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Abstract
Redundancy is an extremely significant challenge in data integration and decision making based on the model of soft set which is
able to process data under uncertainty. There are four available methods which are designed to reduce the redundant parameters
of the soft set. But there is a very low success rate on a large number of data sets obtained from practices by these methods. In
order to overcome the inherent weakness, we propose a parameter reduction method based on chi square distribution for the
model of soft set. Experimental results on two real-life application cases and thirty randomly generated data sets demonstrate that
our algorithm largely improves the success rate of parameter reduction, redundant degree of parameter, and has higher practi-
cability in comparison with the four existing normal parameter reduction algorithms.
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1 Introduction

Uncertainty is pervasive in many realistic fields such as eco-
nomics, engineering, environmental governance, social sci-
ences, business management, etc. Facing these uncertainties,
researchers have introduced many mathematical tools, includ-
ing probability theory, fuzzy set, rough set, etc. However,
these mathematical tools have their own shortcomings [1].
Until 1999, Molodtsov, D. [1] put forward a novel soft set
theory, which compensates for disadvantages of the insuffi-
cient parameterization about classic mathematical methods. It
is known to all that soft set is a new powerful mathematical
tool for uncertainty.

At present, There are two main aspects in the study of soft
set such as theoretical and application research. These articles
such as [2–4] discuss some related definitions, properties and

operations of soft sets. There has been a growing interest in
addressing the extended models based on soft set. We can list
some popular combination models as diverse as fuzzy soft set
[5, 6], interval-valued fuzzy soft set [7, 8, 27], integration of
the 2-tuple linguistic representation and soft set [9], belief
interval-valued soft set [10], confidence soft sets [11], linguis-
tic value soft set [12], separable fuzzy soft sets [13], dual
hesitant fuzzy soft sets [14], Z-soft fuzzy rough set [15],
Fault-tolerant enhanced bijective soft set [16], and soft rough
set [28].

Fortunately, more and more researchers have the resulting
interests on developing the applications of soft sets in many
areas. Demonstrations of soft set in real applications are easily
displayed in the following fields such as information system
data analysis [17], decision processing [18–20], conflict pro-
cessing [21, 22], resource discovery [23], text classification,
data mining [24–26] and medical diagnosis so on. In this
paper, we address an associated parameter reduction problem
for decision making under soft set. Redundancy is an impor-
tant consideration in data, and parameter reduction is essential
for the application of soft set in decision making. Many pio-
neer researchers have done a lot for this issue. It was firstly
suggested in [29] that parameter reduction of soft set was
necessary and the related concept was described. Chen et al.
[30] improved the parameter reduction of soft sets in [29].
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However, the method in [30] has the weakness of ignoring
the added parameters. So Kong et al. initiated [31] the
normal parameter reduction idea without neglecting the
newly added parameters. To decrease the computational
complexity of this algorithm, the improved methods were
created in [32, 33]. However, three above methods for the
normal parameter reduction are not appropriate for the
large data sets. So a normal parameter reduction algorithm
by particle swarm optimization which is suitable for large
data sets was expressed in [34, 35]. Next, facing up to the
inaccuracy of the method in paper [34], Han et al. [36]
again proposed four 0–1 linear programming models. In
this paper, we find out that due to its restrictions on special
conditions about normal parameter reduction, probability
of finding the reduction results and redundant level of pa-
rameter on a large number of data sets is very low by
means of the above algorithms in [31, 33, 34, 36].
Consequently, we propose a parameter reduction algorithm
based on chi square distribution for the soft set, which
greatly improves the success rate, redundant degree of pa-
rameter and practicality of parameter reduction.

The rest of this paper is structured as follows. Section 2
reviews the basic concepts of soft set theory and four existing
methods. Section 3 creates a new parameter reduction method
based on chi-square distribution. In Section 4, the proposed chi-
square distribution parameter reduction algorithm is applied in

real life, and further comparedwith the four existing algorithms.
Finally, the research conclusions are given in Section 5.

2 Basic concepts and the existing normal
parameter reduction methods

In this section, we will briefly review the basic concept of soft
set theory, which is described through an example and the
existing normal parameter reduction methods.

