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Abstract
Due to illumination changes, varying postures, and occlusion, accurately recognizing actions in videos is still a challenging
task. A three-dimensional convolutional neural network (3D CNN), which can simultaneously extract spatio-temporal
features from sequences, is one of the mainstream models for action recognition. However, most of the existing 3D CNN
models ignore the importance of individual frames and spatial regions when recognizing actions. To address this problem,
we propose an efficient attention module (EAM) that contains two sub-modules, that is, a spatial efficient attention module
(EAM-S) and a temporal efficient attention module (EAM-T). Specifically, without dimensionality reduction, EAM-S
concentrates on mining category-based correlation by local cross-channel interaction and assigns high weights to important
image regions, while EAM-T estimates the importance score of different frames by cross-frame interaction between each
frame and its neighbors. The proposed EAM module is lightweight yet effective, and it can be easily embedded into 3D
CNN-based action recognition models. Extensive experiments on the challenging HMDB-51 and UCF-101 datasets showed
that our proposed module achieves state-of-the-art performance and can significantly improve the recognition accuracy of
3D CNN-based action recognition methods.
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1 Introduction

Action recognition is an important component in video
understanding. It has been applied to various scenarios,
for example, intelligent video surveillance, video retrieval,
human-computer interaction, and autonomous driving. The
core problem of action recognition, which can identify inter-
esting actions in time and space, is how to effectively extract
semantic and temporal information. In unconstrained envi-
ronments, due to illumination changes, varying postures,
and occlusion, it is challenging to accurately recognize
actions in videos. Before the development of deep learning,
traditional methods based on hand-crafted features, such as
3D HOG [1], HOF [2], MBH [3], dense trajectory (DT)
[4], and improved dense trajectory (IDT) [5], were widely
used in action recognition tasks. In the past few years, the
powerful feature learning ability of convolutional neural
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network (CNN) has also demonstrated remarkable results
in many computer vision tasks, such as image classification
[6], object detection [7], and action recognition [8]. Recent
mainstream CNN-based action recognition models include
two-stream CNN [9–12], long short-term memory (LSTM)
[13, 14], and 3D CNN [15–22].

Two-stream CNN contains two independent two-
dimensional (2D)-CNNs with unshared parameters, namely,
a spatial network and a temporal network. The spatial net-
work uses RGB frames as input to extract appearance fea-
tures, while the temporal network uses optical flow as input
to process motion information. Although two-stream CNN-
based methods obtain high action recognition performance,
extracting the optical flow from images in advance is usually
computationally expensive. To avoid the high computation
cost, researchers proposed LSTM-based action recognition
methods, in which the spatio-temporal features are modeled
by an LSTM network. However, such methods only model
high-level features from the top convolution layers while
useful low-level information from earlier convolution layers
is lost. Besides, three-dimensional (3D) CNN-based action
recognition methods can directly extract spatio-temporal
features from consecutive video frames simultaneously,
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which enables both low-level and high-level temporal mod-
eling. For the past few years, the primary reason for the slow
development of 3D CNN-based action recognition meth-
ods is the lack of relatively large-scale datasets used to
optimize the immense number of parameters in 3D CNN.
Recently, with the publicity of the Kinetics dataset [16] and
the development of computation ability, the performance
of 3D CNN-based action recognition approaches has been
greatly promoted.

However, the feature representations learned by most 3D
CNN-based methods are still not discriminative for action
recognition, for example, there is no significant attention
mechanism focusing on extracting spatial regions or video
frames related to the action to be recognized. An example
of a “Drink” sequence from the HMDB-51 dataset [23] is
shown in Fig. 1. There are two people in the video and the
lady’s action is “Drink”. Frames with red rectangles and
image regions drawn with yellow rectangles are more
discriminative for the semantic representation of “Drink”. In
contrast, the appearance characteristics of the green-colored
frames indicate a weak correlation with “Drink” but show a
strong correlation with “Talk” and “Laugh”. These frames
have no positive influence on distinguishing between the
actions of “Drink”, “Talk,” or “Laugh”. Rather, they have
negative effects on feature extraction for action recognition
and reduce performance.

To solve the above-mentioned problems and inspired by
ECA-Net [24], we propose an EAMmodule, a spatial efficient
attention module (EAM-S) and a temporal efficient
attention module (EAM-T), for 3D CNN-based action
recognition approaches. In practice, many actions generally
show similar features that confuse the action recognition
systems, and discriminative features help distinguish
between actions. In this paper, we focus on mining the
distinct importance of different frames and spatial regions in
the image on recognizing actions. In the spatial dimension,
we further consider the difference between various channels
in the 3D CNN for spatial appearance representation to
develop spatial attention at the channel-level. Previous
works, [25] have applied channel dimensionality reduction
as well as global cross-channel interaction strategy followed
by two fully convolutional layers to compute channel
attention. In contrast, to learn the correlation score of each

channel containing a certain action feature, EAM-S captures
local cross-channel interaction by considering each channel
and its neighbors. The goal is to highlight the spatial
regions relevant to a certain action class, while suppressing
the irrelevant ones. Similarly, in the temporal dimension,
without dimensionality reduction, our proposed EAM-T
captures the local cross-frame interaction by considering
each frame and its neighbors to estimate the importance
score of different frames. The aim is to focus on the
keyframes containing relevant information to a certain
action category and reduce the recognition performance
interference of unrelated frames.

