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Abstract
Cooperative control is currently a challenging topic of crowded unmanned underwater vehicle (UUV) swarm. However, individual
behavior conflict and chain-avalanche collision involved in this swarm are easily triggered due to the fluctuations and disturbances.
In order to address the two problems, a bio-inspired self-organized cooperative control consensus derived from adaptive dynamic
interaction topology is investigated in this paper. Firstly, a novel following-interaction framework incorporating the topological
interaction and visual interaction is devised to ensure the minimum number and optimal distribution for neighborhoods. Then, an
adaptive dynamic computing model inspired by single-nearest-neighbor following and weighted- multiple-nearest-neighbors fol-
lowing is proposed to steer a sensitive following behavior, in which the influence of each individual on this following behavior is
described by a nonlinear weight. Finally, a distributed control protocol is put forward by using the proposed following model and
mathematics-based potential fields to achieve the cohesive flocking and avoiding collision, and its sufficient conditions is proven by
Laypunov and LaSalle invariance principle to accomplish a self- organized cooperative control. Simulation results are presented for
illustrating the feasibility and effectiveness of our proposed control approach.
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1 Introduction

Unmanned underwater vehicle (UUV) is an imperative vehi-
cle in oceanic engineering over the past decades, which has a
wide application for monitoring, exploration and surveillance,
especially in hazardous environment [1–5]. However, due to
the limited robustness and adaptability of existing rigid-
formation control methods for more complex missions [3], a
crowded UUV swarm composed of a large number of
homogeneous/heterogeneous and low-cost submersible intel-
ligent robots, has been aroused more compelling interest.
However, the cooperative control for this swarm is a challenge
because individual behavior conflict and chain avalanche

collision derived from unknown fluctuations and disturbances
are easily triggered [5].

How to overcome the conflict and collision involved in the
crowded UUV swarm, increasing attentions have been paid to
self-organized cooperative control [6, 7]. The essence of this
control approach in swarm represents a coordination of a
group agents to generate and maintain a pattern in a self-
organized way. Up to now, numerous studies on self-
organized cooperative control have been developed, all of
which can be divided into centralized and distributed control
manners [7–28]. The centralized manner generally adopts a
top-down modeling, where an upper controller is employed to
perform the global mission. However, this scheme is vulner-
able and unavailable in real applications [8]. Conversely, the
distributed manner formed by down-top modeling is attracted
more attentions, when a large number of agents are involved.
More recently, various approaches in distributed manner have
been proposed, such as leader-following [9], virtual structure
[10, 11], artificial potential field [12, 13], and consensus con-
trol [14, 15].

Leader-following, as a distinguished pattern, is essentially a
predefined distributed pattern to achieve a swarm control due to
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its simplicity and reliability, in which all following agents track
a real or desired leader to maintain a specific orientation and
distance among agents. For example, Wang et al. [9] proposed
a leader-following formation based on sliding mode control for
autonomous underwater vehicles (AUVs). Despite existing sig-
nificant theoretical formalization, this scheme has a fatal limi-
tation that the formation pattern is rigid.

In order to tackle the above weakness of leader-following
scheme, the virtual structure approach is developed, where the
swarm is regarded as a tight or loose entity and its desired
position is assigned to a structure. Basant et al. [10]
presented a formulation of cooperative control for a group of
AUVs, in which a virtual flocking center was predicted by
consensus protocol. Yang et al. [11] proposed a novel
formation control based on Jacobi shape for multi-AUVs,
where the geometric shape was designed to track a desired
trajectory. However, a structure generated in this method is
unavailable for avoiding collision, which may take more
sensing and computing costs due to the adverse robustness.

To overcome the drawback of strict geometric relationship
in both leader-following and virtual structure, the artificial
potential field is provided, where each agent moves according
to a gradient direction of potential field generated by total sum
of all virtual attractive and repulsive forces. Pan et al. [12]
designed a distributed formation control based artificial poten-
tial field to accomplish an AUV formation. In addition, Zhu
et al. [13] designed a self-organized artificial potential filed
formation control to avoid obstacles and replan paths for UUV
formation. Although the aforementioned works are effective,
there exist two common limitations, i.e., local minimum and
deadlock phenomenon, when one obtains multiple attractive
and repulsive forces, so adaptability is relatively weak.

Consensus control method has been widely utilized in co-
operative control fields, where agents make use of information
exchange to reach a common consensus on velocity or orien-
tation for a cohesive swarm. Hu et al. [14] stated a consensus
for multi-agents with antagonistic interactions and communi-
cation noises. Cai et al. [15] investigated a leader-following
output consensus for discrete-time multi-agent systems with
uncertainties. Apparently, these consensus-based methods are
all based on an ideal communication, and the influence of each
individual on formation pattern is ignored or simplified.

Unfortunately, some above-mentioned techniques on dis-
tributed control are only available for desired environment and
lack the self-organized cooperative behavior. In fact, the UUV
is always exposed to the disturbed environment, and its sens-
ing and communicating are limited. Therefore, developing
high-performance cooperative control is a major challenging
task in real application. Behavior-driven methods [7, 16–28]
inspired by collective behaviors in nature, such as a school of
fish, a flock of birds, a herd of sheep and a swarm of ants, have
received considerable attentions in the field of cooperative
control. Two existing modeling styles, swarm-based

macroscopic mode and individual-based microscopic mode,
are employed to design a behavior-driven method. The former
study works on an entire larger-scale swarm while ignoring all
underlying interactions. Conversely, the latter focuses on how
to describe the cluster motion via individual interaction. Due
to intuitive and appealing interaction potentials, the latter has
gained increasing interest in cooperative control.

As one landmark work, Reynolds et al. [17] primarily in-
troduced a distinguished swarm model, so-called Boids, in
which three behavioral rules, attraction, repulsion and align-
ment, were devised to establish a flock. Based on this, various
models such as Vicsek [18], Couzin [20], and social force
model [21], have been proposed for swarm coordination.
The importance of aforementioned works is that it successful-
ly shows the behavioral emergence of a group only influenced
by its neighbors and environment [19]. However, most previ-
ous works devote on the velocity-average mechanism to
achieve rendezvous, cohesion and consensus, in which more
heterogeneous characteristics are ignored in local interaction.

In recent past decade, with a rapidly technical development
of target tracking, image processing, and data analysis, more
hidden interactions are excavated such as topological interac-
tion [22], single-neighbor following [23], multiple-nearest-
neighbors following [24], visual perception and attention [25].
The above interactions not only reveal the inherent mechanism
of behavioral emergence, but also provide some solutions for
self-organizing cooperative control. Duan et al. [26] designed a
hierarchical network with behavior learning mechanism in-
spired by single-neighbor following in pigeon flocking, thereby
achieving an unmanned aerial vehicle formation control. Liang
et al. [27] presented a behavior-driven cooperative control strat-
egy, in which multiple neighbors can form an immune network
to achieve an intelligent swarm of UUVs. Yang et al. [28]
proposed a control strategy for time-delay self-organized fission
behavior of flocking system. Although most above-mentioned
works can achieve a cooperative control, the lower synchro-
nous velocity still exists and the robustness against disturbances
is terrible, especially under the unpredictable ocean, which may
easily trigger conflicts and collisions.

Motivated by above observations, this paper considers the
cooperative control problem for crowded UUV swarm. A
novel bio-inspired self-organized cooperative control ap-
proach inspired by intelligent perception and interactive com-
puting from various biological clusters is creatively proposed.
Firstly, a following interaction framework is designed to en-
sure the minimum number and optimal distribution of the
neighborhood via the topological interaction and visual inter-
action. Then, a novel computing model involved with single-
nearest-neighbor following (SNNF) and weighted multiple-
nearest-neighbors following (WMNNF) is proposed to
achieve an adaptive and dynamic following process, and the
influence of individual on the sensitive behavior is described
by a nonlinear weight, which is essentially a non-average
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velocity mechanism unlike the traditional average-mecha-
nism. Moreover, a cooperative control protocol based on the
proposed following model and potential field, is designed to
achieve a self-organized flocking for crowded UUV swarm.
Simulation results demonstrate that our approach can accom-
plish the cooperative control with a higher effectiveness and
robustness in comparison to the existing methods. The main
contributions of this paper are summarized as follows:

(i) Abio-inspired self-organized cooperative control consen-
sus derived from adaptive dynamic interaction topology
is firstly proposed for the crowded UUV swarm, by elab-
orately configuring the latest intelligent perceptions and
interactive computing mechanisms.

