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Abstract
The goal of sentence matching is to determine the semantic relation between two sentences, which is the basis of many
downstream tasks in natural language processing, such as question answering and information retrieval. Recent studies
using attention mechanism to align the elements of two sentences have shown promising results in capturing semantic
similarity/relevance. Most existing methods mainly focus on the design of multi-layer attention network, however, some
critical issues have not been dealt with well: 1) the higher attention layer is easily affected by error propagation because
it relies on the alignment results of preceding attentions; 2) models have the risk of losing low-layer semantic features
with the increase of network depth; and 3) the approach of capturing global matching information brings about large
computing complexity for model training. To this end, we propose a Deep Bi-Directional Interaction Network (DBDIN) to
solve these issues, which captures semantic relatedness from two directions and each direction employs multiple attention-
based interaction units. To be specific, the attention of each interaction unit will repeatedly focus on the original sentence
representation of another one for semantic alignment, which alleviates the error propagation problem by attending to a
fixed semantic representation. Then we design deep fusion to aggregate and propagate attention information from low
layers to high layers, which effectively retains low-layer semantic features for subsequential interactions. Moreover, we
introduce a self-attention mechanism at last to enhance global matching information with smaller model complexity. We
conduct experiments on natural language inference and paraphrase identification tasks with three benchmark datasets SNLI,
SciTail and Quora. Experimental results demonstrate that our proposed method can achieve significant improvements over
baseline systems without using any external knowledge. Additionally, we conduct interpretable study to disclose how our
deep interaction network with attention can benefit sentence matching, which provides a reference for future model design.
Ablation studies and visualization analyses further verify that our model can better capture interactive information between
two sentences, and the proposed components are indeed able to help modeling semantic relation more precisely.
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1 Introduction

Sentence matching is a key technique in natural language
processing (NLP), in which a system is asked to clas-
sify the logical and semantic relationship between two
sentences [1]. This technique is widely applied to be the
essential basis of many downstream NLP tasks that require
modelling the relevance/similarity of two sentences. In nat-
ural language inference (NLI), sentence matching is utilized
to judge whether a hypothesis sentence can reasonably be
inferred from a premise sentence [2, 3]. In paraphrase iden-
tification (PI), it is utilized to identify whether two sentences
express the equivalent meaning or not [4, 5], as shown in
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Table 1 Sentence matching
examples from natural
language inference and
paraphrase identification

Natural Language Inference

Premise A senior is waiting at the window of a restau-
rant Relationship that serves sandwiches.

Relation

Hypothesis A person waits to be served his food. Entailment

A man is looking to order a grilled cheese sandwich. Neutral

A man is waiting in line for the bus. Contradiction

Paraphrase Identification

Sentence 1 She struck a deal with RH to pen a book today. Relation

Sentence 2 She signed a contract with RH to write a book. Paraphrase

She denied today that she struck a deal with RH. Non-Parpahrase

Table 1. It also has broad applications, e.g., information
retrieval [6–8], summarization [9], question answering [10]
and dialog system [10, 11]. Owing to its practical sig-
nificance, sentence matching has attracted wide spread
attention in NLP. However identifying logical and seman-
tic relationship between two sentences is not trivial due to
the problem of the semantic gap [12, 13]. The core issue for
sentence matching is how to accurately model the related
semantics between two sentences [1, 2, 14–16].

Recently, research done on sentence matching with deep
neural networks [1, 2, 14, 17, 18] has accomplished a
considerable superiority over traditional methods because
of the better automatic features extraction. In the neural
network-based methods, a matching model can be built
in two types of methods. The first method is sentence-
encoding based one [2, 19, 20], in which each sentence
is separately encoded using RNN or CNN to a fixed-
sized vector in a completely isolated manner. Then, a
matching decision is made based on the two sentence
vectors. Such separated sentence representation is unable to
capture fine-grained (e.g., word and phrase level) relevance
between two sentences, because two sentences have no
interaction during the encoding procedure. Afterwards,
sentence interaction method is proposed to model related
semantic information between two sentences [1, 14–16,
21, 22], which obtains the representation of one sentence
by depending on the representation of another sentence.
This method allows the model to utilize interactive features
between two sentences, e.g., attentive information, to learn
sentence representation for the final decision. Specially,
sentence interaction with multi-layer neural networks [1, 14,
21, 22] has shown improved performance to model semantic
relatedness, in which multiple stacked attention layers are
usually employed to model sentence interaction [14].

Through the above analyses, we can conclude that
effectively exploiting both interactive features and deep
network is very important for sentence matching. Despite
the recent success of multi-layer interaction method, some
critical issues still limit further performance improvements
in deep sentence matching model. Firstly, higher attention

layer is easily affected by error propagation, because
the input of each attention relies on the alignment
results learned in preceding attention layers [14]. When
model captures incorrect alignments in the preceding
attention layers, the attentive representation will affect
the subsequential interactions. Meanwhile, although the
related information from one sentence to another may
be of different importance from that of the reversed
direction [1], the same attentive weights are used by two
directions [14]. Secondly, simple stacked attention layers
can not effectively propagate semantic features learned at
low layers to high layers, which makes the interactive
learning is insufficient in multi-layer neural network
because of the vanishing gradient problem [23, 24]. Thirdly,
each interaction layer uses self-attention mechanism for
capturing global information [14], and thus it brings about
large computing complexity to the model training.

In this work, to tackle these problems, we propose a
Deep Bi-Directional Interaction Network (DBDIN), an end-
to-end neural network for sentence matching, which adopts
a deep interaction method to enable the model capturing
interactive features for performance improvement. We
model semantic relatedness from two directions and
employ multiple attention-based interaction units in each
direction. To alleviate error propagation, the attention of
each interaction unit is designed to attend to the original
sentence representation of another one instead of interactive
representation. Multiple interaction units allow one sentence
to repeatedly read the information of another one, and
therefore to better capture interactive features. Meanwhile,
each direction specifically focuses on the other sentence in
a directed way, which is able to learn different attentive
weights to capture the direction-dependent relatedness. In
this way, related semantic information at the word level can
be well distinguished from different interaction directions,
and thus these word-level finer-grained semantic relations
will be effectively exploited for sentence matching. With the
increment of interaction, the representation of one sentence
can gradually encode the related semantics with the attended
information from another sentence.
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To better combine the advantages of attention and deep
neural network for learning interactive features, we further
introduce deep fusion mechanism, from which the semantic
features learned at low layers can be selectively propagated
to high layers for subsequential interactions, and it also
makes better integration of low-level and high-level features
to improve the overall performance of the model. By doing
so, it alleviates the vanishing gradient problem for model
training [1, 14, 21, 22], and therefore enabling our model to
effectively learn deep interaction. Moreover, we introduce
one layer of self-attention network after the cross sentence
interaction to capture global matching information, in which
the model complexity is greatly decreased compared to
previous model using self-attention in each layer [14].
The advantage of self-attention is to capture long-distance
semantic dependencies within each sentence, thus it can
enhance global matching information for the final decision.
Additionally, we conduct interpretable study to disclose
how our deep interaction network with attention can benefit
sentence matching, which provides a reference for future
model design.

Overall, the main contributions of our work include the
following aspects:

1. We propose a Deep Bi-Directional Interaction Network
(DBDIN) that employs multiple attention-based inter-
action units for better modelling semantic relatedness
between two sentences. Specifically, we make the atten-
tion at each interaction unit focusing on the original
sentence representation of another one, which allevi-
ates error propagation in multi-layer attention model
and also enables model to capture direction-dependent
relatedness. We further introduce deep fusion to aggre-
gate and propagate low-layer semantic features for deep
interaction, and self-attention mechanism to enhance
global matching information. These proposed compo-
nents are easily integrated into existing models.

2. Experimental results on the SNLI and SciTail datasets
for natural language inference, and the Quora dataset
for paraphrase identification demonstrate that the
proposed model significantly improves accuracy over
baselines without using any external knowledge.

3. We further conduct extensive ablation studies on the
proposed several components, and perform visual-
ization analyses to the learned attentions and sen-
tence representations. These analyses explore intuitive
interpretability of why our deep interaction network
improves sentence matching, and provide a reference
for future model design. These results further verify
that our proposed model has the ability to capture more
accurate semantic alignment of two sentences and can
better integrate the learned semantic features of differ-
ent interaction layers to improve the final decision.

The remainder of this paper is organized as follows. We
introduce the related work and highlight the differences
between work we did in this paper and previous studies in
Section 2. In Section 3, we give a brief overview of our sen-
tence matching framework. Section 4 elaborates the details
of the proposed model. Section 5 describes the learning
details of our model. Section 6 conducts experiments to
verify the effectiveness of the proposed model. Section 7
presents in-depth analyses and discussion for matching
results. Finally, we conclude this work and provide future
direction in Section 8.

2 Related work

Sentence matching has been studied for many years.
Early approaches focus on designing hand-craft features to
capture n-gram overlapping, word reordering and syntactic
alignments phenomena [25, 26]. This kind of method can
work well on a specific task or dataset, but it’s hard
to generalize well to other tasks [1]. Recently, with the
availability of large-scale annotated datasets such as SNLI
[2], deep learning is rising a substantial interest in sentence
semantic matching and has achieved some great progresses
[2, 14, 20, 21, 27–30]. According to their learning ways,
previous models can be classified into three categories.