The main contribution of this paper is design of a
lightweight yet effective attention module. The EAM
module can be easily implemented and embedded into
3D CNN-based action recognition models and trained
end-to-end. Without dimensionality reduction, the EAM
module captures spatial and temporal attention by local
cross-channel and cross-frame interaction to assign high
importance scores to spatial regions and keyframes that
are relevant to the action category. Our proposed approach
achieved state-of-the-art performance on two standard
datasets, HMDB-51 [23] and UCF-101 [26].

The remainder of this paper is organized as follows:
We first review related work in Section 2. Afterwards, we
introduce the proposed approach in detail in Section 3.
Experimental results and analysis are given in Section 4.
Finally, we conclude our work in Section 5.

2 Related work

Feature extraction Traditional action recognition methods
apply hand-crafted features to represent static and motion
information in videos. Wang et al. [4] proposed the
dense trajectory (DT) method, which densely samples
feature points in each frame and tracks them in videos
based on optical flow. Multiple descriptors are computed
along the trajectories of the feature points to capture
the shape, appearance, and motion information. However,
in typical video scenarios, the camera motion generates
many irrelevant trajectories in the background. Wang et al.
[5] proposed IDT to eliminate the effect of background

Fig. 1 An example of a “Drink” sequence. Video frames with red rectangles (especially the yellow region in video frames colored in red) are
more relevant to the action category than the video frames with green rectangles
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movement, which forces the model to focus on human
motion description. Improved dense trajectories perform the
best before deep learning is adopted for action recognition.

Due to the great success of CNN in computer vision,
researchers have applied deep learning methods to action
recognition tasks. Simonyan et al. [9] first proposed a
two-stream CNN architecture with spatial and temporal
networks that extract appearance features and motion
features. However, it usually concentrates on appearances
and short-term motions and lacks long-range temporal
modeling ability. A temporal segment network (TSN) [10]
extracts short snippets over a long video sequence with
a sparse sampling scheme, and then the class scores of
different snippets are generated through the two-stream
CNN. Finally, the classification results are obtained by
fusing the class scores of each stream. The TSN provides
an effective and efficient way to capture long-term temporal
structures. Despite the good performance for two-stream
CNN-based action recognition, it is necessary to extract
optical flow from the image in advance, which is usually
computationally intensive. Furthermore, the training of two
independent 2D CNNs is separate, which is time-consuming
and cannot achieve end-to-end training. To address this,
LSTMwas proposed and has been successfully employed to
model spatio-temporal relationships for action recognition.
Ng et al. [13] and Donahue et al. [14] leveraged an LSTM
network to aggregate frame-level information of a 2D
CNN from the top convolution layers and discover long-
range temporal relationships for learning spatio-temporal
features. However, such methods lose the useful low-level
information from earlier convolution layers.

Another type of method tries to learn spatio-temporal
features from RGB frames directly with a 3D CNN. Tran
et al. [15] first proposed a model to learn spatio-temporal
features using a deep 3D CNN, namely, C3D. To capture
spatio-temporal features and model motion features with
another flow stream, Carreira et al. [16] explored inflating
all the 2D convolutional filters in the InceptionV1 model
[27] into 3D convolutional filters. However, using small-
scale datasets optimizes the tremendous parameters in a 3D
CNN, which leads to overfitting of the model. Hara et al.
[17] proposed a 3D residual network (3D ResNet) by inflat-
ing all the 2D convolutional filters in the ResNet [28] into
3D convolutional filters to capture spatio-temporal features.
Moreover, they empirically demonstrated that using a very
deep 3D CNN trained on a large-scale Kinetics dataset [16]
retraces the successful history of the 2D CNN and Ima-
geNet. To reduce the number of parameters of a 3D CNN,
Qiu et al. [19] proposed another solution for 3D CNNs based
on ResNet through simulating 3 × 3 × 3 convolutions with
1 × 3 × 3 convolutional filters on a spatial domain plus
3 × 1 × 1 convolutions to construct temporal connections

on adjacent feature maps in time, namely, a pseudo-3D net-
work (P3D). Here, R(2+1)D [20] explicitly factorizes the
3D convolutional filters into separate 2D spatial convolu-
tion and 1D temporal convolution to reduce the cost of 3D
CNN. Besides, MiCT-Net [21] integrates 2D CNN with the
3D CNN to generate deeper and more informative feature
maps while reducing the complexity of each round of spatio-
temporal fusion by using the cross-domain residual connec-
tion. Another way to save computational costs was devised
by Tran et al. [22], where a 3D channel-separated network
(CSN) is used in which all the convolutional operations
are separated into either pointwise 1×1×1 or depth-wise
3×3×3 convolutions.

Some researchers have proposed some interesting fusion
methods. Feichtenhofer et al. [11] studied fusion strategies
in the middle of the two streams to fuse spatial and
temporal cues at several levels of granularity in feature
abstraction, with spatial as well as temporal integration.
Lin et al. [12] introduced an asynchronous fusion network
to fuse information at different time points. Imran et al.
[23] proposed a three-stream architecture consisting of RGB
and inertial and skeleton streams for action recognition.
A 1D CNN is used for inertial sensor gyroscope data,
a 2D CNN is used for stacked dense flow difference
image classification, and a bidirectional gated recurrent unit
(BiGRU) based recurrent neural network (RNN) is used
for skeletal classification. In the end, the outputs of all the
streams are combined by late fusion to predict the final class
label. Wei et al. [24] proposed fusion strategies to combine
video images with simultaneously captured inertial signals
using one 3D CNN for RGB video and one 2D CNN for
inertial signal images for action recognition.