Definition 2.1 (See [1]) Assume that U is a non-empty initial
universe of objects, E is a set of parameters in relation to
objects in U, and A be a subset of E, ξ(U) is the power set
of U. A pair (F, A) is called a soft set over U, where F is a
mapping given by

F : A→ξ Uð Þ ð1Þ

In the above definition, the soft set over U is a parameter-
ized family of subsets of the universe U. Let’s walk through an
example on what is the soft set.

Example 2.1 An elderly person has a plan to reserve a com-
fortable nursing house which provides the wonderful old-age
service facilities. This elderly person takes into consideration

Table 1 Tabular
representation of a soft
set in example 2.1

U e1 e2 e3 e4 e5

h1 1 0 1 0 1

h2 0 0 0 1 1

h3 0 0 1 1 0

h4 1 1 1 1 1

h5 1 1 1 1 0

h6 1 0 1 0 1

Table 2 2*2 fourfold table of each pair parameter eαand eβ

eβ, f(eβ)=0, eβ, f(eβ)=1 Sum

eα, f(eα)
=0

N f eαð Þ ¼ 0 f eβ
� � ¼ 0 N f eαð Þ ¼ 0 f eβ

� � ¼ 1 T1 ¼ N f eαð Þ ¼ 0 f eβ
� � ¼ 0

þN f eαð Þ ¼ 0 f eβ
� � ¼ 1

eα, f(eα)
=1

N f eαð Þ ¼ 1 f eβ
� � ¼ 0 N f eαð Þ ¼ 1 f eβ

� � ¼ 1 T2 ¼ N f eαð Þ ¼ 1 f eβ
� � ¼ 0

þN f eαð Þ ¼ 1 f eβ
� � ¼ 1

Sum T3 ¼ N f eαð Þ ¼ 0 f eβ
� � ¼ 0

þN f eαð Þ ¼ 1 f eβ
� � ¼ 0

T4 ¼ N f eαð Þ ¼ 0 f eβ
� � ¼ 1

þN f eαð Þ ¼ 1 f eβ
� � ¼ 1

T

Table 3 Tabular
representations of the
soft set (F, E)

U e1 e2 e3 e4 e5

p1 1 1 0 0 1

p2 0 1 0 1 0

p3 1 0 0 0 1

p4 1 1 0 0 1

p5 0 1 1 0 0
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six top nursing houses. Let U = {h1, h2, h3, h4,h5, h6} be the
six top nursing houses, suppose that E = {e1, e2, e3, e4, e5} be
the five parameters to express the situation of six nursing
houses. Here ei (i = 1,2,3,4,5) represents “good daily life as-
sist”, “high-quality service for the wealthy”, “excellent food
service”, “good education”, “home service” respectively.
Table 1 represented by soft set depicts six top nursing houses
from five above respects. From this table, we should discover
that the structure of a soft set can classify the candidates into
two categories. “1” and “0” stand for “yes” and “no”, respec-
tively. For instance, this elderly person thinks that the nursing
house h1 has the good daily life assist, low-quality service for
the wealthy and has the satisfactory screen, excellent food
service, poor education and good home service from Table 1.

We can apply soft set to solving decision making. However,
there are some redundant parameters which should be reduced
for decision making. Kong et al. initiated [31] the normal pa-
rameter reduction idea without neglecting the newly added pa-
rameters. Aiming to reduce the computational complexity, the
method in [31] was improved [33]. However, these methods for
the normal parameter reduction are not appropriate for the large
data sets. So Kong et al. [37] proposed a normal parameter

reduction algorithm based on particle swarm optimization for
large data sets. Next, three types of linear programming algo-
rithms for normal parameter reductions of soft sets are proposed
in [39]. It is clear that the above four methods are created in the
framework of normal parameter reduction.