2.1 Sentence-encoding basedmethod

Some early neural network-based methods focus on design-
ing encoder architecture, such as LSTM-based models [2,
20], CNN-based models [28], and Tree-LSTM-based mod-
els [31, 32], in which different neural architectures have
their own advantages in learning semantic representation,
such as LSTM for long-term dependency, CNN for local
feature extraction and Tree-LSTM for structural informa-
tion. As shown in Fig. 1, these models first separately
encode each sentence as a vector representation with a
neural network (e.g., LSTM). Then a neural network clas-
sifier is applied to predict their semantic relationship based
on the two sentence representations. In this paradigm, two
sentences have no interaction until arriving final phase.
The advantage of this framework is that sharing parame-
ters makes the model smaller and easier to train, and the
learned sentence representations can be used for many other
purposes [1]. However, this kind of framework ignores the
explicit interaction between two sentences during the encod-
ing procedure, and the sentence representation does not
encode the related semantics from another sentence. It has
been found that such separated sentence representation is
often not sufficient to capture all the important information
for deciding the final semantic relation [16, 33].
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Fig. 1 An illustration of
sentence matching models based
on sentence-encoding method.
This method focuses on learning
vector representation of
individual sentence and then
predicts the semantic
relationship between two
sentences based on the two
sentence vectors
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2.2 Attention-based interactionmethod

Most recent works [14, 21, 30] focus on modelling
interactive features between two sentences and often
show better performance. These methods employ attention
mechanism to align the elements of two sentences to model
the semantic relatedness between them, which obtains
the representation of one sentence by depending on the
representation of another sentence. The attention-based
framework decomposes sentence-level matching to lower-
level matching. They build the interaction at different
granularity (word, phrase and sentence level).

Under this framework, small semantic units of two
sentences are first matched, then the matching results are
aggregated by another network to make the final decision.
One kind of methods is to model the conditional encoding,
in which the encoding of one sentence can be affected
by another sentence. Rocktäschel et al. [16] and Wang
et al. [34] use LSTM and attention mechanism to read
two sentences to produce a final representation, which
can be regarded as interaction of two sentences. Another
kind of method is to compute similarities between all
the words or phrases of the two sentences to model
multiple-granularity interactions of two sentences. Parikh
et al. [15] propose a neural attention-based model that
directly compares the relevant sub-components between two
sentences. Furthermore, Wang et al. [1] and Chen et al. [21]
propose a bidirectional matching framework with word-by-
word interaction to model the semantic relatedness between
two sentences. To improve the attention-based framework,
Duan et al. [14] propose using multi-layer neural network
with attention mechanism and show that multiple stacked

attention layers can better extract interactive features to
improve matching performance. Yang et al. [35] adopt
augmented residual connections to consider more the lower-
layer features for alignment. Besides the attention between
two sentences, the self-attention mechanism is proposed
to solve the limitations of RNN model on the long-term
dependency problem for sentence matching [14], which
aims to align the sentence with itself and has been used in a
variety of tasks [36, 37].

Similar to previous work, we also adopt attention mech-
anism for modelling sentence matching. However, the
approach taken by ours is different from them in at least four
aspects. Firstly, in previous work, the attention is performed
between two interactive representations. Different from pre-
vious approaches, we make the attention of each interaction
unit takes the original sentence representation of another
one as input to learn interactive features. Secondly, we
model semantic relatedness from two directions to specially
capture the direction-dependent relatedness, and employ
multiple attention-based interaction units for each direc-
tion. Thirdly, we design deep fusion to better aggregate and
propagate low-layer interactive features for subsequential
interactions. Fourth, we introduce one layer of self-attention
after cross sentence interaction to enhance global match-
ing information instead of using self-attention at each layer
[14]. Finally, our model effectively combines the advantages
of attention mechanism and deep neural network, achiev-
ing a stronger ability of extracting across sentence semantic
features to improve sentence matching performance. Our
methods can be also combined to other strong systems,
such as RE2 [35], to further improve sentence matching
performance, and we leave it to the further work.
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2.3 External knowledge basedmethod

Although there are relatively large annotated data, it is still
challenging for machines to learn all knowledge needed
to perform complicated sentence matching from these
annotated data. Previous work [7, 27, 29, 38–40] has
shown that neural network-based representation learning
models can benefit from leveraging external knowledge to
achieve further performance improvement. These methods
can be classified to two categories: explicit knowledge and
implicit knowledge. Chen et al. [38] enrich neural network-
based models with explicit knowledge (WordNet [41]), such
as synonymy, antonyms, hypernymy, hyponymy, and co-
hyponyms, to improve natural language inference. They
consider external lexical-level semantic relation between
two words collected in WordNet and use the inference
knowledge to improve the attention-based word alignments
between two sentences, achieving better performance. The
second method uses implicit knowledge learned from a
large unlabeled corpus, well known as pre-training model,
such as ELMO [29] and BERT [27]. This method learns
deep contextualized word representations with a language
model, by which the knowledge is implicitly entailed in the
word representations. Then the pre-trained model is fine-
tuned with a specific data for applications, which has shown
improved performance in sentence matching task.

However, these pre-trained models have especially large
model parameters (such as 340M parameters in BERT)
to learn, 80 times the general matching models (such as

4.3M parameters in ESIM [21]). Large number of model
parameters will bring about large computing complexity and
requires a lot of computing resources, which restricts model
applications in case of insufficient computing resources.

In this work, we do not use any such external
knowledge. Our work belongs to the attention-based
interaction approaches with less model parameters (7.8M
parameters) to learn, which is in line with the recent
studies without using any external knowledge [14, 21,
30]. We mainly focus on model architecture that is more
effective to capture related semantic information between
two sentences, and we will explore the method of integrating
external knowledge in the future work.

3 Overview of our sentencematching
framework

In this section, we give a brief overview of our sentence
matching framework, as shown in Fig. 2. Formally, we can
define the sentence matching task as follows. Given two
sentences P = [p1, · · · , pi , · · · , pm] and Q = [q1, · · · , qj ,
· · · , qn], the goal is to predict a label y∗ ∈ Y , where Y
= {Entailment, Contradiction, Neutral} in natural language
inference task and Y = {0,1} in paraphrase identification
task, indicating the logical semantic relation between P and
Q [1].

y∗ = arg maxy∈YPr (y|P,Q) (1)

Fig. 2 An overview architecture
of our sentence matching
framework that employs
attention mechanism to learn
interactive representations for
sentence semantic matching.
The more details of our
attention-based interaction layer
are given in Section 4 and Fig. 3

Input Encoding Layer Input Encoding Layer

Context Encoding Layer

Row max and mean poling

MLP

N-way softmax
Prediction Layer

y

Interactive representations

Attention-Based Interaction Layer
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The core element for neural network-based sentence match-
ing models is to learn interactive sentence representation
[1, 14–16]. Generally, the architecture of neural sentence
matching mainly includes the following four components
[1, 14]:

– Input Encoding Layer converts words to vector repre-
sentations as input, where pre-trained word embeddings
are usually used, e.g., GloVe [42].

– Context Encoding Layer incorporates context and
sequence order into modeling for better word vector
representations. This layer often uses CNN [28], LSTM
[1, 14] and Tree-LSTM [21].

– Attention-Based Interaction Layer calculates word
pair interactions using the outputs of the encoding layer
to learn interactive sentence representations.

– Prediction Layer applies multilayer perceptron (MLP)
and softmax function to predict the semantic relation
according to the learned interactive sentence represen-
tations.

In this paper, we mainly focus on the attention-based
interaction layer that has been proved to the most important
part for improving sentence matching performance [1, 14,
35, 38]. We combine the advantages of attention mechanism
and deep neural network, and propose a deep bi-directional
interaction network to better model the related semantic
information of two sentences. Figure 2 shows an overview
architecture of our proposed model. In this section, we give
an overall description of our model architecture. The details
of our attention-based interaction layer are described in
Section 4.

3.1 Input encoding layer

For the given sentence pairs P = [p1, · · · , pi , · · · , pm]
with length m and Q = [q1, · · · , qj , · · · , qn] with length n,
where pi and qj indicate the i-th and j-th word in P and Q
respectively, the input encoding layer first converts words
of P and Q into vectors EP = [ep1 , · · · , epi

, · · · , epm ] and
EQ = [eq1 , · · · , eqj

, · · · , eqn] by looking up M respectively,
where M ∈ R

d×|V | is an embedding table and each column
in M represents a word. d is the dimension of embeddings
and |V | is the size of vocabulary V .

3.2 Context encoding layer

In natural language sentence, the meaning of a word usually
depends on its context, in which the model is required to
understand both lexical and compositional semantics [43,
44]. In order to acquire contextual information, we utilize
Recurrent Neural Network (RNN) to encode sentences.
RNN is designed to process sequential inputs and has
shown powerful ability in NLP tasks. The sequential

RNN calculates a new hidden state conditioned on the
previous states, by which the word representations can
incorporate contextual information. In our model, we
employ bidirectional Long Short-Term Memory (BiLSTM)
network [45] to encode sentences. The BiLSTM processes
an input with two separate hidden layers, whose outputs are
then used to as contextual word representations as (3) and
(2).

hpi
= BiLSTM(epi

,
−→
h pi−1 ,

←−
h pi+1) (2)

hqj
= BiLSTM(eqj

,
−→
h qj−1 ,

←−
h qj+1) (3)

Then, the two sentences are converted to vector representa-
tions HP = [hp1 , · · · , hpi

, · · · , hpm ] and HQ = [hq1 , · · · ,
hqj

, · · · , hqn]. Hereafter, we call HP and HQ as the original
sentence representations of sentences P and Q, respectively,
both of which do not consider interactive information from
another sentence. In this work, we will use the HP and HQ

as the targets of cross sentence attention to learn interactive
sentence representations.

3.3 Attention-based interaction layer

Attention has, in recent years, demonstrated to be an
effective mechanism for a neural network to “focus” on
salient features of the input. Given an input state, attention
allows the model to dynamically learn weights to indicate
the importance of different parts of the inputs. It has
been particularly successful for tasks requiring modeling
of complex semantic relation. In this work, we employ
attention mechanism to associate the relevant parts between
two sentences to learn interactive features. Here, we first
describe the general attention computing function and then
introduce our sentence interaction method with attention.