Attention mechanism In recent years, attention me-
chanisms have received increasing attention in different
computer vision tasks, such as image classification [25,
29, 30], visual tracking [31, 32], person re-identification
[33–36], semantic segmentation [37–40], and action recog-
nition [41–47]. Hu et al. [25] proposed a squeeze-and-
excitation network (SE-Net) based on channel attention. It
is composed of pooling and two fully convolutional lay-
ers, employs squeeze and excitation operations, and adopts
the strategies of channel dimensionality reduction as well
as global cross channel interaction to accomplish the func-
tion of calculating channel attention. Besides, GE-Net [29]
incorporates context throughout the architecture of a deep
network, and it uses depth-wise convolution to calculate
spatial attention by gather-excite operators. Inspired by SE-
Net, Woo et al. [30] designed the convolution block atten-
tion module (CBAM), which integrates spatial and channel
attention modules to refine convolutional features indepen-
dently in the spatial and channel dimensions. Gao et al. [31]

7045An efficient attention module for 3d convolutional neural network



proposed a Siamese lightweight hourglass network with a
cross-attention module to selectively highlight meaningful
information and boost the representation power of feature
maps in visual tracking. Another study [32] used a hierarchi-
cal attention module to leverage both inter- and intra-frame
attention at each convolutional layer to effectively high-
light informative representations and suppress redundancy
in visual tracking. Wang et al. [41] first proposed a non-
local module to capture long-range dependencies directly by
computing the correlation matrix between each spatial point
in the feature map. However, such a method requires exten-
sive computation, thus being very inefficient. Consequently,
CC-Net [39] harvests capturing long-range contextual infor-
mation in the horizontal and vertical directions through a
novel criss-cross attention module while reducing FLOPs
by about 85% of the non-local module in computing long-
range dependencies. Similarly, Zhu et al. [40] devised an
asymmetric non-local module that can dramatically improve
the efficiency and decrease the memory consumption of
the non-local module without sacrificing the performance.
Zhang et al. [33] proposed an effective relation-aware global
attention (RGA) module capturing the global structural
information for better attention learning. Moreover, Li et al.
[37] introduced the expectation-maximization attention net-
work (EMA) that computes an attention map by iteratively
executing the EM algorithm from context information. Du
et al. [45] proposed an effective interaction-aware self-
attention model inspired by PCA to learn attention maps.
Based on attention clusters, Long et al. [43] proposed a
local feature integration framework that generates an effec-
tive global representation by aggregating local features.
However, the complexity of the above attention module is
relatively high. The ECA-Net [24] model has shown that
avoiding dimensionality reduction and controlling the ker-
nel size of 1D convolution to achieve local cross-channel
interaction are effective for learning channel attention.

3 The proposed approach

In practice, many video actions show similar features,
which confuses the action recognition system. Extracting
discriminative features is essential to distinguishing actions,
especially ambiguous ones. Thus, to mine image regions
related to certain action category and keyframes containing
action-related information in sequences, we propose an
EAM module with spatial and temporal attention.

3.1 The architecture of EAM

As shown in Fig. 2, composed of an EAM-S and EAM-T
module, EAM jointly learns attention weights for different
channels in the spatial dimension and attention weights
of different frames in the temporal dimension. The 4D
cost volume V ∈ RH×W×T ×C is passed into these two
modules in sequence. EAM sequentially infers a 3D channel
attention map Mc ∈ R1×1×1×C and a 3D temporal attention
map Mt ∈ R1×1×1×T . The processing flow of EAM can be
expressed as

V ′ = Mc(V ) ⊗ V, V ′ = Ttrans(Mc(V ) ⊗ V ), (1)

̂V = Mt(V1) ⊗ V ′, V ′′ = Ttrans(Mt(V
′) ⊗ V ′), (2)

and

̂V = V + V ′′, (3)

where ⊗ denotes element-wise multiplication; and ̂V is the
final refined output, which is passed into the next 3D CNN
module. The details of each attention module are described
below.

Fig. 2 EAM-ResNet. The EAM block is applied to the 3D ResNet.
The 3D network uses video clips as input. The attention module
has two sequential sub-modules: the spatial module EAM-S and the

temporal module EAM-T. They respectively focus on spatial regions
related to the action category on the channel-level and keyframes that
are relevant to the action category on the frame-level
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3.2 Spatial efficient attentionmodule

The various channels in 3D CNN models can be regarded
as a spatial appearance representation of a certain action,
and thus we can explore spatial attention on the channel-
level, which helps learn discriminative features for action
recognition. Inspired by ECA-Net [24], we designed an
EAM-S module to learn the correlation score of each
channel containing a certain action feature in the 3D
CNN. The model highlights spatial regions relevant to the
certain action category with high scores while suppressing
the irrelevant regions with low scores. To capture the
spatial attention map efficiently at the channel-level, we
first squeeze the spatial and temporal dimensions of the
input feature map to extract channel descriptors. For
aggregating spatial information, global average pooling has
been adopted for previous recalibration methods, such as
ECA-Net [24] and SE-Net [25]. In practice, we argue
that global max pooling gathers another important clue
for distinguishing object features. The CBAM [30] study
confirmed that using both global average pooling and global
max pooling features simultaneously can greatly improve
the representation ability of CNN models rather than using

each independently. Thus, as shown in Fig. 3a, the input
feature map Vc = [v1, v2, ..., vc] can be treated as a
combination of channels vc ∈ RH×W×T . We first aggregate
spatial and temporal information of the input feature map
by using both 3D global average pooling (3D-GAP) and
3D global max pooling (3D-GMP, ) to obtain two different
channel descriptors ac ∈ R1×1×1×C and mc ∈ R1×1×1×C ,
respectively. The formula of the aggregate operation is