(ii) An adaptive dynamic interaction topology is creatively
proposed to steer interactions via the minimum number
and optimal distribution of neighborhoods, which is es-
sentially a non- average mechanism considering unlike
the previous average-mechanism [17–21].

(iii) A self-organized cooperative control protocol is de-
signed by using the proposed following model and
mathematics-based potential fields, which can effective-
ly achieve the swarm cohesion and avoiding collision to
solve the individual behavior conflict and chain-
avalanche collision.

(iv) In formulating the proposed approach, three quantitative
indexes, such as mean heading, orderness parameter,
and scale parameter, are devised to prove that the robust-
ness and efficiency of our approach are better than that
of the existing approaches.

The remaining of this paper is organized as follows.
Section 2 describes preliminary knowledge and problem

statement. Section 3 presents an adaptive dynamic interaction
topology. Section 4 designs a self-organized cooperative con-
trol protocol. Section 5 performs all simulations. Finally, a
conclusion is given in Section 6.

2 Preliminary knowledge and problem
statement

2.1 Local interaction

It has been revealed that the local interaction can describe the
collective behavior of biological cluster in [19–28]. In the
formulating the local interaction, how to describe an individ-
ual action influenced by effects from its neighbors is a key
topic. Up to now, the topological interaction, visual interac-
tion, single-nearest-neighbor synergy and multiple-nearest-
neighbors synergy have been investigated by bio-inspired sci-
entists in physics and engineering [22–25].

For topological interaction, it was firstly discovered in an-
alyzing the flight data of starlings [29], where each individual
in the group only interacts with the nearest 6 or 8 neighbors.
This study subverts a traditional definition of neighbor that an
individual can interact with all neighbors who is within a fixed
distance as shown in Fig. 1a. The reason for this difference is
that a specific number of neighbors is subject to the cortical
elaboration of prenumeric ability, rather than individual’s per-
ception ability. It is reported that an interaction network
formed by topological interaction, as shown in Fig. 1b, has a
trade-off between perceived cost and group robustness [30].

For visual interaction, it is implied that the visual percep-
tion and visual attention can provide a solution to depict indi-
vidual interactions in biological cluster. (i) The visual
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Fig.1 a Distance Interaction and bTopological Interaction. a The
distance interaction selects all neighbors in a specific fixed distance,
i.e., sensing region marked by solid circle with radius R. Most of the
existing models, i.e., Boids [17], Vicsek [18], and Couzin [20], all rely
on this aprioristic assumption. b The topological interaction can generate

the interactions within a fixed number of neighbors, for example the
specific k in a dotted circle, whose radius is less than that of distance
interaction. Compared with the distance interaction, this interaction is
more suitable to keep cohesion in the presence of fluctuations and
disturbances
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perception can sense all neighbors around within the sensing
range, which is based on limited view (blindness angles). It is
intuitively expected to improve synchronization motion as
shown in Fig. 2a. (ii) The visual attention is an important
psychological mechanism to select the most relevant informa-
tion from limited view [25], i.e., it can discard a large amount
of background information to achieve an efficient screening,
as illustrated in Fig. 2b. Hence, some metaphorical mecha-
nisms inspired by visual interaction can be useful to guide
the cohesion and avoidance [31].

For single-nearest-neighbor synergy, it states that the indi-
vidual only tracks a single neighbor. For example, a school of
fishes is dominated by an intermittent pairwise interaction
between the individual and its nearest neighbor [21].
Similarly. Herbert et al. [32] used a neural network to analyze
the tracking behavior in shoaling fish, revealed that each in-
dividual actually responded only to the nearest neighbor. In
addition, a single-nearest-neighbor synergy based on hierar-
chical relationship was ensconced in pigeon-Inspired optimi-
zation [33]. Clearly, a distinct advantage of this mechanism is
smaller computing cost, which is conducive to improving the
robustness and sensitiveness.

For multiple-nearest-neighbors synergy, its essence is that an
individual can synthesize all influences from multiple-nearest
neighbors to make decision for its behavior. Due to its robust-
ness for collective behaviors, several popular models, such as
Boids, Vicsek andCouzin [19], all adopt this synergy. However,
existing works are all based on velocity-average mechanism, in
which accompanying properties, i.e., sensing, communicating,
influencing and decision-making abilities, are ignored in this
procedure. Actually, these features play an important role in
achieving a collective behavior. It was reported that influences
from multiple-nearest neighbors have nonlinear characteristic,
rather than a simple linear superposition [34]. Thus, the non-
average mechanism involved in multiple-nearest-neighbors syn-
ergy is a worthy of discussing in flocking control.

2.2 Graphs theory

It is convenient to model the neighbor interactions be-
tween agents by an undirected or directed graph [35],
where an individual UUV is regarded as a node and the
interconnection topology in UUV swarm can be described
as a graph.

Suppose that a graph G(V, E, A) consists of a node set
V = {v1, v2,⋯, vn} and a edge setE ⊆ V × V, in which each
edge is a pair of vertices (vi, vj) such as i ≠ j. If (vi, vj) ∈ E, then
one usually says that i and j are adjacent.A = [aij] ∈ℝn × n is
defined as adjacent matrix which is an integer matrix with
rows and columns indexed by vertices, such that (vi, vj) ∈ E
is equal to aij = 1, else aij = 0. The Laplacian matrix L = [lij] ∈
ℝn × n is denoted by L =D-A, where D = [dij] is a diagonal
matrix with dij ¼ ∑n

j¼1aij. The neighbor set for agent i is de-
noted as Ni = {vj ∈ V| (vi, vj) ∈ E}.

Remark 1: If (vi, vj) ∈ E⇔ (vj, vi) ∈ E, G is an undirected
graph, else it is called a directed graph. Furthermore, G is
strongly connected if there is a directed path from (vi, vj) and
(vj, vi)between any pair of distinct nodes vi and vj. A spanning
tree of a directed graph is a directed tree formed by graph
edges that connect all nodes of the graph.

Lemma 1: For a connected graph G, its L is symmetrical and
positive semidefinite, and all eigenvalues are non-negative
real number which denoted by λi ∈ℂwith an ascending order
in magnitude, i.e.,0 = λ1(L) ≤ λ2(L) ≤⋯≤ λn(L).

2.3 Problem statement

Consider a group of N agents in the crowded UUV swarm,
labeled 1,..., N, moving in horizontal plane. For agent i, its
kinematic and dynamic with six-Degree of Freedom can be
given by
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η̇i ¼ J ψið Þvi
Miv̇i þ Ci við Þvi þ Di við Þvi þ gi ηið Þ ¼ τ i þ wi

(
ð1Þ

where ηi = [xi, yi,ψi]
T ∈ℝ3 is the positions and yaw angle in

earth-fixed frame, respectively. vi = [ui, vi, ri]
T ∈ℝ3 is the veloc-

ity vector in body-fixed frame, where ui is a surge velocity, vi is a
sway velocity, and ri is an angular yaw velocity.τi = [τiu,
0, τir]

T ∈ℝ3 is a control input vector, and gi= [giu, giv, gir]
T ∈ℝ3

denotes the generalized gravitational and buoyancy forces, and
wi= [wiu,wiv,wir]

T ∈ℝ3 denotes total unknown external distur-
bances caused by winds, waves and ocean currents. Mi, Ci(vi)
and Di(vi) are the inertia matrix, Coriolis matrix and damping
matrix, respectively. TheJi(ψi)is a transformationmatrix given by

J i ψið Þ ¼
cosψi −sinψi 0
sinψi cosψi 0
0 0 1

24 35 ð2Þ

Due to the hydrodynamic performance induced by the as-
sumption of symmetry in plane and vertical directions, gi = [g-
iu, giv, gir]

T = 0. Moreover, the technique of state feedback lin-
earization is utilized to simplify the kinematic and dynamic
model into a general double-integrator model [36].