Attention function An attention function can be described
as mapping a query (Q) and set of key-value (K-V) pairs to
an output, where the Q, K, V and outputs are all vectors [27].
The output is computed by an attention-weighted sum of the
V, where the weights assigned to V are computed by a score
function that uses the Q to attend to the corresponding K.
The attention computation will produce an aligned context
vector from V to capture the relevant information from
another sentence, and it can be formulated as:

˜QQ→K = Attention(Q, K, V ) = softmax(score(Q, K))V

(4)

where ˜QQ→K represents that query Q attend to key K to
extract relevant information from V. The score function
computes the relatedness of two vectors Q and K. The final
score is the normalized weights by softmax function and
then used to encode the entire vectors of V into an aligned
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vector. Intuitively, the information of V is more probably
selected if it is more related to Q.

Sentence Interaction with Attention In this work, we
model semantic relatedness from two directions, and
employ multiple attention-based interaction units for each
direction to capture the direction-dependent relatedness.
The attention of each interaction unit takes the original
sentence representation of another sentence as input to learn
interactive features, in which each direction will specifically
focus on the relevant parts of another sentence. Concretely,
for two interaction direction P → Q and Q → P ,
the attention used to capture the relevant information from
another one can be formulated as:

˜HP→Q = Attention(HP , HQ, HQ) (5)
˜HQ→P = Attention(HQ, HP , HP ) (6)

where HP is the query vectors, and HQ is the keys and
values for interaction direction P → Q. HQ is the query
vectors, and HP is the keys and values for Q → P . H· is
from the preceding interaction unit and H · is the original
sentence representation of another one.

For the sake of brevity, we give the concrete attention
computing method for interaction direction P → Q as
(7) and (8). Equation (7) computes the relatedness scores
between two representations, and (8) computes the aligned
context vectors from another sentence. For the opposite
direction Q → P , we have the same computing method.
We employ biaffine attention function [46] to compute the
relatedness score of two representations hpi

and hqj
.

Aij = score(hpi
, hqj

) = hpi

T Whqj
+〈Up, hpi

〉+〈Uq, hqj
〉

(7)

where A ∈R
m×n is the score matrix, m is the length of P and

n is the length of Q. W ∈ R
h×h, Up, Uq ∈ R

h are learnable
parameters, h is dimension of vector representation, and
〈·, ·〉 denotes the inner production operation. The first item
hpi

T Whqj
directly measures the relatedness score of two

representations of words pi and qj . The second and third
items measure how probable a word is taken as a related
word to others, by which the score depends not only on the
combination of two words but also on the word itself.

Next, for each word pi in sentence P, the relevant
semantic information in another sentence Q is extracted as
a context vector according to the score matrix A as (8).

˜hpi
= context(A,Hq) =

n
∑

j=1

exp(Aij )
∑n

k=1 exp(Aik)
hqj

(8)

where ˜hpi
is an attention-weighted representation of HQ,

and the larger attentive weight indicates the corresponding
information hqj

in Q is more relevant to word pi in P .

As shown in Fig. 2, after once attention-based inter-
action, sentences P and Q can be represented as ˜HP→Q

= [˜hp1 , · · · , ˜hpi
, · · · , ˜hpm] and ˜HQ→P = [˜hq1 , · · · , ˜hqj

,
· · · , ˜hqn], respectively, each of which encodes the rele-
vant semantic information (i.e., interactive features) from
another sentence.

3.4 Prediction layer

We employ a multilayer perceptron (MLP) classifier to
determine the semantic relation between two sentences
according to the learned interactive sentence representa-
tions. In the MLP classifier, a fixed-length vector is needed
as input. To achieve this goal, we perform mean pooling and
max pooling operation to convert the final sentence repre-
sentations HP of P and HQ of Q into a fixed-length vector.
For the representation vectors, each dimension represents
different semantic features, in which the mean pooling aver-
ages each representation to preserve all of the information,
and the max pooling selects the highlighting features to
capture the significant properties. The computation can be
defined as:

HPmean = 1

m

m
∑

i=1

hpi
, HPmax = m

max
i=1

hpi
(9)

HQmean = 1

n

n
∑

j=1

hqj
, HQmax = n

max
j=1

hqj
(10)

After that, sentences P and Q are represented as vectors
[HPmean ; HPmax ] and [HQmean ; HQmax ] respectively, which
encode all the related semantic information between two
sentences.

Finally, we concatenate them together to get a fixed-
length vector H as Chen et al. [21] and Duan et al. [14]. Then
we pass H into a MLP classifier to predict the probability
Pr(·) of each label, and the (1) is reformulated as (11).

H = [HPmean ;HPmax ; HQmean ; HQmax ] (11)

Pr(·|P, Q)= Pr(·|H) =softmax(W2ReLU(W1H +b1)+b2) (12)

where W1, W2, b1, b2 are learnable parameters. Pr(·|P, Q)

is the predicted label distribution.

4 Deep bi-directional interaction network

In this section, we elaborate the proposed Deep Bi-
Directional Interaction Network (DBDIN) that combines
attention mechanism and deep neural network to extract
interactive features for learning sentence representation.
Following the attention-based matching framework [1, 14,
15], we regard the semantic relation between two sentences
P and Q as the relation aggregation of each pair words
pi and qj , where pi ∈ P , i ∈ {1, · · · , m}, and qj ∈
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Q, j ∈ {1, · · · , n}. The relation of each pair pi and qj

is defined as word-level relatedness, and the phrase- and
sentence-level relatedness can be represented by the word-
level relatedness, based on the compositional nature of
sentence semantics [43, 44].

Figure 3 shows the details of our model architecture,
in which the input encoding layer and context encoding
layer are elaborated in Fig. 2 and we do not display
their details here. As shown in Fig. 3, the DBDIN mainly
consists of the following components: (1) cross sentence
attention with original sentence representation to capture
the relevant information from another sentence; (2) deep
fusion to aggregate and propagate the learned attention
information from low interaction layers to high interaction
layers; and (3) self-attention mechanism to enhance global
matching information. (1) and (2) are combined to form one
interaction unit, as shown in Fig. 3b, where deep fusion is
added after cross sentence attention. As shown in Fig. 3a,
we use T attention-based interaction units that attend to the
original sentence representation of another one to extract
interactive features. Finally, we introduce one layer of
self-attention to enhance global matching information after
T cross sentence interaction units.

4.1 Cross sentence attention with original sentence
representation

We use cross sentence attention to learn interactive features.
Previous multi-layer model [14] performs attention between
two parallel layers, in which one sentence attends to
the interactive representation from the preceding layer of
another one. As a result, semantics to be paid attention are
uncertain and unstable for interaction because semantics are
changed at different layers. This makes the attention in high
layers is easily affected by error propagation. Different from
previous work, we perform attention with original sentence
representation, in which each attention will repeatedly focus
on the original sentence representation of another one
instead of the interactive representation. The attention will
specifically focus on another sentence to be matched, and
therefore the relatedness captured from one sentence to
another one is different from that of the reversed direction.

For the sake of brevity, we take the interaction direction
P → Q as an example to describe the attention
computation. In the t-th interaction unit, where t = {1, · · · ,
T}, the inputs contain two sentence representations, one is
the interactive representation Ht−1

P of sentence P learned

P

Q

Input Encoding

Layer

Context Encoding

Layer

Interaction 

Unit 1

Interaction 

Unit 1

Interaction 

Unit T

Interaction 

Unit T

Attention-Based 

Interaction Layer
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A�en�on
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y
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Interaction 
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representation of Q
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Deep Fusion

Cross Attention 1

Cross Attention t

Interactive representation

Local comparison
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Gating Fusion Layer
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b c

Fig. 3 An illustration of our Deep Bi-Directional Interaction Network (DBDIN). The interaction units in (a) are elaborated in (b), and the details
of deep fusion are shown in (c)
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in the preceding interaction units, and one is the original
sentence representation HQ of another one Q. When t=1,
P also use its original sentence representation HP . The
output is a new interactive representation ˜Ht

P of P, which
encodes the related semantics by aggregating the attended
information from Q. For the opposite interaction direction
Q → P , we have the same computing method.

Concretely, given the attentive representation of P: Ht−1
P

= [ht−1
p1

, · · · , ht−1
pi

, · · · , ht−1
pm

] and the original sentence

representation of Q: HQ = [hq1 , · · · , hqj
, · · · , hqn ], we

first use (7) described in Section 3.3 to compute the
unnormalized attentive weights At

ij for any pair ht−1
pi

and

hqj
between Ht−1

P and HQ. Next, we use the score matrix
A ∈ R

m×n to compute an attention-weighted representation
˜ht

pi
for each word pi of P by using (8) described in

Section 3.3. The attention vectors can be formulated as the
following Eqs:

At
ij = score(ht−1

pi
, hqj

) (13)

˜ht
pi

= context(At , HQ) (14)

After that, sentence P can be represented as ˜Ht
P = [˜ht

p1
, · · · ,

˜ht
pi

, · · · , ˜ht
pm

], where ˜ht
pi

is the interactive representation
that encodes the relevant semantic information from
sentence Q. Intuitively, the interaction can learn that
the relatedness of some word pairs are more stronger
than the relatedness between others according to different
attentive weights. With the increment of interaction, the
higher interaction layer can gradually capture the semantic
relatedness at larger granularity, such as phrase-level
relevance between two sentences.

4.2 Deep fusion

At each interaction unit, in addition to attention, we design
deep fusion layer to aggregate the attention information
through the network, by which the semantic features learned
at low interaction layers can be effectively propagated
to high layers for deep interaction, and it also makes
better integration of low-level and high-level features, as
shown in Fig. 3c. Here, we first describe local comparison
operation and LSTM-based aggregation to fuse the attended
information from another sentence, and then describe
the gating deep fusion layer to aggregate the attention
information learned at different interaction units.

