Compass Operator (SLE PCO)

The detailed information of an image is contained in the
high-frequency components, and the energy of detail layers

of a sharp image is much larger than that of a blurred
one. Therefore, some approaches, such as NSCT transform
and local energy [2], Empirical wavelet decomposition and
maximum local energy (EWT-MLE) [41], and Maximum
local energy with compass operator [7, 8], have applied the
fusion rules based on local energy.

The local energy LE(x,y) is calculated using Eq. (8).

LE(x, y) =
u−1
∑

s1=0

u−1
∑

s2=0

W(s1, s2) ∗ I 2m(x + s1, y + s2) (8)

Where

– W is the unit matrix of size u x u.
– Im is the image matrix.

Prewitt operator is one of the compass operators used to
detect edge, and it was first introduced by Russell Prewitt.
This method uses eight kernel masks in eight directions
(see details in Fig. 2). Currently, this operator is widely and
effectively applied in image processing algorithms such as
Auto-focusing approach on multiple micro objects [32] and
Quantum image edge extraction [63].

We propose a novel rule based on the sum of local energy
function and Prewitt operator for fusing detail layers as
Algorithm 2. Figure 3 illustrates functions (Ei , i = 1, 8 and
Esum) using Prewitt compass method.

Fig. 3 Illustration for functions
(Ei , i = 1, 8 and Esum) based
on Prewitt compass method
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3.2 The proposed algorithm based on SLE PCO and
EOA

There are some main steps in the proposed method. In the
first step, RGB-YCbCr transformation is implemented to
convert colour medical images to YCbCr color space, and
only the Y channel is utilized for the next step. In the
second step, the TSD method is implemented to decompose
gray medical images with the aim of receiving the base and
detail layers. Then, the EOA algorithm is applied to find
optimal parameters for the fusion of base layers, and the
SLE PCO method is implemented to compose the detail
layers. Finally, two components (the detail layer and base
layer) are summed to get the reconstructed image, and
this fused image, together with Cb and Cr channels, is
transformed to RGB color space. Figure 4 illustrates the
diagram of the proposed approach utilizing TSD and EOA.

4 Experimental results

Quality indexes and the data set using for experiments are
presented in this section. In addition, the results received
from experiments are displayed and discussed.

4.1 Objective evaluationmetrics

Currently, there are many image fusion quality indexes
introduced to evaluate the fused images. In this section,
eight metrics are selected, including Mean (intensity
index), Standard deviation (SD - contrast index), average
information of an image (Entropy), Sharpness index
(S), Edge-based similarity measure (QAB/F ) [56], Visual
Information Fidelity for Fusion (VIFF) [19], Feature Mu-
tual Information (FMI) [18]), and Mutual Information (MI)
[17].
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Fig. 4 The diagram of the
proposed approach using TSD
and EOA

4.2 Experimental setup

Experimental data consists of three pairs of medical images
(MRI-PET), namely Data-1 (a,b), Data-2 (c,d) and Data-3

(e,f) with a size of 256 × 256 pixels (See Fig. 5 for details).
The above-mentioned images were obtained from the online
source as follows: http://www.med.harvard.edu/AANLIB/.

Several different experiments were conducted to evaluate
the effectiveness of the proposed approach.
The first experiment: to evaluate the effectiveness of the
EOA algorithm in the proposed method, some well-known
metaheuristics optimization algorithms such as Particle
Swarm Optimization (PSO) [21], Artificial Bee Colony
(ABC) Optimization, Biogeography-based optimization
(BBO) [43], Multi-Verse Optimizer (MVO) [36], andWhale
Optimization Algorithm (WOA) [35] have been selected for
comparison. 30 runs were performed with different optimi-
zation algorithms for each pair of images. Two indexes
(Average and Standard deviation) are utilized to compare
the overall performance of algorithms. In addition, the
Wilcoxon rank-sum test [52], a non-parametric statistical
test, was used to determine the significance of the results.

The second experiment: Various compass operators such
as Isotropic, Robinson, Kirsch, and Prewitt, were used in
our approach to find the right compass operator.