Specifically, the nonlinear model (1) can be written as

ð3Þ

where N(vi)vi =Ci(vi)vi +Di(vi)vi,G(ζ) denotes the hydrody-
namic coefficients, and denotes the sum of
forces and rudder angles.

Defining ξ i = [ηT, vT]T and h(ξ i) = η , a standard
nonlinearization function can be obtained from (3) as follows

ð4Þ

w h e r e

i s

the input of this nonlinear system.
Then, a new transformed coordinat ion with

pi = [hi(ξ)]
T ∈ℝ3 and qi = [∂f hi (ξ)]

T ∈ℝ3 is defined by
derivative of h(ξi), and its corresponding control input
can be defined as

ð5Þ

where B ξið Þ ¼ ∂2f hi ξð Þ
h iT

, and Γ(ξi) = [∂g∂fhi(ξi)] ∈ℝ3 × 3.
Thus, the motionmodel (1) can be represented by a second-

order integrator model by (3) and (4), as follows

ṗi ¼ qi
q̇i ¼ ui

i ¼ 1; 2:::;Nð Þ

(
ð6Þ

where pi ∈ℝ3 and qi ∈ℝ3 are the position and velocity vari-
ables of agent i, respectively, and ui is the control input.

In addition, an underlying interaction topology among
agents may dynamically change, which can be described by
neighbor set in a connected graph, as follows

Ni tð Þ ¼ jjdij tð Þ≤Ri; j∈ 1;⋯;Nf g; j≠i� � ð7Þ

where Ri is the sensing radius of agent i, and dij(t) = ‖pi − pj‖ is
an Euclidean distance between agent i and agent j.

Remark 2: The neighbor graph is essentially a distance-
dependent and time-varying topology, there are two reasons
given by (i) each agent has a nonuniform sensing strength due
to the factors such as limited perception range and narrow
motion-space in scale effects, and (ii) all agents are influenced
by external disturbances composed of information loss, de-
layed communication and noises.

Assumption 1: The velocity is bounded to prevent the colli-
sions caused by motion inertia, which is given by

qi ¼
qi; ‖qi‖≤Vmax

Vmax
qi

‖qi‖
; ‖qi‖ > Vmax

8><>: ð8Þ

where Vmax is the maximum velocity.
In this paper, our objective is to design a self-

organized cooperative control that can guarantee that
the crowded UUV swarm can achieve the cohesive
flocking and collision avoiding without any splits, under
the assumption that the initial network is a connected
graph. In particular, the objectives of this paper are
formulated as

lim
t→∞

‖pi tð Þ−p j tð Þ‖≤R; i; j∈Nð Þ ð9Þ

lim
t→∞

‖pi tð Þ−pj tð Þ‖≥D; i; j∈Nð Þ ð10Þ

lim
t→∞

‖qi tð Þ−qj tð Þ‖→0; i; j∈Nð Þ ð11Þ

where R denotes the sensing radius, and D denotes the mini-
mum distance for inter-collision avoidance.

Remark 3: The objective (9) can preserve the connectivity with
any splittings, and objective (10) can guarantee the collision
avoidance among all agents, and the objective (11) can reach
a velocity consensus for all agents.
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3 Adaptive dynamic interaction topology

Based on above-mentioned preliminaries, an adaptive dynam-
ic interaction topology is proposed in this section, and the
related framework and model are briefly demonstrated.

3.1 Following-interaction framework

The following-interaction framework composed of three key
steps are devised by integrating four bio-inspired interaction
mechanisms, as illustrated in Fig. 3.

Step1:The topological interaction is firstly employed to
select all potential neighbors with a reasonably prescribed
number, unlike the previous local interactions depend on
an aprioristic assumption [29]. Therefore, topological in-
teraction can be employed to shrink the number of neigh-
bors in comparison to the traditional metric-distance
interaction.

Step2: The visual interaction is devised to ensure the min-
imum number and optimal distribution of the neighborhood
within local interaction. It consists two parts: (i) Due to the
restrictions of the equipped sonars, the sensing field of UUV is
limited. If this limited field is reasonably considered, it is an
optimal strategy that the neighbor who is located in blindness

zone is excluded to accomplish the local interaction. (ii) Due
to the crowded phenomena existed in topological interaction,
each individual has multiple nearest neighbors in a certain
direction-interval. If one nearest neighbor who is located in
each direction-interval, is selected to form a new neighbor-
hood for each individual. Therefore, this step can further de-
crease the number and optimize the distribution of neighbor-
hood after topological interaction.

Step3: The local following is essentially a non-average
making-decision strategy integrated by single-nearest-
neighbor and multiple-nearest-neighbors, rather than an
average-velocity mechanism that is commonly assumed to
design consensus or protocols. If the control parameter is
smaller than an empirical triggered threshold, the SNNF
originated from single-nearest-neighbor synergy is
adopted to achieve a directed transmission of information,
else the weighted-MNNF (WMNNF) originated from
multiple-nearest-neighbors is proposed to synthesize all
individual differences, in which a weight of each agent
is determined by its corresponding interaction control pa-
rameter. In this step, advantages of the two following
models are formulated in an unified framework, which
can provide an adaptive making-decision to address be-
havior conflict and chain collision.
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Fig. 3 Following-Interaction Framework. In this framework, the
minimum number and optimal distribution of neighbors can be
achieved through topological interaction and visual interaction, and the
making-decision of individual behavior is adaptive and robust via SNNF
and WMNNF. We use a yellow circle, black circle and purple circle to

represent the centered individual, interacting individual and non-
interacting individual, respectively. It is noted that the centered individual
is only a simple reference individual in swarm, rather than a global cen-
tered agent in centralized control
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3.2 Adaptive dynamic computing model

In terms of the proposed following-interaction framework, its
corresponding computing model is developed in this subsec-
tion. Consider a group of N agents in the crowded UUV
swarm, each individual has an omnidirectional view field with
sensing radius R and blindness sectorω. The specific proce-
dure is demonstrated as follows.

(i) Consider an omnidirectional view field of individual i,
its neighbors setNiat time t is determined by

Ni t;φð Þ ¼ jjdij≤Ri; j∈ 1;⋯;Nf g; j≠i� � ð12Þ

where ϕ denotes the view angle, and Ni <N.

Remark 4: Eq. (12) is essentially a fixed distance interaction
determined by sensing radius, and most of existing models all
adopt this to decide the interaction intensity [17–21].

(ii) The topological interaction is employed to select a fixed
number with κ-nearest neighbors from Ni, determined by

N1
i t;φ;κð Þ ¼ argmin

j∈Ni

jjdij tð Þ
� � ð13Þ

where N 1
i < Ni.

Remark 5: Eq. (13) can decreases the number of neighbors in
comparison to the fixed-distance interactions, such as Boids,
Vicsek, and Couzin [19].

(iii) The blindness angel ω is considered to improve
the speed of information transmission via decreasing the
omnidirectional view, which is consistent with the blind-
ness sector caused by the restricted physical size [27].
Assuming the UUV is symmetrical about UUV heading,
as shown in Fig. 4. Such that, the neighbor marked with
the purple circle, who is located in the blindness sector, is
excluded from interacting with others.

Hence, a new neighbor set N2
i with restricted blindness

sector ω is determined by

N2
i t;φ;κ;ωð Þ ¼ jjdij tð Þ∧φi−ωi; j∈N 1

i

� � ð14Þ

where N 2
i < N1

i .
(iv) The individual i focuses on correlating and transmis-

sion of abnormal behaviors by utilizing the visual attention
[37, 38], of which essence is that φi − ωi is divided intomc

sectors along clockwise direction in the heading of agent i,
then the nearest individual in each sub-sector is chosen, as
shown in Fig. 5.