Definition 2.2 (See [31]) For soft set (F, E),E = {e1, e2,⋯, em},

if there exists a subset A ¼ e
0
1; e

0
2;⋯; e

0
p

n o
⊂E satisfying

fA(h1) = fA(h2) =⋯ = fA(hn), then A is dispensable, otherwise,
A is indispensable.B ⊂ E is a normal parameter reduction of E,
if the two conditions as follows are satisfied

(1) B is indispensable
(2) fE − B(h1) = fE − B(h2) =… = fE − B(hn)

However, Due to its special conditions, that is, for all of
objects, the parameters in subset A must satisfy fA(h1) =
fA(h2) =⋯ = fA(hn). This condition is not easily satisfied on
the most of datasets. That is, for normal parameter reduc-
tion, probability of finding the reduction results and redun-
dant level of parameter on a large number of data sets is
very low by means of the above algorithms in [31, 33, 34,
36]. For instance, we can not find the parameter reduction
results by the above methods in Table 1. In order to im-
prove probability of finding the reduction results and re-
dundant level of parameter on a large number of data sets
and practicality, we propose a parameter reduction method
based on chi square distribution for the model of soft set.
The main idea of our method is to reduce the redundant
parameter when two parameters have the similar parameter
values for all of objects. For instance, for e1 and e3, that is
“good daily life assist” and “excellent food service”, the
two parameters have the high similarity. That is, except for
h3, for all of other objects, the two parameters have the
same values. Thus, we think that the two parameters are

Fig. 1 Correlation matrix between the parameters

Fig. 2 Correlation matrix
between the parameter e1 and e2
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similar. We only choose one parameter as representation
while the other parameter is redundant. Based on the re-
duced parameter sets, the decision ability is not changed.

3 Parameter reduction method based on chi
square distribution for soft set

The parameter reduction method of chi square distribution
based on soft set mainly detects redundant parameters by an-
alyzing the correlation between two parameters. In order to
obtain the correlation value between the two parameters, we
must first calculate the practical correlation frequency and the
expected correlation frequency. Next, we will discuss the
whole calculation process of the chi square distribution pa-
rameter reduction algorithm.

Let the soft set (F, E) including a set of the object set
U = {p1, p2,…, pn}and the parameter set E = {e1, e2…,
em}, eαand eβ represent any two parameters in the parameter
set E, and f (ei)(f (ei) ∈ 0v1) indicates that the entity value of
the soft set. To calculate the practical correlation frequency
between parameters eα and eβ, we first construct the correla-
tion tables for each pair of parameter eαand eβ, that is, fourfold
table as shown in Table 2.

In this table, the parameterseαand eβthat satisfy the number
of entity values f (ei) = 0 and f (ei) = 1 are used to form a row
(r) or a column (c), the number of parameters eαand eβ satis-
fying the entity values f (ei) = 0 and f (ei) = 1 respectively is
constructed into a row (r) or column (c), which is represented
as N f eið Þ, that is, the practical correlation frequency between

each pair of parameters. For example, the number of parame-
ters that meet the entity value f (eα) = 0 and f (eβ) = 0 between

the parameters e1 and e2 is 2 in the dataset of Example 2.1,
hence the practical correlation frequency N f eαð Þ ¼ 0

f eβ
� � ¼ 0

, between

them is 2. The fourfold between e1 and e2 is shown in Table 3.
Considering the subsequent work, we use the formula (2) to
calculate the degrees of freedom V in the fourfold table.

V ¼ r−1ð Þ* c−1ð Þ ð2Þ

From the above fourfold table, it can be seen that the table
is a data table with two rows and two columns, and then the
degree of freedom V = 1. According to the calculation results
of the above fourfold table, a definition of the chi-square dis-
tribution for the correlation between the two parameters is
given in detail below.

Definition 3.1 The correlation between two parameters The
correlation between parameters eα and eβ is defined as:

X 2
eα;β

¼ Σ
α¼i

c
Σ
β¼ j

r N f eið Þ−T f eið Þ

� �2

T f eið Þ

¼

N f eαð Þ ¼ 0
f eβ
� � ¼ 0

−T f eαð Þ ¼ 0
f eβ
� � ¼ 0

0
B@

1
CA

2

T f eαð Þ ¼ 0
f eβ
� � ¼ 0

þ

N f eαð Þ ¼ 0
f eβ
� � ¼ 1

−T f eαð Þ ¼ 0
f eβ
� � ¼ 1

0
B@

1
CA

2

T f eαð Þ ¼ 0
f eβ
� � ¼ 1

þ

N f eαð Þ ¼ 1
f eβ
� � ¼ 0

−T f eαð Þ ¼ 1
f eβ
� � ¼ 0

0
B@

1
CA

2

T f eαð Þ ¼ 1
f eβ
� � ¼ 0

þ

N f eαð Þ ¼ 1
f eβ
� � ¼ 1

−T f eαð Þ ¼ 1
f eβ
� � ¼ 1

0
B@

1
CA

2

T f eαð Þ ¼ 1
f eβ
� � ¼ 1

ð3Þ

According to the above-mentioned fourfold table, we can
know thatN f eið Þ is the practical correlation frequency between
the parameterseαand eβ; T f eið Þ is the expected correlation fre-

