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Abstract
In group decision support systems, it is important on how to process and manage individual decision information. In the
paper, a sequential model is proposed to manage individual judgements with additively reciprocal property over paired
alternatives. The process of realizing additive complementary pairwise comparisons (ACPCs) is captured. A real-time
feedback mechanism is constructed to address the irrational behavior of individuals. An optimization model is established
and solved by using the particle swarm optimization (PSO) algorithm, such that the consistency of individual judgements can
be improved fast yet effectively. For the aggregation of individual decision information in group decision making (GDM), the
weighted averaging operator is used. It is found that when all individual judgements are acceptably additively consistent, the
collective matrix is with acceptable additive consistency. Under the control of individual consistency degrees, the approach
of reaching consensus in GDM is further proposed. By comparing with some existing models, the observations reveal that
the sequential model of originating additive complementary pairwise comparisons possesses the ability to rationally manage
individual decision information.

Keywords Group decision making (GDM) · Additive complementary pairwise comparisons (ACPCs) · Sequential model ·
Particle swarm optimization (PSO) · Acceptable additive consistency · Consensus

1 Introduction

In decision support models and systems, the basic decision
information usually comes from the judgements of decision
makers (DMs) on alternatives [23]. For a finite set of
alternatives X = {x1, x2, · · · , xn}, it is convenient to
express the DMs’ opinions as a matrix such as multiplicative
reciprocal matrices (MRMs) [30], additive complementary
judgement matrices (ACJMs) or fuzzy preference relations
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(FPRs) [25, 33], linguistic preference relations (LPRs) [6,
10], intuitionistic fuzzy preference relations (IFPRs) [16,
44] and others [34, 40]. The derived preference relations
are always used as the basic tools for analyzing a decision
making problem and reaching a finial solution. Here we
mainly focus on the consensus model where ACJMs are
used to express individual decision information in a GDM
problem.

It is noted that an ACJM is originated by applying the
sense of fuzzy sets to the binary relations of alternatives [33,
54]. That is, when defining a mapping as follows:

R : X × X �→ [0, 1], (1)

and writing R(xi, xj ) = rij for i, j ∈ In = {1, 2, · · · , n},
a matrix R = (rij )n×n is determined. In general, it is
supposed that the additively reciprocal property is satisfied
with the relation of rij + rji = 1 (∀i, j ∈ In) [33].
Therefore, the matrix R(xi, xj ) = rij is called as an
ACJM to distinguish the concept of MRMs. One can see
that the decision support models based on ACJMs have
attracted a great deal of attention [8, 29, 47]. As shown in
the above mentioned works, a completed ACJM is always
used to make a decision analysis. It means that only when
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completing all pairwise comparisons of alternatives, the
obtained matrix is considered to be applicable. However, in
a practical case, the preference intensities rij (i, j ∈ In)

are given by using a sequential pairwise comparisons of
alternatives. For example, a comparison sequence could be
chosen as follows:

x1 ↔ x2, x1 ↔ x3, · · · ,

x1 ↔ xn, · · · , xn−1 ↔ xn. (2)

The preference intensity rij could be given by carefully
studying the relation of xi and xj . After repeated
comparisons, finally the DM could offer the values of the
preference intensities. It is seen that the comparison process
is complex and related to the knowledge, the experience,
and the psychology of DMs. When a completed ACJM is
used, the process of giving additive complementary pairwise
comparisons rij has been neglected. In order to capture the
complexity of a pairwise comparison process, it is worth
noting that a sequential model based on leading principal
submatrices of a reciprocal preference relation has been
proposed in [20, 21]. Based on the developed sequential
model [20, 21], the process of paired comparisons can be
simulated, then the evolutionary processes associated with
the inconsistency degrees of judgements and the priorities
of alternatives in pairwise comparisons can be captured.
Hence, the sequential model in [20, 21] has the advantages
that (i) the process of giving pairwise comparisons could be
described carefully; (ii) the irrational behavior of the DM
could be checked accurately; (iii) the DM could be reminded
timely to reconsider or modify her/his judgements. In the
present study, we follow the idea in [20, 21] to consider
the process of giving rij and propose a sequential model
of ACPCs. It is an attempt to manage individual decision
information with rationality and efficiency in a consensus
reaching process of GDM.

Moreover, it is seen that two important issues are worth
to be investigated in a GDM model with ACJMs. One is
the consistency of decision information and the other is
the process of building consensus. For the consistency of
ACJMs, additive and multiplicative consistency definitions
have been proposed in [33]. A functional consistency
definition of ACJMs has been further developed in [11]
by considering the relationship among entries. In addition,
one can find that a consistent matrix corresponds to an
ideal case and an inconsistent one is more common in a
practical situation [30]. Hence, the inconsistency degree
of an ACJM should be quantified and some indexes have
been proposed [12, 37, 46, 50]. In particular, it is noted
that the threshold of acceptable additive consistency for
ACJMs has been discussed in [50] by using the distance-
based method. When a comparison matrix is not acceptably
consistent, the method of improving consistency should
be proposed [42]. In order to improve the consistency of

an inconsistent ACJM, many methods have been proposed
[24, 37, 38, 41, 49]. For example, an iteration algorithm
was proposed in [24] to repair the consistency degree of
ACJMs by considering the distance to a consistent one. By
defining a deviation measure, an algorithm was proposed
in [37] to adjust an inconsistent ACJM to a new one with
acceptable consistency. The PSO algorithm was applied to
improve the consistency degree of ACJMs by equipping
a granularity level in [1]. The ordinal consistency and
multiplicative consistency of ACJMs were improved by
proposing an ordinal consistency index in [51]. It is seen
that the above-mentioned consistency improving methods
are usually based on a completed ACJM. Here since
a sequential model of additive complementary pairwise
comparisons is utilized, the consistency improving method
should be developed correspondingly.

On the other hand, for reaching the consensus in GDM
with ACJMs, a great number of models have been proposed
[12, 13, 33]. For instance, a feedback-mechanism-based
iteration algorithm has been reported in [3, 12], where the
process of improving the consensus level in GDM has been
controlled. The group decision support model in [37] was
based on the improvement of the consensus level of experts.
With the knowledge of Abelian linearly ordered group,
the generalized GDM consensus model has been addressed
in [41], where the consensus index was used. Cabrerizo
et al. [2] have introduced the concept of the information
granularity and the consensus in GDM was reached by
using the PSO algorithm. A consensus reaching process
with individual consistency control has been proposed by Li
et al. [15]. Liu et al. [22] have proposed a consensus model
for GDM with ACJMs based on the technique for order
preference by similarity to an ideal solution (TOPSIS). In
addition, the social network analysis and the prospect theory
have been introduced into the process of reaching consensus
[7, 35, 39, 56]. The trust measures in the recommender
systems were incorporated into the process of reaching
consensus in GDM [4, 36, 55]. In this study, we further
develop the method of reaching consensus in GDM with
ACJMs by using the sequential model of ACPCs.

For the purpose of achieving the above objectives, the
remaining parts of this paper is organized as follows.
Section 2 briefly recalls the definitions of ACJMs and
additive consistency index in [50]. A sequential model
of ACPCs is proposed by comparing the existing one.
In Section 3, a novel method of improving the additive
consistency of ACJMs is proposed according to the
developed sequential model. A novel optimization model is
constructed to adjust an inconsistent ACJM to a new one
with acceptable additive consistency. The PSO algorithm
is adopted to effectively solve the constructed optimization
model. It is found that the initial decision information
can be kept as much as possible. Section 4 addresses a
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new method of building consensus based on individual
consistency control in GDM. A feedback mechanism is
established to remind DMs avoiding the irrational and
illogical judgements. The novel finding is attributed to the
fact that when individual ACJMs are acceptably additively
consistent, the collective matrix is acceptably additively
consistent by using the weighted averaging operator.
Conclusions are covered in the last section.