ac = GAP3D(Vc) = 1

HWT

H
∑

i=1

W
∑

j=1

T
∑

t=1

Vc(i, j, t), (4)

and

mc = GMP3D(Vc) = max
i = 1, ..., H
j = 1, ..., W
t = 1, ..., T

{Vc(i, j, t)}, (5)

where GAP3D and GMP3D represent 3D-GAP and 3D-
GMP, respectively; i, j , and t are the spatio-temporal
indexes; c is the index of the channel; c ∈ [1, 2, ..., C];
and H , W , and T represent the height, weight, and
temporal, respectively. Two descriptors ac and mc count the
global context and local discrimination information in each
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Fig. 3 Diagram of two attention modules. Both the spatial
module and temporal module combine outputs from 3D-GAP
and 3D-GMP by element-wise summation, to generate attention

weights by performing a 1D convolution and the sigmoid activation
function. a Spatial Efficient Attention Module. b Temporal Efficient
Attention Module
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channel. The results from two pooling operations are first
combined by element-wise summation to obtain the final
channel feature descriptor s ∈ R1×1×1×C as follows:

s = ac + mc. (6)

Then, only considering the local interaction between each
channel and its kc adjacent channels, the weightwc of sc ∈ s

can be calculated as

wc = σ(

kc
∑

j=1

βj s
j
c ), s

j
c ∈ Ωk

c , (7)

where Ωk
c indicates the set of kc adjacent channels of sc, βj

is the parameter of a 1D convolution with the kernel size of
kc, and σ is a sigmoid activation function.

3.3 Temporal efficient attentionmodule

For recognizing the action in a video, different frames
generally make different contributions. Some frames are
more relevant to the action category, whereas other frames
are more likely to be irrelevant or less relevant to the action
category and may reduce the final recognition performance
by introducing noise. By focusing on small but informative
segments of the action video, instead of the entire video,
the action recognition model is more robust. Therefore,
introducing a temporal attention module plays a key role
in learning discriminative features. To effectively sort out
frames containing the information related to the certain
action category and calculate the temporal attention score,
we squeeze the channel and spatial dimensions of the
input feature map to extract temporal descriptors. As shown
in Fig. 3b, the input feature map Vt

′ = [

v′
1, v

′
2, ..., v

′
t

]

is regarded as a combination of temporal series v′
t ∈

RH×W×C . We simultaneously compress the channel and
spatial dimensions by 3D-GAP and 3D-GMP to obtain two
different temporal feature descriptors at ∈ R1×1×1×T and
mt ∈ R1×1×1×T . The operation is as follows:

at = GAP3D(Vt
′) = 1

HWC

H
∑

i=1

W
∑

j=1

C
∑

k=1

Vt
′(i, j, k), (8)

and

mtmc = GMP3D(Vt
′) = max

i = 1, ..., H
j = 1, ..., W
k = 1, ..., C

{Vt
′(i, j, k)}, (9)

where the outputs of transformation at and mt represent a
collection of global and local descriptors expressive for the
entire video, respectively; i, j , and k are the spatial and
channel indexes, respectively; t is the index of temporal; t ∈
[1, 2, ..., T ]; and H , W , and C represent the height, width,

and channel of the feature map, respectively. Then, to obtain
the final temporal feature descriptor f ∈ R1×1×1×T , the
model aggregates two different temporal feature descriptors
by element-wise summation, and the operation is as follows:

f = at + mt . (10)

Similar to the method of channel activation in EAM-S,
only the local interaction between each frame and its kt

adjacent frames is considered. Besides, wt can be achieved
by 1D convolution with the kernel size kt followed by a
sigmoid activation function as follows:

wt = σ(C1Dkt (f )), (11)

where C1D indicates a 1D convolution that only involves
kt parameters, σ is a sigmoid activation function, and wt ∈
R1×1×1×T is between [0, 1].

3.4 Joint efficient attentionmodule

The EAM-S and EAM-T modules play complementary
roles. The EAM-S and EAM-T modules can be combined
to constitute the EAM module for 3D CNN models. The
proposed model can focus on the video frame containing
the action category on the premise of highlighting the
spatial region related to the action class. The EAM
module can be applied to any stage of a CNN and
trained in an end-to-end manner without any additional
auxiliary supervision. Experimental results show that jointly
using them sequentially can achieve higher performance
than the parallel method for 3D CNN-based action
recognition methods. Taking the sequential spatial-temporal
combination as an example, the given intermediate feature
map V can be rescaled by EAM-S to obtain the feature
map V ′; then, EAM-T is derived from feature map V ′ and
applied on feature map V ′ to obtain the output feature map
V ′′, finally, the output feature map of the EAM module is
̂V = V + V ′′. In the experimental part, we will discuss the
results of using each alone versus in combination, as well as
the results of the proposed model with parallel aggregation
and sequential aggregation.

4 Experiments

Experiments were conducted on two challenging action
recognition datasets, that is, HMDB-51 [23] and UCF101
[26]. We fine-tuned our model by pre-training it on the
Kinetics dataset [16] and applied it to the experiments on the
two datasets to make a comparison with the state-of-the-art
methods. Finally, we show visualization results to analyze
and prove the effectiveness of the proposed EAM.
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4.1 Dataset and evaluationmetric

Typical action examples in the HMDB-51 and UCF-101
datasets are shown in Fig. 4. Both datasets have three sub-
datasets, of which 70%were used for training and 30%were
used for testing. Our evaluation results were based on the
standard evaluation metrics of video accuracy, which is the
mean video accuracy over three testing splits.