Table 4 Fourfold table of e1, e2

e2, f (e2)=0 e2, f (e2)=1 Sum

e1, f (e1)=0 0 2
5

� �
2 8

5

� �
2

e1, f (e1)=1 1 3
5

� �
2 12

5

� �
3

Sum 1 4 5

Table 5 Fourfold table of e1, e3

e3, f (e3)=0 e3, f (e3)=1 Sum

e1, f (e1)=0 1 8
5

� �
1 2

5

� �
2

e1, f (e1)=1 3 12
5

� �
0 3

5

� �
3

Sum 4 1 5

Table 6 Fourfold table of e1, e4

e4, f (e4)=0 e4, f (e4)=1 Sum

e1, f (e1)=0 1 8
5

� �
1 2

5

� �
2

e1, f (e1)=1 3 12
5

� �
0 3

5

� �
3

Sum 4 1 5
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quency between the parameters eαand eβ, in other words,
T f eið Þ is the theoretical correlation value between each pair

of parameter under the entity values entity values f (ei) = 0
and f (ei) = 1, which can be calculated by the following for-
mula:

T f eið Þ ¼ T f eα;βð Þ ¼
T

0 � T
0 0

T
ð4Þ

Combined with the fourfold table,T ′ = {T1, T2}and
T″ = {T3, T4} respectively indicate the total value of row and
column in the case of entity values f (ei) = 0 and f (ei) = 1. T is

the number of the objects in the soft set. For example 2.1, there
are 6 object sets, the T value is 6.

Here, we still use example 2.1, to illustrate the calcu-
lation process of formula (3) and (4) in practical applica-
tions. Suppose we calculate the correlation between e1
and e2 again, we must calculate the the practical correla-
tion frequency value N f eið Þ and expected correlation fre-

quency value T f eið Þ a of each pair of parameters before

calculating the correlation value X 2
eα;β between the two

parameters. Since the actual value of each pair of param-
eters has been calculated in Table 3. Next, we can calcu-
late the expected value of each pair of parameters, as
shown below:

T f e1;2ð Þ ¼ T f e1ð Þ ¼ 0
f e2ð Þ ¼ 0

T 1 � T3

T
¼

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

0
B@

1
CA� N f e1ð Þ ¼ 1

f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

0
B@

1
CA

T
2� 4

6
¼ 8

6
¼ 4

3

T f e1;2ð Þ ¼ T f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

T 1 � T4

T
¼

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

0
B@

1
CA� N f e1ð Þ ¼ 1

f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

0
B@

1
CA

T
2� 2

6
¼ 4

6
¼ 2

3

T f e1;2ð Þ ¼ T f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

T 2 � T 3

T
¼

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

0
B@

1
CA� N f e1ð Þ ¼ 0

f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

0
B@

1
CA

T
4� 4

6
¼ 16

6
¼ 8

3

T f e1;2ð Þ ¼ T f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

T 2 � T4

T
¼

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

0
B@

1
CA� N f e1ð Þ ¼ 0

f e2ð Þ ¼ 0

þ N f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

0
B@

1
CA

T
4� 2

6
¼ 8

6
¼ 4

3

Table 7 Fourfold table of e1, e5

e5, f (e5)=0 e5, f (e5)=1 Sum

e1, f (e1)=0 2 4
5

� �
0 6

5

� �
2

e1, f (e1)=1 0 6
5

� �
3 9

5

� �
3

Sum 2 3 5

Table 9 Fourfold table of e2, e4

e4, f (e4)=0 e4, f (e4)=1 Sum

e2, f (e2)=0 1 4
5

� �
0 1

5

� �
1

e2, f(e2) =1 3 16
5

� �
1 4

5

� �
4

Sum 4 1 5

Table 8 Fourfold table of e2, e3

e3, f (e3)=0 e3, f (e3)=1 Sum

e2, f (e2)=0 1 4
5

� �
0 1

5

� �
1

e2, f (e2)=1 3 16
5

� �
1 4

5

� �
4

Sum 4 1 5

Table 10 Fourfold table of e2, e5

e5, f (e5)=0 e5, f (e5)=1 Sum

e2, f (e2)=0 0 2
5

� �
1 3

5

� �
1

e2, f (e2)=1 2 8
5

� �
2 12

5

� �
4

Sum 2 3 5
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Finally, combining with the two parameters of e1 and e2 in
Table 3, we get the correlation between the two parameters as
follows:

X 2
e1;2

¼ Σ
α¼1

c
Σ
β¼1

r N f eið Þ−T f eið Þ

� �2

T f eið Þ

¼

N f e1ð Þ ¼ 0
f e2ð Þ ¼ 0

−T f e1ð Þ ¼ 0
f e2ð Þ ¼ 0

0
B@

1
CA

2

T f e1ð Þ ¼ 0
f e2ð Þ ¼ 0

þ

N f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

−T f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

0
B@

1
CA

2

T f e1ð Þ ¼ 0
f e2ð Þ ¼ 1

þ

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

−T f e1ð Þ ¼ 1
f e2ð Þ ¼ 0

0
B@

1
CA

2

T f e1ð Þ ¼ 0
f e2ð Þ ¼ 0

þ

N f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

−T f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

0
B@

1
CA

2

T f e1ð Þ ¼ 1
f e2ð Þ ¼ 1

¼ 2− 4
3

� �2
4

3

þ 0− 2
3

� �2
2

3

þ 2− 8
3

� �2
8

3

þ 2− 4
3

� �2
4

3

¼ 9

6

Definition 3.2 correlation matrix The correlation matrix stores a
suite of correlation of all N parameters in Fig. 1, and the corre-

lation between each pair of parameters is represented by X 2
eα;β .

According to the correlation calculation formula between
the above two parameters, the correlation between each pair of
parameters in example 2.1 is shown in Fig. 2.

For the sake of simplicity, we name our proposed parame-
ter reduction algorithm of chi square distribution as C-SDPR
of which detailed steps are given as follows.

3.1 Our Algorithm: parameter reduction algorithm
based on chi square distribution for soft set
(C-SDPR)

Step 1: Input U = {p1, p2,⋯, pn} and E = {e1, e2,⋯, em};
Step 2: Calculate the correlation matrix between all two pa-

rameters, and check the correlation between
parameters.

Step 3: Access to the rejection hypothesis value D cor-
responding to the confidence level under the de-
gree of freedom V = 1. Suppose the correlation
between the parameters eα and eβ is higher than
D, which are strong correlation between the two
parameters. So one of the parameter eα and eβ
can be reduced.

Step 4: Get the new soft set (F, E) after parameter reduction.

In our algorithm, the confidence level depends on the
decision maker itself. The rejection hypothesis value D for
judging the correlation between the two parameters is tak-
en from the critical value table of the chi-square distribu-
tion, which can usually be found in any statistics textbook.
Assuming that the correlation between the two parameters
is high, it is sufficient to indicate that the similarity be-
tween the two parameters is very high. Hence we can keep
one parameter and reduce the other one. In order to inter-
pret our algorithm, we will describe it in detail through an
example below.

Example 3.1Assume the object setU = {p1, p2, p3, p4, p5} and
parameter set E = {e1, e2, e3, e4, e5}, the mapping relationship
of the soft set (F, E) is shown in Table 3.

According to our method, the following process is shown.

