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Abstract
This paper studies the stability and stabilization problems of the T-S fuzzy systems with uncertainty and state quantization.
Considering that fuzzy membership functions(FMFs) are the main characteristic of T-S fuzzy model, if the information about
the membership function is not added, it will be conservative. So, a novel Lyapunov-Krasovskii functional (LKF) which
contains not only integral variables but also FMFs is constructed. To include more information about the sampling pattern,
the states on both sides of the sampling interval are incorporated into the LKF. When taking the derivative of the LKF, the
product terms which consist of derivative of FMFs and LKF coefficient are involved. Then, the product terms are discussed
to ensure their negative definition. By further derivation, enough stability conditions are expressed in the form of linear
matrix inequalities (LMIs). The sampling intervals and controller parameters for the T-S fuzzy system can be solved by
MATLAB toolbox with the optimal parameters. Finally, two numerical examples are simulated to illustrate the effectiveness
of the proposed method.
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1 Introduction

T-S fuzzy model has become the fundamental tool for study-
ing nonlinear systems. With the help of the T-S fuzzy model,
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the nonlinear system can be expressed in a locally linear
form, and then the fuzzy membership functions(FMFs) can
be used to connect them smoothly. What’s more, the orig-
inal nonlinear system can be approximated with arbitrary
precision [1–3]. Consequently, in recent years, the stability
analysis and controller synthesis issues for T-S fuzzy sys-
tems have been deeply investigated and also gained a lot
results [4–7]. On the other hand, an inevitable disadvantage
that we should not ignore is the parameter uncertainties in
T-S fuzzy systems, which may occur because of the model
inaccuracies, unexpected exterior ambient perturbations or
network-generated stochastic failures in the implementa-
tion of the model. These have caused many researchers
to extensively study the stability problem for uncertain
T-S fuzzy systems [8–11]. For example, H∞ controller
design problem for uncertain T-S fuzzy system via the par-
allel distributed compensation (PDC)has studied in [12],
which includes event-triggered communication strategy.
Based on the Lyapunov-Krasovskii functional (LKF) and
combining delay-product-type functional method together
with the state vector augmentation, less conservative delay-
dependent stability conditions were obtained for T-S fuzzy
systems [13]. Vadivel et al. [14] employed a new LKF
together with linear matrix inequality (LMI) technique to
investigate robust H∞ stability for uncertain T-S fuzzy

/ Published online: 11 March 2021

Applied Intelligence (2021) 51:7469–7483

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02206-8&domain=pdf
http://orcid.org/0000-0002-6460-0625
mailto: zjy815@163.com
mailto: gechao365@126.com
mailto: heutliwei@163.com


systems which have distributed time delay and nonlinear
disturbance.

Benefit from the advancement of digital technology and
in-depth research on it, the digital controllers which provide
many advantages including installation cost saving, lower
communication channels occupancy and implementation
simplicity are gradually applied to area of industry control,
and resulted in the rapid development of sampling control.
Sampling control scheme only uses signal value of the
signal sampling instant, and stay unchanged between the
sampling interval until the arrival of the next sampling
time. In other words, the larger the sampling interval, the
smaller the data quantity. Hence, the sampled-data control
method has aroused great concern [15–19]. Liu et al. [20]
utilized the sampling controller which has a constant signal
transmission delay to tackle the stabilization problem for
T-S fuzzy systems. Wu et al. [21] applied time-dependent
Lyapunov functional way to study the sampled-data control
problem of chaotic systems which represented by T-S
fuzzy model. Unlike the above two approaches, the delay
partitioning idea that delay interval is split into flexible
terminals has been employed in [22]. In [23], the fuzzy
sampled-data control of chaotic systems is presented by
using a time-dependent Lyapunov function. The function
is continuous at the time of sampling, but not necessarily
positively defined within the sampling interval.

The advantage of signal quantization is that it can
increase bandwidth efficiency, enhance anti-interference
and reduce energy loss. Thus, quantization is widely
considered in the design of controllers for T-S fuzzy systems
[24–26]. The robust control problem of uncertain discrete
time Takagi-Sugeno (T-S) fuzzy networked control systems
(NCSs) which has state quantization had investigated in
[27]. In [28], an improved LKF and a less conservative
delay-dependent conditions are proposed for the stability
analysis of closed-loop NCSs. The method of multiple
Lyapunov functions are cited in both references [27] and
[28]. Recently, The LKF that depends on membership
functions has been widely studied. The effect of adding
membership function to LKF in reducing conservatism
has been verified in [29–34]. Inspired by the above
articles, in the process of constructing a new LKF to
ensure the stabilization of system and do controller
design work, if the application of the FMFs and the
actual sampling pattern is more sufficient, it will be less
conservative. It is also necessary to incorporate uncertainty
and quantification into the design of the controller. There
is still much improvement about stability analysis and
controller synthesis for uncertain sampled-data T-S fuzzy
system. The above is the starting point of our writing.

As discussed above, a sampled-data feedback control
scheme has been proposed for T-S fuzzy systems which

have parameter uncertainties and state quantization. The
following contributions can be summarized:

(1) In this paper, a novel Lyapunov function which
depends on FMFs is established. In addition, to contain
more information about the actual sampling pattern,
the state information on both sides of the sampling
interval is added.

(2) When deriving LKF, the positive and negative of the
derivative of the FMFs are discussed, because results
depend on not only the state variable, but also the
product terms. And, these terms are product terms
which consist of the derivative of the FMFs and some
LKF coefficient.

(3) By using relaxed Free-matrix-based (FMB) integral
inequality and reciprocally convex method, a series
of new stability conditions are got with the LMIs
form. Then, the gain Kj and the maximum sampling
interval can be obtained by solving LMIs with the
optimal parameters. In the end, the effectiveness of the
proposed methodology is provided by two numerical
examples.

Notation: In the process of constructing the stability con-
ditions, some symbols are involved. In order to facilitate
reading, the meanings of these symbols are annotated
below:
∗ represents the symmetric elements of the matrix, such

as : Ω1 =
[
X P

∗ Y

]
is equivalent to Ω1 =

[
X P

P T Y

]
; X

> 0 denotes X is the positive definite matrix ; XT is
the transpose of the matrix X; I denotes identity matrix
with the appropriate dimensions; Rn n-dimensional vec-
tor Euclidean space; R

m×n real matrices in m × n

dimensions.