In particular, the view angle of each sub-sector of individ-
ual i is calculated as

ξim ¼ φi−ωi

mc
m ¼ 1; 2;⋯;mcð Þ ð15Þ

Then, the neighbor setΘm
i inm-th sub-sector is determined

by

Θm
i tð Þ ¼ jjξim m−1ð Þ≤θij−ϑi≤ξimm

� � ð16Þ

where ϑi is the heading of individual i, and θij is the azimuth of
individual j relative to individual i. Such that the nearest
neighbor in each sub-sector ℓmi is chosen as

ℓmi tð Þ ¼ jj j ¼ arg min
j∈Θm

i

dij;m ¼ 1; 2;⋯;mc

( )
ð17Þ

Finally, all the nearest individuals can generate a new
neighbor set N3

i , which is given by

N3
i t;φ;κ;ω;mcð Þ ¼ ℓmi tð Þ;m ¼ 1; 2;⋯;mc

� � ð18Þ

where N 3
i < N2

i .

Remark 6: Eqs. (15) ~ (18) are essentially an optimal strategy
to select the all candidate neighbors from N 2

i . The reasonable

blindness sector

Boundary of view Boundary of view

Heading of agent i
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Fig. 4 Neighboring region of the agent i with a blindness angle
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Fig. 5 Neighboring region of the individual i with divided sectors
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number of sub-sectors and the choosing operation in each
sub-sector can guarantee the only one agent existed in each
sub-sector, which can address the crowded problem, and fur-
ther avoid the behavior conflict and chain collision via an
optimal distribution in N 3

i .
(v) Based on N3

i , an interaction control parameter δij(t) is
calculated by a synergy of position pi, velocity qi and heading
ϑi to quantify the interaction intensity between individuals i
and j [39]:

δij tð Þ ¼ αij

1þ ‖pi−p j‖
�

βij‖ qi−q j

� �
� qi‖

∑ j∈Ni3
‖ qi−qj

� �
� qi‖

� χij

1þ ‖ϑi−ϑ j‖
ð19Þ

where αij, βijand χij denote the coefficients corresponding
with position, velocity and heading, respectively. And, qi is
an average-velocity of neighbor set N 3

i tð Þ.

Remark 7: The δij(t) is related to various factors such as rel-
ative distance, speed and heading between individuals, as well
as the number of neighbors and spatial distribution.
Furthermore, in the evolving process, swarm graph is dynam-
ic, hence δij(t) exhibits a time-varying characteristic.

(vi) The SNNF and WMNNF by virtue of the proposed
interaction control parameter δij(t) are to design an adaptive

following interaction model uf
i tð Þ, which is given by

uf
i tð Þ ¼ ∑ j∈N3

i
w ju j t−Δtð Þ; δij < Δi

u j t−Δtð Þ; δij≥Δi

�
ð20Þ

where Δi is an empirical parameter, Δt denotes a sampling

period, and wj represents a weight with control law u f
i tð Þ of

individual j. The wj is given by

wj tð Þ ¼ uj tð Þ
∑
j∈N3

i

u j tð Þ ð21Þ

where ∑
j∈N3

i

w j ¼ 1, and wj(t) ≥ 0.

Remark 8: If existing δij <Δi, individual i adopts a WMNNF
pattern. Conversely, if δij ≥Δi, it adopts a SNNF pattern to
follow j ¼ argmax j∈N3

i
δijjδij≥Δi
� �

with the largest intensity.

4 Self-organized cooperative control protocol

In this section, a novel self-organized cooperative control pro-
tocol is proposed, and its stability analysis is given to illustrate
the feasibility and effectiveness.

4.1 Control protocol

The self-organized cooperative control protocol is derived
from the proposed adaptive dynamic interaction topology
and mathematics-based potential fields. In this approach, each
UUV applies a control protocol that consists of four terms

ui tð Þ ¼ upi þ uqi þ uf
i þ udisi ; i ¼ 1; 2; :::;N ð22Þ

where upi is the position coordination term, and uqi is the ve-

locity consensus term, and uf
i is the proposed following inter-

action term, andudisi is the disturbance term.

(i) upi is utilized to adjust the positions between individual i
and its neighbors in N3

i , which embodies the both attrac-
tion and repulsion rules [17]. It is given by the gradient-
based potential fields as follows

upi tð Þ ¼ ∑
j∈N3

i

ψα pi−pj

�� ��
σ

� �
σε‖pi−pj‖þ ∑

j∈N3
i

ψβ pi−pj

�� ��
σ

� �
σε‖pi−p j‖

ð23Þ
where, ψα and ψβ are the pairwise smooth attractive and re-
pulsive potential functions, and ‖·‖σ is a σ-norm of a vector pi
− pj, which is defined as

pi−p j

�� ��
σ
¼ 1=εð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε pi−p j

�� ��2q
−1

	 

ð24Þ

where ε ∈ (0, 1) is a fixed parameter. The gradient of ‖pi − pj‖σ
defined by σε‖pi − pj‖ is given by

σε‖pi−pj‖ ¼ ∇ pi−pj

�� ��
σ
¼ ‖pi−p j‖ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε pi−p j

�� ��2q
¼ ‖pi−pj‖

1þ ε pi−pj

�� ��
σ

ð25Þ

where ∇ denotes a gradient operator.
Due to the limited forces provided by actuators, both ψα

and ψβ triggered by two continuously bounded active func-
tions Θα and Θβ, are designed to generate repulsive and at-
tractive forces of all agents. Specifically, the repulsive func-
tion and its corresponding active function are given by

ψα dij
� � ¼ ∫dijRk kσΘα sð Þds ð26Þ

Θα dij
� � ¼ −ϖα=d2ij; dij∈ 0; Rk kσ

 �
0; dij∈ Rk kσ;þ∞

 �(
ð27Þ

where ϖα > 0 is a designing parameter.
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Similarly, the attractive function and its corresponding ac-
tive function are given by

ψβ dij
� � ¼ ∫dij0 Θβ sð Þds ð28Þ

Θβ dij
� � ¼ −ϖβ dij−dmin

� �
dij− Rk kσ
� �

dij
; dij∈ 0; Rk kσ

 �
0; dij∈ Rk kσ;þ∞

 �
8<:

ð29Þ
whereϖβ > 0 is a designing parameter, and dmin represents the
minimum local distance.

Hence, the total potential functions for the crowded UUV
swarm are given by

V p; qð Þ ¼ 1

2
∑
i
∑
j≠i
ψij pi−p j

�� ��
σ

� �
ð30Þ

where ψij =ψα +ψβ.
To simplify the presentation, (23) can be given by

upi tð Þ ¼ ∑
j∈N 3

i

∇piψij pi−p j

�� ��
σ

� �
ð31Þ

(ii) uqi represents the velocity alignment using consensus-
based protocol

uqi tð Þ ¼ ∑
j∈N 3

i

aij qð Þ q j−qi
� �

ð32Þ

where aij > 0 is an element of adjacency matrix.

(iii) uf
i represents the proposed following interaction, which

is utilized to control individuals tracking the informed
agent and make the velocity consensus. Its expression is
of form as

uf
i tð Þ ¼

∑ j∈N3
i
w j ∇piψij pi−pik kσ

� �þ λ1aij qi−qj

� �� �
; δij < Δi

λ2i∇piψij ‖pi−pj‖
� �

þ λ2aij qi−q j

� �
; δij≥Δi

8<: ð33Þ

where Δi is an empirical parameter determined by

ð34Þ

Φi ¼ 1

jNij þ 1
∑

j∈N3
i ∪i
;
qj

‖qj‖

������
������ ð35Þ

where is positive constant. Moreover, λ2i and λ2 are feedback
gain coefficients, where λ2i is given by

λ2i ¼
ϒ q; ‖qi‖≤Vmax

ϒ qϒ m

‖qi‖þ ϒ m−Vmax

; ‖qi‖ > Vmax

8><>: ð36Þ

where ϒq and ϒm are positive constants, and Vmax is the max-
imum velocity given by Eq. (8).