The third experiment: With regard to qualitative analysis,
the results of our approach are compared with those of
other latest approaches, namely: convolutional sparsity
based morphological component analysis (CSMCA) [29],
Non-subsampled contourlet transform (NSCT) [64],
convolutional sparse representation (CSR) [28], Non-
subsampled shearlet transform with parameter-adaptive
pulse coupled neural network (NSST-PA-PCNN) [61],
and Non-subsampled shearlet transform and multi-
scale morphological gradient with pulse-coupled neural
network (NSST-MSMG-PCNN) [45].
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In terms of the performance evaluation of proposed
approach, eight indexes were utilized, includingMean, SD,
Entropy, Sharpness, QAB/F [56], V IFF [19], FMI

[18], and MI [17]. Tools for experimenting with all the
aforementioned methods are online available. The proposed
algorithm is implemented with the following parameters in
EOA algorithm:

– The size of population: n = 50.

– β1 = 2, β2 = 1,
– The generation probability: GP = 0.5, V = 1.
– The maximum number of iterations: I termax = 50

4.3 Image fusion evaluation

Firstly, the three optimal parameters (α1, α2, and α3) of the
proposed model are illustrated in Table 1.
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Fig. 5 Illustration for medical
images in input image dataset:
Data-1 (a,b), Data-2 (c,d), and
Data-3 (e,f)

Table 1 Illustration of optimal
parameters Dataset α1 α2 α3

Data-1 0.9724 0.0512 0.999

Data-2 0.9636 0.2190 0.999

Data-3 0.9762 0.1923 0.999

Table 2 Average and Standard deviation obtained from 30 different
runs

Dataset Algorithms Average Standard deviation

Data-1 EOA 0.003791510614365 2.869296645854914e-12

PSO 0.003791518589415 1.213076089855162e-09

ABC 0.003791516760123 3.257479888399223e-09

BBO 0.003791515798132 3.414059151971709e-09

MVO 0.003791515510335 2.044022240784007e-09

WOA 0.003791514403111 2.858077121147372e-09

Data-2 EOA 0.006108543224958 2.906681065953367e-14

PSO 0.006108759945347 1.220192649561480e-07

ABC 0.006108708680285 6.182695168457058e-08

BBO 0.006108672227127 1.374042024331449e-07

MVO 0.006108689886088 6.304470579567359e-08

WOA 0.006108684250342 7.708530967540525e-08

Data-3 EOA 0.003745095900765 2.680486134330851e-14

PSO 0.003745710764668 2.108356626187820e-07

ABC 0.003745603470378 2.073784003557396e-07

BBO 0.003745448662111 2.245332553349944e-07

MVO 0.003745464235729 2.084363020869360e-07

WOA 0.003745206120285 2.500677995741798e-07

Bold entries are the best result

Table 3 P-values obtained from Wilcoxon rank-sum test

Dataset Algorithms P-value

Data-1 EOA vs PSO 6.496385505608495e-11

EOA vs ABC 1.196259866777379e-09

EOA vs BBO 1.804786103845129e-08

EOA vs MVO 6.500745889854890e-11

EOA vs WOA 1.803880245031144e-08

Data-2 EOA vs PSO 3.266084641758768e-09

EOA vs ABC 1.907017077043359e-10

EOA vs BBO 4.587050058165080e-08

EOA vs MVO 1.195562181751358e-09

EOA vs WOA 1.803880245031144e-08

Data-3 EOA vs PSO 6.483320304294704e-11

EOA vs ABC 6.505108935093440e-11

EOA vs BBO 1.805692362549152e-08

EOA vs MVO 1.196957916499566e-09

EOA vs WOA 6.496385505608495e-11
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Table 4 Experimental results
of the proposed method by
using different compass
operators

Dataset Compass operators QAB/F VIFF FMI MI

Data-1 Isotropic compass 0.7732 0.8112 0.8843 3.7411

Robinson compass 0.7746 0.8131 0.8854 3.7425

Kirsch compass 0.7750 0.8143 0.8865 3.7447

Prewitt compass 0.7754 0.8169 0.8872 3.7459

Data-2 Isotropic compass 0.7995 0.7495 0.8823 4.3294

Robinson compass 0.7998 0.7502 0.8839 4.3296

Kirsch compass 0.8005 0.7505 0.8852 4.3301

Prewitt compass 0.8013 0.7511 0.8867 4.3306

Data-3 Isotropic compass 0.8541 0.7336 0.8709 4.7680

Robinson compass 0.8549 0.7344 0.8717 4.7692

Kirsch compass 0.8552 0.7348 0.8727 4.7706

Prewitt compass 0.8561 0.7355 0.8733 4.7723

Bold entries are the best result

Table 5 Experimental results of latest approaches and the proposed method on dataset (“Data-1”)