2 Problem statement and preliminary

Suppose that the model of the nonlinear system represented
by the T-S fuzzy model is as follows:
Plant rule i:

IF ζ1(t) is μi1, . . .,and ζp(t) is μip

THEN

ẋ(t) = (Ai + ΔAi(t))x(t) + (Bi + ΔBi(t))u(t), (1)

where i ∈ R � {1, 2, ..., r} represents the ith fuzzy rule; r

represents the number of fuzzy rules; ζi(t)(i = 1, 2, ..., p)

denote the premise variable ; μij (j = 1, 2, ..., p) denote
fuzzy sets; x(t) ∈ R

n and u(t) ∈ R
n denote the system

state variable and control input of the system respectively;
Ai and Bi denote constant matrices with proper dimensions;
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ΔAi(t) and ΔBi(t) denote time-varying matrices with
compatible dimensions and are assumed to meet:

[ΔAi(t), ΔBi(t)] = HiFi(t)[Eai, Ebi], (2)

It is assumed that the uncertainty is energy bounded and
the norm bounded conditions are satisfied as follows: Hi ,
Eai and Ebi are known constant matrices with appropriate
dimensions,and Fi(t) ∈ Rn×n is the unknown Lebesgue
measurable time-varying matrix function, and Fi(t) meets
FT

i (t)Fi(t) ≤ I .

ẋ(t) =
r∑

i=1
λi(ζ (t))[(Ai + ΔAi(t))x(t) + (Bi + ΔBi(t))u(t)], (3)

where λi(ζ (t)) denotes the normalized membership func-
tion and satisfies the following description:

λi(ζ (t)) =
∏p

j=1 μij (ζj (t))∑r
i=1

∏p

j=1 μij (ζj (t))
≥ 0, (4)

where ζ(t) = [ζ1(t), ζ2(t), ..., ζp(t)] and
r∑

i=1
λi(ζ(t)) = 1.

For simplify, let λi(t) � λi(ζ(t)) in the following.
Sampling is the timed measurement of analog signals.

In other words, it is the process of converting time-varying
analog signals into time-varying pulse signals. The sampled
signal is stored temporarily until the next sampling. During
interval, the sampled signal can be coded and quantified.
Zero-order holder(ZOH) is an important tool to achieve
the above operations. In this article, it is assumed that the
ZOH generates u(t). The ZOH is mathematically modeled.
It includes two parts, one is using conventional digital-to-
analog converter to complete practical signal reconstruction,

the other is converting discrete signals into continuous pulse
signals. ZOH keeps the sampled data unchanged during
the sampling interval until the next sampling time with a
battery of holding time. The holding time satisfies 0 =
t0 ≤ t1 ≤ · · · ≤ tk ≤ · · · ≤ lim

k→+∞tk = +∞, i.e.. Only

the measured discrete sampled data are used for control
purpose. Through summarizing the above statement and
combining knowledge of quantification, the following is the
representation of controller.
Controller Rule j:

IF ζ1(t) is μj1, . . ., and ζp(t) is μjp

THEN

u(t) = KjL(tk), tk ≤ t < tk+1, j = 1, 2, · · · , r, (5)

where Kj are local gain matrix with compatible dimension.
Then, consider the logarithmic quantizer as follows:

L(·) = [L1(·), L2(·), . . . , Ln(·)]T
and the m-level sub-quantizer Lm(·) with symmetric
properties:

Lm(xm(tk)) = −Lm(−xm(tk))

At the same time, the quantization level of Lm is described
by:

{±Ur
m|Ur

m = (ρm)rU(0)
m , r = ±1, ±2, . . .} ∪ 0,

0 ≤ ρm < 1, U(0)
m ≥ 0.

where ρm and U
(0)
m denote the quantizer density and

intinal quantization value, respectively. The following is the
rigorous definition of the quantization Lm(·):

Lm(xm(tk)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(r)
m ,

U
(r)
m

1 + lm
< xm(tk) ≤ U

(r)
m

1 − lm
, if xm(tk) > 0,

0, if xm(tk) = 0

−Lm(−xm(tk)), if xm(tk) < 0

where the lm = 1−ρm

1+ρm
(m = 1, 2, . . . , n) is the quantier

density. Hence, the quantizer is the characteristic of

L(x(tk)) = x(tk) + g(x(tk))

where

g(x(tk)) = [g1(x1(tk)), g2(x2(tk)) . . . , gn(xn(tk))]T

with

− lm[xm(tk)]2 ≤ xm(tk)gm(xm(tk)) ≤ lm[xm(tk)]2 (6)

Thus, the overall state feedback controller is inferred by :

u(tk) =
r∑

j=1

λj (tk)Kj [x(tk) + g(x(tk))] (7)

This article does not require sampling to be periodic. It
only assumes that the distance between any two consecutive
sampling instants belongs to an interval. In particular,
suppose:

tk+1 − tk = hk ≤ h (8)
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after substituting the (7) into the system (3), the following
closed-loop model of fuzzy system can be got:

ẋ(t) =
r∑

i=1

r∑
j=1

λi(t)λj (tk)
[
(Ai + ΔAi(t))x(t)

+(Bi + ΔBi(t))Kj (x(tk) + g(x(tk)))
]
, (9)

Next are the lemmas and assumption that will be used in the
subsequent proof process:

Assumption 1 Due to 0 ≤ λj (t), λj (tk) ≤ 1, assume
| λj (t)−λj (tk) |≤ ηj , ∀k ∈ N and j ∈ 
, with 0 ≤ ηj ≤ 1.

Lemma 1 [35] Let x be a differentiable function: [t1, t2] →
R

n. For symmetric matrices R(∈ R
n×n) > 0 ,ξ ∈ R

m and
N1, N2 ∈ R

n×m, the inequality is established:

−
∫ t2

t1

ẋT (s)Rẋ(s)ds

≤ (t2 − t1)ξ
T [NT

1 R−1N1 + (t2 − t1)
2

3
NT
2 R−1N2]ξ

+ 2ξT

[
NT
1 (x(t2) − x(t1)) − 2NT

2

∫ t2

t1

xT (s)ds

]

+2(t2 − t1)ξ
T NT

2 [x(t2) + x(t1)].

Lemma 2 [36] For given positive integers n, m, a scalar
αε(0, 1), a given matrix G in R

n×n > 0, two matrices
M1 and M2 in R

n×m, for all vector ζ in R
m, the function

Θ(α, G) given by:

Θ(α, G) = 1

α
ζT MT

1 GM1ζ + 1

1 − α
ζT MT

2 GM2ζ

if there exists a matrix X in R
n×n such that

[
G X

∗ G

]
> 0,

then the following inequality holds:

min
α∈(0,1)

Θ(α, R) ≥
[
M1ζ

M2ζ

]T [
G X

∗ G

] [
M1ζ

M2ζ

]
.