HMDB-51 The HMDB-51 [23] dataset contains 6,849 clips
divided into 51 action categories. Each action class contains
a minimum of 101 clips collected from various sources,
mostly from movies, and a small proportion from public
databases, such as YouTube and Google videos. The dataset
is full of challenges with higher intra-class variations and
smaller inter-class variations. The action categories can be
grouped into five types: general facial actions, facial actions
with object manipulation, general body movements, body
movements with object interaction, and body movements
for human interaction.

UCF-101 The UCF-101 [26] dataset is an action recogni-
tion dataset with realistic action videos. Collected from
YouTube, the dataset contains 13,320 video clips belong-
ing to 101 action categories. It contains various challenging
scenarios, such as extreme illumination conditions, cluttered
backgrounds, and large variations in camera motion. The
videos were temporarily cut to remove non-action frames.
The average duration of each video is about seven seconds
and the action categories can be divided into five types:

human-object interaction, body-motion only, human-human
interaction, playing musical instruments, and sports.

4.2 Implementation details

The proposed EAM module can be easily integrated into
existing 3D CNN-based action recognition models. In
the experiments, we used PyTorch to implement EAM
and integrated it into the popular ResNet and ResNeXt
3D ConvNet architectures. We fine-tuned the pre-trained
models provided by a prior study [17], namely, ResNet-50,
ResNeXt-101(16f), and ResNeXt-101(64f) for the HMDB-
51 and UCF-101 datasets. These networks contained an
independent convolution layer (conv1) at the forefront,
which was followed by four residual blocks (res2, res3,
res4, and res5). Following the settings from a prior study
[17], we randomly obtained training samples generated
from videos in training data for data augmentation. We
randomly sampled a 112 × 112 crop in the aforementioned
training samples from a random clip. Each sample crop was
randomly flipped horizontally with a size of 3 channels ×
16 frames × 112 pixels × 112 pixels ability 50%. We also
subtracted the mean values of ActivityNet [48] from the
sample for each color channel.

To mitigate overfitting and accelerate convergence in
training, we only updated res5, the fully convolutional layer,
and EAM. We used a stochastic gradient descent optimizer
with a weight decay of 1e-5 and 0.9 for momentum. Then,
the initial learning rates of the ResNet-50 network and
ResNext-101 network were set to be 0.001 and 0.002,
respectively. After a linear warm-up strategy in the first

Brush hair

Climb stairs

Drink

Glof

Ride horce

Shoot bow

HMDB-51

Eye make up

Biking

Drumming

Playing Guitar

Kayaking

Typing

UCF-101

Fig. 4 Action examples from the HMDB-51 and UCF-101 datasets
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15th epochs, the learning rate gradually increased to the
configured value. The learning rate was also reduced by a
factor of 10 at 45 and 75 epochs. Training of the model
stopped at 100 epochs. The learning rate lr(t) at epoch t was
computed as follows:

lr(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1.0 × 10−3 × t
15 if t ≤ 15

1.0 × 10−3 if 15<t ≤ 45

1.0 × 10−4 if 45<t ≤ 75

1.0 × 10−5 if 75<t ≤ 100

(12)

In testing, we decomposed each video into non-overlapped
16 frame clips that were fed as input. Each clip was cropped
from the center and resized to 3 channels× 16 frames× 112
pixels × 112 pixels. We then input each clip into the model
to estimate the clip class scores, which were averaged over
all the clips of the video to make a video-level prediction.

4.3 Ablation studies

To verify the effectiveness of our EAM module, we fine-
tuned the pre-trained 3D ResNet-50 on the HMDB-51(Split
1) dataset for ablation studies.

Effect of kernel size on the EAM module As shown in (7)
and (11), our EAM module involved two parameters that is
the kernel size of 1D convolution kc and kt for EAM-S and
EAM-T, respectively. As shown in Table 1, we evaluated the
effect of 1D convolution kernel size k in the EAM module.
Table 1 shows the experimental results by setting k from 3 to
9. As shown, our EAM module improved the performance
over the powerful baseline by using different kernel sizes.
The EAM module using 1D convolution with a fixed kernel
size of 3 obtained the highest performance by outperforming
the baseline for 2.9%. The above results indicate that EAM
is effective to mine the distinct importance of different
frames and spatial regions in the image on recognizing
actions.

EAM models versus the baseline Table 2 shows a perfor-
mance comparison of our EAM-S, EAM-T, and mixed

Table 1 Performance (%) comparison of the proposed EAM module
with varying kernel sizes

Model k (kernel size) HMDB-51

ResNet-50 N/A 62.5

ResNet-50+EAM 3 65.4

5 63.2

7 63.6

9 63.2

Table 2 Performance (%) comparison of our model with the baseline

Model HMDB-51

Baseline ResNet-50 62.5

Spatial EAM-S 63.8

Temporal EAM-T 64.4

Both EAM-S//T 63.7

EAM-TS 64.9

EAM-ST 65.4

EAM by both EAM-S and EAM-T, with the baseline eval-
uated on the HMDB-51(Split 1) dataset. We studied three
ways of model combination: parallel with fusion (EAM-
S//T), sequential spatial-temporal (EAM-ST), and sequen-
tial temporal-spatial (EAM-TS).