2Modeling additive complementary
pairwise comparisons

Assume that there are a set of alternatives X =
{x1, x2, · · · , xn}, and the binary relation is defined as (1). If
the alternative xi is preferred to xj , the value of rij satisfies
0.5 < rij ≤ 1. If the alternative xj is preferred to xi, we
have 0 ≤ rij < 0.5. If the alternative xi is indifferent to xj ,

it gives rij = 0.5. Moreover, when the preference intensity
of xi over xj is given, it is considered that the preference
intensity of xj over xi is determined simultaneously. Then
the additively reciprocal property is satisfied with rij +rji =
1 [33]. In addition, one can see that the process of creating
the preference intensities rij (i, j ∈ In) means that of
pairwisely comparing the alternatives. By considering the
property of rij + rji = 1, we call the process of giving rij
(i, j ∈ In) as that of realizing ACPCs.

2.1 A completedmodel of ACPCs

When the ACPCs for all alternatives are completed, an
ACJM R = (rij )n×n is formed. In the known literature,
the completed ACJM is usually used as a basic tool for
decision analyzing and modelling [7, 12, 20, 33, 39]. For
convenience, the definition of an ACJM is given as follows:

Definition 1 [33] R = (rij )n×n is called an ACJM, where
rij ∈ [0, 1] and rij + rji = 1 for ∀i, j ∈ In.

Furthermore, the ideal case of ACPCs is to keep
the perfect consistency. That is, we have the following
definition:

Definition 2 [33] An ACJM R = (rij )n×n is additively
consistent if

rij = rik + rkj − 0.5, ∀i, j, k ∈ In. (3)

However, it is difficult to provide a consistent matrix R =
(rij )n×n due to the complexity of decision environments.
Hence, a consistency index is requisite to measure the
inconsistency degree of an ACJM [12, 37, 46, 50]. Here

we recall the additive consistency index (ACI) proposed in
[50] as follows:

Definition 3 [50] Let R = (rij )n×n be an ACJM.
The matrix R̄ = (r̄ij )n×n with additive consistency is
determined from R = (rij )n×n according to the following
relation:

r̄ij = 1

n

n∑

k=1

(rik + rkj ) − 0.5. (4)

The additive consistency index (ACI) of R is defined as
follows:

ACI (R) =

√√√√√
2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

(rij − r̄ij )2. (5)

Meanwhile, the threshold of ACI for an ACJM with
acceptable consistency is proposed as [50]

ACI = σ0

√
2

n(n − 1)
λα,

where λα is the critical value of the χ2 distribution under
the significance level α. The values of ACI for different n

are shown in Table 1 when setting α = 0.1 and σ0 = 0.2.
If ACI (R) ≤ ACI, the matrix R is considered to be with
acceptable additive consistency; otherwise, the matrix R is
not acceptably additively consistent.

2.2 A sequential model of ACPCs

It is seen that the completed model of ACPCs offers a
final ACJM R = (rij )n×n. The other information of
comparing alternatives has been neglected. The complex
decision behavior of DMs in producing rij (i, j ∈ In) has
been packaged as an unknown whole. With the requirement
of intensively managing individual decision information,
the packaged unknown behavior of DMs is worth to be
unpacked. It is seen that a sequential model of pairwise
comparison process within the framework of AHP has been
proposed in [20, 21]. Here we follow the idea in [20, 21] to
offer a sequential model of ACPCs and simulate the process
of comparing alternatives. That is, the process of ACPCs is
based on the following steps:

(1) The first alternative marked as x1 is offered to DMs to
give the preference intensity r11 = 0.5; and the matrix is
obtained as

Hereafter the symbol C stands for the criterion of DMs.
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Table 1 The values of ACI for different n when α = 0.1 and σ0 = 0.2 [50]

n 3 4 5 6 7 8 9

ACI 0.0882 0.1212 0.1359 0.1530 0.1588 0.1645 0.1688

(2) The second alternative x2 is considered to produce r12

and r22 = 0.5. According to the additively reciprocal
property r21 = 1 − r12, the matrix is determined as

(3) The alternatives x3, x4, · · · , xn are used to form a
series of matrices written as R3, R4, · · · , and Rn.

When the full process of ACPCs is completed, the final
matrix Rn is expressed as:

In the above process, an ACJM R = (rij )n×n

is decomposed as the leading principal submatrices
R1, R2, · · · , Rn. Moreover, the process of R1 → R2 →
· · · → Rn contains a great deal of individual decision
information. Some possible meanings according to the
sequential model are given as follows:

• The values of rij (i, j ∈ In) could be with some
uncertainty such as fuzzy numbers and a possibility
distribution. Some other properties could be offered to
the term rij (i, j ∈ In) such as the times of modifying
its values for DMs.

• The preference intensities rij (i, j ∈ In) could
be provided by DMs under repetitive thought and
modification.

• The relationship between two adjacent submatrices Ri

and Ri+1 could reflect the logic of decision information
for i = 1, 2, · · · , n − 1.

• The complex decision behavior of DMs could exhibit
due to the complexity of decision environments.

In general, the sequential model of individual decision
information can be used to record the full decision behavior
of DMs in a decision support system. The typical model
with a completed matrix could be improved to possess the
ability of characterizing the complex decision behavior of
DMs.

3 An implication of sequential additive
complementary pairwise comparisons

In the following, the sequential model of ACPCs is used to
propose a novel method of improving additive consistency
of inconsistent ACJMs, which can be considered as its
implication to the reasonability of individual judgements.

3.1 The relationship between two adjacent
submatrices

It is seen that the consistency is one of the important
properties of a preference relation. By considering the
additive consistency of two adjacent submatrices, we obtain
the following result:

Theorem 1 Suppose that R1, R2, · · · , and Rn are the
leading principal submatrices of an ACJM R = (rij )n×n.
When Rk (k = 2, · · · , n) is additively consistent, Rt (1 ≤
t < k) is additively consistent.

Proof Let the matrix Rk be additively consistent. Based on
the relation (3), one has rij = ris − rsj + 0.5 (i, j, s =
1, 2, · · · , k). When i, j, s ≤ k, the relation (3) still holds,
implying that Rt is additively consistent. The proof is
completed.

According to Theorem 1, the inconsistency of Rk leads
to the inconsistency of Rs (s > k). Although the additive
consistency of Rk means the additive consistency of Rt

(t < k), the additive consistency of Rk does not imply the
additive consistency of Rs (s > k). Moreover, it is noted
that the additive consistency of ACJMs is only the ideal case
and acceptable additive consistency is more applicable in
a practical decision problem. However, acceptable additive
consistency of Rk and Rk+1 does not exhibit a logical
relationship analogous to the observation in Theorem 1. For
example, we consider the following ACJM:

R̄1 =

⎛

⎜⎜⎝

0.5 0.3 0.2 0.3
0.7 0.5 0.1 0.4
0.8 0.9 0.5 0.9
0.7 0.6 0.1 0.5

⎞

⎟⎟⎠ .

It can be computed that ACI (R̄1) = 0.0913 < 0.1212. For
the leading principal submatrix:
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R̄2 =
⎛

⎝
0.5 0.3 0.2
0.7 0.5 0.1
0.8 0.9 0.5

⎞

⎠ ,

we obtain ACI (R̄2) = 0.1 > 0.0882. Obviously, according
to the criterion in Table 1 [50], the matrix R̄1 is of acceptable
additive consistency and R̄2 is not of acceptable additive
consistency. The above observation is in agreement with
the finding in [20] for the leading principal submatrices of
MRMs. Moreover, similar to the method in [20], the first
implication of the sequential model is to give an additive
consistency improving method for inconsistent ACJMs.
There are the following two situations:

• When Rk is with acceptable additive consistency and
Rk+1 is not acceptably additively consistent, the entries
of ri(k+1) (i = 1, 2, · · · , k) are only adjusted to obtain
a new Rk+1 with acceptable additive consistency.