Lemma 3 [37] For given b1 > 0 and b2 > 0, if there exists
an LKF W(t, x(t)) which depends on FMFs and satisfies
the conditions as follows, ∀t ∈ [tk, tk+1):

(i) b1|x(tk)|2 ≤ W(tk, x(tk)) ≤ b2|x(tk)|2;
(ii) W(tk, x(tk)) ≤ W−(tk, x(tk));
(iii) LW(t, x(t)) � lim

Δ→0+
1

Δ
{E{W(t+Δ, x(t + Δ))|t}

−W(t, x(t))} < 0;
where LW(t, x(t)) is the infinitesimal operator along fuzzy
system (10) and W−(t, x(t)) � lim

s↑t
W(s, s(t)). Then, the

fuzzy system (9) has the stochastic stability.

Lemma 4 [38] Given matrices W1 = WT
1 , W2, W3 with

compatible dimensions:

W1 + W2F(t)W3 + WT
3 FT (t)WT

2 < 0,

for all F(t) satisfying FT (t)F (t) ≤ I , it is equivalent to the
existence of a scalar σ > 0, thus satisfying:

W1 + σW2W
T
2 + σ−1WT

3 W3 < 0.

3Main results

In the following part, we obtain the stability constraint
conditions for the T-S fuzzy system which has uncertainty
and state quantization. To simplify the matrix expression,
the symbols involved are shown as following:

ei = [0n×(i−1)n, In, 0n×(7−i)n](i = 1, 2, 3, 4, 5, 6, 7) ,
h1(t) = t − tk, h2(t) = tk+1 − t,

ηT
1 (t) = [

xT (t), xT (tk), x
T (tk+1), g

T (x(tk))
]
, ηT

2 (t) =[
ηT
1 (t), ẋT (t)

]
,

ηT
3 (t) =

[
ηT
1 (t),

∫ t

tk
xT (s)ds,

∫ tk+1
t

xT (s)ds
]
, ηT

4 (t) =[
xT (t) − xT (tk), 0,

∫ t

tk
xT (s)ds, 0

]
,

ηT
5 (t) =

[
0, xT (t) − xT (tk+1), 0,

∫ tk+1
t

xT (s)ds
]
, ηT (t) =[

ηT
3 (t), ẋT (t)

]
.

Theorem 1 for given scalars h > 0, δ1 > 0, δ2 >

0 and control gain matrices Kj , the fuzzy system (9)
is asymptotically stable, if there exist positive matri-

ces Pi,Ri =

⎡
⎢⎢⎢⎢⎣

R11i R12i R13i R14i R15i

∗ R22i R23i R24i R25i

∗ ∗ R33i R34i R35i

∗ ∗ ∗ R44i R45i

∗ ∗ ∗ ∗ R55i

⎤
⎥⎥⎥⎥⎦ ,Si =

⎡
⎢⎢⎢⎢⎣

S11i S12i S13i S14i S15i
∗ S22i S23i S24i S25i
∗ ∗ S33i S34i S35i
∗ ∗ ∗ S44i S45i
∗ ∗ ∗ ∗ S55i

⎤
⎥⎥⎥⎥⎦ , with RT

15i = R15i and ST
15i =

S15i , any appropriate dimensional matrix Q,N1,N2,N3,

N4, G1, G2, G3 and X, and any appropriate dimensional
diagonal matrixZij , such that for all i, j ∈ R, the following
LMIs yield:

{
if λ̇i <0, then Pi −Pr > 0, Ri − Rr >0, Si − Sr > 0

if λ̇i >0, then Pi −Pr < 0, Ri − Rr <0, Si − Sr < 0
,

i = 1, 2, · · · , r − 1. (10)

Υ =
[
R11i X

∗ S11i

]
> 0, (11)
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⎡
⎢⎢⎣

Ω1 Ξ6 hkN̄3 h2kN̄4

∗ −Zij 0 0
∗ ∗ −hkS55i 0
∗ ∗ ∗ −3hkS55i

⎤
⎥⎥⎦ < 0, (12)

⎡
⎢⎢⎣

Ω2 Ξ6 hkN̄1 h2kN̄2

∗ −Zij 0 0
∗ ∗ −hkR55i 0
∗ ∗ ∗ −3hkR55i

⎤
⎥⎥⎦ < 0, (13)

where

Ω1 =
⎡
⎣Ξ1 Ξ4 Ξ5

∗ −δ1I 0
∗ ∗ −δ2I

⎤
⎦+ diag{Ξ2, 0, 0} + T T

ij Zij T
T
ij ,

Ω2 =
⎡
⎣Ξ1 Ξ4 Ξ5

∗ −δ1I 0
∗ ∗ −δ2I

⎤
⎦+ diag{Ξ3, 0, 0} + TijZij T

T
ij ,

Ξ1 = 2eT
1 Pie7 + 2ΠT

4 QΠ5 − 2ΠT
8 RiΠ9 − 2ΠT

8 SiΠ10 + eT
2 R15ie2 − eT

1 R15ie1 + 2Γ T
1 Γ2ij

+eT
1 S15ie1 − eT

3 S15ie3 + 2ΠT
14

[
N T

1 ,N T
2 ,N T

3 ,N T
4

]
Π11 − 1

h
[eT

5 , eT
6 ]ϒ[eT

5 , eT
6 ]T

Ξ2 = 2ΠT
1 QΠ2 + 2ΠT

4 QΠ6 + ΠT
12RiΠ12 − ΠT

13SiΠ13 + 2ΠT
14N T

4 (e1 + e3),

Ξ3 = 2ΠT
1 QΠ3 + 2ΠT

4 QΠ7 + ΠT
12SiΠ12 − ΠT

13RiΠ13 + 2ΠT
14N T

2 (e1 + e2),

Ξ4 = [δ1Γ T
1 Hi, e

T
1 ET

ai], Ξ5 = [δ2Γ T
1 Hi, (e

T
2 + eT

4 )KT
j ET

bi]
Ξ6 = col{(e2 + e4)

T [η1(K1 + Lij )
T , η2(K2 + Lij )