Local Comparison Operation After extracting the relevant
information from another sentence, a trivial next step
would be to pass the concatenation of the ˜ht

pi
and

ht−1
pi

to the following layer. In interaction operation, the

concatenation can retain all the information [21, 30].
However, the model would suffer from the absence of
similarity and relatedness information. Besides, for many
sentence matching problems, we also note that it is helpful
to check how similar or related at the word level for
measuring the semantic similarity or relatedness of the two
sentences. Therefore, we first perform a local comparison
operation at the word level.

We consider the following comparison functions that
measure the similarity and relatedness respectively [21, 30],
which operates on two vectors in an element-wise manner.
We calculate the element-wise substraction and element-
wise multiplication between two vector representations ˜ht

pi

and ht−1
pi

, where ht−1
pi

is the representation learned at the

preceding layer and ˜ht
pi

is the attended representation from
another sentence.

Substraction : hsub
pi

=f (ht−1
pi

,˜ht
pi

)=(ht−1
pi

−˜ht
pi

) � (ht−1
pi

−˜ht
pi

) (15)

Multiplication : hmul
pi

=f (ht−1
pi

,˜ht
pi

) = ht−1
pi

�˜ht
pi

(16)

Note that the operator � is element-wise multiplication. For
both comparison functions, the resulting vectors hsub

pi
and

hmul
pi

have the same dimensionality as ht−1
pi

and ˜ht
pi

. We
can see that the substraction is closely related to Euclidean
distance that measures the similarity of two vectors, while
the multiplication is closely related to cosine similarity that
measures the relatedness of two vectors.

Then the element-wise substraction and multiplication
are concatenated with the original vectors. We use a
fully connected feed-forward network (FFN) with ReLU
activations [47] to project the concatenated vectors from
4h-dimensional vector space into a h-dimensional vector
space, which operation helps the model to capture deeper
interaction information and also reduces the complexity of
vector representation.

hc
pi

=[ht−1
pi

;˜ht
pi

; hsub
pi

; hmul
pi

] (17)

˜ht
pi

= ReLU(W t
hh

c
pi

+ bt
h) (18)

where [·; ·; ·; ·] refers to the concatenation operation, Wt
h ∈

R
4h×h, bt

h ∈ R
h are learnable parameters.

Aggregation of Local Comparison Results The local com-
parison operation performs word-level information fusion.
However, the understanding of complex semantic related-
ness may rely on the contextual interaction information.
Based on this consideration, we apply a recurrent BiLSTM
network to further gather the sequential interaction vectors.
The BiLSTM aggregation can be formulated as following.

̂ht
pi

= BiLSTM(˜ht
pi

,
−→̂
h t

pi−1
,
←−̂
h t

pi+1
) (19)

The BiLSTM inputs are the local comparison results. This
aggregation is performed in a sequential manner to enhance
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local interaction vector with context interaction information
that is important for measuring sentence-level semantic
relatedness.

Gating Deep Fusion Layer Although sentence interaction
has benefited from deep neural network [14] that takes
the output of current attention layer as the input of next
layer, it still suffers from some issues. First, only feeding
the results of current attention layer into the next attention
layer has the risk of losing low-layer semantic information
[23, 24]. Second, if the current attention layer captures
some alignment errors, the next layer will only have
the incorrect information as input [48]. Besides, network
training becomes more difficult with increasing depth
because of the vanishing gradient problem [23, 24, 48, 49].

To solve the issues identified above with multi-layer
attentions, we propose the gating deep fusion mechanism.
Compared to the previous multi-layer attention model [14],
we allow next interaction unit to utilize not only the
attention information from current interaction unit but also
from the previous units. This allows for the following
benefits: 1) By fusing both lower-layer features and high-
layer features, it should help to improve the performance
of the attention; 2) By receiving the earlier interaction
information, it provides the next attention with a second
chance to revise the attention errors presented at the current
layer; 3) Furthermore, it helps to mitigate the gradient
vanishing problem for model training.

Inspired by previous work [24, 45, 49–51] that show
adding paths with linear connection between two layers can
effectively propagate information and train deep network,
we design a gating deep fusion layer. The gating deep
fusion layer is based on the interaction results at both the
current and the preceding interaction units, which learns
adaptively controlling how much the semantic information
in the preceding layers to be propagated to the following
layers.

First, we gather the representations from both the current
interaction unit and the preceding interaction unit as
following:

h
g
pi

= f (ht−1
pi

,̂ht
pi

) = [ht−1
pi

;̂ht
pi

; ht−1
pi

�̂ht
pi

] (20)

where ̂ht
pi

is from the current interaction unit, and ht−1
pi

is from the preceding interaction unit, respectively. � is
element-wise multiplication.

Then, based on the representation h
g
pi

, we design two
gates rt

pi
and zt

pi
to control information propagation. The

forget gate rt
pi

decides whether the previous semantic
information is ignored. The update gate zt

pi
selects whether

the learned semantic representation is to be updated

with a new interactive representation c̃t
pi

. The detailed
computations of rt

pi
, zt

pi
, ht

pi
and c̃t

pi
are shown in (21)–(24).

rt
pi

= σ(Wt
r h

g
pi

+ bt
r ) (21)

zt
pi

= σ(Wt
zh

g
pi

+ bt
z) (22)

c̃t
pi

= tanh(W t
c [rt

pi
� ht−1

pi
;̂ht

pi
] + bt

c) (23)

ht
pi

= zt
pi

� ht−1
pi

+ (1 − zt
pi

) � c̃t
pi

(24)

where σ is a sigmoid function, the value of rt
pi

and zt
pi

is between 0 and 1. Wt∗ and bt∗ are learnable parameters.
Intuitively, the values of rt

pi
and zt

pi
closing to 1 imply that

the more semantic information from the previous interaction
units will be propagated to the following interaction units,
while closing to 0 imply that the semantic information
of previous interaction units is less propagated and the
new interactive information is used to update the sentence
semantic representation.

After the t-th cross sentence interaction unit, each word
pi in sentence P is newly represented as ht

pi
that captures the

relevant information from another sentence Q, and learns
new interactive representation for the final semantic relation
judging between P and Q.

Similarly, we build multiple interaction units from the
opposite direction Q → P , implying that the sentence Q
will focus on the relevant semantic information from the
sentence P with attention mechanism. At each interaction
unit, the sentence Q attends to sentence P, which will learn
from the original sentence representation HP of P to derive
the interactive representation ht

qj
for each word qj of Q.

4.3 Self-attention layer

After cross sentence interaction, we further introduce
a self-attention mechanism to enhance global matching
information, as shown in Fig. 3a. The self-attention directly
computes semantic relatedness between two representations
regardless of their distance. Previous studies [14, 36, 37]
have shown that self-attention is specially helpful to capture
long-distance context information for modeling sentence.
Our motivation of using self-attention for sentence matching
is to capture long-distance interaction information within
each sentence to enhance global matching.

Concretely, for sentence P, given its interactive repre-
sentation HT

P = [hT
p1

, · · · , hT
pi

, · · · , hT
pm

], computed after
T cross sentence interaction units. We first compute a self-
attentive score matrix Ss ∈ R

m×m by using (7) described in
Section 3.3:

Ss
ij = score(hT

pi
, hT

pj
) (25)
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where Ss
ij indicates the relatedness score between the two

interactive representations hT
pi

and hT
pj

of the i-th and j-th
word in P.

Then, we use the self-attentive score matrix Ss ∈ R
m×m

to compute a global context vector ˜hs
pi

for each word in P
by using (8) described in Section 3.3.

˜hs
pi

= context(Ss, HT
P ) (26)

Intuitively, the ˜hs
pi

can capture all contextual interaction
information within sentence P, and therefore enhancing
global sentence-level matching results.

After that, we also perform a comparison function and
BiLSTM fusion, as described in Section 4.2, to better
aggregate the global matching information, as (27)–(29).

h
s

pi
=[hT

pi
;˜hs

pi
; | hT

pi
−˜hs

pi
|; hT

pi
�˜hs

pi
] (27)

˜hs
pi

= ReLU(Ws
hh

s

pi
+ bs

h) (28)

̂hs
pi

= BiLSTM(˜hs
pi

,
−→̂
h s

pi−1
,
←−̂
h s

pi+1
) (29)

Similarly, we conduct self-attention to sentence Q to derive
the semantic representation ̂hs

qj
for each word qj of Q.

Finally, to rich the interactive representation, we further
fuse the above semantic representations learned by cross
sentence interaction and self-attention to get the final
representations for two interaction directions P → Q and
Q → P . The computation is as follows:

hr
pi

= hT
pi

+̂hs
pi

(30)

hr
qj

= hT
qj

+̂hs
qj

(31)

where the semantic representations hr
pi

and hr
qj

are con-
structed from cross sentence interaction units and then are
enhanced by global matching information with self-attention.

Then, the two sentences P and Q are converted to
representations Hr

P = [hr
p1

, · · · , hr
pi

, · · · , hr
pm

], and Hr
Q =

[hr
q1

, · · · , hr
qj

, · · · , hr
qm

], which encodes the related semantic
information between them. Finally, Hr

P and Hr
Q are passed

into the prediction layer as input to predict the semantic
relation between the two sentences.

5Model learning

In this section, we will introduce the details about the model
learning, which can be classified into three parts: model
input, loss function and model configuration.

5.1 Model input

In order to represent each input word better, inspired by
previous work [12, 52], we concatenated three types of
vectors: a pre-trained vector e

pre
i ∈ R

d1 , a learnable vector
elearn
i ∈ R

d2 for each word type, and a learnable vector

e
pos
i ∈ R

d3 for the POS tag of the word. The pre-trained
word vector includes rich semantic information learned
from a large scale of unlabeled corpus, the learnable word
vector can learn task-specific word representation, and the
POS tag further riches word representation. We used NLTK1

to acquire POS tags. We applied a nonlinear transformation
ReLU [47] to the concatenated vector to get the final word
embedding ei ∈ R

d .

ei = ReLU(We[epre
i ; elearn

i ; e
pos
i ] + be) (32)

where We ∈ R
(d1+d2+d3)×d and be ∈ R

d are a weight matrix
and a bias vector, respectively.