• When Rk and Rk+1 are all not acceptably additively
consistent, we can obtain a new Rk+1 with acceptable
additive consistency by adjusting partial entries of Rk+1

such as ri(k+1) (i = 1, 2, · · · , k) and others belonging
to Rk .

It is obvious that the second situation is more generic
than the first one. As an example, we consider the following
matrix:

R̄3 =

⎛

⎜⎜⎝

0.50 0.30 0.40 0.60
0.70 0.50 0.20 0.60
0.60 0.80 0.50 0.30
0.40 0.40 0.70 0.50

⎞

⎟⎟⎠ ,

and its submatrix:

R̄4 =
⎛

⎝
0.5 0.3 0.4
0.7 0.5 0.2
0.6 0.8 0.5

⎞

⎠ .

The values of additive consistency index can be computed as
ACI (R̄3) = 0.1732 > 0.1212 and ACI (R̄4) = 0.1333 >

0.0882, respectively. By adjusting the entries r14 = 0.60,
r24 = 0.60 and r43 = 0.70, it follows

R̄5 =

⎛

⎜⎜⎝

0.5000 0.3000 0.4000 0.5000
0.7000 0.5000 0.2000 0.5219
0.6000 0.8000 0.5000 0.4500
0.5000 0.4781 0.5500 0.5000

⎞

⎟⎟⎠ ,

with ACI (R̄5) = 0.1212 ≤ 0.1212. In addition, when
adjusting the entries in R̄4, we have

R̄6 =

⎛

⎜⎜⎝

0.5000 0.4468 0.4469 0.6000
0.5532 0.5000 0.3500 0.6000
0.5531 0.6500 0.5000 0.3000
0.4000 0.4000 0.7000 0.5000

⎞

⎟⎟⎠ ,

with ACI (R̄6) = 0.1212 ≤ 0.1212. The method of
improving the additive consistency of inconsistent ACJMs
will be used to propose a group decision support model,

where the feedback mechanism will be constructed from the
additive consistency of individual decision information to
the consensus reaching in GDM.

3.2 Amethod of improving additive consistency

In order to adjust an inconsistent ACJM to a new one
with acceptable additive consistency, a feasible approach
should be proposed. By considering the convenience and
high efficiency of decision support systems, it is suitable
to ask DMs to give as little information as possible
when improving the consistency of decision information.
Following the idea in [1, 21], the DM only need to offer
a flexibility degree such that the consistency degree of
ACJMs can be improved. For the purpose of achieving a
fast yet effective adjustment, we construct an algorithm
similar to that in [21]. There are two important situations
to be considered. One is the standard of acceptable ACJMs,
and the other is to keep the initial information as much as
possible. Hence, the first function is written as:

Q1 = ACI (R̄), (6)

where R̄ stands for the adjusted ACJM. The less the value
of Q1 is, the higher the additive consistency degree of the
matrix R̄. As shown in Table 1, the standard of acceptable
ACJMs can be used. The second function is defined as:

Q2 =
n∑

i,j=1;i �=j

|rij − r̄ij |
n2 − n

. (7)

where r̄ij belongs to R̄ = (r̄ij )n×n. Obviously, the less the
value of Q2 is, the more the initial decision information is
kept.

From the viewpoint of optimization, it seems that one
should minimize simultaneously the values of Q1 and Q2.
The simplest method is to address the following linear
combination [18, 19, 21]:

Q = pQ1 + qQ2, (8)

where p and q are two nonnegative constants. When p = 0
or q = 0, then we have Q = qQ2 or Q = pQ1,

meaning that only one of the two situations is considered.
However, for a GDM problem, it is unnecessary to require
individual decision information to be perfectly consistent.
It is sufficient to make individual decision information
be acceptable additive consistency. Hence, by considering
the threshold of acceptable additive consistency, here we
construct the following optimization problem:

min
R̄

Q2 (9)

subject to the following condition:

Q1 = ACI . (10)
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On the other hand, the attitude of DMs towards the
adjustment of ACJMs should be considered. Similar to those
in [2, 21, 27], the flexibility degree β of DMs is equipped.
The other constraint conditions are given as follows [22]:

Case I:r̄ij ∈ [
max

(
0.5, rij − β

)
, min

(
1, rij + β

)]
, (11)

for 0.5 ≤ rij ≤ 1, and

Case II:r̄ij ∈ [
max

(
0, rij − β), min(0.5, rij + β

)]
, (12)

for 0 ≤ rij ≤ 0.5. According to the additively reciprocal
property of R̄, it is sufficient to consider one of Cases I and
II. In order to solve the optimization problem (9) subject
to (10) and (11)/(12), The penalty function method [32] is
applied to rewrite the optimization problem as

min
R̄

Qc = Q2 + M
∣∣Q1 − ACI

∣∣ , (13)

where M is a sufficiently large positive number. For
numerically computations, Case I is chosen and the PSO
algorithm [14, 28, 31] is performed to solve the nonlinear
optimization problem (13). Moreover, it is noted that
there are many methods to solve an optimization problem,
for example, the typical mathematical analysis and the
metaheuristic methods [5, 32]. In the present study, we
are motivated by the successful applications of the PSO
algorithm to various nonlinear optimization problems [27,
28, 55]. The PSO algorithm is still chosen to obtain the
optimal solution of the constructed one (13). The numerical
results in the next subsection reveal that the PSO algorithm
is effective in solving (13). In particular, we should point out
that the value of M is chosen in advance when performing
the PSO algorithm. The effects of the values of M on the
optimal solution have been investigated in the following
numerical computations.

In what follows, combining the sequential model of
ACPCs and the optimization model (13), we elaborate
on a new algorithm (Algorithm I) to improve additive
consistency of inconsistent ACJMs.

Step 1: Consider an ACJM R = (rij )n×n without
acceptable additive consistency and write the submatrix
Rn−1.

Step 2: Check the acceptable additive consistency of
Rn−1. When Rn−1 is acceptably additively consistent,
the entries rkn (k = 1, 2, · · · , n − 1) are chosen to
be adjusted. When Rn−1 is not acceptably additively
consistent, the entries in Rn−1 are chosen to be adjusted.

Step 3: Construct the optimization problem (13) by
considering (11) with the flexibility degree β.

Step 4: Run the PSO algorithm to solve the constructed
optimization problem.

Step 5: Obtain an ACJM with acceptable additive consis-
tency.

The above algorithm can be used to derive an ACJM
with acceptable additive consistency by keeping the initial
decision information as much as possible. Except for the
given ACJM, the DM only needs to provide the value of
the flexibility degree β. The adjustment process can be
completed with a fast yet effective way. Based on the above
algorithm, we have the following result:

Theorem 2 Under Algorithm I, there is a flexibility degree
β such that a matrix with acceptable additive consistency
can be obtained from an inconsistent ACJM R = (rij )n×n

by keeping the initial information as much as possible.

Proof According to (4), one can obtain a matrix with
additive consistency from any an ACJM R = (rij )n×n.
Acceptable additive consistency is a deviation from additive
consistency. Hence, there is a flexibility degree β such that
a matrix with acceptable additive consistency is determined
by using an inconsistent ACJM R = (rij )n×n. Moreover,
the optimization model (13) and the PSO algorithm mean
that the obtained matrix can keep the initial information as
much as possible.