T , · · · , ηr (Kr + Lij )
T ), 0, 0}

Tij = col{Γ T
1 Bi [I, I, · · · , I ]︸ ︷︷ ︸

r

, 0, [I, I, · · · , I ]︸ ︷︷ ︸
r

}

N̄l =col[Nl , 0, 0], l = 1, 2, 3, 4

ΠT
1 =

[
eT
7 , 0, 0, 0, eT

1 , −eT
1

]
, ΠT

2 =
[
eT
1 − eT

2 , 0, eT
5 , 0

]
, ΠT

3 =
[
0, eT

1 − eT
3 , 0, eT

6

]
, ΠT

4 =
[
eT
1 , eT

2 , eT
3 , eT

4 , eT
5 , eT

6

]
,

ΠT
5 =

[
eT
2 − eT

1 , eT
1 − eT

3 , −eT
5 , eT

6

]
, ΠT

6 =
[
eT
7 , 0, eT

1 , 0
]
, ΠT

7 =
[
0, eT

7 , 0, −eT
1

]
, ΠT

8 =
[
0, eT

2 , eT
3 , eT

4 , 0
]
,

ΠT
9 =

[
eT
5 , 0, 0, 0, eT

1 − eT
2

]
, ΠT

10 =
[
eT
6 , 0, 0, 0, eT

3 − eT
1

]
, ΠT

11 =
[
eT
1 − eT

2 , −2eT
5 , eT

3 − eT
1 , −2eT

6

]
,

ΠT
12=

[
eT
1 , eT

2 , eT
3 , eT

4 , eT
7

]
, ΠT

13=
[
0, eT

2 , eT
3 , eT

4 , 0
]
, ΠT

14=
[
eT
1 , eT

2 , eT
3 , eT

4 , eT
5 , eT

6 , eT
7

]
, Γ1=

[
GT

1 , GT
2 , 0, 0, 0, 0, GT

3

]
,

Γ2ij =[Ai, BiKj , 0, BiKj , 0, 0, −I
]
, Eij = [

Eai, EbiKj , 0, EbiKj , 0, 0, 0
]
.

Proof The following LKF are Chosen:

W(t, x(t)) =
4∑

i=1
Vi(t, x(t)), t ∈ [tk, tk+1) , (14)

with

V1(t, x(t)) = xT (t)P(t)x(t),

V2(t, x(t)) = h2(t)

∫ t

tk

ηT
2 (s)R(t)η2(s)ds,

V3(t, x(t)) = −h1(t)

∫ tk+1

t

ηT
2 (s)S(t)η2(s)ds,

V4(t, x(t)) = 2ηT
3 (t)Q(h2(t)η4(t) + h1(t)η5(t)),

where P(t) =
r∑

i=1
λi(t)Pi,R(t) =

r∑
i=1

λi(t)Ri ,S(t) =
r∑

i=1
λi(t)Si .

Let b1 =min{λmin(Pi)|(i ∈R)} and b2 =max{λmax(Pi)|
(i ∈ R)}. Moreover, W(tk, x(tk)) = W−(tk, x(tk)). Then,
W(t, x(t)) meet the (i),(ii) of Lemma 3 .

Calculating the time derivative of W(t, x(t)) along the
trajectories of the fuzzy system (9) and the result is shown
as follows:

Ẇ(t, x(t)) =
4∑

i=1

V̇i(t, x(t)), t ∈ [tk, tk+1),

with

V̇1(t, x(t)) = 2xT (t)P(t)ẋ(t) + xT (t)Ṗ(t)x(t), (15)

V̇2(t, x(t)) = h2(t)η
T
2 (t)R(t)η2(t)

+h2(t)

∫ t

tk

ηT
2 (s)Ṙ(t)η2(s)ds

−
∫ t

tk

ηT
2 (s)R(t)η2(s)ds, (16)
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−
∫ t

tk

ηT
2 (s)R(t)η2(s)ds

=
r∑

i=1

λi(t)

[
−
∫ t

tk

xT (s)R11ix(s)ds −
∫ t

tk

ẋT (s)R55i ẋ(s)ds − 2
∫ t

tk

xT (s)dsR12ix(tk)

−2
∫ t

tk

xT (s)dsR13ix(tk+1) − 2
∫ t

tk

xT (s)dsR14ig(x(tk)) − 2
∫ t

tk

xT (s)R15i ẋ(s)ds

]

−2
r∑

i=1

λi(t)
[
xT (tk)R25i + xT (tk+1)R35i + gT (x(tk))R45i

]
[x(t) − x(tk)]

−h1(t)

r∑
i=1

λi(t)
[
xT (tk)R22ix(tk) + 2xT (tk)R23ix(tk+1) + 2xT (tk)R24ig(x(tk))

+xT (tk+1)R33ix(tk+1) +2xT (tk+1)R34ig(x(tk)) + gT (x(tk))R44ig(x(tk))
]
, (17)

V̇3(t, x(t)) = h1(t)η
T
2 (t)S(t)η2(t) − h1(t)

∫ tk+1
t

ηT
2 (s)Ṡ(t)η2(s)ds − ∫ tk+1

t
ηT
2 (s)S(t)η2(s)ds, (18)

−
∫ tk+1

t

ηT
2 (s)S(t)η2(s)ds

=
r∑

i=1

λi(t)

[
−
∫ tk+1

t

xT (s)S11ix(s)ds −
∫ tk+1

t

ẋT (s)S55i ẋ(s)ds − 2
∫ tk+1

t

xT (s)dsS12ix(tk)

−2
∫ tk+1

t

xT (s)dsS13ix(tk+1) − 2
∫ tk+1

t

xT (s)dsS14ig(x(tk)) − 2
∫ tk+1

t

xT (s)S15i ẋ(s)ds

]

−2
r∑

i=1

λi(t)
[
xT (tk)S25i + xT (tk+1)S35i + gT (x(tk))S45i

] [
x(tk+1) − x(t)

]

−h2(t)

r∑
i=1

λi(t)
[
xT (tk)S22ix(tk) + 2xT (tk)S23ix(tk+1) + 2xT (tk)S24ig(x(tk)) + xT (tk+1)S33ix(tk+1)

+2xT (tk+1)S34ig(x(tk)) + gT (x(tk))S44ig(x(tk))
]
, (19)

V̇4(t, x(t)) = 2η̇T
3 (t)Q [h2(t)η4(t) + h1(t)η5(t)] + 2ηT

3 (t)Q [h2(t)η̇4(t) − η4(t) + η5(t) + h1(t)η̇5(t)]

= 2ηT (t)
[
h2(t)Π

T
1 QΠ2 + h1(t)Π

T
1 QΠ3 + ΠT

4 QΠ5 + h2(t)Π
T
4 QΠ6 + h1(t)Π

T
4 QΠ7

]
η(t), (20)

By using Jensen’s inequality and Lemma 2, for any compatible matrixX andϒ =
[
R11i X

∗ S11i

]
> 0, the following inequality

is obtained:

−
r∑

i=1

λi(t)

[∫ t

tk

xT (s)R11ix(s)ds +
∫ tk+1

t

xT (s)S11ix(s)ds

]
≤ −1

h

r∑
i=1

λi(t)η
T (t)[eT

5 , eT
6 ]ϒ[eT

5 , eT
6 ]T η(t). (21)

By using Lemma 1, we can get

−
r∑

i=1

λi(t)

∫ t

tk

ẋT (s)R55i ẋ(s)ds ≤ h1(t)

r∑
i=1

λi(t)η
T (t)

[
N T

1 R−1
55iN1 + h2k

3
N T

2 R−1
55iN2

]
η(t)

+2h1(t)η
T (t)N T

2 [x(t) + x(tk)]

+2ηT (t)

[
N T

1 (x(t) − x(tk)) − 2N T
2

∫ t

tk

x(s)ds

]
, (22)
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−
r∑

i=1

λi(t)

∫ tk+1

t

ẋT (s)S55i ẋ(s)ds

≤ h2(t)

r∑
i=1

λi(t)η
T (t)

[
N T

3 S−1
55iN3 + h2k

3
N T

4 S−1
55iN4

]

+2h2(t)η
T (t)N T

4

[
x(tk+1) + x(t)

]

+2ηT (t)

[
N T

3 (x(tk+1)−x(t))−2N T
4

∫ tk+1

t

x(s)ds

]
.