5.2 Loss function

We employed cross-entropy as the loss function since the
goal is to make the correct classification. Considering the
model complexity, we also added l2-norm of all learnable
parameters to the final loss function. The following is the
loss function for the output of classifier, which can be
formulated as:

J (Θ) = − 1

N

N
∑

i=1

log Pr(y
(i)|P (i), Q(i); Θ) + 1

2
λ‖Θ‖2

2 (33)

where (P (i), Q(i)) are the sentence pairs, and y(i) denotes
the corresponding annotated label for the i-th instance,
N is the number of instances in the training set. λ is a
regularization weight controlling the complexity and Θ

denotes all the learnable parameters of our model. Our
objective adding these two terms is differentiable, allowing
the model to be efficiently trained with gradient descent
algorithm in an end-to-end way.

5.3 Model configuration

In order to get the best performance, we have tuned the
hyper-parameters on the development set. We used the
parameters that perform the best on the development set to
evaluate the model performance on the test set. The values
of the hyper-parameters are illustrated as follows:

For input encoding layer, we used the pre-trained word
vectors (Glove 840B) [42], in which the dimension was set
as 300. We set the learnable word vectors and POS vectors
to 30 dimensions. The final projected word embedding
was set as 300 dimensions. In order to reduce learning
complexity, we did not update the pre-trained word vectors
during training. For BiLSTM layer, all of the hidden states
were set as 300 dimensions. The ReLU layers for each
comparison operation were set as 300 dimensions. For
the final classifier, we used two-layer MLP with 1024-
dimensions hidden states. For all datasets, we used 3 cross

1http://www.nltk.org/
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Table 2 Statistics of datasets: SNLI, SciTail and Quora. Avg.L refers to average length of a pair of sentences

Train Dev Test Avg.L Vocab

SNLI 549K 9.8K 9.8K 14 8 36K

SciTail 23K 1.3K 2.1K 17 12 24K

Quora 384K 10K 10K 12 12 107K

sentence interaction units and 1 layer of self-attention. The
parameters were shared for two interaction directions in the
t-th layer, and different layers had different parameters.

For model learning, the batch size was set as 64 for SNLI
and Quora, 32 for SciTail, because the first two datasets
has more training samples, and a larger batch size will
speed up model training. We used the Adam method with
β1 = 0.9, β2 = 0.999 [53] for model optimization. We
set the initial learning rate to 5e-4 with a decay ratio of
0.95 for each epoch, and l2 regularizer strength to 6e-5. To
effectively train model, we performed batch normalization
regularization [54] to the pre-trained word vectors and
projected word embeddings for each training mini-batch.
To prevent over-fitting, we used dropout regularization [55]
with a drop rate of 0.2. Specially, dropout was applied after
batch normalization.

For initialization, we randomly set all the learnable
parameters with the uniform distribution in the range
between [-0.01,0.01]. We implemented our model using
open source deep learning platform pytorch2. The models
were trained on 1 NVIDIA GTX1080 GPU card.

6 Experiments

In this section, we conducted experiments to evaluate
the effectiveness of our proposed model on two sentence
matching tasks with three benchmark datasets: (1) SNLI and
SciTail datasets for natural language inference; (2) Quora
dataset for paraphrase identification.

6.1 Dataset description

SNLI is a natural language inference dataset proposed by
Bowan et al. [2]. This dataset contains 570,152 human-
written English sentence pairs, each labeled with one of
the following relations: Y = {Entailment, Contradiction,
Neutral}, where entailment indicates Q can be inferred from
P, contradiction indicates Q cannot be true condition on P,
and neutral means P and Q are irrelevant to each other. We
followed the same data split as in Bowan et al. [2].

SciTail is an entailment classification task similar to SNLI
dataset, but the semantic relation in SciTail is binary, where

2https://pytorch.org/

Y = {Entailment, Neutral}. Different SNLI, this dataset is
created from natural sentences rather than written under
the constraint of predefined rules and the language skills
of humans. This dataset contains 23k pairs for training,
1,304 pairs for development and 2,126 pairs for testing [56].
Notably, the premise and the corresponding hypothesis have
high lexical similarity for both the entailed and the non-
entailed (neutral) pairs, which makes the task particularly
difficult made evident by the low accuracy. We followed the
same data split as in Khot et al. [56].

Quora is a paraphrase identification task. This dataset
consists of over 400,000 question pairs and Y = {0, 1},
where y = 1 means that P and Q are paraphrase of each other,
and y = 0 means they are not paraphrases. We followed the
same data split as in Wang et al. [1].

The detailed statistical information of the three datasets
is shown in Table 2.

6.2 Ensemble strategy

The ensemble strategy has been proved to be effective
in improving model accuracy for sentence matching [1,
12, 14]. The training mechanism of neural network is
based on stochastic gradient descent, therefore different
initialization of network parameters will lead to different
training results. The ensemble models use multiple learning
results from different initialized networks, which improves
the prediction accuracy of the final task by alleviating
network randomness. Following Duan et al. [14], our
ensemble model averages the probability distributions from
three individual single models to decide the final result,
and each of them has the same architecture but different
parameter initialization.

6.3 Baselines

We compared our model with several state-of-the-art
baseline models in the sentence matching field. We mainly
compared our model with previous sentence-encoding
methods and attention-based interaction methods.

The sentence-encoding based methods:

– LSTM encoder [2] is a LSTM-based model that
uses LSTM network to encode the premise and the
hypothesis respectively.
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– tree-based CNN encoder [28] uses CNN network to
encode sentences.

– SPINN [32] integrates tree-structured LSTM to encode
sentence with syntactic information.

– DRCN [57] adopts densely-connected network to better
generate sentence representation.

– SAN [36] utilizes the masked multi-head attention with
distance to obtain sentence representations, which can
effectively encode sentence semantics from multiple
aspects.

The attention-based interaction methods:

– LSTM with attention [16] extends the general LSTM
architecture with attention mechanism to read the
information of another sentence.

– mLSTM [34] explicitly enforces word-by-word interac-
tion between the hypothesis and the premise.

– LSTMN with deep attention fusion [58] exploits LSTM
with memory which links the current word to previous
words stored in memory with attention.

– re-read LSTM [59] uses a LSTM variant which
considers the attention vector of another sentence as an
inner state of LSTM.

– Decomposable attention model [15] decomposes
sentence-level interaction to word-by-word interaction
model with attention, and uses pre-trained word vector
without relying on any word-order information.

– btree-LSTM [60] proposes an attention architecture with
a complete binary tree-LSTM encoder (btree-LSTM).

– DIIN [12] hierarchically extracts semantic features
from interaction space by using convolutional feature
extractors.

– BiMPM [1] designs multiple parametric attention
functions for interaction.

Table 3 Single model
performance for natural
language inference on SNLI
dataset

Models Params Train Test

Sentence encoding based method

(1) LSTM encoder [2] 3.0M 99.7 78.2

(2) tree-based CNN encoder [28] 3.5M 83.3 82.1

(3) Tree-LSTM encoder (SPINN) [32] 3.7M 83.9 80.6

(4) Self-attention encoder (SAN) [36] 3.1M 89.6 86.3

(5) DRCN [57] 5.6M − 86.5

Attention-based interaction method

(6) LSTM with attention [16] 0.6M 85.3 83.5

(7) mLSTM [34] 1.9M 92.0 86.1

(8) LSTMN with deep attention fusion [58] 3.4M 88.5 86.3

(9) re-read LSTM [59] 2.0M 90.7 87.5

(10) Decomposable attention model [15] 0.6M 89.5 86.8

(11) btree-LSTM [60] 2.0M 88.6 87.6

(12) DIIN [12] 4.4M 91.2 88.0

(13) BiMPM [1] 1.6M 90.9 87.5

(14) ESIM [21] 4.3M 92.6 88.0

(15) DR-BiLSTM [22] 7.5M 94.1 88.5

(16) DRCN [57] 6.7M 93.1 88.9

(17) RE2 [35] 2.8M 94.0 88.9

(18) AF-DMN [14] - 94.5 88.6

External knowledge based method

(19) KIM [38] 4.3M 94.1 88.6

(20) ELMO [29] 8.0M 91.6 88.7

(21) DMAN [39] 9.2M 95.4 88.8

(22) SLRC (ELMO+SRL) [61] − − 89.1

(23) SLRC (BERT+SRL) [61] 308M 95.7 91.6

(24) SemBERT [62] 339M 94.4 91.9

This work

(25) DBDIN 7.8M 93.5 88.8
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– ESIM [21] incorporates the traditional sequential
LSTM and tree LSTM for better semantic encoding and
interaction.

– DR-BiLSTM [22] models interaction by processing the
hypothesis conditioned on the premise results.

– RE2 [35] adopts augmented residual connections to
consider more the lower-layer features for alignment.

– AF-DMN [14] proposes a multi-layer interaction
network based on attention mechanism, and shows
stacked cross attention and self-attention layers can
better extract interactive features for sentence matching.

6.4 Experiments on natural language inference

Results on SNLI We verified the effectiveness of our model
on SNLI dataset and compared our model with the following
published models. The results are shown in Tables 3 and 4.
These previous models can be categorized into three groups:

(1) The first group of models is based on sentence-
encoding method. These models mainly focus on
designing encoder architecture. We compared our
model with LSTM-based model [2], tree-based CNN
[28], SPINN [32], DRCN [57] and SAN [36].
Among these sentence-encoding based models, DRCN
[57] and distance-based self-attention network (SAN)
[36] are the current state-of-the-art models. These
models separately encode each sentence as a vector
representation in a completely isolated manner, and
decide semantic relationship based on the two sentence
representations. The advantage of this method is that
less parameters make the model smaller and easier to
train. However, the final sentence representation can
not encode the fine-grained related semantics from
another sentence, which often leads to the model
to be insufficient for matching sentence pairs where
complex reasoning is required.