Step 1: Input the data in the instance.
Step 2: calculate the fourfold table of each pair of param-

eters, as shown Tables 4, 5, 6, 7, 8, 9, 10, 11, 12
and 13. Combine the practical correlation fre-
quency value between each pair of parameters in

Table 11 Fourfold table of e3, e4

e4, f (e4)=0 e4, f (e4)=1 Sum

e3, f (e3)=0 3 16
5

� �
1 4

5

� �
4

e3, f (e3)=1 1 4
5

� �
0 1

5

� �
1

Sum 4 1 5

Table 12 Fourfold table of e3, e5

e5, f (e5)=0 e5, f (e5)=1 Sum

e3, f (e3)=0 1 8
5

� �
3 12

5

� �
4

e3, f (e3)=1 1 2
5

� �
0 3

5

� �
1

Sum 2 3 5

Table 13 Fourfold table of e4, e5

e5, f(e5)=0 e5, f(e5)=1 Sum

e4, f(e4)=0 1 8
5

� �
3 12

5

� �
4

e4, f(e4)=1 1 2
5

� �
0 3

5

� �
1

Sum 2 3 5
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the fourfold table with formula (4) to calculate the
corresponding expected frequency value, which is
indicated in brackets of each table. Finally, the
correlation between each pair of parameters is cal-
culated by formula (3), and represented in matrix
format, as shown in Figs. 3 and 4 respectively.

Step 3: when the degree of freedom v = 1, we take the con-
fidence level as 0.05 and the corresponding rejection
hypothesis D is 3.843 by consulting the chi-square
distribution table. From Fig. 3 above mentioned, we
can notice that the correlation value of the parameter

e1 and e5 isΧ2
e1;5

¼ 5 > 3:843. Accordingly, the two

attributes are strong correlation. That is, e1 or e5 can
be reduced.

Step 4: In the end, we will get the new soft set (F, E) after
parameter reduction as {e1, e2, e3, e4} or {e2, e3, e4, e5}.

4 The comparison result

In this section, we compare the proposed algorithm with
the normal parameter reduction algorithms in [31, 33, 34,
36] on two practical cases in our life and thirty randomly
generated datasets, and finally show the comparison results
of the five algorithms in tabular form. In short, we term the
normal parameter reduction algorithm in [31] as NPR, the
algorithm in [33] as NENPR, the normal parameter reduc-
tion in soft set based on particle swarm optimization algo-

Fig. 3 The correlation between each pair of parameters
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Fig. 3 (continued)
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rithm in [34] as NPR-PSO, the method in [36] as NPR-LP,
respectively. In detail, we make comparison among five
methods from two aspects: redundant degree of parameter
and success rate.

A. Case 1: Weather index dataset in different areas

The weather station wants to predict the weather qual-
ity of some areas according to the weather index of dif-
ferent areas in the same period. We collect the meteoro-
logical data of some areas from China weather network
and transform these data into the style of soft set, which is
shown in Table 14. Among them, U represents five dif-
ferent areas in the same period and U = {p1, p2, p3, p4,
p5}={Lhasa, Dali, Dunhuang, Qingdao, Luoyang}. E is
a set of parameter sets considered and E = {e1, e2, e3, e4,
e5, e6}={air pollution index, tourism index, sports index,
UV index, temperature index, weather humidity index}.
Next, we will discuss the results of the five algorithms for
the above datasets.

(1) Parameter reduction by our algorithm

Step 1: Input the soft set as shown in Table 14;
Step 2: According to the given formula and definition,

the correlation values between all two parame-
ters are calculated and indicated in matrix form
in Fig. 5.

Step 3: Suppose we take the confidence level is 0.2. When
the degree of freedom is 1, the corresponding rejec-

tion hypothesis value D is 1.64 by consulting the chi
square distribution table.We find that the correlation
between parameter e1 and e5, e2 and e3, e2 and e5, e4
and e5are higher than 1.64, so the parameter e1 or e5,
e2 or e3, e2 or e5, e4 or e5 can be reduced. After the
simplification, the parameters {e1, e2, e4} or {e3, e5}
can be reduced.

Step 4: Finally, we get the new soft set for minimizing after
parameter reduction is {e3, e5, e6}.

(2) Parameter reduction by NPR, NENPR, NPR-PSO and
NPR-LP

When the soft set for case 1is input, we can not discover the
parameter subset which satisfies the condition of ∑ek∈A p1k
¼ ∑ek∈A p2k ¼ … ¼ ∑ek∈A p5k . Therefore, we can not find

the parameter reduction result by the methods of NPR,
NENPR, NPR-PSO and NPR-LP.

(3) Comparison results on case 1.