(23)

In addition, given that the
r∑

i=1
λ̇i (t) = 0, we can do the

following rewrite: Ṗ(t) =
r∑

i=1
λ̇i (t)Pi =

r−1∑
i=1

λ̇i (Pi −

Pr), Ṙ(t) =
r∑

i=1
λ̇i (t)Ri =

r−1∑
i=1

λ̇i (Ri − Rr ), Ṡ(t) =
r∑

i=1
λ̇i (t)Si =

r−1∑
i=1

λ̇i (Si − Sr ). then discuss how to ensure

the Ṗ(t) < 0, Ṙ(t) < 0, Ṡ(t) < 0,{
if λ̇i <0, then Pi −Pr >0,Ri −Rr >0,Si −Sr >0

if λ̇i >0, then Pi −Pr <0,Ri −Rr <0,Si −Sr <0

(24)

where i = 1, 2, · · · , r − 1
What’s more, for any matrix G1, G2 and G3 with appropri-
ate dimensions, the formula (25) can be established.

0 = 2
[
xT (t)G1+xT (tk)G2+ẋT (t)G3

]

×
r∑

i=1

r∑
j=1

λi(t)λj (tk) [(Ai + ΔAi(t))x(t)

+(Bi + ΔBi(t))Kj (x(tk) + g(x(tk)) − ẋ(t)
]

= 2
r∑

i=1

r∑
j=1

λi(t)λj (tk)η
T (t)Γ T

1

[
(Ai + ΔAi(t))x(t)

+(Bi +ΔBi(t))Kj (x(tk)+g(x(tk))−ẋ(t)
]
η(t). (25)

Then, combing (15)–(25), we can obtain that for t ∈ [tk,
tk+1]

Ẇ(t, x(t)) ≤
r∑

i=1

r∑
j=1

λi(t)λj (tk)η
T (t)Ξij η(t), (26)

where

Ξij = Ξ1 + Γ T
1 [HiF(t)Eaie1 + HiF(t)EbiKj (e2 + e4)]

+h2(t)

(
Ξ2 + N T

3 S−1
55iN3 + h2k

3
N T

4 S−1
55iN4

)

+h1(t)

(
Ξ3 + N T

1 R−1
55iN1 + h2k

3
N T

2 R−1
55iN2

)
.

Denoting γj (t) = λj (tk) − λj (t), j ∈ R and ζ(t) =
diag{γ1(t)I, γ2(t)I, · · · , γr (t)I }, because of

r∑
j=1

γj (t) = 0

similar to [39], we have
r∑

i=1

r∑
j=1

λi(t)λj (tk)Ξij =
r∑

i=1

r∑
j=1

λi(t)λj (t)
Ξij + Ξji

2

+
r∑

i=1

r∑
j=1

λi(t)γj (t)Ξij

=
r∑

i=1

r∑
j=1

λi(t)λj (t)

×
(

Ξij + Ξji

2
+ Ξ̃ij

)
, (27)

where Ξ̃ij = G(Bi + HiF(t)Ebi) [I, ..., I ]︸ ︷︷ ︸
r

ζ(γ (t))col{K1,

· · · , Kr }(e2 + e4).
In the following, some degree of freedom Lij can be

introduced into Ξ̃ij . And then, it holds Ξ̃ij = G(Bi + Hi

F(t)Ebi) [I, ..., I ]︸ ︷︷ ︸
r

ζ(γ (t))col{K1+Lij , · · · , Kr+Lij }(e2+
e4).

For t ∈ {tk, tk+1}, Ξij < 0 is equivalent as follows:

Ξ1 + Ξ̃ij + Γ T
1 [HiF(t)Eaie1 + HiF(t)EbiKj (e2 + e4)]

+ hk

(
Ξ2 + N T

3 S−1
55iN3 + h2k

3
N T

4 S−1
55iN4

)
< 0, (28)

Ξ1 + Ξ̃ij + Γ T
1 [HiF(t)Eaie1 + HiF(t)EbiKj (e2 + e4)]

+ hk

(
Ξ3 + N T

1 R−1
55iN1 + h2k

3
N T

2 R−1
55iN2

)
< 0. (29)

Combining the Schur complement and Lemma 4, (28) and
(29) can be further expressed as (12) and (13). Then, if (10),
(11), (12) and (13) are satisfied, we can get Ẇ(t, x(t)) < 0.
So far, (i)-(iii) of Lemma 3 can be satisfied, which can
guarantee the asymptotic stability of system (9).

Remark 1 In Theorem 1, based on the derivative of the
FMFs, constraints are carried out in the stability conditions
to ensure the terms Ṗ (t) < 0, Ṙ(t) < 0, Ṡ(t) < 0. If fuzzy
rule number is r, there will be 2r−1 possible situations. The
possible cases are named Case γ (γ = 1, 2, · · · , 2r−1). For
each Case γ , the stability conditions constructed should be
satisfied.

Remark 2 A novel LKF which depends on FMFs is estab-
lished in (16). It does not require positive characterization
of all terms. Unlike the LKFs constructed in [6, 20, 39],
in this paper, x(tk+1) was obtained in terms V2(t, x(t)) and
V4(t, x(t)). Therefore, less conservatism is expected to be
achieved.
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Remark 3 In [35], an improved FMB integral inequality
is introduced. The upper bound provided by the improved
FMB is closer than the upper bound taken under Jensen
inequality. Therefore, inequality in lemma 1 is chosen to
handle − ∫ t

tk
ẋT (s)S55i ẋ(s)ds and −∫ tk+1

t
ẋT (s)R55i ẋ(s)ds.

4 Controller design

In Theorem 1, by means of Lyapunov function as well as
free-matrix-based(FMB) inequalities and other lemmas, sta-
bility conditions of the fuzzy sampling system are obtained.
In this part, the controller design and parameters pitera-
tion methods are given. If the controller parameters Kj are
unknown, the matrix inequalities obtained are nonlinear.
Then, the matrix inequalities will be linearized, then sta-
bility conditions that expressed in the form of LMI can be
obtained. Also, the controller gain Kj can be solved from
LMIs stability conditions.