(2) The second group of models is based on attention
mechanism. These models obtain the representation of
one sentence by depending on the representation of
another sentence, which extracts attentive features to

learn interactive sentence representation. These meth-
ods can be classified into two categories according to
their interaction ways.

One kind of methods is to model the conditional
encoding, in which the encoding of one sentence can be
affected by another sentence. Previous models following
this architecture include LSTM with attention [16], mLSTM
[34], LSTMN with deep attention fusion [58], and re-read
LSTM [59]. These methods focus on designing interactive
encoder, which uses attention to read the information of
another sentence during the procedure of encoding one
sentence.

Another kind of methods is to compute similarities
between all the words or phrases of two sentences to
model multiple-granularity interactions. Previous models
following this architecture include Decomposable attention
model [15], btree-LSTM [60], DIIN [12], BiMPM [1],
ESIM [21], DR-BiLSTM [22], DRCN [57], RE2 [35]
and AF-DMN [14]. These interaction methods have
achieved higher accuracy because of better modeling
related semantics between two sentences. Among these
models, multi-layer interaction network based on attention
mechanism often obtains better performance [14, 35].

In Table 3, our single DBDIN model achieves 88.8%
test accuracy in SNLI test set. For comparison with DRCN
[57] and RE2 [35], our model obtains a bit low score. We
analyzed that both DRCN and RE2 employ deeper networks
that benefit sentence matching, such as 5 cross attentions
in DRCN. We used 3 cross attentions and reported the
results. We also verified the impact of network depth in
Section 7.1.1 and shown that our model can be further
improved with the increase of network depth. Moreover,
we also reported the ensemble result in Table 4, and
the test accuracy is 89.5%. The comparison results show
that our model can effectively improve sentence matching
performance on single and ensemble scenarios on SNLI
dataset. As described in Section 4, DBDIN utilizes cross
sentence attention with original sentence representation and
deep fusion. DBDIN can pay close attention to another
sentence at each step and the multiple interaction units allow

Table 4 Ensemble model
performance for natural
language inference on SNLI
dataset

Models Params Train Test

(1) DIIN (ensemble) [12] 17.0M 92.3 88.9

(2) BiMPM (ensemble) [1] 6.4M 93.2 88.8

(3) ESIM (ensemble) [21] 7.7M 93.5 88.6

(4) DR-BiLSTM (ensemble) [22] 45.0M 94.8 89.3

(5) AF-DMN (ensemble) [14] - 94.9 89.0

(6) KIM (ensemble) [38] 43.0M 93.6 89.1

This work

(7) DBDIN (ensemble) 23.4M 94.2 89.5
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the model to better extract interactive features by repeatedly
reading another sentence to be matched. The deep fusion
can better aggregate and propagate the semantic features
from low interaction units to high interaction units. The
self-attention layer can effectively enhance global matching
information. Therefore, the related semantics can be fully
explored in an interactive way.

(3) The third group of models is based on external
knowledge, such as WordNet [38], discourse marker
prediction [39], semantic role labeling (SRL) [61], and
pre-trained language model [27, 29, 62]. These models
introduce other learning objectives or training data to
obtain the representation of one sentence, intuitively, more
learning signals and training data often can obtain improved
performance. KIM [38] uses WordNet knowledge base [41]
to enhance the learning of word-level semantic relation
and obtains 0.6 improvement on the basis of ESIM [21].
They integrate the knowledge-based sore of word pairs into
the cross sentence attention to better learn word alignment
in term of word-level semantic relation, where knowledge
about synonymy, antonymy, hypernymy and hyponymy
between given words may help model alignment between
premises and hypotheses; knowledge about hypernymy
and hyponymy may help capture entailment; knowledge
about antonymy and co-hyponyms (words sharing the same
hypernym) may benefit the modeling of contradiction.
DMAN [39] transfers knowledge from another supervised
task, and use discourse marker “so” or “but” to help model
learning the logical relationship between two sentences.
ELMO [29], SLRC [61] and SemBERT [62] adopt pre-
training language model technique using a large scale of
unlabel corpus. Specially, SLRC [61] and SemBERT [62]
show that integrating supervised semantic role labeling can
further improve the quality of sentence representation.

Although ELMO [29], BERT [27] and SemBERT [62]
have been well known as pre-trained language model for
acquiring contextual word vectors to improve sentence
matching, these models have large computing complexity
(i.e., especially large model parameters and large training
data). BERT and SemBERT have about 340M parameters to
learn, and use the BooksCorpus (800M words) and English
Wikipedia (2,500M words) as the pre-training corpus.
The pre-training model needs not only large computing
resources but also a long time, which restricts model
application in case of insufficient computing resources.
Our proposed model has less computing complexity (7.8M
parameters) than BERT (340M parameters) and does not
rely on any external knowledge, but obtains competitive
performance. We will conduct the pre-training technique
with our model in the future. In this paper, we presented
a lightweight neural model, and mainly evaluated the
contribution of our proposed neural architecture to sentence
matching.

Results on SciTail We also verified the effectiveness of our
model on SciTail dataset. In this dataset, the premise and the
corresponding hypothesis have high lexical similarity for
both the entailed and the non-entailed (neutral) pairs, which
makes it particularly difficult for model to learn semantic
features to effectively identify the semantic relation. Khot et
al. [56] report that SciTail challenges typical attention-based
models that show outstanding performance on SNLI, such
as DecompAtt model [15] and ESIM model [21].

We compared our model with the following published
models on SciTail dataset, and shown the results in Table 5.
The first five models in Table 5 are all implemented in the
work of Khot et al. [56]. DGEM proposed by Khot et al.
[56] is a graph-based attention model for encoding sentence
representation, and they show that syntactic structure
information is helpful for understanding the semantic
relation between two sentences. Yin et al. [63] propose deep
explorations of inter-sentence interaction (DEISTE), and
use attention mechanism to model the word-level relations
between two sentences. CAFE [52] improves previous
comparison function [30] by compressing alignment vectors
into scalar valued features. Among these models, RE2 [35]
is the current state-of-the-art model that considers more the
lower-layer features for alignment. AF-DMN (re-imp) is our
re-implementation of the model in Duan et al. [14] in which
the original work do not report the results on this dataset.

On this dataset, our single DBDIN significantly outper-
forms previous models, achieving 86.8% accuracy on the
SciTail test set. Compared to previous strong neural mod-
els AF-DMN [14] and RE2 [35] with multi-layer attentions,
our proposed model shows better performance. Results on
SciTail dataset further demonstrate that the proposed meth-
ods have the ability to better capture interactive features
for matching sentence pairs that involve more complicated
reasoning in natural language inference. Finally, our model
achieves improved performance on the challenging SciTail
dataset.

Table 5 Performance for natural language inference on SciTail dataset

Models Dev Test

(1) Majority class [56] 63.3 60.3

(2) Ngram [56] 65.0 70.6

(3) DecompAtt [15] 75.4 72.3

(4) ESIM [21] 70.5 70.6

(5) DGEM [56] 79.6 77.3

(6) DEISTE [63] 82.4 82.1

(7) CAFE [52] − 83.3

(8) RE2 [35] − 86.0

(9) AF-DMN (re-imp) [14] 87.2 84.4

(10) DBDIN 88.9 86.8
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Table 6 Performance for paraphrase identification on the Quora
dataset

Models Test

(1) Siamese-CNN [1] 79.60

(2) Multi-Perspective-CNN [1] 81.38

(3) Siamese-LSTM [1] 82.58

(4) Multi-Perspective-LSTM [1] 83.21

(5) L.D.C [64] 85.55

(6) BiMPM [1] 88.17

(7) AF-DMN [14] 88.72

(8) DBDIN 89.03

6.5 Experiments on paraphrase identification

Quora We conducted experiments on Quora dataset to test
the effectiveness of our model for paraphrase identification.
We compared our model with the following published
models on Quora dataset, and shown the results in Table 6.

The models (1) - (5) in Table 6 are sentence-encoding
based methods without interaction. The Siamese-CNN
model and Siamese-LSTM model encode sentences with
CNN and LSTM respectively, and then predict the seman-
tic relation between them based on the cosine similarity
[1]. Multi-Perspective-CNN and Multi-Perspective-LSTM
adopt multiple perspective cosine matching function [1].
Wang et al. [64] explore sentence similarity learning by lex-
ical decomposition and composition (L.D.C). The models
BiMPM [1] and AF-DMN [14] adopt interaction method
with attention mechanism, and have shown improved per-
formance over sentence-encoding based models. Specially,
AF-DMN [14] shows that multi-layer neural network with

attention mechanism can better extract interactive features
for paraphrase identification.

As we can see, our single DBDIN outperforms the
previous models and achieves 89.03% accuracy on the
Quora test set. Therefore, the results further prove that our
proposed model is also very effective to capture interactive
features for paraphrase identification task.

7 Deep analysis and discussion

In this section, we gave in-depth analysis of model
architecture and performed interpretable research for deep
matching model. We first conducted an ablation study to
investigate the effectiveness of the proposed components
for model performance improvement. Then, we visualized
the learned attentions and semantic representations for
better understanding model behavior. Finally, we conducted
case study and linguistic error analysis to investigate the
matching results from the perspective of linguistics.

7.1 Ablation performance

We conducted an ablation study on DBDIN to examine the
effectiveness of proposed cross sentence attention method,
deep fusion and self-attention mechanism.

