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Abstract
According to the atmospheric physical model, we can use accurate transmittance and atmospheric light information to
convert a hazy image into a clean one. The scene-depth information is very important for image dehazing due to the
transmittance directly corresponds to the scene depth. In this paper, we propose a multi-scale depth information fusion
network based on the U-Net architecture. The model uses hazy images as inputs and extracts the depth information from
these images; then, it encodes and decodes this information. In this process, hazy image features of different scales are skip-
connected to the corresponding positions. Finally, the model outputs a clean image. The proposed method does not rely on
atmospheric physical models, and it directly outputs clean images in an end-to-end manner. Through numerous experiments,
we prove that the multi-scale deep information fusion network can effectively remove haze from images; it outperforms
other methods in the synthetic dataset experiments and also performs well in the real-scene test set.

Keywords Image dehazingd · U-Net · Depth map

1 Introduction

Haze is an everyday weather phenomenon; it is primarily
caused by numerous tiny particles in the atmosphere; these
particles scatter and absorb light, thereby producing the
haze weather effect. Images collected under hazy weather
conditions exhibit low-picture-contrast and color-saturation
problems. Therefore, haze can be seriously detrimental
to the performance of a viual system. Clarifying these
hazy images and ensuring the effectiveness of the vision
system has been an active topic for researchers and
has implications in the fields of computer vision and
imaging science. The methods that researchers initially
proposed to improve the contrasts of hazy images include
Histogram equalization, partial Histogram equalization,
Wavelet transform, and Homomorphic filtering. Typically,
these image-enhancement methods neglect the mechanism
of haze formation; as a result, the display effect of the
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restored images is poor, and the image details are easily
lost. Moreover, such algorithms are highly complex, and it
is often difficult to find algorithm parameters suitable for all
scenarios.

The introduction of the atmospheric physics model [1–
3] considerably accelerated the development of image-
dehazing practices. Today, numerous dehazing algorithms
effectively apply the theoretical background of the atmo-
spheric physical model. This model is expressed as

I (x) = T (x)J (x) + A(1 − T (x)), (1)

T (x) = e−βd(x). (2)
Where I (x) is a hazy image; J (x) is a clean image; A is

the global atmospheric light; T (x) is the image transmission
rate; x is the position of the pixel in the image; β is the
atmospheric scattering coefficient; d(x) is the scene depth.

It can be seen from the model that if an accurate T (x) and
A can be obtained, the hazy image can be restored to a clean
one. To accurately identify T (x) and A, researchers have
proposed several classical methods. He et al. [4] proposed
a dark channel prior (DCP) dehazing method by analyzing
a large number of hazy images; they achieved a relatively
strong dehazing performance. Berman et al. [5] assumed
the colors of a clean image to be well-approximated by
hundreds of different colors, thereby proposing a dehazing
method that uses non-local priors to describe clear image
features. It is worth noting that using an priori-based method
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for image dehazing in a specific scene is effective; however,
these methods are often difficult to adapt to all scenarios.
When the real situation violates the priori condition, an
inaccurate transmission-map estimation will be produced,
resulting in a poor dehazing effect.

The development of deep learning theory [6] has brought
new ideas to the field of image dehazing, and methods
for applying neural networks to image dehazing [7] tasks
have been indicated as a promising research avenue. Cai
et al. [8] built a convolutional neural network (CNN)
model to learn the relationship between hazy images and
transmission rates. Li et al. [9] converted the transmission
map and atmospheric light information in the atmospheric
physics model into a unified variable, K, predicted K using
a CNN, and dehazed the image through a variant of the
atmospheric physical model. Atmospheric-physical-model-
based dehazing methods are well supported by theory.
When accurate transmission maps and atmospheric light
information can be found, the model typically exhibits a
strong performance; however, when these are inaccurate, the
dehazing effect is significantly diminished.

In recent years, a new processing method has emerged
in the field of image dehazing. In this method, a neural
network model is used to construct an intermediate channel
between the hazy and haze-free images, and the haze-
free image is directly output in an end-to-end manner.
Qu et al. [10] proposed the enhanced Pix2pix dehazing
network (EPDN), an end-to-end image dehazing method
employing a Generative Adversarial Network. Chen et al.
[11] proposed the gated context aggregation network
(GCANet) by using gated subnets to integrate different
levels of features. Liu et al. [12] proposed GridDehazeNet
by combining multi-scale estimation and an attention
mechanism. Qin et al. [13] proposed an end-to-end feature-
fusion network based on attention. Dong et al. [14] proposed
a multi-scale dense feature fusion method based on the U-
Net structure, in which the scene depth was intrinsically
linked to the haze distribution. However, these end-to-end
dehazing methods neglect depth information; thus, although
they perform well for composite images, they suffer from
limitations when handling real-scene images.

Unlike our previous work, this study focuses on applying
image depth information to the field of image dehazing.
We propose a multi-scale depth-information fusion network
(MSDFN), which is based on the U-Net architecture [15];
thus, it does not rely on atmospheric physical models. We
encode the image depth information [16] and then decode it,
to obtain a clean image. However, if a depth map is encoded
without color information, it may be difficult to obtain a
haze-free color image. Therefore, we add an input pyramid
branch to the structure of the U-Net. This branch inputs hazy
color images and participates in the encoding and decoding
of the model; then, it uses skip-connections to integrate

hazy image features of different scales into the encoder and
different stages of the decoder. The main contributions of
the method proposed in this paper are as follows.

1. MSDFN: a U-Net-structure-based method for mod-
elling depth information.

2. Additional branches on the U-Net structure: This
enables the network to restore image color, contrast,
and other information. It outperforms existing methods
in terms of subjective impressions and objective
indicators.

3. The method outperforms existing ones in both qual-
itative and quantitative tests, and it achieves superior
results in real scenarios.

2 Related work

In 1992, Bissonnette [17] proposed a new and efficient
method of calculating the point-spread and modulation-
transfer functions produced by aerosol forward scattering.
Nayar and Narashimhan’s modeling of atmospheric scat-
tering has led to significant progress in the field of image
dehazing; since then, numerous dehazing methods have
been constructed on the theoretical bases of atmospheric
physical models [2, 3, 18].

Image dehazing is an ill-posed problem. In this
section, we introduce in detail the current classical
and mainstream image-dehazing methods and—according
to their characteristics—classify them into three cate-
gories: image-enhancement-based, atmospheric-physical-
model-based, and end-to-end model-based.