Theorem 2 For given scalars h > 0, δ1 > 0, δ2 > 0, ε1 and
ε2, the fuzzy system (9) is asymptotically stable, if there exists
positive matrices P̄i , S̄i , R̄i with S̄T

15i = S̄15i and R̄T
15i =

R̄15i , any appropriate dimensional matrix Q̄, N̄1, N̄2, N̄3,

N̄4, Ḡ and X̄ and appropriate dimensional diagnal matrix
Zij such that for all i, j ∈ R, the following LMIs yield:

{
if λ̇i <0, then P̄i −P̄r >0, R̄i −R̄r >0, S̄i −S̄r >0

if λ̇i >0, then P̄i −P̄r <0, R̄i −R̄r <0, S̄i −S̄r <0
,

i = 1, 2, · · · , r − 1. (30)

ϒ̄ =
[
R̄11i X̄

∗ S̄11i

]
> 0, (31)

⎡
⎢⎢⎣

Ω̄1 Ξ̄6 hk
¯̃N3 h2k

¯̃N4

∗ −Zij 0 0
∗ ∗ −hkS̄55i 0
∗ ∗ ∗ −3hkS̄55i

⎤
⎥⎥⎦ < 0, (32)

⎡
⎢⎢⎣

Ω̄2 Ξ̄6 hk
¯̃N1 h2k

¯̃N2

∗ −Zij 0 0
∗ ∗ −2hkR̄55i 0
∗ ∗ ∗ −2hkR̄55i

⎤
⎥⎥⎦ < 0, (33)

where

Ω̄ij1 =
⎡
⎣Ξ̄1 Ξ̄4 Ξ̄5

∗ −δ1I 0
∗ ∗ −δ2I

⎤
⎦+ diag{Ξ̄2, 0, 0}

+T̄ijZij T̄
T
ij , (34)

Ω̄ij2 =
⎡
⎣Ξ̄1 Ξ̄4 Ξ̄5

∗ −δ1I 0
∗ ∗ −δ2I

⎤
⎦+ diag{Ξ̄3, 0, 0}

+T̄ijZij T̄
T
ij , (35)

Ξ̄1 = 2eT
1 P̄ie7 + 2ΠT

4 Q̄Π5 − 2ΠT
8 R̄iΠ9 − 2ΠT

8 S̄iΠ10 + eT
2 R̄15ie2 − eT

1 R̄15ie1 + 2Γ T
1 Γ2ij

+eT
1 S̄15ie1 − eT

3 S̄15ie3 + 2ΠT
14

[
Ñ T

1 , Ñ T
2 , Ñ T

3 , Ñ T
4

]
Π11 − 1

h
[eT

5 , eT
6 ]ϒ[eT

5 , eT
6 ]T

Ξ̄2 = 2ΠT
1 Q̄Π2 + 2ΠT

4 Q̄Π6 + ΠT
12R̄iΠ12 − ΠT

13S̄iΠ13 + 2ΠT
14N T

4 (e1 + e3),

Ξ̄3 = 2ΠT
1 Q̄Π3 + 2ΠT

4 Q̄Π7 + ΠT
12S̄iΠ12 − ΠT

13R̄iΠ13 + 2ΠT
14N T

2 (e1 + e2),

Ξ̄4 = [δ1(ε1eT
1 + ε2e

T
2 + eT

7 )Hi, e
T
1 ET

ai], Ξ̄5 = [δ2(ε1eT
1 + ε2e

T
2 + eT

7 )Hi, (e
T
2 + eT

4 )K̄T
j ET

bi]
Ξ̄6 = col{(e2 + e4)

T [η1(K̄1 + L̄ij )
T , η2(K̄2 + L̄ij )

T , · · · , ηr (K̄r + L̄ij )
T ), 0, 0}

Tij = col{(ε1eT
1 + ε2e

T
2 + eT

7 )Bi [I, I, · · · , I ]︸ ︷︷ ︸
r

, 0, [I, I, · · · , I ]︸ ︷︷ ︸
r

}

¯̃Nl = [Ñl , 0, 0], l = 1, 2, 3, 4

The controller parameters Kj can be given through the
following demonstration:

Kj = K̄j Ḡ
−T (i = 1, 2, . . . , r). (36)

Proof For simplicity of expression, set w = ε1e
T
1 G +

ε2e
T
2 G + eT

6 , In the formula, ε1, ε2 denote the scalar
parameters and G is a nonsingular matrix. In the following
proof, Ḡ � G−1

{
if λ̇p < 0, then Ḡ(Pi − Pr)Ḡ

T ≥ 0, Ḡ(Ri − Rr)Ḡ
T ≥ 0, Ḡ(Si − Sr)Ḡ

T ≥ 0

if λ̇p > 0, then Ḡ(Pi − Pr)Ḡ
T ≤ 0, Ḡ(Ri − Rr)Ḡ

T ≤ 0, Ḡ(Si − Sr)Ḡ
T ≤ 0

i = 1, 2, · · · , r − 1 (37)
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Set G2 = ε1G1, G3 = ε2G1, G1 = Ḡ−1, P̄i = ḠPiḠ
T ,

X̄ij = ḠXij Ḡ
T , K̄j = KjḠ

T , Λ1 = diag
{
Ḡ, Ḡ

}
, Λ2 =

diag {Λ1, Λ1} , Λ3 = diag
{
Λ2, Ḡ

}
, Λ4 = diag

{
Λ3, Ḡ

}
,

Λ5 = diag
{
Λ4, Ḡ

}
, Λ6 = diag {Λ5, Λ1, I, Λ1} , Λ7 =

diag
{
Λ5, I, Ḡ, I, Λ1

}
, Q̄ = Λ4QΛT

2 , R̄ = Λ3RΛT
3 ,

S̄ = Λ3SΛT
3 , Ñ T

l = Λ5N T
l ḠT (l = 1, 2, 3, 4).

Pre and postmultiplying (11) by Λ2 and ΛT
2 , get (31);

Pre and postmultiplying (12) and (13) by Λ6 and ΛT
7 ,

correspondingly get (32) and (33). The above is the proof
process.

It is notable that the conditions (32) and (33) become
linear matrix inequalities form under the only premise that
ε1 and ε2 are known.

By the algorithm which based on the method that
appears in [41] that is shown below, then optimal solution
parameters ε1 and ε2 can be obtained.

Algorithm 1

Step 1: for each Case γ , specify range [lγ , Lγ ] for ε1,γ
and ε2,γ , and increment � h for h, � εi for εi,γ ,
where ε1,γ , ε2,γ ≤ Lγ − lγ . let ε1,γ,0 = 0 and
ε2,γ,0 = 0 and hγ,0 = h0, where h0 is a small
enough positive scalar.

Step 2: Use the LMIs toolbox in matlab to solve the
stability conditions (30), (31), (32) with specified
ε1,γ , ε2,γ , hγ If there is a set of feasible solutions,
jump to Step 3; otherwise jump to Step 4.