3.3 Numerical examples and discussion

Now let us carry out some numerical computations for
verifying the algorithm to improve additive consistency
of ACJMs. The effects of the parameters β and M on
the optimal solutions of Qc and Q1 are investigated
respectively. For example, an inconsistent ACJM is given as
follows [37]:

R̄7 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.20 0.10 0.50 0.80 0.90
0.80 0.50 0.20 0.90 0.60 1.00
0.90 0.80 0.50 0.80 0.60 0.60
0.50 0.10 0.20 0.50 1.00 0.80
0.20 0.40 0.40 0.00 0.50 0.40
0.10 0.00 0.40 0.20 0.60 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Based on the standard of acceptable additive consistency in
Table 1, it is easily found that the 5 × 5 and 6 × 6 leading
principle matrices are unacceptably consistent. According
to the above proposed algorithm, there are the following two
approaches to the additive consistency improvement of R̄7 :

(a) Adjusting the entries of the 5 × 5 leading principle
matrix;

(b) Modifying the entries in the fifth and the sixth columns
and rows of R̄7.

Moreover, we consider all the entries bigger than 0.5
and the additively reciprocal property. The relation (11)
is used when running the PSO algorithm to solve the
optimization problem (13). The sizes of swarm and the
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maximal generation number are chosen as 100. Under each
step of β, the optimal solution of Qc is determined for a
fixed parameter M .

Figure 1 is drawn to show the variations of the optimal
solution of Qc versus β for the selected values of the
parameter M under the cases of (a) and (b), respectively. It
is seen from Fig. 1 that with the increasing of β, the values
of the optimal solution of Qc are decreasing, then tending
to a stable one for any parameter M . This means that for
a sufficiently large value of β, the inconsistent matrix R̄7

can be adjusted to a new one with Q1 = ACI . For a small
value of β satisfying Q1 > ACI, the parameter M has great
influences on the value of Qc. In addition, the variations of
Q1 versus M are shown in Fig. 2 for the selected values
of β under the cases of (a) and (b), respectively. With the

Fig. 1 Variations of the optimal solution of Qc versus β for the
selected values of the parameter M under the cases of (a) and (b),
respectively

Fig. 2 Variations of Q1 versus M for the selected values of β under
the cases of (a) and (b), respectively

increasing of the values of M, the values of Q1 are tending
a constant for a fixed β, meaning that a sufficiently lager
value of M can be determined to obtain the optimal value of
Q1. Comparisons between the cases of (a) and (b) in Figs. 1
and 2 show that the two approaches exhibit the similar
effects on adjusting an inconsistent matrix to an acceptable
one.

On the other hand, it is noted that many other methods
have been proposed to improve the additive consistency
of ACJMs [24, 37, 38, 41, 46–48, 50, 51]. One of the
important issues is how to determine the effectiveness of
the consistency improving method. Here, the departure of
the original matrix R = (rij )n×n from the modified one
R̄ = (r̄ij )n×n is measured by the following criteria [42]:

Cr1: δ = max
i,j

{∣∣rij − r̄ij
∣∣} , (14)
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Cr2: σ =
√∑n

i=1
∑n

j=1

(
rij − r̄ij

)2

n
. (15)

The determined matrix is considered to be acceptable when
δ < 0.2 and σ < 0.1. As shown in Figs. 1 and 2, it is feasible
to obtain an acceptably consistent matrix by choosing β =
0.1 and M = 10 to run the PSO algorithm under the cases
of (a) and (b), respectively. Figure 3 is depicted to show
the variations of Qc versus the generation number under
the cases of (a) and (b), respectively. One can see from
Fig. 3 that with the increasing of the generation number,
the values of Qc drop down to a stable one. This implies
that the optimal solution of Qc is determined by choosing
a sufficiently large generation number. For example, when
the generation number is 100, the adjusted matrices with
additively acceptable consistency can be written as

R̄8 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.2870 0.0244 0.5870 0.7213 0.9000
0.7130 0.5000 0.1348 0.8601 0.6072 1.0000
0.9756 0.8652 0.5000 0.7325 0.5957 0.6000
0.4130 0.1399 0.2675 0.5000 0.9901 0.8000
0.2787 0.3928 0.4043 0.0099 0.5000 0.4000
0.1000 0.0000 0.4000 0.2000 0.6000 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠

for Case (a) and

R̄9 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.2000 0.1000 0.5000 0.7884 0.9497
0.8000 0.5000 0.2000 0.9000 0.5918 0.9370
0.9000 0.8000 0.5000 0.8000 0.5818 0.5905
0.5000 0.1000 0.2000 0.5000 0.9616 0.7239
0.2116 0.4082 0.4182 0.0384 0.5000 0.3218
0.0503 0.0630 0.4095 0.2761 0.6782 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠

for Case (b). It is easy to compute that δ(R̄8) = 0.0870,

σ (R̄8) = 0.0457, δ(R̄9) = 0.0761, and σ(R̄9) = 0.0308.
The obtained results satisfy the criteria δ < 0.2 and σ <

0.1, meaning that the consistency improving method is
effective and convincing.

4 A novel group decision support model
with a feedbackmechanism

The aim of the sequential model of ACPCs is to
finely managing individual decision information. A real-
time feedback mechanism can be established to remind
DMs avoiding the irrational and illogical behavior. Then
a consensus reaching process in GDM is proposed
by controlling individual consistency level of decision
information.

Fig. 3 Variations of the fitness function Qc versus the generation
number with β = 0.1 and M = 10 under the cases of (a) and (b),
respectively

4.1 A real-time feedbackmechanism of individual
decision information

Let us assume that there are a set of alternatives
X = {x1, x2, · · · , xn} and a group of experts E =
{e1, e2, · · · , em} in a GDM problem. The process of
providing DMs’ opinions can be recorded in real time.
Based on the sequential model of ACPCs, the expert ek

gives a series of ACJMs as R
(k)
s = (r

(k)
ij )s×s for s ∈ In

and k ∈ Im = {1, 2, · · · , m}. The decision behavior of the
expert ek can be captured by the process of providing R

(k)
s .

Moreover, we compute the priorities of alternatives by using
R

(k)
s = (r

(k)
ij )s×s and the simple formula in [9] is used for xi

with

ω
(k)
i = 2

s

s∑

j=1

r
(k)
ij . (16)
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Then the corresponding priority vector is ω(k) =
(ω

(k)
1 , ω

(k)
2 , · · · , ω

(k)
s ) and it is normalized into [0, 1], then

s∑
i=1

ω
(k)
i = 1. In the following, the real-time feedback mech-

anism is established by offering two reference quantities to
DMs. One is the values of additive consistency index and
the other is the ranking of the compared alternatives. The
algorithm of the real-time feedback mechanism is shown in
Fig. 4 and elaborated on as follows:

Step 1: The expert ek is asked to input her/his opinions
on a series of alternatives x1 → x2 → · · · → xn in a
decision support system.

Step 2: When the matrix R
(k)
s is completed, the values of

additive consistency index of R
(k)
t (1 ≤ t ≤ s) and the

rankings of alternatives are output by using a figure.
Step 3: The values of additive consistency index and the

rankings of the compared alternatives can remind the DM
revise her/his opinions.

Step 4: When the DM offers a flexibility degree β, the
adjustment procedure of improving the consistency starts
automatically.

Step 5: When the DM does not want to adjust her/his
judgements, the final matrix is originated.

Fig. 4 Real-time feedback mechanism of individual decision
information

Remark 1 The feedback mechanism is based on the
sequential model of ACPCs. The value of the additive
consistency index and the ranking of alternatives can be
offered with the process of giving the preference intensities
of alternatives. The DMs can be reminded in real time such
that their final opinions are rational enough.