As shown in Table 2, the performances of both EAM-S
and EAM-T were significantly improved over the baseline.
EAM-S, EAM-T, and the combined EAM-ST significantly
outperformed the baseline by 1.3%, 1.9%, and 2.9%,
respectively. The above results show that focusing on
the spatial areas that have high relevance to the action
category and the keyframes containing the action class can
enhance the prediction robustness of the model. Temporal
attention achieved higher accuracy than spatial attention.
This phenomenon demonstrates that temporal attention
plays a dominant role in EAM, and it can select the
keyframes related to the action category instead of reducing
the interference of the recognition performance of unrelated
frames.

As shown in Table 2, sequential spatial-temporal EAM-
ST achieved the best performance, with an enhancement
of 1.6% and 1.0% compared to EAM-S and EAM-T,
respectively. Parallel optimization is more difficult than
sequential . The above results validate that EAM-S and
EAM-T play complementary roles, and the proposed model
takes the advantages of both EAM-S and EAM-T to further
improve the recognition performance of 3D CNN-based
action recognition methods. Moreover, our model can focus
on the keyframes containing the action category on the
premise of highlighting the spatial regions related to the
action class, which promotes the robustness of the model to
extract features. Our EAMmodule containing sequential the
spatial-temporal attention module was consistently used in
all the experiments.

Where to embed EAM We compared the performance of
adding the EAM module to different stages of 3D ResNet-
50 and checked which layer had more impact in terms
of analyzing action, that is, res2, res3, res4, and after
each layer. As we expected, when the stage increased, the
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Table 3 Performance (%) comparison of EAM in different stages of
3D ResNet-50

Model HMDB-51

ResNet-50 62.5

ResNet-50 + EAM(res2) 63.4

ResNet-50 + EAM(res3) 63.7

ResNet-50 + EAM(res4) 64.4

ResNet-50 + EAM(all res) 65.4

performance of the model gradually improved. The reason
for this is that the extracted information is more abstract
and representative as the number of layers increases. As
shown in Table 3, the addition of EAM produced better
performance at each layer.

4.4 Experimental results

Comparison with the SOTA attention methods We evalu-
ated the experiments on the HMDB-51 (Split 1) dataset.
According to previous experiments, the SE [25], ECA [24],
CBAM [30], and EAM modules respectively were embed-
ded into all the stages of these models, that is, ResNet-50,
ResNeXt-101(16f), and ResNeXt-101(64f). As shown in
Table 4,compared with the baseline and SOTA attention
modules, our models achieved better performance. The rea-
son for this is that our models pay more attention to the
keyframes with high relevance to the action category and

Table 4 Recognition results of different attention methods on the
HMDB-51(Split 1) dataset

Model Param. GFLOPs HMDB-51

ResNet-50 [17] 46.30M 10.102G 62.5

+ SE [25] 46.99M 10.105G 63.7

+ ECA [24] 46.30M 10.104G 64.1

+ CBAM [30] 47.00M 10.106G 64.3

+ EAM 46.30M 10.106G 65.4

ResNext-101(16f) [17] 47.62M 9.616G 63.7

+ SE [25] 48.32M 9.619G 64.3

+ ECA [24] 47.62M 9.619G 64.5

+ CBAM [30] 48.32M 9.620G 64.8

+ EAM 47.62M 9.620G 65.1

ResNext-101(64f) [17] 47.62M 38.466G 70.1

+ SE [25] 48.32M 38.476G 70.1

+ ECA [24] 47.62M 38.475G 70.2

+ CBAM [30] 48.32M 38.476G 70.3

+ EAM 47.62M 38.483G 70.7

the spatial regions related to the action class when extract-
ing spatio-temporal information, which improves the per-
formance of network extraction features. Additionally, we
further evaluated the complexity of our methods. Table 4
shows the overall overhead of the EAM module is quite
small in terms of both parameters and computation, which
indicates that the proposed EAM module is lightweight.

Comparisonwith the state-of-the-artmethods As shown in
Table 5, we compared our results with the state-of-the-art
methods over all three splits of the HMDB-51 and UCF-
101 datasets. For comparison, the two-stream CNN-based
methods including TSN [10], CO2FI+ASY [12], and ST-
Multiplier Net [49]. The 3D CNN-based methods included
C3D [15], P3D [19], and MiCT-Net [21]. Attention-based
methods included STC-ResNet [42], Attention Cluster [43],
STA-CNN [44], and Pyramid Attention Network [45]. Our
best result outperformed many methods on both the HMDB-
51 dataset and the UCF-101 dataset, which indicates the
importance of the attention mechanism and demonstrates
the effectiveness of the EAM module. The performances of
the 3D CNN-based methods were lower than those of the
two-stream CNN-based methods for action recognition. It
should be noted that in our method, we simply insert our
EAM module into 3D CNN without too much additional
computation, and the recognition performance could be
significantly improved, and it outperformed the two-
stream CNN-based methods [10, 12, 49]. Our model can
distinguish the spatio-temporal feature representation, to
highlight the spatial regions that are more relevant to the

Table 5 Performance (%) comparison with the state-of-the-art
methods on the HMDB-51 and UCF-101 datasets