(iv) udisi describes a composing of external disturbances and
noises, which is given by

u̇
dis
i tð Þ þ Tdudisi tð Þ ¼ Kd Fd ð37Þ

where Td denotes constant matrix,Kd denotes gain matrix, and
Fd denotes the largest amplitude of the white noise. It should
be noted that udisi is continuous and bounded.

Remark 9: In control protocol Eq. (22), the individual char-
acteristics represented by wj can generate an influence on
forming the neighbor set N 3

i t;ψ; k;ω;mcð Þ , which is not sim-
ilar to the existing models that all individuals are assumed to
be an equal state. Thus, the proposed control protocol is a
more realistic model.

Remark 10: In control protocol Eq. (22), each individual in
neighbors set is updated within each sampling period, rather
than just tracking a fixed target to follow. Therefore, it is
essentially different from the leader-following control
protocol [9].

Remark 11: In control protocol Eq. (22), if existing δij <Δi,u
f
i

is determined by its all neighbors. if existing δij ≥Δi,u
f
i is

determined by the individual with largest interaction intensity.
Thus, the control protocol in [40] can be regarded as a special
case of our proposed control protocol.

Assumption 2: In the G associated with N 3
i t;ψ; k;ω;mcð Þ ,

there exists a directed path from the informed agent to any
other agent.

4.2 Stability analysis

Theorem 1: Consider a crowded UUV swarm with dynamic
model (1), if the initial graph G(0) is connected and initial
state is from the LaSalle invariance principle, and Assumption
2 holds, such that all agents can achieve a self-organized
cooperative control consensus under the proposed control
protocol (22) ~ (37). Then, following statements hold:

i) The velocities of all individuals will asymptotically con-
verge to a consensus.
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ii) Almost every final configuration reaches in a local
minimum.

iii) No collisions occur for all t ≥ 0.
iv) No splittings occur for all t ≥ 0.

Proof Consider a Lyapunov-like energy function under δij
<Δi

Q p; qð Þ ¼ 1

2
∑
N

i¼1
U pð Þ þ qi−q j

� �Τ
qi−q j

� �� �
ð38Þ

where

U pð Þ ¼ V p; qð Þ þ wj ∑
j¼N3

i

ψij

�
pi−pj

�� ��
σ

ð39Þ

Substituting (30) into (39), we can obtain

U pð Þ ¼ 1þ wj
� �

∑
j¼N3

i

ψij

�
pi−p j

�� ��
σ

ð40Þ

Let (pc, qc) be the center of mass (COM) of neighbour set,
which is given by

pc ¼
1

N ∑
N

i¼1
pi; qc ¼

1

N ∑
N

i¼1
qi ð41Þ

where N ¼ N3
i tð Þ is of convenience.

Let epi ¼ pi−pc and eqi ¼ qi−qc describe the relative posi-
tions and velocities between agent i and (pc, qc), then

pi−p j ¼ epi−epj ¼ epij,qi−q j ¼ eqi−eqj ¼ eqij, and upi tð Þ can be

now written as

ui tð Þ ¼ − 1þ wj
� �

∑
j∈N

∇piψij epij��� ���
σ

� �
−aijeqij−λ1wj ∑

j∈N
aijeqij
ð42Þ

Then (38) is rewritten as

Q ep;eq� �
¼ 1

2
∑
N

i¼1

�
1þ wið Þ ∑

j∈N
ψij epij��� ���

σ
þ eqijΤeqij� �

ð43Þ

According to the symmetry of ψij and the symmetric ma-
trices of aij, then

∂ψij epij��� ���
σ

� �
∂epij ¼

∂ψij epij��� ���
σ

� �
∂epi ¼ −

∂ψij epij��� ���
σ

� �
∂epj

ð44Þ

Differentiating (43) gives

Q̇ ep;eq� �
¼ 1þ wið Þ ∑

N

i¼1
∇epij ∑

j∈N
ψ̇ij epij��� ���

σ

� � !Teqij
þ eqijΤui ð45Þ

Substituting (42) into (45), we have

Q̇ ep;eq� �
¼ 1þ wið Þ ∑

N

i¼1
∇epij

∑
j∈N

ψ̇ij epij��� ���
σ

� � !Teqij þ ∑
N

i¼1
eqijΤ − 1þ wj

� �
∑
j∈N

∇piψij epij��� ���
σ

� �
−aijeqij−λ1wj ∑

j∈N
aijeqij

" #

¼ ∑
N

i¼1
eqijΤ −aijeqij−λ1wj ∑

j∈N
aijeqij

 !
¼ −eqΤ L ep� �þ aijIN⊗In

h ieqΤ
ð46Þ

whereep ¼ col p1; p2; pN½ �Τ∈ℝN�n, eq ¼ col q1; q2; qN½ �Τ∈ℝN�n, ⊗
is the Kronecker operator,L epð Þ is the Laplacian matrix of
G epð Þ, and IN denotes a N dimensional unit vector. Due to
the existing aij ∈ [0, 1], we can obtain

Q̇ ep;eq� �
¼ −eqΤ L ep� �þ aijIN⊗In

h ieqΤ ≤0 ð47Þ

Thus, by virtual of Barbalat Lemma, it holds that

lim
t→∞

Q̇ ep;eq� �
¼ 0 ð48Þ

It is implied that Q ep;eqð Þ is monotonic in (48). Let
Ωc = {(p, q) :Q(p, q) ≤Q0} is a compact set, existing Q0(p0,

q0) = ψσ(0) > 0 is the initial energy. Moreover, it is easy to
obtain that Q ep;eqð Þ≤Q0 is closed and bounded for any time
internal t ∈ [0, t∗]. Therefore, the control system is asymptoti-
cally stable.

From the LaSalle invariance principle, all solutions ep;eqð Þ
of Eq. (22) starting in Ωccoverage to its largest invariant set
given by

S ¼ ep;eq� �
∈ℝN�n : Q̇ p; qð Þ ¼ 0

n o
ð49Þ

It can be evident that Q̇ ep;eqð Þ ¼ 0 and eq ¼ 0, and we can
deduce that velocities of all agents asymptotically match each
other, i.e.,

q1 ¼ q2 ¼ ⋯ ¼ qN ð50Þ
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Now, part i) and ii) have been proved. Subsequently, we
prove part iii) by contradiction strategy. Assume existing an
instant time t = t1 > 0, two individuals k and l collide, i.e., ‖p-
l(t1) − pk(t1)‖ ≤D, where D is the minimum distance between
two agents. For all t > 0, we obtain a smooth potential
function,

Q p t1ð Þð Þ ¼ 1

2
∑
i
∑
j≠i
ψσ pi−p j

�� ��
σ

� �
¼ ψσ pl t1ð Þ−pk t1ð Þk kσ

� �
þ 1

2
∑

i∈Nn k;lf g
∑

j∈Nn i;k;lf g
ψσ pi t1ð Þ−p j t1ð Þ�� ��

σ

� �
≥ψσ pl t1ð Þ−pk t1ð Þk kσ

� �
ð51Þ

Hence, existing Q(p(t1)) ≥ ψσ(0) =Q0. However, it is in
contradiction with an inequality

Q p t1ð Þð Þ≤Q0 ð52Þ

Therefore, in terms of (51) and (52) in contradiction with
the invariant principle, no two agents collide at any time t ≥ 0.