Image-enhancement-based dehazing These methods per-
form image enhancement on the degraded image, to
improve its quality. These methods offer numerous advan-
tages; for instance, they can apply well-established image-
processing algorithms, apply and improve upon popu-
lar image-enhancement algorithms in a targeted manner,
enhance image contrasts and other characteristics, and
highlight features and valuable information in the image.
Because of the low contrasts of hazy images, these methods
operate upon the form of a narrowly concentrated single-
peak histogram. In the early stages of image-dehazing
method development, researchers used histogram equaliza-
tion [19] to enhance the image; this balanced the image’s
histogram distribution, thereby expanding the image’s
dynamic range and enhancing its contrast. Global histogram
equalization can enhance hazy images to a certain extent;
however, its dehazing effect is less than ideal when the
haze-density distribution is uneven. Thus, Kim et al. [20]
used partially over-lapped sub-block histogram equalization
to enhance the local contrast of hazy images. To the same
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end, generalized local histogram equalization [21] can per-
form dynamic contrast control through adaptive adjustment
of equalization parameters. To better adapt to local enhance-
ment, Khan et al. [22] used a histogram segmentation algo-
rithm, to segment the image and enhance the sub-regions
in a targeted manner. On the basis of histogram equaliza-
tion, Rudolf Richter et al. [23] realized edge-preserving
image enhancement through histogram matching and local
weighted fusion.

The aforementioned methods can improve the image
contrast to a certain extent before applying image dehaz-
ing and enhancement. In addition, enhancement algorithms
based on homomorphic filters [24], wavelet transforms [25],
and curvelet transforms [26] have also been applied in
image dehazing. The homomorphic filter-based enhance-
ment method combines frequency filtering and grayscale
changes. It can mitigate the effects of uneven illumination
and is more suitable for enhancing hazy images. However,
this method only considers the frequency domain charac-
teristics of the image, neglecting its spatial information;
thus, its enhancement effect on dense hazy images is not
ideal. The wavelet transform-based method integrates fre-
quency and spatial-domain information with multi-scale,
decorrelation, and local-feature-expression capabilities; it
can improve the visibility of images through detail enhance-
ment and is primarily used for dehazing thermal images
and enhancing medical ones. The curvelet transform-based
method is a high-dimensional generalization of the wavelet
transform one; it can capture image characteristics of differ-
ent scales and angles, and it has a clear dehazing effect on
hazy images. Image-enhancement-based dehazing methods
offer the advantages of high efficiency and easy imple-
mentation. However, because they essentially enhance the
contrast of the image, they lack the imaging mechanism and
degradation model required to consider hazy images. There-
fore, image enhancement can improve visual effects to a
certain extent but cannot remove the influence of haze in
the image. Moreover, due to the lack of research on image-
degradation mechanisms, color distortion can arise through
the contrast enhancement process.

Atmospheric-physical-model-based image dehazing These
methods restore hazy images by directly or indirectly
estimating the image transmission rate and atmospheric
light via the atmospheric physical model. He et al. [4]
proposed the DCP model, in which most local pixel
blocks in the clear and haze-free images contain some
pixels, and at least one color channel of these pixels has
a very low value. The rough image transmission rate is
solved using a priori information; then, the precise image
transmission rate is optimized by soft matting the image,
to obtain the final dehazed image. However, when large
regions of white or sky feature in the image, a halo effect

occurs; this invalidates the prior. Fattal et al. [27] based
on the assumption that the transmittance and the image
transmission rate are locally uncorrelated, constructing an
independent component analysis method and using Gauss
Markov random field to solve the scene albedo and finally
get a haze-free image. However, when the image color
information is missing, the obtained dehazing image will
appear image color distortion. Arigela et al. [28] constructed
a nonlinear sinusoidal function to modify the DCP and
obtain a rough transmission rate; furthermore, they used
the gray scale transform function to replace the soft
matting algorithm. Compared with DCP, this algorithm
more effectively overcomes the halo effect; however, dim
and distorted colors still remained in the sky regions.

Cai et al. [8] proposed DehazeNet; this uses CNN
to extract haze-related features (e.g., dark primary color,
color attenuation, and maximum contrast features) from the
image, to optimize transmittance estimation. Empirically
preset atmospheric light was used for the atmospheric
physical model, to restore the haze-free image. Ren
et al. [29] proposed a multi-scale CNN by designing
a set of coarse- and fine-scale networks to predict the
image transmission rate independently, then using multi-
scale fusion to complete image dehazing. Li et al. [9]
proposed the all-in-one dehazing network (AOD-Net); this
model simplifies the unknown quantity in the atmospheric
scattering model to a coefficient K, and it learns the
relationship between the hazy images and K using a CNN.
Zhu et al. [30] used a residual block to estimate the
image transmission rate and global atmospheric light; then,
they generated the haze-free image using the atmospheric
scattering model and used a single-scale discriminator to
perform generative adversarial network [31]; this model
is referred to as DehazeGAN. When the transmission
map and atmospheric light are accurately estimated, the
physical-model-based method can obtain a good dehazing
effect, especially in non-uniformly distributed hazy images.
Therefore, accurately estimating the transmission map
and atmospheric light is a focal challenge for this type
of method. However, the physical-model-based dehazing
method also suffers problems of excessive dehazing, which
produces an overall color deviation and distortion in the
restored image.

End-to-end model-based image dehazing Th- ese methods
do not rely on the atmospheric physical model; they
learn the channel between haze and clean images using a
neural network model, which directly outputs a haze-free
image. Ren et al. [32] proposed a gated fusion network
using white balance, contrast enhancement, and gamma-
correction methods to pretreat the hazy image; then, they
used a CNN to learn the confidence maps corresponding to
three pre-processed images and obtained haze-free images
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through multi-scale fusion. Qu et al. [10] proposed the
EPDN; this method enhances the dehazing effect by using
a staged dehazing module. Chen et al. [11] proposed
GCANet; this method uses smooth expansion technology
to eliminate the gridding artifacts produced by negligible
parameters of the expanded convolution kernel, and they
implemented a gated sub-network to fuse the features from
different levels. Liu et al. [12] proposed GridDehazeNet
by integrating the attention mechanism into multi-scale
estimation; this solved the bottlenecking of traditional
multi-scale estimation. Qin et al. [13] proposed an end-
to-end feature fusion attention network (FFA-Net); this
method retains the shallow information and transfers it
to a deep layer through an attention-based feature fusion
structure. Using the U-Net architecture. Zhang et al. [33]
proposed the Pyramid Channel-based Feature Attention
Network by taking advantage of the complementarity
of the pyramidal features at different levels and the
channel attention mechanism. Dong et al. [14] proposed
the multi-scale boosted dehazing network (MSBDN) with
dense feature fusion; this method was based on the two
principles of boosting and error feedback, demonstrating
that these principles are suitable for dehazing. By adding
the “strengthen-operate-subtr- act” boosting strategy to the
decoder of the proposed model, a simple and effective
boosted decoder was developed, to restore images gradually.

3 Proposedmethod

In this section, we introduce the proposed MSDFN. As
shown in Fig. 1, the model inputs a hazy image and predicts
its depth map. This map and the hazy image are processed
via different branches of the encoding process, in which
the different levels of depth information are incorporated.
For decoding, the hazy image is first convolved and pooled
multiple times, to generate feature maps of different levels.
To decode the encoder-generated feature map, the feature
information for different levels of the original hazy image
is incorporated, and the feature information for different
stages of the encoder is skip-connected to the decoding
process, to facilitate haze-free image generation. In the
following subsections, we elaborate on the model.