Step 3: Set ε1,γ,0 = ε1,γ , ε2,γ,0 = ε2,γ , and hγ,0 = hγ ,
and then jump to Step 2 with hγ = hγ + � h

Step 4: ε1,γ = ε1,γ + � ε1.
If ε1,γ ≤ Lγ , go to step 2; else, let ε1,γ = lγ

and ε2,γ = ε2,γ+� ε2.
If ε2,γ > Lγ , ε1,γ,0 and ε2,γ,0 and hγ,0 are the

desire values of ε1,γ and ε2,γ and hγ , respectively;
else, go to Step 2.

Remark 4 At the time of adding (24), parameters ε1, ε2 are
introduced to add more degrees of freedom. The parameters
ε1, ε2 should be given in advance such that the stability
conditions in the form of the linear matrix inequalities
(LMIs) in Theorem 2 can be got. The above algorithm
is a search process of the optimal ε1, ε2 for each Case
γ , and after getting the optimal parameters, the maximum
sampling interval and the controller gain matrices can be
solved from the LMIs. It should be noted that ε1,γ and ε2,γ
(γ = 1, 2 · · · , r − 1) were expressed as ε1 and ε2 in each
Case γ for simplicty.

Remark 5 By discussing the derivative of the membership
function, the conservativeness in the process of designing
the controller and calculating the maximum sampling

interval is reduced. For each case γ , the controller
parameters and maximum sampling interval to be solved
are represented by Kj,γ and hγ , (γ = 1, 2, · · · , 2r−1; j =
1, · · · , r). For simplicity, Kj,γ can be expressed as Kj . For
each cases, the stabilituy conditions should be satisfied and
each possible Case γ exists separately.

In Theorem 2, all the stability conditions are expressed
in the form of LMI. Later, the LMI toolbox can be used to
solve the controller parameters and the maximum sampling
interval. The following are stability conditions that remove
the uncertainties in Theorem 2:

Corollary 1 For the given scalars h > 0, δ1 > 0, δ2 >

0, ε1 and ε2, if there exist positive matrices P̄i , R̄i , S̄i

with S̄T
15i = S̄15i and R̄T

15i = R̄15i , any appropriate
dimensional matrix Q̄, N̄1, N̄2, N̄3, N̄4 and X̄ and any
appropriate dimensional diagonal matrix Zij such that for
all i, j ∈ R , the T-S fuzzy system which removes uncertainty
is asymptotically stable.

ϒ̄ =
[
R̄11i X̄

∗ S̄11i

]
> 0, (38)

⎡
⎢⎢⎣

Ω̂1 Ξ̂6 hkÑ3 h2kÑ4

∗ −Zij 0 0
∗ ∗ −hkS̄55i 0
∗ ∗ ∗ −3hkS̄55i

⎤
⎥⎥⎦ < 0, (39)

⎡
⎢⎢⎣

Ω̂2 Ξ̂6 hkÑ1 h2kÑ2

∗ −Zij 0 0
∗ ∗ −2hkR̄55i 0
∗ ∗ ∗ −2hkR̄55i

⎤
⎥⎥⎦ < 0, (40)

where

Ω̂1ij = Ξ̄ij + Ξ2ij + T̂ijZij T̂ij (41)

Ω̂2ij = Ξ̄ij + Ξ3ij + T̂ijZij T̂ij (42)

Ξ̂6ij = (eT
2 +eT

4 )[η1(K̄1+L̄ij )
T , · · · , ηr (K̄r +L̄ij )

T ] (43)

T̂ij = (ε1e
T
1 + ε2e

T
2 + eT

7 )Bi [I, I, · · · , I ]︸ ︷︷ ︸
r

(44)

The other notations appearing above are consistent with
Theorem 2. Similarly, Kj can be obtained from the
following expression:

Kj = K̄j Ḡ
−T . (45)

5 Numerical example

In order to verify the effectiveness of the proposed method,
two examples are simulated in this part.

Example 1 The following example is the simulation anal-
ysis of the inverted pendulum. Through controlling the
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inverted pendulum system, the control ability of the
designed controller rule to the nonlinear system can be
detected. And the inverted pendulum can be applied in
many aspects, such as military, aerospace, robotics and gen-
eral industrial process. And some specific applications can

Fig. 1 Inverted pendulum control system model of Example 1

also be list, such as balance control during robot walking,
verticality control during rocket launch and attitude con-
trol during satellite flight. The inverted pendulum model is
shown in Fig. 1. The following are the state equations of the
inverted pendulum system:

⎧⎪⎨
⎪⎩

ẋ1(t) = x2(t)

ẋ1(t) = gsin(x1(t)) − am1lx
2
2(t)sin(2x1(t))/2 − acos(x1(t))u(t)

4l/3 − am1lcos2(x1(t))

,

Where x1(t) represents the angle of the pendulum from
vertical and x2(t) denotes the angular velocity. Set M =
8kg, m1 = 2kg, l = 0.5m, a = 1

m1+M
, g = 9.8m/s2,

and β = cos(88◦). According to the subsystem division in
reference [40], the following subsystem model expression
can be got:

Rule 1:

IF x1(t) is about 0, T HEN

ẋ1(t) = A1x(t) + B1u(t),

Rule 2:

IF x1(t) is about ± π

2
, T HEN

ẋ1(t) = A2x(t) + B2u(t).

The state space matrices of the inverted pendulum system
are shown below:

A1 =
[

0 1
g

4l/3−am1l
0

]
, B1 =

[
0

− a
4l/3−am1l

]
,

A2 =
[

0 1
2g

π(4l/3−am1lβ
2)

0

]
, B2 =

[
0

− aβ

4l/3−am1lβ
2

]
.

The fuzzy membership functions are

λ1(t) =

⎧⎪⎨
⎪⎩
1 − 2

π
x1(t), if 0 ≤ x1(t) <

π

2

1 + 2

π
x1(t), if − π

2
< x1(t) < 0

,

and λ2(t) = 1 − λ1(t). When |x2(t)| ≤ 10 rad/s,in
addition, from the relation of the membership function, we
can get η1 = η2 = (20/π) × h∗. In Example 1, r=2, there
are two possible cases, named Case 1 and Case 2:

Case1 : P̄1 − P̄2 > 0, R̄1 − R̄2 > 0, S̄1 − S̄2 > 0;
Case2 : P̄1 − P̄2 < 0, R̄1 − R̄2 < 0, S̄1 − S̄2 < 0.