Furthermore, assume that G(t) switches at time tk,k = 1, 2,
⋯, and G(t) is a fixed graph on each time-interval [tk − 1, tk].
Note that Q0 is finite and the time derivative ofQ(t) in t ∈ [t0,
t1] is (47), existing an inequality

Q t1ð Þ≤Q0 < ∞;∀t∈ t0; t1½ Þ ð53Þ

Such that

limdij→Rψ dij
� � ¼ ∞ ð54Þ

Clearly, it is implied that there is no edges will be lost
before t1 and be added at switching t1. Similar to the t ∈ [t0,
t1], time derivativeQ(t) on each time-interval [tk − 1, tk], is also
satisfied with (47). It can be given by

Q tkð Þ≤Q tk−1ð Þ≤Q0 < ∞;∀t∈ tk−1; tk½ Þ; k ¼ 1; 2⋯ ð55Þ

Thus no edges will be lost before tk and be added at
switching tk. In addition, by virtue of the Assumption 2, G(t)
can be guaranteed to keep connectivity for all t ≥ 0.

From the above proof, we can conclude that each
agent in swarm can asymptotically converge to a con-
sensus, and no collisions and splittings occur between
any two agents. □.

Remark 12: For case of δij ≥Δi, its stability proof is similar to
the case of δij <Δi. Due to space limitations, a more rigorous
proof is omitted herein.

5 Simulation results

In this section, we will provide simulation results to demon-
strate effectiveness and robustness of our proposed approach.
We consider a crowed UUV swarm with N = 51. The initial
positions are located in 50 × 50m such that the initial graph is
connected, and initial headings and velocities are chosen from
[−π, π] rad and [0, 10]m/s, respectively. Without the loss of
generality, the heading of each agent specifies the direction of
velocity, and Vmax = 15m/s. The nonlinear UUVmodel can be
seen in [27]. The following parameters remain fixed through
all simulations: ϕ = 2π, ω = [−π/6, π/6],mc = 12,κ = 8,αij =
1.2,βij = 1.2,χij = 1.2, ϖα = 100, R = 12m, ϖβ > 100, dmin =
4m,ε = 0.5, = 0.5,ϒq = 1,ϒm = 0.2,Td = diag [100, 100,
100],Kd = diag [10, 5, 6],Fd = 1, and D = 0.5m.

All experiments are divided into two cases: without exter-
nal stimuli signal and with external stimuli signal, which are
conducted in MATLAB and C++ Platform. In addition, a
computer with Intel(R) Core™i7 CPU3.20GHz is utilized
for simulations.

5.1 Self-organized cooperative control without
external stimuli signal

In the absence of external stimuli signal, assuming that a
crowded UUV swarm performs a desired velocity [5, 5]Τ m/
s. The experimental results are demonstrated to prove the as-
ymptotic convergence of the proposed self-organized cooper-
ative control in Figs.6, 7 and 8.

Figure 6 exhibits the flocking trajectories without external
stimuli signal. Fig. 6a shows the initial pattern, in which each
individual is marked by green circle with arrow, and the scale
of arrow denotes the magnitude of initial velocity. Fig. 6b
shows the path trajectories, it is clearly observed that the
swarm can be self-organized to achieve the asymptotic con-
vergence. Moreover, consensus and synchronicity can be si-
multaneously guaranteed as shown in Fig. 6c, in which all
velocities are equal to[5, 5]Τ. Fig. 6d plots the relative distance
dij of crowded UUV swarm, and dij satisfies D ≤ dij ≤ R.
Hence, we can deduce a conclusion that without any collisions
and splits occurring in self-organized motion.

Figure 7 plots velocities of all individuals including
velocity-x and velocity-y, respectively. Due to great conver-
gence of the proposed consensus, these velocities can be
quickly converged at t = 10s, and flocking swarm can be syn-
chronous to the desired velocity [5, 5]Τ at t = 50s.
Additionally, one can be seen that the crowded swarm can
keep a relatively stable distance without a larger change after
t = 10s in Fig. 8. From all above results, all observations are in
close agreement with our theoretical predictions, and it is im-
plied that our approach can achieve a self-organized flocking
without triggering any conflict and collision.
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5.2 Self-organized cooperative control with external
stimuli signal

In the presence of an external stimuli signal, assuming that the
crowded UUV swarm performs a desired velocity [5, 5]Τ m/s,
and an informed agent who moves on boundary of swarm
changes its heading in responding to the stimuli signal, which
is given by

usi tð Þ ¼ ℏ qi−q
s
i

� � ð56Þ

where ℏ = 10 denotes the feedback gain, and qsi ¼ 5; 0½ �Τ is an
expected velocity of agent i who is labeled as informed agent.

In order to verify the efficiency of our proposed control
approach, self-organized fission/fusion method (SFF) [39]
and single-informed-based distributed consensus (SDC) [40]
are employed to perform the comparative experiments. The
differences between the three methods are the neighbor num-
ber and following mechanism. It is noted that the external
stimuli signal appears at t = 60s after flocking achieved, and
comparison results are illustrated in Figs. 9, 10 and 11 and
Table 1.

Figures 9, 10 and 11 present the results of comparisons
among SFF, SDC and our proposed approach in the presence
of an external stimuli signal, respectively. The Figs. 9a, 10a
and 11a exhibit flocking trajectories, and Figs. 9b, 10b and

11b show their final patterns, respectively, in which the agent
marked with red circle indicates an informed agent and the
dotted line indicates its trajectory after t = 60s. The informed
agent changes its heading from [5, 5]Τ to [5, 0]Τ at t = 60s, and
its neighbors can synchronously change their original heading
in Fig. 9. However, all neighbors eventually fail to track the
informed agent, which leads to a splitting swarm into two sub-
groups. The one sub-group is composed of the only informed
agent who tracks the stimuli signal, and the other sub-group
consisting 50 individuals moves in a direction between [5, 5]Τ

and [5, 0]Τ. The similar results are provided in Fig. 10, where
the swarm is also separated into two sub-groups. The only
difference between Figs. 9 and 10 is that the direction of
SDC with respect to the informed agent is smaller than that
of SFF. The best performance of our proposed approach can
be seen in Fig. 11, in which all neighbors accurately follow the
informed agent and the velocity consensus can be guaranteed,
such that the flocking pattern remains stable.

Additionally, the relative distances among crowded UUV
swarm are considered after external stimuli signal appearing at
t = 60s, as shown in Table 1. It is observed that the minimum
and maximum relative distance dij of our proposed consensus
are 1.1845 m and 11.9813 m, respectively, both of which
satisfy D ≤ dij ≤ R, such that the objectives (9) and (10) can
be guaranteed without any splits and collisions even under a
stimuli signal. Furthermore, the minimum relative distances of
other approaches are larger than the predefined collision dis-
tance D = 0.5m. Thus, the SFF and SDC can also achieve the
avoiding collisions. However, maximum relative distances,
54.6522 m and 23.4991 m, are larger than the predefined
sensing distance R = 12m, which indicates that communicat-
ing connections of SFF and SDC are broken due to splits
occurring. Obviously, it is evident that our approach is more
robust against fluctuations and disturbances in comparison to
other approaches.
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Fig. 8 The average position error of all individuals at t = 60s. (a) position-x average error and (b) position-y average error

Table 1 Comparisons of relative distances (The optimal result is in
bold)

Control approach Minimum distance (m) Maximum distance (m)

SFF 1.3828 54.6522

SDC 1.3427 23.4991

Proposed consensus 1.1845 11.9813
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The reason why these differences are due to different the
following mechanisms existed in the three approaches.
Clearly, both the SFF and SDC employ the average mecha-
nism, in which two limitations are exposed. (i) All individuals
within sensing range are automatically activated to participate
in local interaction, where how to optimize information trans-
mission and computing is not fully considered. (ii) The
averaged-synergy filters or dilutes the external stimuli signals,
such that all heterogeneous propensities and their effects may
be ignored. Conversely, our proposed approach can alleviate
the above two limitations from two aspects. (i) Our following-
interaction framework can ensure the minimum number and
optimal distribution of neighborhood. (ii) Our adaptive com-
puting strategy considers all individual differences via single-
nearest-neighbor and multiple-nearest-neighbors synergies
with nonlinear weights.