3.1 Network design

According to the atmospheric physical model, if the
transmittance and atmospheric light can be determined,
the hazy image can be converted into a haze-free one.
The transmittance is affected by the depth of the scene:
nearby objects are easier to identify than distant objects in
real haze weather conditions. Therefore, the image’s depth
information is critical for image dehazing. To integrate

the depth information into the image dehazing process,
we designed an MSDFN based on U-Net. This method
first encodes the depth map and then decodes it to
obtain a haze-free image, concatenating the multi-level
features of the hazy image in the process. According to
its structural characteristics, we divide the model into four
components: depth-map-prediction module, input pyramid
branch, encoder branch, and decoder branch.

3.1.1 Depth-map prediction module (DPM)

We use the depth-map-prediction method proposed by Liu
et al. [34]. In contrast to previous methods, we estimate
the depth by treating it as a continuous conditional random
field (CRF) learning problem, without relying on any
geometric priors or extra information. First, super-pixel
segmentation is performed on the hazy image, to generate
a super-pixel image. The subsequent processing is divided
into two branches: un- ary item processing and paired
item processing. The purpose of unary item processing is
to obtain the depth of a single super-pixel. Paired item
processing encourages adjacent super-pixels with similar
appearances to adopt similar depths. Our goal is to obtain
the depth of all super-pixels by uniformly processing unary
and pairwise terms in the network model, to finally output a
depth map.

Figure 2 shows the depth-prediction module. The input
of the module is a hazy image, and its output is a depth one.
The model primarily employs single-element processing,
pair-wise processing, and a CRF loss layer.

Unary item processing. The hazy image is divided by
super-pixels into an image containing n super-pixels; then, n
image blocks are formed with each super-pixel as the center,
and the size of each image block is set to 224 * 224. These
n image blocks are used as the inputs of the CNN for unary
item processing; finally, an n-dimensional vector containing
depth information is obtained.

The unary item processing component is performed by
a small CNN network, which consists of six convolutional
layers, three pooling layers, and four fully connected layers.
The network parameters are identical for all super-pixels.
The convolutional layer and first two fully connected
layers of the network use ReLU as the activation function.
The third fully connected layer uses a sigmoid activation
function. The final layer integrates the network and has
no activation function. The final output of a single image
block network input is a one-dimensional depth value.
The network is constructed by minimizing the following
equation:

U(yp, x; θ) = (yp − zp(θ))2, ∀P = 1, ..., n. (3)

Here, zp is the depth value predicted for super-pixel p by
parameter θ of the CNN.
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Fig. 1 Structural diagram of multi-scale depth information fusion network

3.1.2 Input pyramid branch (IPB)

Paired item processing. This process is used to form pairs
of all adjacent super-pixels as the input of the neural
network. The neural network is a combination of fully
connected layers and outputs the similarity of adjacent
super-pixels. In this section, we use the color difference,
color histogram difference, and texture disparity [in terms
of local binary patterns (LBP)] to measure the similarity of
adjacent elements. The optimization objective of the fully
connected layer is

V (yp, yq, x; β) = 1

2
Rpq(yp − yq)2, ∀p, q = 1, ..., n, (4)

where Spq denotes the output for the adjacent pair (p, q) in
the super-pixel image in the fully connected network. The
parameterized representation of the fully connected layer is

Rpq = βT [S(1)
pq , S(1)

pq , S(3)
pq ]T =

3∑

k=1

βkS
(k)
pq , (5)

where β = [β1, β2, β3]T contains the network parameters,
S

(1)
pq , S

(2)
pq , S

(3)
pq respectively represent the adjacent super-

pixel pairs (p, q) in three different similarity matrices, the
calculation method is as follows:

S(k)
pq = e−γ

∥∥∥s(k)
p − s(k)

q

∥∥∥ , k = 1, 2, 3, (6)

where s
(k)
p and s

(k)
q are the values calculated by the

color, color histogram and LBP of super pixels p and q
respectively, ‖·‖ is the second norm of s

(k)
p - s

(k)
q , γ is a

constant.

S(k)
pq = e−γ

∥∥∥s(k)
p − s(k)

q

∥∥∥ , k = 1, 2, 3, (7)

where s
(k)
p and s

(k)
q are the values calculated for super-pixels

p and q, respectively, using their color, color histogram,
and LBP; ‖·‖ is the second norm of s

(k)
p - s

(k)
q ; and γ is a

constant.
CRF loss layer. The CRF loss layer receives the outputs

from the unary and paired items and seeks to minimize the
negative log-likelihood. Similar to a traditional CRF, the
CRF layer uses a density function to model the conditional
probability distribution of the data, as

Pr(y|x) = 1

Z(x)
exp(−E(y, x)), (8)

where E is the energy function and Z is the partition
function, defined as

Z(x) =
∫

y

exp{−E(y, x)}dy, (9)

where y is continuous, which in some cases allows the
integral in Eq. 7 to be calculated analytically; this differs
from the discrete case, in which approximation methods

Fig. 2 Depth-prediction module. The input of the module is a hazy image. The output is a depth image
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must be applied. To predict the depth of the new image,
previous studies have solved the following maximum a
posteriori probability inference problem:

y∗ = argmax
y

Pr(y|x) (10)

The CRF layer expresses the energy function as a typical
combination of unary term processing U and binary phase
processing V on the node (super-pixel) N of image x and
edge S, as

E(y, x) = ∑
p∈N

U(yp, x) + ∑
(p,q)∈S

V (yp, yq, x)

= ∑
p∈N

(yp − zp)2 + ∑
(p,q)∈S

1
2Rpq(yp − yq)2.

(11)

We used the NYU V2 and Make3D datasets to train
the model to predict indoor (Fig. 3) and outdoor (Fig. 4)
image depths, respectively. For more details, please refer to
Reference [34].

3.1.3 Input pyramid branch(IPB)

In this section, we use convolution + pooling layers to
step-wise transform the depth map into feature images of
different scales. First, we convolve the depth image into
a 64-channel C64

IPB (Eq. 11). Then, through maximum
pooling, we down-sample C64

IPB to obtain M64
IPB (Eq. 12).

Repeating the previous process (Eqs. 13 and 14), we obtain
C64

IPB , C
128
IPB , C256

IPB , and C512
IPB in turn.

C64
IPB = σ(W 1

IPB ∗ Input image + b1IPB), (12)

M64
IPB = maxpool(C64

IPB), (13)

C128
IPB = σ(W 2

IPB ∗ M64
IPB + b2IPB), (14)

M128
IPB = maxpool(C128

IPB). (15)

Here, C represents the convolution result, M represents the
maximum pooling result, the superscripts C and M indicate
the number of channels, the subscript IPB denotes the
input pyramid branch, W represents the weight parameter,
b represents the bias, the superscripts of W and b denote
the i-th convolutional layer (i = 1,2,3,4), and represents the
nonlinear activation function. The window size of the max
pooling layer is 2 * 2, and the size of the convolution kernel
is 3 * 3.