Method HMDB-51 UCF-101

ResNet-50(RGB) [17] 61.0 89.0

ResNeXt-101(RGB) [17] 63.5 90.7

ResNeXt-101+64f(RGB) [17] 69.5 94.0

TBN(RGB) [50] 69.4 93.6

TSN (RGB+Flow) [10] 69.4 94.2

CO2FI+ASY(RGB+Flow) [12] 69.0 94.3

ST-Multiplier Net (RGB+Flow) [49] 68.9 94.2

C3D(RGB) [15] 56.8 82.3

P3D(RGB) [19] N/A 88.6

MiCT-Net (RGB+Flow) [21] 70.5 94.7

STC-ResNet-101+64f (RGB) [42] 70.5 93.7

Attention Cluster (RGB+Flow) [43] 69.2 94.6

STA-CNN (RGB+Flow) [44] 70.2 95.3

Pyramid Attention Network (RGB+Flow) [45] 70.5 95.3

EAM-ResNet-50 63.4 89.8

EAM-ResNeXt-101 64.4 91.0

EAM-ResNeXt-101+64f 70.7 94.6

7051An efficient attention module for 3d convolutional neural network



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

D
iv

e

C
lim

b_
st
ai

rs

Sw
in

g_
ba

se
ba

ll

Pou
r

Sm
ile

B
ru

sh
_h

ai
r

Fen
ci

ng

K
ic

k_
ba

ll

Sha
ke

_h
an

ds

Sho
ot

_b
ow

C
he

w

Sm
ok

e

R
id

e_
bi

ke
G

ol
f

R
id

e_
ho

rs
e

Ju
m

p
R
un

D
rin

k
Sit

W
av

e

A
cc
ur
ac
y

ResNet-50 SE-ResNet-50 ECA-ResNet-50 CBAM-ResNet-50 EAM-ResNet-50

Fig. 5 Comparisons of accuracy (%) for the top-20 classes on the HMDB-51 dataset (Split 1) between the the EAM-ResNet-50 with ResNet-50,
SE-ResNet-50, ECA-ResNet-50, and CBAM-ResNet-50 models

action category in frames and focus on the keyframes
relevant to the action category by spatial and temporal
attention. Besides, our model also outperformed the latest
attention-based methods, such as, STC-ResNet [42] and
Attention Cluster [43], on both datasets. However, STA-
CNN [44] and Pyramid Attention Network [45] achieved

better performances than our method on the UCF-101
dataset. This is because these methods use expensive
optical-flow maps in addition to RGB input-frames. It is
necessary to extract optical flow from the image in advance,
which is usually computationally intensive and therefore
difficult to obtain for large scale datasets. We observed that

Ground truth: Brush_hair

Model: ResNet-50
Laugh: 0.2720
Brush_hair: 0.2280
Clap: 0.1092
Smile: 0.0844
Wave: 0.06702

Model: SE-ResNet-50
Laugh: 0.3339
Brush_hair: 0.2391
Wave: 0.1324
Clap: 0.07021
Chew: 0.03445

Model: ECA-ResNet-50
Laugh: 0.4172
Brush_hair: 0.2521
Smile: 0.05428
Wave: 0.04837
Clap: 0.03570

Model: CBAM-ResNet-50
Laugh: 0.3209
Brush_hair: 0.2117
Wave: 0.1524
Clap: 0.1073
Smile: 0.05105
Model: EAM-ResNet-50
Brush_hair: 0.4900
Laugh: 0.2355
Wave: 0.1134
Clap: 0.1099
Smile: 0.06070

Ground truth: Drink

Model: ResNet-50
Kiss: 0.1422
Drink: 0.1167
Eat: 0.09857
Turn: 0.09303
Wave: 0.06467

Model: SE-ResNet-50
Kiss: 0.2222
Turn: 0.1309
Eat: 0.1194
Drink: 0.1141
Wave: 0.07309

Model: ECA-ResNet-50
Eat: 0.2054
Drink: 0.1742
Kiss: 0.1572
Turn: 0.09159
Clap: 0.06966

Model: CBAM-ResNet-50
Kiss: 0.2123
Eat: 0.1603
Drink: 0.1575
Turn: 0.1161
Wave: 0.0526
Model: EAM-ResNet-50
Drink: 0.3168
Eat: 0.2025
Kiss: 0.1716
Turn: 0.09389
Sit: 0.07298

Ground truth: Fencing

Model: ResNet-50
Sword: 0.1786
Hit: 0.1589
Fencing: 0.1086
Push: 0.06684
Shoot_gun: 0.04965

Model: SE-ResNet-50
Sword: 0.2456
Fencing: 0.1563
Hit: 0.1456
Shoot_gun: 0.06817
Pick: 0.06227

Model: ECA-ResNet-50
Hit: 0.2322
Fencing: 0.2093
Sword: 0.1922
Handstand: 0.06820
Pick: 0.04519

Model: CBAM-ResNet-50
Hit: 0.1790
Fencing: 0.1424
Sword: 0.1230
Pick: 0.07079
Shoot_gun: 0.06470
Model: EAM-ResNet-50
Fencing: 0.3641
Hit: 0.2189
Pick: 0.1118
Sword: 0.1021
Shoot_gun: 0.06163

Ground truth: Jump

Model: ResNet-50
Kick_ball: 0.3004
Jump: 0.1766
Catch: 0.1178
Dive: 0.07206
Run: 0.02640

Model: SE-ResNet-50
Kick_ball: 0.4930
Jump: 0.3264
Run: 0.03836
Catch: 0.02532
Dive: 0.02312

Model: ECA-ResNet-50
Kick_ball: 0.4973
Jump: 0.3290
Somerault: 0.02500
Run: 0.01712
Pick: 0.01470

Model: CBAM-ResNet-50
Kick_ball: 0.5151
Jump: 0.2848
Run: 0.03624
Catch: 0.02264
Pick: 0.01947
Model: EAM-ResNet-50
Jump: 0.5107
Kick_ball: 0.2881
Somerault: 0.03479
Pick: 0.02516
Dive: 0.01897