From the above discussion, the comparison results of the
five algorithms are analyzed and presented in Table 15. Here,
we give two assessment criteria such as redundant degree of
parameter and success rate.

1) Redundant degree of parameter

Definition 4.1 For soft set (F, E) including a set of the object
set U = {p1, p2,…, pn}and the parameter set E = {e1, e2…,
em}, the redundant degree of parameter is defined by

g ¼ s

m
ð5Þ

Where m denotes the number of parameters and s
expresses the number of reduced parameter. Redundant
degree of parameter g represents the ratio of the number
of reduced parameter to all of parameter. Notice that the

Fig. 4 Correlation matrix for
Example 3.1

Table 14 Soft set for
case 1 U e1 e2 e3 e4 e5 e6

p1 1 0 1 0 1 1

p2 1 1 0 1 0 1

p3 0 0 1 1 1 1

p4 1 1 1 1 0 1

p5 1 0 1 1 0 0
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higher value of g means the higher efficiency of reduc-
tion and vice versa.

In case 1, there are six parameters, therefore, m = 6;
we can reduce the parameters{e1, e2, e4}by our method,
which means s = 3. As a result, g= s

m ¼ 3
6 =50%. For NPR,

NENPR, NPR-PSO and NPR-LP, there is no reduced
parameter, which means s = 0. Therefore, g = 0 by the
existing four methods.

2) Success rate

Definition 4.2 For soft set (F, E) including a set of the object
set U = {p1, p2,…, pn}and the parameter set E = {e1, e2…,
em}, the success rate of parameter reduction is defined by

d ¼ a

t
ð6Þ

Where t denotes the number of datasets expressed by
soft set and a expresses the number of datasets on which
we can find the parameter reduction results. Success rate
of parameter reduction d represents the probability of
finding parameter reduction on all of datasets. Notice
that the higher value of d means the higher success rate
of reduction and vice versa.

In case 1, there is one dataset, therefore, t = 1; we can find
the parameter reduction as {e3, e5, e6}by our method, which
means a = 1. As a result, d=at ¼ 1

1 =100%. For NPR, NENPR,
NPR-PSO and NPR-LP, we can not find the parameter reduc-

tion result, which means a = 0. Therefore, d = 0 by the existing
four methods.

From Table 15, it is easy to find that our algorithm is su-
perior to the four existing algorithms on case 1.

B. Case 2: Online hotels evaluation dataset

In order to verify our algorithm, we have collected data of
five-star hotels.

Among them, U = {p1, p2,…, p10,…p15, p16} repre-
sen t s 16 ho te l s such as “ JW Mar r io t t Hote l” ,
“Millennium Hotel”, “Royal Palace Hotel”, “Royal Juran
Hotel”,” Trade Hotel”, “Maya Hotel”, “Pacific Regency
Suite Hotel”, “Renaissance Hotel”, “Mandarin Oriental
Hotel”, “G Tower Hotel”, “Ritz Carlton Galaxy” ,
“Sunway Prince Hotel”, “Crown Plaza Pearl Hotel”,
“Hilton Hotel”, “Garden St. Giles Icon Hotel” and “Mi
Casa All-Suite Hotel”, respectively. E = {e1, e2, e3, e4, e5,
e6} indicates the parameters as diverse as “clean”, “com-
fortable”, “geographic location”, “service”, “staff quality”
and “cost-effective”. Customers want to choose the best
hotel among sixteen hotels. The collected dataset is
expressed by the model of soft set as shown in Table 16.
Before making decision, we should reduce the redundant
parameters.

(1) parameter reduction for Chi-Square Distribution

Step 1: Input the soft set as shown in Table 16;

Fig. 5 Correlationmatrix for case 1

Table 15 Comparison results on
case 1 algorithm parameter reduction Redundant degree of parameter success rate %

Our method {e3,e5,e6} 50% 100%

NPR no result 0 0

NENPR no result 0 0

NPR-PSO no result 0 0

NPR-LP no result 0 0
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Step 2: Calculating the correlation value between each pair
of parameters, the results are expressed in the form
of the matrix of Fig. 6;

Step 3: Assume that the confidence level is taken as
0.025, the corresponding rejection assumption
is about 5.024 under the degree of freedom as
1. Discovering the correlation between parame-
ter e1 and e2, e1 and e3, e1 and e6 are more than
5.024, then the parameter e1 or e2, e1 or e3, e1 or
e6can be reduced. After simplification, the pa-
rameter set {e1} or {e2, e3, e6} can be reduced.