3.1.4 Encoder branch(EB)

The input of the EB is the depth map, which is converted
into a 64-channel feature map through one convolution
(Eq. 15). Then, using maximum pooling to reduce the
dimensionality of the feature map, we obtain M64

EB (Eq. 16).
By connecting the 64-channel feature map C64

IPB of the
input image in the IPB to Eq. 17 and concatenating it
with M64

EB , we obtain S128
EB (Eq. 18). Then, we convolve

S128
EB to obtain a 128-channel feature map C128

EB (Eq. 18).
This process combines the 64-channel depth-map features
and input-image features to generate a 128-channel feature
map. The general steps run as convolution–pooling–
concatenation–convolution, respectively. By performing
this operation multiple times, we finally obtain C64

EB , C128
EB ,

C256
EB , C512

EB and C1024
EB .

C64
EB = σ(W 1

EB ∗ Depth image + b1EB), (16)

M64
EB = maxpool(C64

EB), (17)

S128
EB = concat (M64

EB, C64
IPB), (18)

C128
EB = σ(W 2

EB ∗ S128
EB + b2EB). (19)

Fig. 3 Indoor image depth
maps. The second row displays
the gray depth maps, and the
third row displays the color
depth maps
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Fig. 4 Outdoor image depth
maps. The second row displays
the gray depth maps, and the
third row displays the color
depth maps

Here, C represents the convolution result, M represents
the maximum pooling result, S represents the concatenation
result, the superscripts C, M , and S represent the number of
channels, the subscript EB denotes the encoder branch, W

represents the weight parameter, b represents the bias, and
the superscripts of W and b represent the i-th convolutional
layer (i = 1,2,3,4,5,6,7,8), and σ represents the nonlinear
activation function. The window size of the max pooling
layer is 2 * 2, and the size of the convolution kernel is
3 * 3.

3.1.5 Decoder branch(DB)

The input of the DB is the C1024
EB output of the EB. First,

we obtain C512
DB through deconvolution (Eq. 19). Then,

we skip-connect the feature maps C512
EB and C512

IPB of the
corresponding dimensions in EB and IPB and concatenate
them in series with C512

DB to obtain S1536
DB (Eq. 20). Then,

we performing another convolution operation on S1536
DB to

obtain C512
DB (Eq. 21). C256

DB can be obtained by performing
the aforementioned steps on C512

DB . Then, we obtain C128
DB

and C64
DB . Finally, C64

DB is convolved once, to output a
three-channel-color haze-free image (Eq. 23).

D512
DB = σ(W 1

DB ∗ C1024
EB + b1DB), (20)

S1536
DB = concat (C512

DB, C512
EB , C512

IPB), (21)

C512
DB = σ(W 2

DB ∗ S1536
DB + b2DB), (22)

D256
DB = σ(W 3

DB ∗ C512
DB + b3DB), (23)

Clean image = σ(W 8
DB ∗ C64

DB + b8DB). (24)

Here, D represents the deconvolution result, M represents
the maximum pooling result, S represents the concatenation
result, the superscripts D, M , and S represent the number
of channels, the subscript DB represents the encoder
branch, W represents the weight parameter, b represents
the bias, and the superscripts W and b represent the i-th
convolutional layer (i = 1,2,3,4,5,6,7,8), and σ represents
the nonlinear activation function. The window size of max
pooling is 2 * 2, the sizes of the convolution kernels
for deconvolution and convolution are 2 * 2 and 3 * 3,
respectively. After the number of channels reaches 64, the
convolution component’s convolution kernel size is changed
to 1 * 1.

3.2 Activation function

In neural network modelling, activation functions are
typically used to increase the network model’s nonlinear
modeling capabilities. The commonly used activation
functions are Sigmoid [35], Tanh [36], and Rectified
Linear Unit (ReLU) [37]. Among them, Sigmoid and
Tanh suffer problems of gradient disappearance and slow
convergence. In CNNs, this problem is further amplified.
Nair et al. proposed ReLU, which avoids the vanishing
gradient problem simply and efficiently. This advantage
renders ReLU suitable to a wide variety of neural networks.
Experiments have shown that the speed of ReLU is six times
that of Tanh. However, ReLU also exhibits shortcomings.
For instance, when the input gradient is too large, neuron
death occurs, which leads to the failure of model training. To
overcome this phenomenon, Leaky ReLU [38], Parametric
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ReLU [39], ELU [40], and Exponential Linear Unit
have been developed. These ReLU variants alleviate the
problems of ReLU to a certain extent. The aforementioned
activation functions are static; however, if the parameters of
ReLU can be adjusted according to the input characteristics,
the model performance may improve. Based on this idea,
Chen et al. [41] proposed Dynamic ReLU.

Dynamic ReLU is a piecewise function, fθ(x)(x). The
parameters are obtained from super-function θ(x) with
respect to input x. θ(x) synthesizes the input context of
each dimension to adapt the activation function; this can
significantly improve the expressivity of the network with a
small number of additional calculations (Fig. 5).

Dynamic ReLU is an extension of ReLU; which develops
this piecewise linear function from a static to a dynamic one,
by adapting ak

c and bk
c for all input elements x = {xc} as

follows:

yc = fθ(x)(xc) = max
1≤k≤K

{
ak
c (x)xc + bk

c (x)
}

, (25)

where the coefficients (ak
c , bk

c ) are the output of a hyper
function θ(x), expressed as

[a11, ..., a1C, ..., aK
1 , ..., aK

C , b11, ..., b
1
C, bK

1 , ..., bK
C ]T = θ(x), (26)

where K is the number of functions and C the number of
channels. Note that the activation parameters (ak

c , b
k
c ) are not

only related to the corresponding input xc but to the other
input elements xj �= c .

Chen et al. [41] presents three forms of Dynamic ReLU:
DY-ReLU-A: The activation function is spatial and channel-
shared. DY-ReLU-B: The activation function is spatial-
shared and channel-wise. DY-ReLU-C: The activation
function is spatial and channel-wise. Dynamic ReLU is a
new form of activation function. In Section 4.2, we compare
the performances of Dynamic ReLU and ReLU in the
MSDFN. However, we do not use DY-ReLU-C because it
renders the model expensive and difficult to train.

Fig. 5 Dynamic ReLU. The piecewise linear function is determined
by input x

3.3 Loss function

Following the previous image-dehazing method [42], we
use the negative structural similarity index measure (SSIM)
as the model’s loss function. This is expressed as

L = − 1
2M

M∑
m=1

(
2μYmμY ′

m
+θ1

)(
2σYmY ′

m
+θ2

)

(
μ2

Ym
+μ2

Y ′
m

+θ1

)(
σ 2

Ym
+σ 2

Y ′
m

+θ2

) , (27)

where Ym , μY ′
m
is the average of Y ′

m, σYm is the variance of
Ym, σ 2

Y ′
m
is the variance of Y ′

m, σYmY ′
m
is the covariance of Ym

and Y ′
m, θ1 and θ2 are constants. θ1 and θ2 are used to prevent

the system instabilities produced by a zero denominator.
The value range of -SSIM is [-1, 0]. When the structural
similarity between the network output and reference image
is increased, the -SSIM loss decreases.