7.1.1 Effect of cross sentence attention

We first verified the effectiveness of the cross sentence
attention as an essential component and shown the results
in Table 7 (1). As mentioned before, we utilized the
original sentence representation as the inputs of attention in

Table 7 Ablation study on
SciTail dataset Models Dev Test

(1) Effect of different attention strategies

DBDIN (original-attention) 88.9 86.8

DBDIN (parallel-attention) 87.1 84.2

(2) Effect of the different number of cross sentence interaction unit

1 86.9 84.0

2 88.6 85.6

3 88.9 86.8

4 89.1 87.2

5 89.2 87.4

(3) Effect of deep fusion and self-attention

DBDIN 88.9 86.8

w/o Deep fusion 85.8 84.7

w/o Self-attention 88.1 85.8
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each interaction unit. These operations make DBDIN has
a comprehensive understanding of fine-grained semantic
relations, and learns interactive representation at each
interaction unit by searching the most relevant part with the
consideration of another sentence. We compared two cross
sentence attention strategies: the proposed attention that
repeatedly attends to the original sentence representation of
another one, and the parallel attention [14] that pays attention
to the interactive representation of another sentence.

In this experiment, we replaced the proposed attention
in DBDIN with parallel attention, in which each attention
focuses on the interactive representation of another sentence
and two interaction directions share the same attentive
weights. As shown in Table 7 (1), the performance of
DBDIN significantly decreases when replacing with parallel
attention, which means the attention target is critical for
extracting interactive features at each attention layer. It
proves that the proposed attention with original sentence
representation can improve matching performance by
reducing attention error propagation in multi-layer network.

We further verified the effect of the different number of
cross sentence interaction unit on performance, as shown in
Table 7 (2). As we can see, with the number of interaction
unit increases from 1 to 5, the performance increases on
both the development set and the test set of SciTail dataset.
We can conclude that the multiple interaction units are
effective for improving matching performance. However,
the increasing rate of accuracy will slow down with the
increment of the number of interaction units. Moreover,
the parameters will grow rapidly with the increment of
interaction unit, and a large of number of parameters will
increase model complexity for optimization. Because of
computational cost, we just set the number of cross sentence
interaction unit to 3 in our experiment.

7.1.2 Effect of deep fusion and self-attention mechanism

We tested the effectiveness of deep fusion and self-attention
mechanism, as shown in Table 7 (3). For the model without
deep fusion, we removed the deep fusion layer at each
interaction unit, and the accuracy dropped by 2.1% on the
test set of SciTail dataset. The results demonstrate that the
deep fusion can effectively improve accuracy. It indicates
that deep fusion has more powerful capability to aggregate
and propagate semantic features for deep interaction.

For model without self-attention, we removed the final
self-attention layer, and the accuracy was degraded to
85.8%. This indicates that global matching information
captured by self-attention layer is also effective in
improving performance. We come to a conclusion similar to
the previous study [14] that global information is important,

but our model has lower computing complexity by using one
layer of self-attention rather than multiple layers.

7.2 Visualization analysis

Neural models have achieved state-of-the-art performance
on sentence matching. Yet unlike traditional feature-based
models that assign and optimize weights to varieties of
human interpretable features (parts-of-speech, syntactic
parse features etc.), the behavior of deep learning models
is much less easily interpreted. Here, we explore multiple
strategies to interpret how neural models can learn effective
semantic features for sentence matching, which provides
a reference for future model design. We employed visu-
alization techniques [65–67] like attention and representa-
tion plotting to interpret model behavior for performance
improvement.

7.2.1 Word alignment learned by attention

Previous work [1, 14–16] has shown that attention mecha-
nism can greatly improve sentence matching performance
by improving word alignment accuracy between two sen-
tences. Our attention with original sentence representation
allows one sentence to repeatedly focus on the most relevant
information of another sentence at each attention. Thus, we
could cautiously interpret the interactive results using our
attentive weights. The attentive weights contain information
about how two sentences are aligned. Here, we investigated
the word alignment learned by attention, and visualized the
attention results. We compared the proposed attention strat-
egy that attends to the original sentence representation of
another one, and the parallel attention that attends to the
interactive representation of another one [14].

Given an instance from the test set of the SciTail
dataset: {P: all living cells have a plasma membrane that
encloses their contents. Q: all types of cells are enclosed
by a membrane. The label y: Entailment.}. We investigated
the results produced by DBDIN with 3 cross sentence
interaction units P(t) → Q (t ∈ {1, 2, 3}) and 1 self-attention
layer. We visualized the learned attention matrices for each
attention layer.

Attention with Original Sentence Representation From the
cross sentence attention results in Fig. 4, we observe that
different attention layers have the ability to focus on the
different parts of another sentence Q. In the first attention
layer, the same or similar words in each sentence have
a high correspondence. But the first attention layer may
have erroneous alignments. We can find that the premise
word “encloses” is incorrectly aligned to the hypothesis
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a b c d

Fig. 4 The visualization of alignment matrices of the three cross sen-
tence attention layers and the one self-attention layer. These results
are produced by our proposed attention that attends to the original

sentence representation of another one. a 1st cross attention. b 2nd
cross attention. c 3rd cross attention. d self-attention

word “all”. In the second attention layer, the alignment
quality is improved dramatically, where the “encloses” is
correctly aligned to “enclosed”. It shows that the second
attention layer effectively revises the errors from the first
attention layer. Meanwhile, in the second and third attention
layers, the attention gradually tends to capture phrase-
level alignments, such as “that encloses their contents”
and “enclosed”, and “cells have a plasma membrane” and
“membrane”. With the increment of interaction units, the
high attention layers also tend to obtain new alignment
that is not captured in low attention layers. Judging by the
aligned terms, the model is undoubtedly able to classify the
label as an entailment, correctly.

In the self-attention layer, we observe that the phrase
“plasma membrane that encloses their contents” is strongly
aligned to the phrase “living cells”. This indicates that
the self-attention layer can capture global sentence-level
relevance to enhance matching information within the
sentence.

Attention with Interactive Sentence Representation To
compare our proposed multi-layer attention with traditional

attention method, we further analysed the results of parallel
attention that is performed between two intermediate
interactive layers [14]. The results in Fig. 5 are produced
by the DBDIN with parallel attention. We observe that
the first cross attention can capture some part of word
alignments between the two sentences, but the second,
third cross attentions and self-attention become unstable
and ineffective for capturing word alignments. As a result,
the higher attention layers can’t capture more alignment
information that is important for judging the semantic
relation between the two sentences.

Additive Attention To verify the overall alignment quality
of all attentions between the two sentences, we further
performed an additive operation on the three cross sentence
attention matrices, as shown in Fig. 6. As we can see,
our proposed method attending to the original sentence
representation of another one shows a more clear and
accurate alignment, while the parallel attention with
interactive representation is not capable of capturing some
key alignment information between the two sentences.

a b c d

Fig. 5 The visualization of alignment matrices of the three cross sen-
tence attention layers and the one self-attention layer. These results
are produced by using parallel attention that attends to the interactive

representation of another one. a 1st cross attention. b 2nd cross
attention. c 3rd cross attention. d self-attention
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a b

Fig. 6 The visualization of additive alignment matrices in the three
cross sentence attention layers. a is the additive attention results
from our proposed attention with original sentence representation. b
is the results from parallel attention that attends to the interactive
representation of another one

Finally, the visualized results of two types of attention
verify that our proposed deep interaction network, equipped
with attention with original sentence representation, deep
fusion and self-attention, can accurately learn fine-grained
semantic alignment between two sentence for improving
sentence matching performance.

7.2.2 Semantic representation learned by deep interaction
network

Furthermore, we explored the learned semantic representa-
tions in deep interaction network to analyze model behavior.
Given representations H for input words with the associated
gold class label c, the goal is to decide which units of H
make the most significant contribution to the choice of class
label c. Inspired by previous visualization techniques [65–
67], we conducted visualization of layer-wise representation
and layer-wise first-derivative saliency on each neural unit.

The layer-wise representation is inspired by the forward-
propagation strategy, which measures the learned semantic
property values of each layer. The layer-wise first-derivative
saliency is inspired by the back-propagation strategy, which
measures how much each layer contributes to the final deci-
sion. Both of them assume that the larger value of input
neural unit, the greater impact on the output.

Layer-Wise Representation Given the instance {P: all living
cells have a plasma membrane that encloses their contents.
Q: all types of cells are enclosed by a membrane. The label
y: Entailment.}, we analysed the results of P , as shown
in Fig. 7, where the 0 layer is word embedding, the 1
layer is original sentence representation with contextual
information, the 2-4 layers are learned by cross sentence
interaction unit, and the 5 layer is learned by self-attention.
The darker point indicates the higher importance for the
final decision. In our experiment, in order to facilitate
implementation, we selected 50 dimension of each word
representation and part of words for visualization.

We first visualized layer-wise representation of words
“cell” and “by” , as shown in Fig. 7a and b. As we can see,
with the increment of network depth, the semantic property
values of word “cell” are larger than word “by”, which
indicates “cell” contributes more than “by” for learning the
final semantic representation. It means that “cell” is a more
important word than “by” in deciding the final semantic
relation. The results show that different types of word have
different importance to the final decision, and the functional
word “by” is less important in this example.

To further verify the effect of deep fusion for semantic
representation, we analyzed the model without deep fusion
layer, as shown in Fig. 7c. When we removed the deep
fusion, we can see that the semantic property values

Fig. 7 The visualization of
semantic representation in
different layers. The darker
point indicates that the
corresponding value is greater.
a The semantic representation of
word cells in different layers.
b The semantic representation
of word by in different layers.
c The semantic representation of
word cells in different layers
without deep fusion

a

b

c
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Fig. 8 The visualization of
gradients in different layers. The
darker point indicates that the
corresponding value is greater.
a The gradient of word cells in
different layers. b The gradient
of word cells in different layers
without deep fusion

a

b

of “cell” tend to become smaller in higher layers. The
results demonstrate that using deep fusion over deep
matching network has more powerful capability retaining
collected interactive features to learn sentence semantic
representation, which plays a crucial role for improving
matching performance in our deep interaction model.