Dataset Methods Mean SD Entropy Sharpness QAB/F VIFF FMI MI

Data-1 CSMCA 0.1606 0.2093 4.5842 0.0558 0.7245 0.3240 0.8666 2.6201

NSCT 0.2810 0.3194 5.6155 0.0721 0.6746 0.5508 0.8697 2.9920

CSR 0.1505 0.1847 4.6624 0.0519 0.6344 0.1773 0.8441 2.9670

NSST-PA-PCNN 0.3067 0.3411 5.5084 0.0713 0.6692 0.5617 0.8709 3.3989

NSST-MSMG-CNN 0.3231 0.1621 5.5669 0.0743 0.6657 0.6327 0.8603 2.5790

Proposed method 0.3427 0.3780 5.7767 0.0773 0.7754 0.8169 0.8872 3.7459

Bold entries are the best result

Table 6 Experimental results of latest approaches and the proposed method on dataset (“Data-2”)

Dataset Methods Mean SD Entropy Sharpness QAB/F VIFF FMI MI

Data-2 CSMCA 0.1812 0.2044 5.2651 0.0655 0.7270 0.3620 0.8500 2.6118

NSCT 0.3268 0.3133 6.4345 0.0818 0.7055 0.6100 0.8700 3.3479

CSR 0.1688 0.1776 5.3960 0.0611 0.6573 0.2122 0.8241 2.9244

NSST-PA-PCNN 0.3455 0.3271 6.4344 0.0806 0.7068 0.6344 0.8705 4.0164

NSST-MSMG-CNN 0.3470 0.1577 6.2722 0.0856 0.6699 0.6495 0.8534 2.5053

Proposed method 0.3622 0.3311 6.7463 0.0896 0.8013 0.7511 0.8867 4.3306

Bold entries are the best result

Table 7 Experimental results of latest approaches and the proposed method on dataset (“Data-3”)

Dataset Methods Mean SD Entropy Sharpness QAB/F VIFF FMI MI

Data-3 CSMCA 0.1663 0.2169 4.8753 0.0866 0.7735 0.3273 0.8381 2.4860

NSCT 0.2859 0.3124 5.9157 0.1049 0.7709 0.5659 0.8560 3.4410

CSR 0.1550 0.1906 4.9782 0.0823 0.7156 0.1881 0.8119 2.6957

NSST-PA-PCNN 0.3047 0.3272 5.8662 0.1043 0.7681 0.5845 0.8551 3.9067

NSST-MSMG-CNN 0.2844 0.1340 5.9074 0.1078 0.7112 0.5561 0.8397 2.4453

Proposed method 0.3410 0.3449 6.3650 0.1080 0.8561 0.7355 0.8733 4.7723

Bold entries are the best result
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Fig. 6 Illustration of indexes from dataset (“Data-1”) by using different methods: CSMCA [29], NSCT [23], CSR [28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and the proposed method

Secondly, from Table 2, the average and standard
deviation indexes obtained from the EOA algorithm are the
lowest. This indicates that the EOA algorithm is effective
in the proposed approach. Furthermore, from Table 3, the

p-values obtained from the Wilcoxon rank-sum test are
less than 0.05. This shows that the results are statistically
significant. Therefore, these explain why we have opted for
the EOA algorithm in the proposed approach.

Fig. 7 Illustration of indexes from dataset (“Data-2”) by using different methods: CSMCA [29], NSCT [23], CSR [28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and the proposed method
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Fig. 8 Illustration of indexes from dataset (“Data-3”) by using different methods: CSMCA [29], NSCT [23], CSR [28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and the proposed method

Thirdly, from Table 4, experimental results show that the
use of Prewitt compass operator in the proposed method
is to bring the best results. This explains why the Prewitt
compass operator is selected in Algorithm 2.