4 Experimental results

To verify the effectiveness and advantages of the method
proposed in this paper, we performed a series of experi-
ments, as elaborated upon in this section. First, we intro-
duce the dataset, the relevant details of model training,
and the evaluation indicators employed. Second, we com-
pare different activation functions. Third, we conduct abla-
tion experiments on the network model structure. Finally,
the MSDFN is compared against seven advanced classical
image dehazing methods: DCP [4], Hazy-lines [5], AOD-
Net [9], MSCNN [29] GCANet [11], FFA-Net [13] and
MSBDN [14]. Code has been made available at https://
github.com/CCECfgd/MSDFN.

4.1 Experiment settings

Dataset Because it is difficult to collect the hazy and
corresponding haze-free images for real haze scenes, we
used a synthetic image dataset to verify our method. Our
dataset was divided into two parts: indoor and outdoor
images. For indoor synthetic images in the training set, we
used the NYUv2 depth dataset [43]; we extracted 20,000
synthetic images as the training set and 200 for validation.
For outdoor synthetic images in the training set, we used
OTS from the RESIDE dataset [44]. OTS contains 8970
clear outdoor images and 313950 hazy images, which
are generated for different parameters of the atmospheric
physical model. We used 20,000 synthetic images as the
training set and 200 as the validation set. The test set
was divided into indoor synthetic images, outdoor synthetic
images, and real-scene images. For composite images, we
used the SOTS test set provided by RESIDE. For real-
scene images, we used 500 images from RTTS (in RESIDE)
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Table 1 The models using
different activation functions
are trained on the indoor and
the outdoor synthetic image
datasets, and the influence of
different activation functions
on the model is quantitatively
evaluated

Config Indoor Outdoor

PSNR SSIM PSNR SSIM

ReLU 30.8 0.9952 31.9685 0.9977

DY-ReLU-A 30.5374 0.9892 32.0844 0.99695

DY-ReLU-B 30.8817 0.9965 33.7365 0.998

and 100 hazy real-scene images as the test set, to verify
the dehazing ability of the model for real scenes. In order
to ensure fairness, all convolutional neural networks use
synthetic data sets for training, and the trained models are
used for testing in O-HAZE.

Training Details We trained the indoor and outdoor syn-
thetic image models separately. The epoch was set to 20,
the batch size was set to 4, and the initial learning rate was
0.0001. The training method adopted the attenuation learn-
ing rate such that the learning rate was attenuated every
two epochs, and the final learning rate was attenuated to
0.000001. The model used the Adam optimizer and was
trained on the NVIDIA TITAN RTX.

Quality Measures To reasonably evaluate the effectiveness
of the proposed method, we used the peak signal-to-noise
ratio (PSNR) and SSIM as objective evaluation indicators.
PSNR and SSIM are full reference evaluation indexes; as
such, it is necessary to refer to the haze-free image when
evaluating the dehazing results. The larger the PSNR, the
lower the distortion of the image, the higher its quality, and
the better the dehazing effect. The closer the SSIM is to

1, the higher the similarity of the structure, brightness, and
contrast between the evaluated and haze-free images.

4.2 Activation function

To verify the effectiveness of DY-ReLU-A and DY-ReLU-
B, we compared them against ReLU. Thus, we used ReLU,
DY-ReLU-A, and DY-ReLU-B as the activation functions
of the MSDFN and applied the resulting models to the
indoor and outdoor synthetic image datasets for training;
then, we selected the most suitable through objective index
evaluations and subjective visual impressions.

Table 1 shows the test results—for the SOTS test set—
for the models using different activation functions. By
comparing the objective indicators, we can see that the
model using the DY-ReLU-B activation function achieved
the highest scores in terms of both PSNR and SSIM.
The models using ReLU and DY-ReLU-A achieved lower
objective evaluation scores.

Figure 6 shows the test results—for the SOTS indoor
testing set—of several models using different activation
functions. From Fig. 6, all models can be seen to achieve
good results, and the haze in the pictures is almost entirely

Fig. 6 Selection of test results
using different activation
functions for the outdoor
synthetic image dataset
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Fig. 7 Selection of test results
using different activation
functions for the outdoor
synthetic image dataset

removed. By considering the picture details, we can see
that the DY-ReLU-B-based model outperforms the ReLU-
based one in terms of texture and color restoration. This
can be seen in the floor area, wall area, and desktop
of the third, fifth, and sixth images, respectively. The
DY-ReLU-A-based model exhibits a certain residual haze
phenomenon, which is especially pronounced in the cabinet,
ground, and chair areas of the second, third, and fourth
images, respectively. Using objective evaluation indicators
and subjective impressions, we conclude that the DY-ReLU-
B-based model outperforms the other models proposed in
this article.

Figure 7 depicts the test results—for the SOTS outdoor
testing set—of the models using different activation

functions. From the figure, we can see that all models
exhibit dehazing effects; however, certain differences exist
between these effects. In contrast to its performance upon
the indoor synthetic image test set, the ReLU-based model
performs worst in outdoor synthetic image processing.
The processed images exhibit distinct black patches, and
the surface textures of the objects are poorly restored.
The DY-ReLU-A-based model shows some improvements;
though dark spots still appear in the image and the
texture recovery is poor, it outperforms the DY-ReLU-A-
based model and achieves the best performance. The post-
dehazing image quality is higher, and the texture restoration
is superior. After the second image is processed, the image
quality exceeds that of the ground-truth image. Through

Fig. 8 Part of the test results of models using different activation functions in real scene image dataset
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Table 2 The models using
different activation functions
are trained on the indoor
synthetic image dataset and the
outdoor synthetic image
dataset, and the influence of
different activation functions
on the model is quantitatively
evaluated

Config Indoor Outdoor

PSNR SSIM PSNR SSIM

E-IPB 30.8 0.9952 31.9685 0.9977

D-IPB 30.5374 0.9892 32.0844 0.99695

E-D-IPB 30.8817 0.9965 33.7365 0.998

objective evaluation indicators and subjective impressions,
we conclude that the DY-ReLU-B-based model outperforms
the other models proposed in this article.

To test with hazy real-scene images, we used the model
trained on the outdoor synthetic image dataset. Figure 8
shows the image results obtained for the real-scene test
set by the models using different activation functions. The
results show that DY-ReLU-A and DY-ReLU-B are more
suitable for processing real-scene images. The ReLU-based
model produces impure processing results, and its texture
restoration is poor. The DY-ReLU-A- and DY-ReLU-B-
based models exhibit fewer differences when dealing with
real scenes. However, in terms of details, the DY-ReLU-B-
based model produces smoother and more natural results for
hazy real-scene images.

Using comprehensive objective evaluation indicators and
subjective visual impressions, we conclude that the DY-
ReLU-B-based model is the most suitable for real-scene
images. However, when using DY-ReLU-B as the activa-
tion function, the computational complexity exceeds that of

DY-ReLU-A and ReLU, and the training time is signifi-
cantly longer.