5.3 Discussion

In order to further verify the robustness of our proposed ap-
proach, three quantitative indicators such as mean heading
(MH), orderness parameter (OP) and scale parameter (SP)
are devised to demonstrate the comparative performances.

The MH is defined as

φMH tð Þ ¼ 1

N
∑
N

i¼1
; e jϑi

���� ���� ð57Þ

where N represents the swarm size. Generally, a great φMH(t)
value shows a worse flocking.

The OP is defined as:

φOP ¼ 1

N
∑
N

i¼1
;
qi

‖qi‖

�����
����� ð58Þ

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

x/m

y
/m

Informed
agent

418 420 422 424 426 428 430 432
388

390

392

394

396

398

400

402

x/m

y
/m

418 420 422 424 426 428 430 432
340

350

360

370

380

390

400

x/m

y
/m

(a) (b)
Fig. 9 The results of SFF under an external stimuli signal. (a) Flocking trajectory and (b) Final pattern
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Fig. 10 The results of SDC under an external stimuli signal. (a) Flocking trajectory and (b) Final pattern
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where ‖qi‖ represents the Euclidean norm of velocity vector of
agent i. Apparently,φOP ∈ [0, 1], the swarm is orderness if
φOP = 1. Conversely, it is unordered whenφOP = 0.

The SP is defined as

φSP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
pi−pck k2

s
ð59Þ

where pc represents the COM given by Eq. (41). Obviously, a
smaller φSP indicates a more cohesive distribution.

In particular, all simulations are repeated 50 times, and the
results are demonstrated in Fig. 12.

Figure 12a demonstrates curves of MH results. At t = 0, all
results obtained from three approaches are divergent. At t =
10s, the values asymptotically converge to a constant due to
desired head [5, 5]Τ followed by all UUVs. When an external

stimuli signal qsi ¼ 5; 0½ �Τ appears t = 60s, this indicator sig-
nificantly declines and slightly converges to its minimum at
t = 65 s. Although SFF and SDC complete flocking, only our
approach can simultaneously guarantee flocking and follow-
ing behaviors. Therefore, it is implied that the tracking and
synchronizing capabilities of our approach outperform SFF
and SDC.

As shown in Fig. 12b, the OP result of our approach is
sensitive to internal and external disturbances in comparison
to other approaches, and greater convergence speed can be
obtained to form an ordered flocking, which can be seen when
the internal and external disturbances appear at t = 0 and t =
60s, respectively. Additionally, the OP result of our approach
eventually converges to 1, which is higher than that of SFF
and SDC. The reasons accounting for this result are insuffi-
cient information interactions and long convergence time in
SFF and SDC. Consequently, it is implied that our approach
has an excellent orderness.

Figure 12c illustrates SP results. In initial stage, there exists
a fluctuation. After t = 10s, SP results gradually converge.
Obviously, this indicator monotonously increases when indi-
viduals response to the external stimuli signal, and our ap-
proach is better than that of other two methods. The reason
why these results occur is that there is no splits in our ap-
proach, but other two approaches separate the swarm into
two sub-groups. Accordingly, it is clear that our designed
approach is effective for UUV swarm in the presence of ex-
ternal stimuli signal.

Summarily, it is clear that our proposed control approach
shows better robustness against fluctuations and disturbances
in comparison to the SFF and SDC. It is also confirmed
that the minimum number and optimal distribution of
neighborhood can improve the speed of information dis-
semination in local interaction. Furthermore, the proposed
approach can effectively achieve the swarm cohesion and
collision avoidance.

6 Conclusions

In this paper, a novel bio-inspired self-organized cooperative
control is developed to address behavior conflict and chain
collision for crowded UUV swarm in the presence of fluctua-
tions and disturbances. All simulation results prove that our
proposed approach can obtain robust control performance
without any collision and split occurring, in comparison to
the existing methods via MH, OP and SP indicators. The
primary contributions of this paper are summarized as
follows:

(i) An optimized following interaction framework is de-
vised by the topological interaction and visual interaction to
improve the synchronous velocities and save the sensing
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Fig. 11 The results of our approach under an external stimuli signal. (a) Flocking trajectory and (b) Final pattern
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costs, in which two constrains, i.e., limited view and crowded
phenomenon, are simultaneously considered. This framework
can ensure the minimum number and optimal distribution of
the neighborhood for each agent in dynamic graph, instead of
the previous fixed-number and fixed-distance studies.

(ii) An adaptive dynamic computing model is proposed by
incorporating SNNF and WMNNF to establish an effective
decision-making strategy for solving the problems of behavior
conflict and chain collision, where the influence of each indi-
vidual on sensitive behavior is synthesized by a nonlinear
weight. Therefore, it is essentially a non-average mechanism
unlike the traditional average-velocity mechanism.

(iii) By virtue of adaptive dynamic interaction topology, a
cooperative control protocol based on the proposed following
model and mathematics-based potential fields is designed to
steer a self-organized flocking with two abilities of the
connectivity-preserving and collision-avoiding. Furthermore,
the sufficient condition is analyzed via Laypunov and LaSalle

invariance principle. It is confirmed that our approach can be
suitable for cooperative control of crowded UUV swarm.

For future works, the jointed effects of time delays and
packet loss will be considered in this self-organized coopera-
tive control approach, and the control performance can be
further improved towards achieving the lager-scale heteroge-
neous UUV swarm.

Acknowledgments The authors acknowledge the financial support from
the National Natural Science Foundation of China under Grant
11404205, Natural Science Foundation of Shaanxi under Grant
2019JQ-026 and Fundamental Research Funds for Central Universities
under Grant GK201903016 and GK201803023. And the authors would
like to thank all reviewers and editors who provided extensive valuable
feedback.

Compliance with ethical standards

Conflict of interest This work is original research and approved by all
authors. The authors declare that they have no conflict of interest.

(c)

(a) (b)

0 10 20 30 40 50 60 70 80
-10

0

10

20

30

40

50

60

70

t/s

M
H

Proposed

SDC

SFF

0 10 20 30 40 50 60 70 80
0.5

0.6

0.7

0.8

0.9

1

1.1

t/s

O
P

Proposed

SDC

SFF

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t/s

S
P

Proposed

SDC

SFF

Fig. 12 Comparison results of three approaches: (a) MH, (b) OP and (c) SP

Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic... 4679



References

1. Wu Y, Low KH, Lv C (2020) Cooperative Path Planning for
Heterogeneous Unmanned Vehicles in a Search-and-Track
Mission Aiming at an Underwater Target. IEEE Trans Veh
Technol 69(6):6782–6787

2. Londhe PS, Patre BM (2019) Adaptive fuzzy sliding mode control
for robust trajectory tracking control of an autonomous underwater
vehicle. Intell Serv Robot 12:87–102

3. Ingrand F, GhallabM (2017) Deliberation for autonomous robots: a
survey. Artif Intell 247:10–14

4. Bukhari AC, Kim YG (2013) A research on an intelligent multi-
purpose fuzzy semantic enhanced 3D virtual reality simulator for
complex maritime missions. Appl Intell 38:193–209

5. Liang HT, Qiang N (2020) Distributed Cooperative Control Based
on Dynamic Following Interaction Mechanism for UUV Swarm.
2020 39th Chinese control conference (CCC), Shenyang, China, pp
5092–5097

6. Oh H, Shirazi AR, Sun CL, Jin YC (2017) Bio-inspired self-
organising multi-robot pattern formation: a review. Robot Auton
Syst 91:83–100

7. Ferrante E, Turgut AE, Huepe C, Stranieri A, Pinciroli C, DorigoM
(2012) Self-organized flocking with a mobile robot swarm: a novel
motion control method. Adapt Behav 20(6):460–477

8. Pandey P, Pompili D, Yi J (2015) Dynamic collaboration between
networked robots and clouds in resource-constrained environments.
IEEE Trans Autom Sci Eng 12(2):471–480