The advantage of the feedback mechanism lies in the
reminding for DMs in real time such that the complexity of
decision process can be decomposed and captured. As an
example, we investigate the following final matrix:

The leading principal submatrices of R̄10 are analyzed
and the priority process of alternatives is illustrated. For
convenience, the normalized priority vector of alternatives is
determined according to (16) in the following computations.
By considering the comparison process of x1 → x2 →
· · · → xn, The leading principal submatrices of R̄10 are
written as Ri(i = 1, 2, · · · , 5), where

It is easy to compute that ACI (R4) = 0.1429 > 0.1212
and ACI (R5) = 0.1440 > 0.1359, meaning that R4 and
R5 are of unacceptable additive consistency. In addition, one
can see that the ranking of x2 	 x4 	 x1 	 x3 for R4 is
changed to x2 	 x4 	 x3 	 x5 	 x1 for R5. The order of
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x3 and x1 has been changed due to the introduction of x5.
The information related to the additive consistency index
and the ranking of alternatives can be feedback to the DM.
When the DM wants to modify the judgements such that
the derived matrix is of acceptably additive consistency, two
approaches are provided. One is to adjust the entries in the
fourth and fifth columns and rows of R̄10, then the modified
matrix R̄11 is obtained as follows:

with ACI (R̄11) = 0.1359. The ranking of alternatives is
determined as x2 	 x4 	 x3 	 x5 	 x1. The other is to
modify the entries in the 4 × 4 leading principle matrix of
R̄10. The new matrix R̄12 is given as follows:

with ACI (R̄12) = 0.1359. The ranking of alternatives is
obtained x2 	 x4 	 x3 	 x5 	 x1. Then following the idea
in [20], the priority processes of alternatives for R̄11 and R̄12

are drawn in Fig. 5. Regardless of R̄11 and R̄12, there is an
intersection point of the lines for x1 and x3. This implies
that the standard of acceptable additive consistency cannot
eliminate the phenomenon of rank reversal. The finding is
similar to the result about the acceptable consistency of
pairwise comparison matrices in the AHP [20].

Furthermore, when the DM wants to avoid the occurrence
of the rank reversal phenomenon, the standard of weak
transitivity should be used [24]. For example, applying the
method in [24], R̄11 and R̄12 are readjusted to R̄13 and R̄14

with transitivity as follows:

One can compute that ACI (R̄13) = ACI (R̄14) =
0.0408 < 0.1359, meaning the two matrices are of
acceptable additive consistency. Figure 6 shows that the
priority processes of alternatives for R̄13 and R̄14. It is seen
from Fig. 6 that there is not any intersection point, meaning
that the phenomenon of rank reversal does not occur.

Fig. 5 The priority processes of alternatives for R̄11 (a) and R̄12 (b)

In the proposed feedback mechanism, the values of
additively consistency index and the priority processes are
offered such that the DMs can adjust their opinions in real
times.

4.2 Building consensus based on individual
consistency control

Based on the feedback mechanism, the final matrices can be
considered as the optimal results derived from a sequence of
rational comparisons of DMs. The remaining issue is how
to build the consensus among the experts and reach the final
solution. It is assumed that the collective matrix is obtained
by using the weighted averaging operator [37, 51]. That is,
let R(k) = (r

(k)
ij )n×n be the kth ACJM provided by the expert

ek and λk ∈ [0, 1] be the corresponding weight for k ∈ Im.
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Fig. 6 The priority processes of alternatives for R̄13 (a) and R̄14 (b)

Then the collective ACJM Rc is determined as:

Rc = (rc
ij )n×n =

m∑

t=1

λtR
(t), (17)

where

rc
ij =

m∑

t=1

λt r
(t)
ij ,

m∑

t=1

λt = 1.

In addition, by considering the acceptable additive consis-
tency of R(k) (k ∈ Im), we have the following result:

Theorem 3 When individual ACJMsR(k) (k ∈ Im) are with
acceptable additive consistency satisfying

ACI (R(k)) ≤ ACI,

the collective one Rc exhibits acceptable additive consis-
tency.

Proof With the knowledge (5) and (17), we have the
following equality:

ACI (Rc) =

√√√√√
2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

(
rc
ij − r̄c

ij

)2
, (18)

where

r̄ c
ij = 1

n

n∑

k=1

(rc
ik + rc

kj ) − 0.5.

Then, it is computed that

(rc
ij − r̄c

ij )
2 =

[
rc
ij − 1

n

n∑

k=1

(rc
ik + rc

kj ) + 0.5

]2

=
[

m∑

t=1

λt r
(t)
ij − 1

n

n∑

k=1

(
m∑

t=1

λt r
(t)
ik +

m∑

t=1

λt r
(t)
kj

)
+ 0.5

]2

=
[

m∑

t=1

λt

(
r
(t)
ij − 1

n

n∑

k=1

(
r
(t)
ik + r

(t)
kj

)
+ 0.5

)]2

=
[

m∑

t=1

λt

(
r
(t)
ij − r̄

(t)
ij

)]2

≤
m∑

t=1

λt

(
r
(t)
ij − r̄

(t)
ij

)2
, (19)

where the relation 2ab ≤ a2 + b2 and the equality∑m
t=1 λt = 1 have been used. Therefore, one has

ACI (Rc) ≤

√√√√√
m∑

t=1

λt

2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

(
r
(t)
ij − r̄

(t)
ij

)2

≤
√√√√

m∑

t=1

λtACI
2

= ACI .

This means that the matrix Rc is acceptably additively
consistent and the proof is completed.

The observation in Theorem 3 shows that when the
consistency levels of individual matrices are controlled to
be acceptable, the collective matrix is also with acceptable
additive consistency. It is worth noting that the similar
result to Theorem 3 has been observed by Xu [43] for
the aggregation of MRMs using the geometric averaging
operator. Here we use the additive consistency index of
ACJMs in [51] to develop the interesting result. Moreover,
it is seen that the aggregation operators have been developed
widely to aggregate individual decision information [12,
43, 52, 53]. When the induced ordered weighted averaging
operator is used to aggregate R(k) (k ∈ Im), the similar
result as Theorem 3 can be obtained. The detail procedure
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has been neglected due to the straight extension of the
finding in Theorem 3.

In what follows, similar to the existing works [37, 51], we
define the consensus level (CL) by using the distance-based
method as follows:

CL(R(k)) =
n∑

i,j=1;i �=j

|rc
ij − r

(k)
ij |

n2 − n
, (20)

where Rc = (r
(c)
ij )n×n and R(k) = (r

(k)
ij )n×n represent

the collective and individual matrices, respectively. When
CL(R(k)) = 0, there is the greatest consensus between
R(k) and Rc. With the increasing of the values of CL, the
consensus level is decreasing. In addition, a threshold of the
consensus level can be set such as CL. When the consensus
level CL(R(k)) is bigger than CL, the adjustment formula
is suggested as follows [37]:

R̄(k) = γR(k) + (1 − γ )Rc, γ ∈ [0, 1]. (21)

When γ = 0, one has R̄(k) = Rc; when γ = 1, it gives
R̄(k) = R(k). In other words, when the value of γ is changed
from 1 to 0, the new matrix R̄(k) approaches to Rc. Hence,
there is a value of γ such that the consensus level of R̄(k) is
smaller than CL. Furthermore, we have the following result:

Theorem 4 If the matrices Rk and Rc are with acceptable
additive consistency, R̄k determined by (21) is acceptably
additively consistent.

Proof The proof can be obtained by assuming λ1 = γ and
λ2 = 1 − γ in Theorem 3.

At the end, it is convenient to show the consensus
reaching process in Fig. 7. Except for the method of
improving additive consistency of individual matrices, the
key step is the consensus reaching process. Under the
control of acceptable additive consistency, the final matrices
are all with acceptable additive consistency and acceptable
consensus level.

4.3 Case studies and comparison

In this subsection, let us carry out two examples to illustrate
the consensus model and compare with the other methods.