4.3 Ablation study

We conducted an ablation experiment upon the network,
to better investigate its structure and components. In this
experiment, indoor and outdoor synthetic image datasets
were used for training. The ablation experiment involved the
following three models:

E-IPB: In this model, we retain the skip-connection
between EB and IPB in the original model and remove the
skip-connection between DB and IPB.

D-IPB: In this model, we retain the skip-connection
between DB and IPB in the original model and remove that
between EB and IPB.

E-D-IPB: The original model.
Table 2 shows the test results of E-IPB, D-IPB, and E-

D-IPB for the SOTS test set. ED-IPB exhibits a superior
performance, especially in the outdoor synthetic images;

Fig. 9 Selection of test results
obtained by E-IPB, D-IPB, and
E-D-IPB for indoor synthetic
image dataset
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Fig. 10 Selection of test results
obtained by E-IPB, D-IPB, and
E-D-IPB for outdoor synthetic
image dataset

this is perhaps due to the lack of IPB participation in the
decoding process, which can lead to poor color recovery.
E-IPB achieves the lowest objective evaluation index value.

Figure 9 shows several of the test results obtained by E-
IPB, D-IPB, and E-D-IPB for the SOTS indoor synthetic
image dataset E-IPB does not involve the IPB during
decoding, resulting in poor color restoration. D-IPB does
not involve the IPB during encoding; this improves the color
recovery, though the residual haze in the picture can be
clearly observed. E-D-IPB outperforms E-IPB and D-IPB:

its color recovery is superior and the haze is almost entirely
removed.

Figure 10 shows several test results obtained by E-
IPB, D-IPB, and E-D-IPB for the SOTS outdoor synthetic
image dataset. E-IPB suffers the same problem it exhibited
for the outdoor composite image test: it struggles to
restore the color of the image. D-IPB removes the
haze from the image, and the image colors are better
restored. However, a slight difference is observed between
its surface texture restoration and that of E-D-IPB;

Fig. 11 Selection of test results obtained by E-IPB, D-IPB, and E-D-IPB for real-scene image dataset
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Table 3 The average score obtained by different models of indoor and outdoor synthetic image datasets

Method DCP Hazy-lines AOD-Net MSCNN GCANet FFA-Net MSBDN Ours

PSNR Indoor 28.804 28.1599 28.7184 28.4762 28.5638 29.1523 28.0113 30.8817

Outdoor 28.5063 28.0783 28.2475 28.2134 28.8829 30.1502 27.9608 33.7365

SSIM Indoor 0.9803 0.8157 0.9596 0.9312 0.9667 0.9649 0.9109 0.9965

Outdoor 0.9467 0.8804 0.9701 0.9634 0.9813 0.9676 0.9465 0.998

TIME 30.03s 6.53s 0.54s 2.93s 0.6s 0.68s 0.088s 0.64s

VIDEO MEMORY – – 875MB – 1201MB 1563MB 1175MB 5951MB

The average time consumption of the model to process images and computing resource consumption

this can be seen in the building and grass areas in
the first and third pictures, respectively. The processing
result of E-D-IPB is superior to those of E-IPB and
D-IPB. The image has almost no residual haze, and
the restored image presents better color saturation and
contrast.

Figure 11 shows several of the test results obtained
by E-IPB, D-IPB, and E-D-IPB for the real-scene image

dataset. The primary problem of E-IPB is still its poor color
recovery. Because of the high haze density of the displayed
real image, D-IPB features artifacts on object contours. E-
D-IPB contains no artifacts and shows a strong performance
when processing real-scene images.

Through the ablation experiment, we conclude that the
IPB’s participation in the encoding and decoding processes
is highly effective. Its participation in the decoding and

Fig. 12 Indoor synthetic image
samples, to compare the
subjective impressions of
different model results
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encoding processes can effectively restore the image colors
and enhance the model’s dehazing ability, respectively.

4.4 Comparisons with state-of-the-art methods

We tested the proposed method on the RESIDE test set,
and compared it with DCP, Hazy-lines, AOD-Net, MSCNN,
GCANet, FFA-Net and MSBDN using objective indicators
and subjective visual perception. To ensure fairness, we
retrained the data-driven dehazing methods using the same
training set. As shown in Table 3, our proposed method
achieves excellent results for both the indoor and outdoor
synthetic images of SOTS, and its PSNR and SSIM scores
exceed those of other methods in quantitative evaluations.
The method proposed in this paper is at an average level in
the calculation time consumption of a single image. The test
platform is i7-10700k, TITAN RTX, and the test data size
is 640 * 480. This method takes up more resources due to
more parameters.

Figure 12 shows the performances of all methods for
indoor synthetic images. The DCP presents a significant
dehazing effect; however, the restored image quality is
low, a serious color shift has occurred, and the object
surface textures are poorly restored. Hazy-lines produces
a poor dehazing effect; subjectively, its processing results
can be seen to contain more haze residues than those of
DCP; furthermore, the problems of color shift and poor
object surface texture restoration observed for DCP and
also be seen. AOD-Net achieves a certain dehazing effect,
though considerable haze remains. Compared with DCP
and Hazy-lines, AOD-Net improve its object surface texture
restoration. However, owing to its relatively simple network
model, the dehazing effect does not yet achieve satisfactory
results. MSCNN is effective in processing light haze
images, but the performance is poor when the haze density
is high. GCANet achieves a strong dehazing performance.
Most of the haze in the image has been removed well,
though a small amount remains. FFA-Net’s performance in

Fig. 13 Outdoor synthetic
image samples, to compare the
subjective visual impressions of
different model results
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Fig. 14 Different methods are
used to process the comparison
of hazy images in O-HAZE

the indoor composite image is unsatisfactory. Haze residues
are still present in the image, though the surface textures of
the objects are better restored, and no black spots can be
observed. MSBDN achieves a significant dehazing effect in
the indoor composite images, and the image haze has been
almost entirely removed. However, the color is darker in
the deeper regions, and the details are not sufficiently clear.
The method proposed in this paper achieves a significant
dehazing effect: the surface textures of the objects are
restored well; no color-shift problems arise; and in the
quantitative comparison, it outperforms the other methods.

Figure 13 shows the performance of different methods
for outdoor synthetic images. DCP achieves a significant
dehazing effect in outdoor composite images; however,
problems of high contrast and oversaturated sky colors are
present. Hazy-lines also produces high contrasts, though
the overall effect is better than that of DCP. The images
processed by AOD-Net exhibit darker image tones and
overall image colors. The hazy image processed byMSCNN
still has a small amount of smog and color distortion. Those
processed by GCANet retain a blocky haze, the sky regions
are impure, and high contrasts are visible. The effect of

Table 4 The average score obtained by different models of O-HAZE

Method DCP Hazy-lines AOD-Net MSCNN GCANet FFA-Net MSBDN Ours

PSNR 28.0369 28.0407 27.9965 28.1234 27.9312 28.1805 28.1258 28.0701

SSIM 0.9589 0.9436 0.9198 0.9545 0.8703 0.9273 0.9197 0.9555
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Fig. 15 Comparison of different
model results for hazy
real-scene image samples

FFA-Net in processing outdoor composite images is better
than when processing indoor ones. The dehazing effect of
MSBDN is more significant: the haze is almost entirely
removed, though the contrast in some detailed regions of the
image is low. Our method can effectively remove the haze
from the image. Compared with the most advanced methods
(FFA-Net and MSBDN), our method restores the color of
the images in a more coordinated manner. Its performance
in the second and fourth pictures is significantly better than
those of MSBDN and the other methods.