Fourthly, from the Tables 5, 6, 7 and the Figs. 6,
7, 8, 9, 11, and 13, it is clear that the CSMCA [29]
and CSR [28] methods create the composite images having
low contrast, while the contrast of the NSCT [23], NSST-

Fig. 9 Illustration of the fused
images from dataset (“Data-1”)
by using different methods:
CSMCA [29], NSCT [23], CSR
[28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and
the proposed method
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Fig. 10 Illustration of frames extracted from the composite images in Fig. 9

PA-PCNN [61], NSST-MSMG-CNN [45] approaches are
greater than those of the above-mentioned approaches. In
particular, the proposed method gives the best contrast.
For instance, from Table 5, contrast index (SD) of the
proposed method was highest, at 0.3780, while the figures
for other methods (CSMCA [29], NSCT [23], CSR [28],
NSST-PA-PCNN [61], and NSST-MSMG-CNN [45]) were
lower, at 0.2093, 0.3194, 0.1847, 0.3411, and 0.1621,

respectively. Similarly, the proposed method also gives
the best intensity, entropy, and sharpness. This shows that
the proposed approach not only enhances significantly
the contrast but also improves the amount of information
and sharpness of composite image (Figs. 10, 11, 12, 13,
and 14).

Finally, to assess the preservation of detailed information
carried to the composite image from the input images,

Fig. 11 Illustration of the fused
images from dataset (“Data-2”)
by using different methods:
CSMCA [29], NSCT [23], CSR
[28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and
the proposed method
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Fig. 12 Illustration of frames extracted from the composite images in Fig. 11

frames extracted from the fused images (Figs. 9, 11, 13) are
shown in Figs. 10, 12, 14. It is easy to see that our method
conserves detailed information from the input images, while
remained methods produce much redundant information
in the composite images. For instance, the QAB/F index
of the proposed method is highest, at 0.8561 as shown
in Table 7. Whereas, the figures for methods (CSMCA

[29], NSCT [64], CSR [28], NSST-PA-PCNN [61], and
NSST-MSMG-CNN [45]) were lower, at 0.7735, 0.7709,
0.7156, 0.7681, and 0.7112, respectively. Similarly, the
results show that the values of V IFF [19], FMI [18],
and MI [17] indexes are higher than those of the other
approaches, this indicates that the proposed approach is
highly effective in the fusion of medical images.

Fig. 13 Illustration of the fused
images from dataset (“Data-3”)
by using different methods:
CSMCA [29], NSCT [23], CSR
[28], NSST-PAPCNN [61],
NSST-MSMG-CNN [45], and
the proposed method
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Fig. 14 Illustration of frames extracted from the composite images in Fig. 13

5 Conclusion

In this paper, two novel algorithms are proposed to
address some limitations of current medical image fusion
approaches. The proposed approach takes advantage of
the TSD method to decompose the input medical images
into two components, namely base and detail layers. The
first algorithm allows the composite image to have good
quality because the EOA algorithm is applied to find the
optimal parameters for the fusion of the base layers. This
overcomes the limitation of using a weighted average rule.
The second algorithm (called SLE PCO), based on the
sum of local energy using the Prewitt compass operator, is
implemented to fuse detail layers. This allows composite
images to significantly preserve details, which overcomes
the drawback of using fusion rules for detail layers.

The experiments were conducted on the dataset (Data-
1, Data-2, and Data-3) to compare the result of the propo-
sed method with those of other latest methods, such as
CSMCA [29], NSCT [64], CSR [28], NSST-PA-PCNN
[61], and NSST-MSMG-CNN [45]. Eight evaluation inde-
xes, including Mean, SD, Entropy, Sharpness, QAB/F [56],
VIFF [19], FMI [18], and MI [17], are utilized to assess the
quality of the composite images. The experimental results
show that our approach can significantly enhance the quality
of the fusion image, and it is likely to ensure suitability
for the human visual system. In addition, this proposed
approach can also effectively conserve the edge information
in the composite image.

In the future, there are some issues that we plan to
address to improve the performance of current approaches.
The first problem to be solved is to improve the quality of
input images. This is because input medical images may
be of low-quality, such as low-contrast, blur, and noise.

This significantly affects the performance of image fusion
methods. Therefore, image quality improvement plays a
vital role in improving the quality of the fused images.
For instance, the Non-Parametric Modified Histogram
Equalization (NMHE) algorithm was used in the TSD-
RS method [33] to enhance the low-contrast images. The
second problem to be tackled is to preserve detailed
information transferred to the fusion image. This can be
explained by the fact that some existing decomposition
methods can cause loss of information. Therefore, some
novel image decomposition methods need to be applied to
limit information loss in the fused images. For example, the
Taylor Expansion algorithm was introduced to decompose
input images into many intrinsic components in the Taylor
expansion and convolutional sparse representation (TE-
CSR) method [53].
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