Example 1 It is supposed that there are four alternatives
{x1, x2, x3, x4}. Four experts with the same weights ωi =
0.25 (i = 1, 2, 3, 4) evaluate their opinions as the following
ACJMs [3, 15, 37]:

R(1) =

⎛

⎜⎜⎝

0.50 0.20 0.60 0.40
0.80 0.50 0.90 0.70
0.40 0.10 0.50 0.30
0.60 0.30 0.70 0.50

⎞

⎟⎟⎠ , R(2) =

⎛

⎜⎜⎝

0.50 0.70 0.90 0.50
0.30 0.50 0.60 0.70
0.10 0.40 0.50 0.80
0.50 0.30 0.20 0.50

⎞

⎟⎟⎠ ,

Fig. 7 Building consensus with individual consistency control

R(3) =

⎛

⎜⎜⎝

0.50 0.30 0.50 0.70
0.70 0.50 0.10 0.30
0.50 0.90 0.50 0.25
0.30 0.70 0.75 0.50

⎞

⎟⎟⎠ , R(4) =

⎛

⎜⎜⎝

0.50 0.25 0.15 0.65
0.75 0.50 0.60 0.80
0.85 0.40 0.50 0.50
0.35 0.20 0.50 0.50

⎞

⎟⎟⎠ .

It is easy to compute that ACI (R(1)) = 0, ACI (R(2)) =
0.1707, ACI (R(3)) = 0.2165, and ACI (R(4)) = 0.1190.
Considering the threshold ACI = 0.1212, one can see
that the matrices R(2) and R(3) should be revised to those
with acceptable additive consistency. Based on the proposed
group decision support model, the following steps should be
completed.

In the first step, we improve the consistency levels of
R(2) and R(3) by using the proposed method for improving
additive consistency. The revised matrices of R(2) and R(3)

are given as follows:

R(2)
r =

⎛

⎜⎜⎝

0.5000 0.7000 0.9000 0.6000
0.3000 0.5000 0.6000 0.6792
0.1000 0.4000 0.5000 0.7000
0.5000 0.3208 0.3000 0.5000

⎞

⎟⎟⎠ ,

R(3)
r =

⎛

⎜⎜⎝

0.5000 0.3000 0.5000 0.5200
0.7000 0.5000 0.2800 0.3378
0.5000 0.7200 0.5000 0.4178
0.4800 0.6622 0.5822 0.5000

⎞

⎟⎟⎠ .

Using R(1), R
(2)
r , R

(3)
r and R(4), the collective ACJM Rc is

obtained by considering (17) and λi = 0.25 (i = 1, 2, 3, 4)

as follows:
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Rc =

⎛

⎜⎜⎝

0.5000 0.3837 0.5544 0.5495
0.6163 0.5000 0.5669 0.6154
0.4456 0.4331 0.5000 0.4945
0.4505 0.3846 0.5055 0.5000

⎞

⎟⎟⎠ .

According to (20), the consensus levels are computed as
CL(R(1)) = 0.1101, CL(R

(2)
r ) = 0.1691, CL(R

(3)
r ) =

0.1348 and CL(R(4)) = 0.1130.
Second, the threshold of the consensus level should be

set such as CL = 0.1. Then, the matrices R(1), R
(2)
r , R

(3)
r

and R(4) should be modified by using the formula (21).
For example, by choosing γ1 = 0.9050, γ2 = 0.5900,

γ3 = 0.7400 and γ4 = 0.8850, we have

R
(1)
1 =

⎛

⎜⎜⎝

0.5000 0.2704 0.5745 0.4619
0.7296 0.5000 0.7678 0.6743
0.4255 0.2322 0.5000 0.3774
0.5381 0.3257 0.6226 0.5000

⎞

⎟⎟⎠ ,

R
(2)
1 =

⎛

⎜⎜⎝

0.5000 0.5703 0.7583 0.5793
0.4297 0.5000 0.5864 0.6530
0.2417 0.4136 0.5000 0.6157
0.4207 0.3470 0.3843 0.5000

⎞

⎟⎟⎠ ,

R
(3)
1 =

⎛

⎜⎜⎝

0.5000 0.3218 0.5141 0.5277
0.6782 0.5000 0.3546 0.4100
0.4859 0.6454 0.5000 0.4377
0.4723 0.5900 0.5623 0.5000

⎞

⎟⎟⎠ ,

R
(4)
1 =

⎛

⎜⎜⎝

0.5000 0.2887 0.2771 0.6166
0.7113 0.5000 0.5951 0.7469
0.7229 0.4049 0.5000 0.4952
0.3834 0.2531 0.5048 0.5000

⎞

⎟⎟⎠ .

It is computed that CL(R
(1)
1 ) = 0.0997, CL(R

(2)
1 ) =

0.0998, CL(R
(3)
1 ) = 0.0998 and CL(R

(4)
1 ) = 0.1. Then,

the collective matrix Rc
1 can be determined as follows:

Rc
1 =

⎛

⎜⎜⎝

0.5000 0.3628 0.5310 0.5464
0.6372 0.5000 0.5760 0.6210
0.4690 0.4240 0.5000 0.4815
0.4536 0.3790 0.5185 0.5000

⎞

⎟⎟⎠ .

In what follows, the consensus levels are recomputed as
CL(R

(1)
1 ) = 0.0949, CL(R

(2)
1 ) = 0.1074, CL(R

(3)
1 ) =

0.0921 and CL(R
(4)
1 ) = 0.0928. One can see that the matrix

R
(2)
1 should be adjusted. After some computations, it gives

R
(2)
2 =

⎛

⎜⎜⎝

0.5000 0.5509 0.7370 0.5762
0.4491 0.5000 0.5855 0.6501
0.2630 0.4145 0.5000 0.6032
0.4238 0.3499 0.3968 0.5000

⎞

⎟⎟⎠ .

Then the collective matrix Rc
2 is determined as follows:

Rc
2 =

⎛

⎜⎜⎝

0.5000 0.3579 0.5257 0.5456
0.6421 0.5000 0.5757 0.6203
0.4743 0.4243 0.5000 0.4784
0.4544 0.3797 0.5216 0.5000

⎞

⎟⎟⎠ .

Finally, it is seen that all the consensus levels are determined
and smaller than the threshold. The consensus reaching
process is completed. Applying (16), one has ω1 = 0.2411,

ω2 = 0.2923, ω3 = 0.2346, and ω4 = 0.2320. So the
ranking of alternatives is x2 	 x1 	 x3 	 x4.

In order to make a comparison, some results are given
in Table 2 by using the existing methods. It is seen from
Table 2 that the optimal solution x2 is in accordance with
the findings in [3, 15, 37]. Moreover, the ranking x2 	 x1 	
x4 	 x3 is in agreement with that in [37]. There exists a
small difference for the ranking of x3 and x4 as compared to
the results in [3, 15], which is attributed to the application
of different consensus reaching processes.

Example 2 It is seen that the proposed consensus model
has been verified in Example 1. We further notice that an
application to a practical case should be considered [17,
26, 37, 45]. Now let us investigate the practical problem
about how to evaluate and select suitable locations for
a shopping center in Istanbul, Turkey [26, 37, 45]. It is
noted that the growth in population yields the spending
demand in Istanbul [26]. This means that attractive shopping
centers are requisite to match the requirements of people.
An investor company wants to locate an appropriate
shopping center by establishing strategies. Five experts
are invited to provide decision information to evaluate six
feasible locations xi(i = 1, 2, · · · , 6) [26]. By carefully
comparing the six locations in pairs, the ACJMs are given as
follows:

G(1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.40 0.20 0.60 0.70 0.60
0.60 0.50 0.40 0.60 0.90 0.70
0.80 0.60 0.50 0.60 0.80 1.00
0.40 0.40 0.40 0.50 0.70 0.60
0.30 0.10 0.20 0.30 0.50 0.30
0.40 0.30 0.00 0.40 0.70 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
,

G(2) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.30 0.30 0.50 0.80 0.70
0.70 0.50 0.40 0.70 1.00 0.80
0.70 0.60 0.50 0.50 0.90 0.90
0.50 0.30 0.50 0.50 0.60 0.70
0.20 0.00 0.10 0.40 0.50 0.40
0.30 0.20 0.10 0.30 0.60 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
,