4.4.1 Results on a real-world dataset

It is necessary to test the model on real scenes; thus, we
chose the O-HAZE and collected images for testing, to
compare our method against other methods. Because the
hazy real-scene images lack a haze-free reference image,
it is impossible to use PSNR and SSIM to compare
different methods; hence, it is difficult to quantitatively

compare the different methods for a real scene. However,
the hazy images feature a relatively concentrated histogram
distribution. Therefore, we considered the comprehensive
image histograms and subjective visual impressions, to
evaluate and compare the models’ efficacies for real scenes.

Figure 14 is the comparison of all methods on the O-
HAZE test set. Table 4 is the objective evaluation index of
the method on O-HAZE. The processing results of DCP
and Hazy-line are better, the details are preserved, but the
environment color is distorted to a certain extent. AOD-
Net performs poorly when processing such images, and the
dehazing effect is not obvious. MSCNN is better than AOD-
Net when processing such images, and the image clarity
has a certain degree of enhancement. The dehazing effect
of GCANet is more obvious, the details are clearer, but
the overall contrast of the picture is too strong, resulting in
distortion of the image. FFA-Net and MSBDN have almost
no effect when processing such images, and the haze residue
in the processed image is relatively large. The method we
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propose is the best among all neural network models. This
method has a significant dehazing effect, less haze residue,
and more obvious details are restored.

Figure 15 illustrates the effects of different methods for
processing hazy real-scene images, and Fig. 16 shows the
color histograms of all images in Fig. 15. Subjectively, we
can see that DCP exhibits a more distinct dehazing effect,
considerably altering the color histogram distributions of the
hazy images; in fact, the color histograms of DCP are more
balanced than those of the original images. Although the
dehazing effect is clear, the image quality after dehazing is
poor: serious artifacts and color shifts are visible, and the
image contrast is too high. Hazy-lines’ dehazing effect is
better than that of DCP, and the extent of artifacts and color
shifts is smaller than observed for DCP. AOD-Net performs
poorly in real scenes: the dehazing effect is unclear and
the color histogram distribution changes only slightly. The
experimental results show that the AOD-Net trained from
synthetic images struggles to process the haze in real-scene

images. MSCNN removed part of the haze, but there are still
many haze residues.

GCANet achieves a reasonable performance for hazy
real-scene images, and the color histogram distribution is
balanced. However, by observing the color histogram, the
distribution of GCANet’s color histogram can be seen to
differ from that of the original image. Subjectively, we
conclude that the image color has changed considerably,
the image is insufficiently pure, and some artifacts appear.
FFA-Net, trained upon a synthetic image dataset, also
achieves a poor performance in processing hazy real-scene
images. This problem is also reflected in the color histogram
distribution. Subjectively, MSBDN achieves a reasonable
effect when processing real-scene images; for instance,
its color histogram distribution is more balanced than the
original color histogram. However, it is prone to artifacts
and other problems. The histogram distribution of the
processed image exhibits small differences when compared
to the original image.

Fig. 16 Color histograms
corresponding to the images in
Fig. 15. Because the histogram
distributions of hazy images are
relatively concentrated, the
subjective visual impressions
and histogram distributions can
be combined to compare the
image-dehazing effects of
different methods
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Compared with the above methods, our proposed method
offers clear advantages: it improves the image definition
but does not produce color shifts or high contrasts, the
picture is relatively pure and contains no patchy haze, and
the color histogram distribution is more balanced than that
of the original image. Our model uses skip-connection the
pyramid features of the hazy image to the encoding and
decoding parts, and it effectively retains the original color
features; as a result, the color histogram retains the same
features as the original color histogram. This also explains
the absence of color shift after processing using our method.

By using different methods to compare results between
the synthetic image test set and real-scene dataset, we found
that the proposed method outperforms existing methods in
terms of both qualitative and quantitative comparisons.

5 Conclusion

In this study, we proposed the MSDFN and, through numer-
ous experiments, proved its effectiveness and superiority
in dehazing real-scene images. Existing end-to-end dehaz-
ing methods only focus on constructing a channel between
the hazy and clean images, and they fail to consider the
influence of the depth information of the scene on the
imaging effect. In addition to the hazy image itself, depth
information is the most important information in the image-
dehazing process. Experimental results show that our appli-
cation of depth information in dehazing images is effec-
tive. We conclude that, although promising image dehazing
results can be achieved using depth information, room for
improvement remains. If more accurate image depth infor-
mation can be acquired, the effects of image dehazing
processes can be further improved.

Acknowledgments The authors acknowledge the National Natural
Science Foundation of China (Grant nos. 61772319, 62002200,
61976125, 61873177 and 61773244), and Shandong Natural Science
Foundation of China (Grant no. ZR2017MF049).

References

1. McCartney EJ (1977) Optics of the atmosphere: Scattering by
molecules and particles. Int J Comput Vis 28(11):521–521

2. Narasimhan SG, Nayar SK (2000) Chromatic framework for
vision in bad weather. In: Proceedings IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.
PR00662), vol 1. IEEE, pp 598–605

3. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int
J Comput Vis 48(3):233–254

4. He K, Sun J, Tang X (2010) Single image haze removal using dark
channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–
2353

5. Berman D, Avidan S et al (2016) Non-local image dehazing.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1674–1682

6. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

7. Li J, Li G, Fan H (2018) Image dehazing using residual-based
deep cnn. IEEE Access 6:26831–26842

8. Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: An end-
to-end system for single image haze removal. IEEE Trans Image
Process 25(11):5187–5198

9. Li B, Peng X, Wang Z, Xu J, Feng D (2017) Aod-net: All-in-
one dehazing network. In: Proceedings of the IEEE international
conference on computer vision, pp 4770–4778

10. Qu Y, Chen Y, Huang J, Xie Y (2019) Enhanced pix2pix dehazing
network. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 8160–8168

11. Chen D, He M, Fan Q, Liao J, Zhang L, Hou D, Yuan L, Hua G
(2019) Gated context aggregation network for image dehazing and
deraining. In: 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, pp 1375–1383

12. Liu X, Ma Y, Shi Z, Chen J (2019) Griddehazenet: Attention-
based multi-scale network for image dehazing. In: Proceedings of
the IEEE International Conference on Computer Vision, pp 7314–
7323