Layer-Wise First-Derivative Saliency We then conducted
another strategy to measure how much each input unit
contributes to the final decision, which can be approximated

by first derivatives [67]. We gave layer-wise first-derivative
saliency for word “cell” as it is an important word for
the final decision, as shown in Fig. 8a and b. Figure 8a
shows that each layer has larger gradient value, which
indicates these layers have a positive contribution to the
final decision. Especially, we observe that the low layers
still have a larger gradient, and therefore their semantic
features are also influential for the final decision. Figure 8b
is the results without deep fusion, we can see that the
gradients of low layers tend to vanish and lost impact

Table 8 Example wins and losses on SciTail test dataset

ID Premise Hypothesis BLEU Gold DBDIN AF-DMN

A it is an ore of lanthanum metal,
along with monazite.

metals start out as ore. 0.0 E E N

B over 100 strains of the bacterium
that cause lyme disease have been
identified in the united states.

lyme disease is caused by bacte-
ria.

0.12 E E N

C in between we had low pressure
systems passing, creating stormy
weather and waves up around 8 to
10 meters high.

you can expect stormy if a center
of low pressure is moving your
way.

0.15 E E N

D the organism lives inside small
intestinal cells, mainly in the
small intestine.

in the body, chemical digestion
mainly takes place in the small
intestine.

0.50 N N E

E morc affects the earliest stages of
sperm production, or meiosis.

meiosis is part of the process
of gametogenesis, which is the
production of sperm and eggs.

0.12 N N E

F acid-base indicators are sub-
stances that change color as a
function of ph, usually over a
range of 1 to 2 ph units.

if a substance has a ph value
greater than 7, that indicates that
it is base.

0.19 N N E

G multiple tissue types compose
organs and body structures.

a(n) organ is a structure that is
composed of one or more types of
tissues.

0.05 E N N

H nonvascular plant; mosses, liver-
worts, and hornworts.

moss is best classified as a
nonvascular plant.

0.12 E N N

I the liver is divided into the right
lobe and left lobes.

the gallbladder is near the right
lobe of the liver.

0.45 N E E

We compared the proposed DBDIN model with AF-DMN. The E indicates entailment relation and the N indicates neutral relation between
premise and hypothesis
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on the final decision. The result also verify that the deep
fusion among the layers is important to help gradient flow,
which relieves the vanishing gradient problem for training
deep interaction network and therefore improves sentence
matching performance.

7.3 Case study and linguistic error analysis

We investigated some examples from SciTail test dataset to
demonstrate the ability of DBDIN for matching sentence
pairs. Table 8 shows some wins and losses. We compared
our proposed DBDIN with the representative AF-DMN
[14]. To evaluate the influence of linguistic features between
two sentences for semantic classification, we computed
BLEU score [68] between each premise and hypothesis pair.
The BLEU score measures how many words are shared
between two sentences. It assumes the more overlapped
words between them, the closer their semantics are. In our
experiment, we used 1-gram BLEU score.

Examples A-C are entailment cases, where DBDIN has
the ability to correctly recognize entailment relation while
AF-DMN is insufficient. Each of these examples has low
BLEU score. Thus, it is more difficult for models to
recognize the entailment relation between them because
of the absence of related semantic clues. The second
set of examples D-F are neutral cases, where DBDIN
is correct while AF-DMN is incorrect. Example D has
high BLEU score, for which the models generally tend
to identify the relation to entailment. Although examples
E and F have low BLEU score, AF-DMN can’t classify
them neutral relation correctly. Finally, our proposed model
has a better performance over these cases. It verifies that
the proposed components, including attention with original

sentence representation, deep fusion and self-attention, have
a stronger ability to extract relevance semantics between
two sentences, to improve sentence matching performance.

Examples G-I are cases that all models get wrong.
Examples G and H are entailment relation, but they
have low BLEU score. Meanwhile, the word orders and
syntactic structures (“compose” and “is composed of ”)
between the two sentences of G are also quite different. It
causes models to failure recognizing the entailment relation
between them. From these results, we can find that neural
models may suffer from semantic gap problem and also
be insufficient for capturing compositional structure that is
often presented in sentence matching. Example I is neutral
relation where the two sentences have high lexical overlap
and also the similar word orders, which confuses models
to misclassify a entailment class. On this case, despite the
example is being marked as non-entail by human evaluators,
the models classify them overwhelmingly as entailment.
For examples G-I, we can see that there is a negative
correlation between semantic relevance and lexical overlap.
This indicates that the models are over-reliant word-level
information and has limited ability to process compositional
semantic information for these examples involving complex
reasoning.

By the error analysis, we can find that it is still difficult
for model to process some cases that involve complex
semantic understanding. For these difficult cases, sentence
semantics suffer from more the issues such as polysemy,
ambiguity, as well as fuzziness, by which the model may
need more inference information to distinguish the semantic
relatedness to make the correct decision. To achieve further
performance improvement, one possible solution is to
introduce more linguistic information, such as introducing

Table 9 Model performance
with different BLEU scores on
SciTail test dataset

BLEU R Num DBDIN AF-DMN

[0, 0.1) E 70 72.86 70.00

N 334 93.71 90.72

[0.1, 0.2) E 178 78.65 74.16

N 457 90.59 87.31

[0.2, 0.3) E 216 89.35 86.11

N 315 87.94 81.90

[0.3, 0.4) E 190 87.37 85.26

N 129 76.74 73.64

[0.4, 0.5) E 112 91.96 89.29

N 40 82.50 80.00

[0.5, 1]) E 76 97.37 97.37

N 9 77.78 77.78

R indicates the annotated semantic relation and Num indicates the number of sentence pairs in the
corresponding group. E indicates entailment relation and N indicates neutral relation between premise and
hypothesis
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syntactic information for semantic representation and
incorporating external paraphrase database [69] to help
better understanding the lexical and phrasal semantics. It
is also helpful to construct adversarial training examples
for model learning to process this case in which semantic
relevance and lexical overlap have negative correlation. We
consider them to the future work.

7.4 Statistical investigation based on lexical overlap

As shown in Section 7.3, linguistic features are important
for sentence semantic matching. In order to better analyze
the relevance of matching performance and lexical overlap,
we gave a statistical investigation, and the results are shown
in Table 9. We split the test set into different groups based
on BLEU score, and computed the matching performance
on each group. We compared the proposed DBDIN model
with AF-DMN model [14]. From Table 9, we can see that
our model shows better performance for both entail and non-
entail classifications in each group test set. These results
further show that our model has better ability to extract
related semantic features for improving sentence matching
performance.

Furthermore, we can see that the models tend to obtain
a high accuracy for entailment relation on the cases with
high BLEU score, and in reverse the models tend to obtain
a high accuracy for neutral relation on the cases with low
BLEU score. It is consistent with human judgment that
the more lexical overlap between two sentences, the more
possibility to be entailment relation. On the other hand,
models present a low accuracy for the sentence pairs with
low BLEU score but entailment relation, and high BLEU
score but non-entailment relation. It indicates that there is
still a lot of room for performance improvement on these
extreme examples. For these examples, in the future, it will
be helpful to introduce knowledge base to enhance lexical
semantic matching, and also to explore better encoder
architecture that is more sensitive to word orders.

8 Conclusions and future work

Within the attention-based interaction framework, we
proposed an Deep Bi-Directional Interaction Network
(DBDIN) which aims to better model the related semantic
information between two sentences for sentence matching.
We combined the advantages of attention and deep neural
network to learn interactive features, apart from this, three
novel features extraction methods: cross sentence attention
with original sentence representation, deep fusion and self-
attention mechanism, have been jointly presented in this
paper. These methods benefit sentence matching model in
the following three aspects:

1. The attention with original sentence representation
allows the model is able to pay close attention to the
relevant parts of another sentence, and therefore to learn
more clear and accurate word alignments. The multiple
interaction units allow one sentence to repeatedly read
the information of another one, and therefore to better
capture the related semantic information.

2. The combination of attention and deep fusion effec-
tively retains semantic features learned at different
interaction layers. As a result, it consequently improves
semantic matching performance in deep interaction net-
work.

3. The self-attention mechanism after the cross sentence
interaction enhances global matching information, and
further improves model performance.

We conducted experiments on two sentence matching
tasks: natural language inference and paraphrase identifica-
tion. Experimental results show that the proposed methods
outperform the other methods with the three widely used
evaluation datasets: SNLI, SciTail and Quora. By taking
consideration of the above points, compared with traditional
multiple-layer attention models, our methods can model
sentence matching more precisely.

Furthermore, we conducted interpretable study to dis-
close how our deep interaction network with attention can
benefit sentence matching, which provides a reference for
future model design. We performed deep analyses with the
proposed methods. The visualization results verify that our
model is indeed able to capture more accurate word align-
ments than previous models, and the deep fusion can help
model to learn effective semantic features in deep inter-
action network. The proposed method which inherit these
advantages improves performance. Case study and linguis-
tic error analysis reveal that the current models still have
shortcomings in processing some extreme cases, and these
analyses point out the direction for further performance
improvement.

In the future, we will explore the encoder architecture
that can better consider word orders to learn sentence
representation. To improve this performance even further,
it will be beneficial to study linguistic factors from
various perspectives, e.g., syntactic structure, paraphrase
database [69] and adversarial training examples, to help
learning more accurate and robust sentence representation.
Moreover, it also is meaningful to study a lightweight neural
network model to combine pre-training techniques (such as
pre-trained BERT [27]) with our model in the case of limited
computing resources.
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