Step 4: Finally, we get the new soft set for minimizing after
parameter reduction is {e3, e5, e6}.

(2) Parameter reduction by NPR, NENPR, NPR-PSO and
NPR-LP

It is pity that we can not find the parameter reduction result
by the methods of NPR, NENPR, NPR-PSO and NPR-LP on
case 2.

In case 2, there are six parameters, therefore, m = 6; we
can reduce the parameters {e1, e2, e4} by our method,
which means s = 3. As a result, g= s

m ¼ 3
6 =50%. For NPR,

NENPR, NPR-PSO and NPR-LP, there is no reduced pa-
rameter, which means s = 0. Therefore, g = 0 by the
existing four methods.

In case 2, there is one dataset, therefore, t = 1; we can find
the parameter reduction as {e3, e5, e6} by our method, which
means a = 1. As a result, d=at ¼ 1

1 =100%. For NPR, NENPR,
NPR-PSO and NPR-LP, we can not find the parameter reduc-
tion result, which means a = 0. Therefore, d = 0 by the existing
four methods.

The comparison results of the five algorithms on case 2 are
presented in Table 17. It is clear that our method outperforms
NPR, NENPR, NPR-PSO and NPR-LP.

C. The results of the experiment on thirty randomly gen-
erated datasets

Here, thirty soft-set datasets are randomly generated to
test our proposed method and four existing methods such
as NPR, NENPR, NPR-PSO and NPR-LP. The confi-
dence level is taken as 0.05, degree of freedom is 1,
and the corresponding the rejection hypothesis D is
3.843. As a result, we can discover the reduction results
on 22 datasets by our method. Meanwhile we can find
the reduction results on 2 datasets by NPR, NENPR,
NPR-PSO and NPR-LP. Therefore, the success rate of
our method is computed as 22/30 = 73.3%. Meanwhile
the success rates of NPR, NENPR, NPR-PSO and
NPR-LP are 2/30 = 6.7%, respectively. From Fig. 7 and
Table 18, our method is much better than NPR, NENPR,
NPR-PSO and NPR-LP about success rate of parameter
reduction and average redundant degree of parameter.
Compared with the four existing methods, the improve-
ment of average redundant degree of parameter of our

Table 16 Dataset for
case 2 U e1 e2 e3 e4 e5 e6

p1 1 1 1 1 0 0

p2 0 0 1 0 0 0

p3 0 0 1 0 1 0

p4 0 1 1 1 1 0

p5 0 1 0 0 1 0

p6 1 1 0 0 0 1

p7 0 1 1 0 1 0

p8 1 1 1 0 1 1

p9 1 1 0 1 0 0

p10 1 1 0 0 1 1

p11 0 0 1 0 1 0

p12 0 1 1 0 0 0

p13 1 1 0 1 0 0

p14 0 0 1 0 0 0

p15 1 1 0 0 1 0

p16 1 1 0 0 0 1

Fig. 6 Correlationmatrix for case 2

7970 A new parameter reduction algorithm for soft sets based on chi-square test



method on thirty datasets is up to 90.7%; success rate is
improved to 90.9%.

5 Conclusion

In this paper, we propose a new parameter reduction
method based on chi square distribution for the model
of soft set. The motivation of this idea is to improve the
success rate of finding reduction for the existing methods
such as NPR, NENPR, NPR-PSO and NPR-LP. Because
of the very low success rate and redundant degree of
parameter, the four existing methods are not practical in
the real-life applications. On two real cases, success rate
of our method is up to 100%, the redundant degree of
parameter is up to 50%, in contrast, success rate and
redundant degree of parameter of the four existing
methods are 0, respectively. The improvement of average
redundant degree of parameter of our method on thirty
random generated datasets is up to 90.7%; success rate is
improved to 90.9% compared with the four existing
methods. Finally, we can draw the conclusion that the
proposed method has much higher success rate, redun-

dant degree of parameter and then practicability com-
pared the existing four approaches.
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