G(3) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.50 0.60 0.60 0.70 0.90
0.50 0.50 0.30 0.80 0.70 0.80
0.40 0.70 0.50 0.70 0.70 0.80
0.40 0.20 0.30 0.50 0.80 0.60
0.30 0.30 0.30 0.20 0.50 0.20
0.10 0.20 0.20 0.40 0.80 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
,
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Table 2 Comparison with the other methods for Example 1

ω1 ω2 ω3 ω4 Rankings of alternatives

Chiclana et al [3] 0.2509 0.2869 0.2303 0.2319 x2 	 x1 	 x4 	 x3

Li et al [15] 0.2597 0.2803 0.2297 0.2303 x2 	 x1 	 x4 	 x3

Wu et al [37] 0.2436 0.2869 0.2392 0.2303 x2 	 x1 	 x3 	 x4

The present result 0.2411 0.2923 0.2346 0.2320 x2 	 x1 	 x3 	 x4

G(4) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.20 0.10 0.50 0.80 0.90
0.80 0.50 0.20 0.90 0.60 1.00
0.90 0.80 0.50 0.80 0.60 0.60
0.50 0.10 0.20 0.50 1.00 0.80
0.20 0.40 0.40 0.00 0.50 0.40
0.10 0.00 0.40 0.20 0.60 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
,

G(5) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.50 0.30 0.30 0.70 0.80 0.50
0.70 0.50 0.20 0.70 0.80 0.60
0.70 0.80 0.50 0.70 0.70 0.80
0.30 0.30 0.30 0.50 0.90 0.70
0.20 0.20 0.30 0.10 0.50 0.40
0.50 0.40 0.20 0.30 0.60 0.50

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The values of ACI are computed as ACI (G(1)) =
0.0789, ACI (G(2)) = 0.0730, ACI (G(3)) = 0.1193,

ACI (G(4)) = 0.2033 and ACI (G(5)) = 0.1193. In terms
of the threshold ACI = 0.1530, it is found that G(4) is
unacceptable and should be revised to G

(4)
r with acceptable

additive consistency as:

G(4)
r =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.2870 0.0244 0.5870 0.7213 0.9000
0.7130 0.5000 0.1348 0.8601 0.6072 1.0000
0.9756 0.8652 0.5000 0.7325 0.5957 0.6000
0.4130 0.1399 0.2675 0.5000 0.9901 0.8000
0.2787 0.3928 0.4043 0.0099 0.5000 0.4000
0.1000 0.0000 0.4000 0.2000 0.6000 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Making use of G(1), G(2), G(3), G
(4)
r and G(5), the

collective ACJM Gc is obtained by using (17) and λi = 0.2
(i = 1, 2, 3, 4, 5) as follows:

Gc =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.3574 0.2849 0.5974 0.7443 0.7200
0.6426 0.5000 0.2870 0.7320 0.8014 0.7800
0.7151 0.7130 0.5000 0.6465 0.7391 0.8200
0.4026 0.2680 0.3535 0.5000 0.7980 0.6800
0.2557 0.1986 0.2609 0.2020 0.5000 0.3400
0.2800 0.2200 0.1800 0.3200 0.6600 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then the consensus levels can be computed as CL(G(1)) =
0.0816, CL(G(2)) = 0.0850, CL(G(3)) = 0.0814,

CL(G
(4)
r ) = 0.1374 and CL(G(5)) = 0.0697, respectively.

In the following, let us still set the threshold of the
consensus level as CL = 0.1. One can see that G

(4)
r should

be adjusted by (21). When choosing γ = 0.72, we obtain

G
(4)
1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.3064 0.0960 0.5899 0.7276 0.8505
0.6936 0.5000 0.1767 0.8249 0.6606 0.9395
0.9040 0.8233 0.5000 0.7088 0.6351 0.6605
0.4101 0.1751 0.2912 0.5000 0.9373 0.7670
0.2724 0.3394 0.3649 0.0627 0.5000 0.3835
0.1495 0.0605 0.3395 0.2330 0.6165 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The consensus level is calculated as CL(G
(4)
1 ) = 0.0996.

Then, we determine the collective matrix Gc
1 as follows:

Gc
1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.3613 0.2992 0.5980 0.7455 0.7101
0.6387 0.5000 0.2953 0.7250 0.8121 0.7679
0.7008 0.7047 0.5000 0.6418 0.7470 0.8321
0.4020 0.2750 0.3582 0.5000 0.7875 0.6734
0.2545 0.1879 0.2530 0.2125 0.5000 0.3367
0.2899 0.2321 0.1679 0.3266 0.6633 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, we give CL(G(1)) = 0.0761, CL(G(2)) =
0.0810, CL(G(3)) = 0.0840, CL(G

(4)
1 ) = 0.1071, and

CL(G(5)) = 0.0712, respectively. It is noted that the matrix
G

(4)
1 should be adjusted and a new matrix is obtained as:

G
(4)
2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.3110 0.1131 0.5906 0.7292 0.8387
0.6890 0.5000 0.1867 0.8165 0.6733 0.9251
0.8869 0.8133 0.5000 0.7032 0.6445 0.6749
0.4094 0.1835 0.2968 0.5000 0.9247 0.7591
0.2708 0.3267 0.3555 0.0753 0.5000 0.3795
0.1613 0.0749 0.3251 0.2409 0.6205 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Hence, the collective matrix Gc
2 is determined as follows:

Gc
2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5000 0.3622 0.3026 0.5981 0.7458 0.7077
0.6378 0.5000 0.2973 0.7233 0.8147 0.7650
0.6974 0.7027 0.5000 0.6406 0.7489 0.8350
0.4019 0.2767 0.3594 0.5000 0.7849 0.6718
0.2542 0.1853 0.2511 0.2151 0.5000 0.3359
0.2923 0.2350 0.1650 0.3282 0.6641 0.5000

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Now it is found that all the consensus levels are smaller
than the threshold and the consensus reaching process is
completed. Applying (16), one has ω1 = 0.1709, ω2 =
0.2255, ω3 = 0.2775, ω4 = 0.1345, ω5 = 0.0871, and
ω6 = 0.1045. For the sake of comparisons, some existing
results are shown in Table 3. One can see that the ranking of
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Table 3 Comparison with the other methods for Example 2

ω1 ω2 ω3 ω4 ω5 ω6

Wu et al [37] 0.1772 0.2111 0.2289 0.1672 0.0956 0.1200

Xu et al [45] 0.1637 0.2355 0.2814 0.1337 0.0818 0.1038

The present result 0.1709 0.2255 0.2775 0.1345 0.0871 0.1045

Ranking of alternatives x3 	 x2 	 x1 	 x4 	 x6 	 x5

alternatives are the same with x3 	 x2 	 x1 	 x4 	 x6 	
x5.

5 Conclusions

In group decision support systems, it is important to
finely manage individual decision information and reach
a fast yet effective consensus. We suppose that a group
of experts compare a set of alternatives in pairs and
evaluate their opinions as the preference intensities with
additively reciprocal property in this paper. The sequential
model of additively pairwise comparisons is proposed to
finely manage individual decision information. A novel
additive consistency improving method has been offered
by constructing a novel optimization model. A feedback
mechanism is established such that the irrational and
illogical individual decision behavior can be reminded.
Under the control of individual consistency degree, a
consensus model in GDM has been established. Some main
findings are shown as follows:

• The sequential model of ACPCs has been proposed to
record the decision information and behavior of experts.
The irrational and illogical judgements can be checked
such that the DMs can be reminded in real time to adjust
their opinions.

• When individual ACJMs are of acceptable additive
consistency, the collective one obtained by using the
weighted averaging operator is with acceptable additive
consistency.

• The consensus of a group of experts can be reached
under a fixed level by controlling the consistency
degrees of individual judgements.