9. Wang J, Wang C, Wei Y, Zhang C (2020) Neuroadaptive sliding
mode formation control of autonomous underwater vehicles with
uncertain dynamics. IEEE Syst J 14(3):3325–3333

10. Sahu BK, Subudhi B (2018) Flocking Control of Multiple AUVs
Based on Fuzzy Potential Functions. IEEE Trans Fuzzy Syst 26(5):
2539–2551

11. Yang H, Zhang F (2012) Robust control of formation dynamics for
autonomous underwater vehicles in horizontal plane. J Dyn Syst
Meas Control 134:031009

12. Pan W, Jiang D, Pang Y, Qi Y, Luo D. Distributed Formation
Control of Autonomous Underwater Vehicles Based on Flocking
and Consensus Algorithms. In: HuangY,WuH, Liu H, Yin Z (eds)
Intelligent robotics and applications. ICIRA 2017. Lecture Notes in
Computer Science, vol 10462. Springer, Cham. https://doi.org/10.
1007/978-3-319-65289-4_68

13. Chen YY, Zhu DQ (2020) Research on the Method of Multi-AUV
Formation Control Based on Self-organized Artificial Potential
Filed. Control Eng China 26(10):1875–1881

14. Hu J, Wu Y, Li T, Ghosh BK (2019) Consensus control of general
linear multiagent systems with antagonistic interactions and com-
munication noises. IEEE Trans Autom Control 64(5):2122–2127

15. Cai YL, Zhang HG, Liang YL, Gao ZY (2020) Reduced-order
observer-based robust leader-following control of heterogeneous
discrete-time multi-agent systems with system uncertainties. Appl
Intell 50:1794–1812

16. Maupong TM, Rapisard P (2017) Data-driven control: a behavioral
approach. Syst Control Lett 101:37–43

17. Reynolds CW (1987) Flocks, herds, and schools: a distributed be-
havioral model. Comput Graph 21(4):25–34

18. Couzin ID, Krause J, Franks NR (2005) Effective leadership and
decision-making in animal groups on the move. Nature 433:513–
516

19. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–
140

20. AldanaM, Dossetti V, Huepe C (2007) Phase transitions in systems
of self-propelled agents and related network models. Phys Rev Lett
98:095702

21. LiuMY, Lei XK, Yang PP (2014) Progress of theoretical modelling
and empirical studies on collective motion. Chin Sci Bull 59:2464–
2483

22. Grünbaum D, Viscido S, Parrish JK (2005) Extracting interactive
control algorithms from group dynamics of schooling fish. Coop
Control 309:103–117

23. Nagy M, Vásárhelyi G, Pettit B, Mariani R, Vicsek T, Biro D
(2013) Context-dependent hierarchies in pigeons. Proc Natl Acad
Sci 110:13049–13054

24. Conradt L (2012) Models in animal collective decision-making:
Information uncertainty and conflicting preferences. Interface
Focus 2:226–240

25. Anderson JR (2004) Cognitive psychology and its implications.
Worth Publishers, New York

26. Qiu HX, Duan HB (2020) A multi-objective pigeon-inspired opti-
mization approach to UAV distributed flocking among obstacles.
Inf Sci 509:515–529

27. Liang HT, Fu YF, Kang FJ, Gao J, Ning Q (2020) A Behavior-
driven Coordination Control Framework for Target Hunting by
UUV Intelligent Swarm. IEEE Access 8(1):4838–4859

28. Yang PP, Liu MY, Lei XK, Song C (2016) A novel control algo-
rithm for the self-organized fission behavior of flocking system
with time delay. Int J Control Autom Syst 14(4):986–997

29. Khaldi B, Harrou F, Cherif F, Sun Y (2020) Improving robots
swarm aggregation performance through the Minkowski distance
function. 6th international conference on mechatronics and robotics
engineering (ICMRE), Barcelona, Spain, pp 87–91

30. Chen C, Chen G, Guo L (2017) On the minimum number of neigh-
bors needed for consensus of flocks. Control Theory Technol 15:
327–339

31. Massé B, Ba S, Horaud R (2018) Tracking gaze and visual focus of
attention of people involved in social interaction. IEEE Trans
Pattern Anal Mach Intell 40(11):2711–2724

32. Herbert JE, Perna A, Mann RP, Schaerf TM, Sumpter DJT, Ward
AJW (2011) Inferring the rules of interaction of shoaling fish. Proc
Natl Acad Sci 108:18726–18731

33. Duan H, Huo M, Shi Y (2020) Limit-cycle-based mutant
multiobjective pigeon-inspired optimization. IEEE Trans Evol
Comput 24(5):948–959

34. Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID (2011)
Inferring the structure and dynamics of interactions in schooling
fish. Proc Natl Acad Sci 108:1870–1872

35. Godsil C, Royle G (2001) Algebraic graph theory. Springer-Verlag,
Berlin

36. Yan ZP, Liu YB, Zhou JJ, ZhangW, Wang L (2017) Consensus of
multiple autonomous underwater vehicles with double independent
Markovian switching topologies and timevarying delays. Chin
Phys B 26(4):040203

37. Zhang XY, Jia SM, Li XZ (2017) Improving the synchronization
speed of self-propelled particles with restricted vision via randomly
changing the line of sight. Nonlinear Dyn 90:43–51

38. Li P, Duan HB (2019) A flocking model based on selective atten-
tion mechanics. Sci Sin Technol 49(9):1040–1050

39. Yang PP, Tang Y, Song JC (2018) Self-organized fission/fusion
method for flocking system based on predictive intelligence.
Control Decis 33(12):2270–2276

40. Dai S, He S, Lin H, Wang C (2018) Platoon formation control with
prescribed performance guarantees for USVs. IEEE Trans Ind
Electron 65(5):4237–4246

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

H. Liang et al.4680

https://doi.org/10.1007/978-3-319-65289-4_68
https://doi.org/10.1007/978-3-319-65289-4_68


Hongtao Liang received the
P h . D . d e g r e e f r o m t h e
Nor thwes te rn Poly technic
University (NWPU), Shaanxi,
China, in 2017. From 2016 to
2017, he was a Visiting Scholar
with the Department of Electrical
& Computer Engineering (ECE),
National University of Singapore
(NUS). He is current ly an
Assisted professor with School
of Physics and Information
Technology, Shaanxi Normal
University, Shaanxi, China. He
has authored or co-authored over

30 papers and holds 18 patents. His research focuses on crowded UUV
swarm, cooperative control, pattern recognition, bio-inspired computing
and image processing. He was awarded Excellent Doctoral Dissertation
Award of China Simulation Society (2018), Outstanding Ph.D. Student
Award (2018), and Excellent Doctoral Dissertation Award of
Northwestern Polytechnic University (2020).

Yanfang Fu received the Ph.D. de-
g r e e f r om No r t hw e s t e r n
Polytechnic University (NWPU),
Shaanxi, China, in 2008. She is cur-
rently a professor with School of
Computer Science & Engineering,
Xi’an Technological University,
Shaanxi, China. Her research focus-
es on system control and modeling,
and Multi-UUV formation control.

Jie Gao received the Ph.D. degree
f r o m t h e N o r t h w e s t e r n
Polytechnic University (NWPU),
Shaanxi, China, in 2013. She is
currently an Associate Professor
with School of Physics and
Information Technology, Shaanxi
Normal University, Shaanxi,
China. She has authored or co-
authored over 20 papers. Her re-
search focuses on unmanned un-
derwater vehicle, and human-
computer interaction.

Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic... 4681


	Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology
	Abstract
	Introduction
	Preliminary knowledge and problem statement
	Local interaction
	Graphs theory
	Problem statement

	Adaptive dynamic interaction topology
	Following-interaction framework
	Adaptive dynamic computing model

	Self-organized cooperative control protocol
	Control protocol
	Stability analysis

	Simulation results
	Self-organized cooperative control without external stimuli signal
	Self-organized cooperative control with external stimuli signal
	Discussion

	Conclusions
	References