Ground truth:Throw

Model: ResNet-50
Swing_baseball 0.5855
Throw: 0.0945
Catch: 0.04516
Shoot_gun: 0.01856
Jump: 0.01696

Model: SE-ResNet-50
Swing_baseball: 0.5673
Throw: 0.3546
Catch: 0.01072
Jump: 0.007570
Shoot_gun: 0.006393

Model: ECA-ResNet-50
Swing_baseball: 0.4773
Throw: 0.4355
Catch: 0.02278
Jump: 0.006919
Shoot_gun: 0.006393

Model: CBAM-ResNet-50
Swing_baseball : 0.4822
Throw: 0.4234
Catch: 0.01575
Shoot_gun: 0.01449
Jump: 0.01081

Model: EAM-ResNet-50
Throw: 0.5232
Swing_baseball : 0.4351
Catch: 0.01466
Shoot_gun: 0.003979
Pick: 0.003273

Fig. 6 Examples of action recognition, in which EAM-ResNet-50(Ours) succeeded while the original ResNet-50, SE-ResNet-50, ECA-ResNet-
50, and CBAM-ResNet-50 failed
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the EAMmethod appears to work better for HMDB-51 than
UCF-101 (1.2% vs. 0.6%). The reason is because the video
quality of UCF-101 is higher than that of HMDB-51. In
the UCF-101 dataset, frames irrelevant to a certain action in
a video are less. Hence, it is more difficult for EAM-T to
select key frames.

To further verify the performance we compared our
model with the baseline and other SOTA attention models.
As shown in Fig. 5, the recognition accuracy of the top-
20 classes from our model significantly outperformed the
baseline and other SOTA attention models as, “Fencing”,
“Brush hair, “Jump”, and “Climb stairs”. The performance
was significantly improved compared to the original model.
This means that our model faithfully focuses on the spatial
regions related to the action class in frames and captures
the keyframes containing information that is relevant to

the action category. Several action examples from the
HMDB-51 dataset, such as “Brush hair, “Drink, “Fencing,
“Jump”, and “Thow”, are shown in Fig. 6. They were
incorrectly recognized by the baseline and other SOTA
attention models, whereas these actions could be accurately
recognized after putting the EAM module in the model,
which indicates that our EAM module can exploit the
discriminative information at the channel level and frame
level and improve the capability of 3D CNNs with a more
powerful spatio-temporal feature learning.

4.5 Visualization analysis

To understand the role of the attention mechanism more
intuitively, Fig. 7 shows the visualization of spatial-
temporal attention weights from the EAM-ResNet-50

0.48 0.490.58 0.57 0.570.610.61 0.54

0.46 0.62 0.56 0.60

0.600.62 0.56 0.48 0.58 0.490.57 0.52

0.48 0.56 0.53 0.53

channel

channel

frames

frames

temporal attention weights

temporal attention weights
spatial attention weights

spatial attention weights

Fig. 7 Visualization of spatial and temporal attention weights extracted from EAM-ResNe-50 on the “Shoot gun” and “Shake hands” actions
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on video sequences from the HMDB-51 dataset using
channel feature heatmaps and temporal attention weights.
According to Fig. 7, the temporal attention weights indicate
distinguishing the importance of different frames. The
frames containing the information that is relevant to the
action category can be identified by the larger weights. The
channel feature maps for the specified frame are shown,
and different feature maps have different contributions. As
shown, EAM is effective for focusing on the feature maps
that are more relevant to the action category. As shown in

Fig. 8, we applied the Grad-CAM [51] to different networks
using some video sequences from the HMDB-51 validation
set. We compared the visualization results of EAM-ResNet-
50 with ResNet-50, SE-ResNet-50, ECA-ResNet-50, and
CBAM-ResNet-50. The softmax scores for a target class
are also shown in the figure. From the Grad-CAM mask
that covers the object regions in the input, the regions that
the network considered as important for predictions can
be seen. Compared to the other methods, EAM-ResNet-
50 generated more accurate mask regions for predictions,

ResNet-50

ResNet-50

+ SE

ResNet-50

+ ECA

ResNet-50

+ CBAM

ResNet-50

+ EAM

P = 0.9648

P = 0.9226

P = 0.8728

P = 0.7671

P = 0.8207 P = 0.4231

P = 0.3256

P = 0.3417

P = 0.3832

P = 0.6148

P = 0.4852

P = 0.7164

P = 0.8496

P = 0.9045

P = 0.9589

Imput video:

HandstandDive Golf

Fig. 8 Grad-CAM [51] visualization results on the HMDB-51 validation set. We compared the visualization results of EAM-ResNet-50 with
ResNet-50, SE-ResNet-50, ECA-ResNet-50, and CBAM-ResNet-50. Here, P denotes the softmax score of each network for the ground-truth class
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and the target class scores also increased accordingly. That
is, EAM-ResNet-50 learned well to mine image regions
related to certain action category and keyframes containing
action-related information in sequences.

5 Conclusion

In this paper, a novel module with spatial and temporal
attention for 3D CNN-based action recognition is proposed.
This method uses a 3D CNN to extract the basic deep
features and then mines discriminative features between
actions using the proposed attention model. The proposed
attention mechanism assigns high importance scores to
spatial regions and keyframes that are more relevant to
the action category by local cross-channel and cross-frame
interaction strategies without dimensionality reduction. Our
EAM can be expediently added into 3D CNN-based
action recognition models with only a minor increase in
computational complexity. State-of-the-art performance can
be achieved in action recognition tasks, and extensive
experiments proved the effectiveness of the proposed EAM
module.
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