One can find that the proposed method has the advantage
of reminding the DMs to give more rational judgements. It
is further seen that the particle swarm optimization (PSO) is
used to achieve a fast yet intelligent adjustment of individual
inconsistent decision information. The disadvantage of the
proposed method is that the consensus process should be
run repeatedly for many times. In the future, the proposed
model could be extended to solve large GDM problems
and propose some decision making models with incomplete
decision information.
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26. Önüt S, Efendiğil T, Kara SS (2010) A combined fuzzy MCDM
approach for selecting shopping center site: an example from
Istanbul, Turkey. Expert Syst Appl 37:1973–1980

27. Pedrycz W, Song MI (2011) Analytic Hierarchy Process (AHP) in
group decision making and its optimization with an allocation of
information granularity. IEEE Trans Fuzzy Syst 19(3):527–539

28. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimiza-
tion. Swarm Intell 1(1):33–57

29. Switalski Z (2003) General transitivity conditions for fuzzy
reciprocal preference matrices. Fuzzy Sets Syst 137(1):85–100

30. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill,
New York

31. Shi Y, Eberhart R (1999) Modified particle swarm optimizer. Proc
of IEEE ICEC Confer 6:69–73

32. Sun W, Yuan YX (2006) Optimization theory and methods:
Nonlinear programming, vol 1. Springer Science & Business
Media, Berlin

33. Tanino T (1984) Fuzzy preference orderings in group decision-
making. Fuzzy Sets Syst 12(2):117–131

34. Wu P, Liu S, Zhou L, Chen HY (2018) A fuzzy group decision
making model with trapezoidal fuzzy preference relations based
on compatibility measure and COWGA operator. Appl Intell
48:46–67

35. Wu J, Chiclana F, Fujita H, Herrera-Viedma E (2017) A visual
interaction consensus model for social network group decision
making with trust propagation. Knowl-Based Syst 122:39–50

36. Wu J, Sun Q, Fujita H, Chiclana F (2019) An attitudinal
consensus degree to control the feedback mechanism in group

decision making with different adjustment cost. Knowl-Based
Syst 164:265–273

37. Wu ZB, Xu JP (2012) A concise consensus support model for
group decision making with reciprocal preference relations based
on deviation measures. Fuzzy Sets Syst 206:58–73

38. Wu ZB, Xu JP (2012) A consistency and consensus based decision
support model for group decision making with multiplicative
preference relations. Deci Support Syst 52(3):757–767

39. Wu J, Zhao ZW, Sun Q, Fujita H (2021) An maximum self-esteem
degree based feedback mechanism for group consensus reaching
with the distributed linguistic trust propagation in social network.
Inf Fusion 67:80–93

40. Wu P, Zhou L, Chen H, Tao ZF (2020) Multi-stage optimization
model for hesitant qualitative decision making with hesitant fuzzy
linguistic preference relations. Appl Intell 50:222–240

41. Xia MM, Xu ZS, Chen J (2013) Algorithms for improving
consistency or consensus of reciprocal [0, 1]-valued preference
relations. Fuzzy Sets Syst 216:108–133

42. Xu ZS (1999) A consistency improving method in the analytic
hierarchy process. Eur J Oper Res 116:443–449

43. Xu ZS (2000) On consistency of the weighted geometric mean
complex judgement matrix in AHP. Eur J Oper Res 126:683–687

44. Xu ZS (2007) Intuitionistic preference relations and their
application in group decision making. Inf Sci 177:2363–
2379

45. Xu ZS, Cai XQ (2011) Group consensus algorithms based on
preference relations. Inf Sci 181:150–162

46. Xu ZS, Da QL (2003) An approach to improving consistency of
fuzzy preference matrix. Fuzzy Optim Decis Making 2:3–12

47. Xu YJ, Herrera F (2019) Visualizing and rectifying different
inconsistencies for fuzzy reciprocal preference relations. Fuzzy
Sets Syst 362:85–109

48. Xu YJ, Herrera F, Wang HM (2016) A distance-based framework
to deal with ordinal and additive inconsistencies for fuzzy
reciprocal preference relations. Inf Sci 328:189–205

49. Xu YJ, Li MQ, Cabrerizo FJ, Chiclana F, Herrera-Viedma E
(2019) Algorithms to detect and rectify multiplicative and ordinal
inconsistencies of fuzzy preference relations. IEEE Trans Syst,
Man, Cybern: Syst. https://doi.org/10.1109/TSMC.2019.2931536

50. Xu YJ, Liu X, Wang HM (2018) The additive consistency measure
of fuzzy reciprocal preference relations. Int J Mach Learn Cybern
9(7):1141–1152

51. Xu YJ, Wang QQ, Cabrerizo FJ, Herrera-Viedma E (2018)
Methods to improve the ordinal and multiplicative consistency
for reciprocal preference relations. Appl Soft Comput 67:479–
493

52. Yager RR (1988) On ordered weighted averaging aggregation
operators in mulitcriteria decision making. IEEE Trans Syst. Man
Cybern-Part B: Cybern 18(1):183–190

53. Yager RR, Filev DP (1999) Induced ordered weighted averaging
operators. IEEE Trans Syst. Man Cybern-Part B: Cybern
29(2):141–150

54. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
55. Zhou XY, Ji FP, Wang LQ, Ma YF, Fujita H (2020) Particle swarm

optimization for trust relationship based social network group
decision making under a probabilistic linguistic environment.
Knowl-Based Syst 200:105999

56. Zhou XY, Wang LQ, Liao HC, Wang SY, Lev B, Fujita H (2019)
A prospect theory-based group decision approach considering
consensus for portfolio selection with hesitant fuzzy information.
Knowl-Based Syst 168:28–38

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Group decision support model based on sequential... 7137

https://doi.org/10.1109/TSMC.2019.2931536


Fang Liu received the
M.S. degree in Operational
Research and Cybernetics
from Guangxi University,
Guangxi, China, in 2008, and
the Ph.D. degree in Manage-
ment Science and Engineering
from South China University
of Technology, Guangdong,
China, in 2013. She is cur-
rently a Professor with the
School of Mathematics and
Information Science, Guangxi
University. Her works have
been published in IEEE Trans-
actions on Fuzzy Systems,

IEEE Transactions on Cybernetics, European Journal of Operational
Research, Information Sciences, Fuzzy Sets and Systems and others.
Her current research interests include decision analysis, Granular
computing, investment and risk management.

Jia-Wei Zhang received the
M.S. degree in Operational
Research and Cybernetics
from Guangxi University,
Guangxi, China, in 2020.
He is a student studying for
the Ph.D. degree of Business
Administration at Business
School, Guangxi Univer-
sity, Guangxi, China. His
works have been published
in Knowledge-Based Systems,
Applied Soft Computing and
others. He current research
interest includes decision
analysis and soft computing.

Zhang-Hua Luo received the
M.S. degree in Computational
Mathematics and Applications
from Lanzhou University,
Lanzhou, China, in 1997, and
the Ph.D. degree in Systems
Engineering from Beijing
University of Aeronautics and
Astronautics, Beijing, China,
in 2004. He is currently
a Professor with Guangxi
University of Finance and
Economics. His works have
been published in Journal of
Computational Mathematics,
Systems Engineering-Theory

& Practice, Journal of Industrial Engineering and Engineering Man-
agement. His current research interests include decision analysis,
online auctions, technological and innovation management.

F. Liu et al.7138


	Group decision support model based on sequential...
	Abstract
	Introduction
	Modeling additive complementary pairwise comparisons
	A completed model of ACPCs
	A sequential model of ACPCs

	An implication of sequential additive complementary pairwise comparisons
	The relationship between two adjacent submatrices
	A method of improving additive consistency
	Numerical examples and discussion

	A novel group decision support model with a feedback mechanism
	A real-time feedback mechanism of individual decision information
	Building consensus based on individual consistency control
	Case studies and comparison

	Conclusions
	References