13. Qin X, Wang Z, Bai Y, Xie X, Jia H (2020) Ffa-net: Feature fusion
attention network for single image dehazing. In: AAAI, pp 11908–
11915

14. Dong H, Pan J, Xiang L, Hu Z, Zhang X, Wang F, Yang
M-H (2020) Multi-scale boosted dehazing network with dense
feature fusion. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 2157–2167

15. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional
networks for biomedical image segmentation. In: International
Conference on Medical image computing and computer-assisted
intervention. Springer, pp 234–241

16. Zhu K, Jiang X, Fang Z, Gao Y, Fujita H, Hwang J-N (2020)
Photometric transfer for direct visual odometry. Knowl-Based
Syst:106671

17. Bissonnette LR (1992) Imaging through fog and rain. Opt Eng
31(5):1045–1053

18. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather
degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–
724

19. Ibrahim H, Kong NSP (2007) Brightness preserving dynamic
histogram equalization for image contrast enhancement. IEEE
Trans Consum Electron 53(4):1752–1758

20. Kim J-Y, Kim L-S, Hwang S-H (2001) An advanced contrast
enhancement using partially overlapped sub-block histogram
equalization. IEEE Trans Circ Syst Video Technol 11(4):475–484

21. Stark JA (2000) Adaptive image contrast enhancement using
generalizations of histogram equalization. IEEE Trans Image
Process 9(5):889–896

22. Khan MF, Khan E, Abbasi ZA (2014) Segment depen-
dent dynamic multi-histogram equalization for image contrast
enhancement. Digital Signal Process 25:198–223

23. Richter R (1996) Atmospheric correction with haze removal
including a haze/clear transition region. In: Algorithms for Mul-
tispectral and Hyperspectral Imagery II, vol 2758. International
Society for Optics and Photonics, pp 254–262

24. Seow M-J, Asari VK (2006) Ratio rule and homomorphic filter
for enhancement of digital colour image. Neurocomputing 69(7-
9):954–958

25. Daubechies I (1990) The wavelet transform, time-frequency locali-
zation and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

Multi-scale depth information fusion network for image dehazing 7279



26. Ma J, Plonka G (2010) The curvelet transform. IEEE Signal
Process Mag 27(2):118–133

27. Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG)
27(3):1–9

28. Arigela S, Asari VK (2014) Enhancement of hazy color images
using a self-tunable transformation function. In: International
Symposium on Visual Computing. Springer, pp 578–587

29. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang M-H (2016) Single
image dehazing via multi-scale convolutional neural networks.
In: European conference on computer visionSpringer, pp 154–
169

30. Zhu H, Peng X, Chandrasekhar V, Li L, Lim J-H (2018) Dehaze-
gan: When image dehazing meets differential programming. In:
Proceedings of the twenty-seventh international joint conference
on artificial intelligence, IJCAI-18. International Joint Confer-
ences on Artificial Intelligence Organization, pp 1234–1240.
https://doi.org/10.24963/ijcai.2018/172

31. Wang T, Zhang X, Jiang R, Zhao L, Chen H, Luo W (2020) Video
deblurring via spatiotemporal pyramid network and adversarial
gradient prior. Comput Vis Image Underst 203:103135

32. Ren W, Ma L, Zhang J, Pan J, Cao X, Liu W, Yang M-
H (2018) Gated fusion network for single image dehazing. In:
Proceedings of the IEEE Conference on Computerd Vision and
Pattern Recognition, pp 3253–3261

33. Zhang X, Wang T, Wang J, Tang G, Zhao L (2020) Pyramid
channel-based feature attention network for image dehazing.
Comput Vis Image Underst:103003

34. Liu F, Shen C, Lin G, Reid I (2015) Learning depth from single
monocular images using deep convolutional neural fields. IEEE
Trans Pattern Anal Mach Intell 38(10):2024–2039

35. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensional-
ity of data with neural networks. Science 313(5786):504–507

36. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier
neural networks. In: Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp 315–323

37. Nair V, Hinton GE (2010) Rectified linear units improve restricted
boltzmann machines vinod nair. In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10), Haifa

38. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities
improve neural network acoustic models. In: Proc. icml, vol 30,
pp 3

39. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer
vision, pp 1026–1034

40. Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and
accurate deep network learning by exponential linear units (elus).
arXiv:1511.07289

41. Chen Y, Dai X, Liu M, Chen D, Yuan L, Liu Z (2020) Dynamic
relu. arXiv:2003.10027

42. Hua Z, Fan G, Li J (2020) Iterative residual network for image
dehazing. IEEE Access 8:167693–167710

43. Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor
segmentation and support inference from rgbd images. In:
European conference on computer vision. Springer, pp 746–760

44. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z
(2017) Reside: A benchmark for single image dehazing, vol 1.
arXiv:1712.04143

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Guodong Fan received his
bachelor’s degree from the
School of Computer Science
and Technology, Shandong
Technology and Business
University, Yantai, China in
2018. Currently studying for a
master’s degree in the School
of Information and Elec-
tronic Engineering, Shandong
Technology and Business
University, Yantai, Shandong.
His research interests include
computer graphics, computer
vision, and image processing.

Zhen Hua received the B.S.
and M.S. degrees in electri-
cal automation from Taiyuan
University of Technology,
Taiyuan, China, in 1989 and
1992, respectively, the Ph.D.
degree in electronic informa-
tion engineering from China
University of Mining and
Technology, Beijing, China,
in 2008. She is currently a
professor at Shandong Tech-
nology and Business Univer-
sity. Her research interests in-
clude computer aided geome-
tric design, information visua-
lization, virtual reality, and
image processing.

Jinjiang Li received the B.S.
and M.S. degrees in computer
science from Taiyuan Univer-
sity of Technology, Taiyuan,
China, in 2001 and 2004,
respectively, the Ph.D. degree
in computer science from
Shandong University, Jinan,
China, in 2010. From 2004
to 2006, he was an assistant
research fellow at the institute
of computer science and tech-
nology of Peking University,
Beijing, China. From 2012 to
2014, he was a Post-Doctoral
Fellow at Tsinghua Univer-

sity, Beijing, China. He is currently a Professor at the school of
computer science and technology, Shandong Technology and Business
University. His research interests include image processing, computer
graphics, computer vision, and machine learning.

G. Fan et al.7280

https://doi.org/10.24963/ijcai.2018/172
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/2003.10027
http://arxiv.org/abs/1712.04143

	Multi-scale depth information fusion network for image dehazing
	Abstract
	Introduction
	Related work
	Image-enhancement-based dehazing
	Atmospheric-physical-model-based image dehazing
	End-to-end model-based image dehazing



	Proposed method
	Network design
	Depth-map prediction module (DPM)
	Input pyramid branch (IPB)
	Input pyramid branch(IPB)
	Encoder branch(EB)
	Decoder branch(DB)

	Activation function
	Loss function

	Experimental results
	Experiment settings
	Dataset
	Training Details
	Quality Measures


	Activation function
	Ablation study
	Comparisons with state-of-the-art methods
	Results on a real-world dataset


	Conclusion
	References