By means of the Algorithm 1 in Theorem 2, the optimal
parameters are searched in a given range to conduct a
iterative optimization process. Firstly, specify the search
interval of parameters εi(i = 1, 2) and set the increment
� h for h and � εi(i = 1, 2) for ε which satisfy εi ≤
L − l(i = 1, 2). The initial parameters value were taken
into the stability conditions obtained in corollary 1 to find
a solution. Then the value of the optimal parameter can be
obtained by combining the specific steps in the Algorithm 1.

When the system has achieved the maximum sampling
interval, the optimal parameters have been obtained at same
time. The controller gain parameters and the sampling
interval of the system are obtained under the optimal
parameters. For case 1, ε∗

1,1 = 1.6, ε∗
2,1 = 27.8; for case

2, ε∗
1,2 = 2.5, ε∗

2,2 = 27.8. And the maximum sampling
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Table 1 Comparison of the maximums hmax obtained by various
methods

Method Wu et al. [21] Wang et al. [29] Zhao et al. [41] Corollary 1

hmax 0.0692 0.1107 0.1292 0.1528

interval h∗
1 = h∗

2 = 0.040s can be obtained. Here are the
parameters of the controller, correspondingly:

K1,1 = [563.8033, 182.5967];
K2,1 = [1950.0910, 627.9089].
K1,2 = [602.0910, 189.9089];
K2,2 = [1979.7786, 624.4515].
The maximum sampling intervals obtained by different
methods [39–41] are listed in Table 1. It can be seen that
the result in corollary 1 are improved. From this point, the
propose control method has less conservative.

The state space matrix of the system and the gain
matrices of the controller obtained above are brought into
the fuzzy system (9). The initial value x0(t) = [−2, 3, 4]
was given, then the controller input curve and the state
response curve of the system are drawn with the help of
Matlab toolbox. The state response curve has been shown
in Fig. 2. The control input curve u(t) has shown in Fig. 3.
It is observed that T-S fuzzy system is asymptotically stable
under the control strategy designed in this paper.

Example 2 The following is a simulation analysis of the
chaotic Lurenz system. The chaotic system reacts when
the initial conditions change slightly, but after continuous
changes, the future state will be greatly different. By

controlling the behavior of chaos, the control method can
be applied to some practical application process, such as
meteorology, aerospace and other fields. And the state
equations of the system are shown below:⎧⎪⎨
⎪⎩

ẋ1(t) = −x2(t) − x3(t),

ẋ2(t) = x1(t) + mx3(t),

ẋ3(t) = nx1(t) − (p − x1(t))x3(t) + u(t).

.

By using the T-S fuzzy system model, the above Lurenz
nonlinear system was represent. When x1(t) ∈ [p − q, p +
q], the state space matrix of the system are obtained by
referring to the reference [21, 41], The state transition
matrices are shown as follow:

A1 =
⎡
⎢⎣
0 −1 −1

1 m 0

n 0 −q

⎤
⎥⎦ , A2 =

⎡
⎢⎣
0 −1 −1

1 m 0

n 0 q

⎤
⎥⎦ , B1 = B2 =

⎡
⎢⎣
0

0

1

⎤
⎥⎦ .

The FMFs of this Example are λ1(x1(t)) = 1
2 (1 + p−x1(t)

q
)

and λ2(x1(t)) = 1
2 − p−x1(t)

2q . The parameters values in the
above matrix are m = 0.3, n = 0.5, p = 5 and q = 10,
respectively.

In this example, r=2, so there are two possible cases and
they are called Case1 and Case2 :

Case1 : P̄1 − P̄2 > 0, R̄1 − R̄2 > 0, S̄1 − S̄2 > 0;
Case2 : P̄1 − P̄2 < 0, R̄1 − R̄2 < 0, S̄1 − S̄2 < 0.

When |x1(t)| ≤ 10 rad/s, it can be calculated that η1 =
η2 = min{1, 7.2

2∗q
∗h∗

γ }. After getting the optimal parameters
of the algorithm in Theorem 2, the stability conditions in
the form of LMIs in corollary 1 were solved, then the
maximum sampling interval and controller parameters got.

Fig. 2 State response curve of
Example 1
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Fig. 3 Control input curve of
Example 1
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The maximum sampling interval obtained is h∗
1 = 0.1752s

in Case 1, when ε∗
1,1 = 1.43, ε∗

2,1 = 1.96. And for Case
2, h∗

2 = 0.1528s, when ε∗
1,2 = 2.21, ε∗

2,2 = 2.01. The
maximum sampling interval is determined by the minimum
of them: hmax = min1≤γ≤2r−1h∗

γ = h∗
2 = 0.1528s.

Then, the value of the controller gain matrix Kj are
correspondingly given as follow:

K1,1 = [3.4179, −1.5759, 5.0301];
K2,1 = [−2.8793, 0.8127, −9.8471];
K1,2 = [3.3571, −1.6107, 4.1251];
K2,2 = [−2.7399, 0.7931, −9.9243].

Comparing hmax with [21, 29, 41], the comparison of the
maximum sampling interval is gathered in Table 2. It can
be seen that the maximum sampling interval is improved. In
this sense, conservatism has been reduced. The state space
matrix of the system and the parameter Kj of the controller
obtained above are brought into the fuzzy system (9). Given
the initial value of x0(t) = [−2, 3, 4], the controller input
curve and the state response curve are drawn with the help of
Matlab. The state response curve has been shown in Fig. 4,
and control input curve u(t) has been shown in Fig. 5. It can
be seen from the curves of Figs. 4 and 5 that the system (9)
is asymptotically stable under the control strategy designed
in this paper.

Fig. 4 State response curve of
Example 2
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Fig. 5 Control input curve of
Example 2
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6 Conclusion

The stability and stabilization problems have been analyzed
for the T-S fuzzy systems which have parameter uncer-
tainty and state quantization. A novel LKF which depends
on FMFs is constructed. In addition, both sampling states
x(tk) and x(tk+1) are added. When deriving of LKF, the
terms which consist of the derivative of the FMFs and some
LKF coefficients appear. Through discussing the terms,
constrains are added to the stability conditions. Then, by
using relaxed Free-matrix-based (FMB) integral inequal-
ity and reciprocally convex method, the stability conditions
expressed in the form of LMIs are obtained. Later, max-
imum sampling interval and gain Kj are solved by LMI
toolbox. At last, simulation examples are given to illus-
trate the effectiveness of the proposed method. In the future
work, the dissipation control for the system with uncer-
tainty can be carried out. And the content of network
attack could also be considered. The rapid development
of network control has led to its wide range of applications,
but at the same time, the openness of the network may bring
vulnerable attacks, leading to serious consequences. In addi-
tion, the ability of learning evolution is one of the impor-
tant manifestations of the highly intelligent autonomous
control system. It refers to the ability to improve the relevant
performance of the system through autonomous learning,
modification and continuous evolution. The combination of
fuzzy control and the above content can be regarded as the
future development direction.
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