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Abstract
Aspect-based sentiment analysis aims to predict the sentiment polarity of each specific aspect term in a given sentence.
However, the previous models ignore syntactical constraints and long-range sentiment dependencies and mistakenly identify
irrelevant contextual words as clues for judging aspect sentiment. In addition, these models usually use aspect-independent
encoders to encode sentences, which can lead to a lack of aspect information. In this paper, we propose an aspect-gated
graph convolutional network (AGGCN), that includes a special aspect gate designed to guide the encoding of aspect-specific
information from the outset and construct a graph convolution network on the sentence dependency tree to make full use of
the syntactical information and sentiment dependencies. The experimental results on multiple SemEval datasets demonstrate
the effectiveness of the proposed approach, and our model outperforms the strong baseline models.

Keywords Aspect-based sentiment analysis · Graph convolutional networks · Aspect gate · Aspect-specific

1 Introduction

Aspect-based sentiment analysis [6, 27, 28, 48] is a fine-
grained task in sentiment analysis [2, 38, 41, 43] whose goal
is to predict the sentiment polarity (e.g., positive, neutral
or negative) toward each specific aspect term in a given
sentence.

There are two subtasks in aspect-based sentiment anal-
ysis, including aspect-category sentiment analysis and
aspect-term sentiment analysis [48]. An example in Fig. 1
presents a sample sentence. The aspect-category sentiment
analysis implicitly describes the general entity category. For
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instance, in the sentence “The sushi is delicious but the
waiter is very rude”, “sushi” describes the aspect category
“food”, and “waiter” describes the aspect category “ser-
vice”. The user expresses both positive and negative senti-
ments toward two aspect categories “food” and “service”,
respectively. The aspect-term sentiment analysis character-
izes specific entities that occur explicitly in a sentence.
For the example sentence, the aspect terms are “sushi” and
“waiter”, and the user expresses positive and negative sen-
timents toward them, respectively. In terms of the aspect
granularity, the aspect category is coarse-grained, while the
aspect term is fine-grained.

Earlier studies introduced recurrent neural network
(RNN) [4] models into aspect-based sentiment analysis
due to its ability to flexibly capture the semantic relations
between an aspect and its context words. However, not all
the information in the sequence is important; therefore, an
attention mechanism [47] was introduced into the RNN
model to cause the model to pay more attention to the more
important parts of the sequence. Gu et al. [11] proposed
a position-aware bidirectional attention network (PBAN)
based on the Bi-GRU model. PBAN not only concentrates
on the positional information of aspect terms but also
mutually models the relation between an aspect term and the
sentence by employing a bidirectional attention mechanism.
With the development of word embedding technology, the
convolutional neural network (CNN) [14] has been widely
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Fig. 1 An example sentence with two instances of aspect-based
sentiment analysis. The user expresses both positive and negative
sentiments toward two aspect categories “food” and “service”, and
expresses positive and negative sentiments toward two aspect terms
“sushi” and “waiter”

applied to aspect-based sentiment analysis. On the one hand,
a CNN can utilize word embeddings to map a sentence
into a lower-dimensional semantic representation while also
maintaining the sequence information of the words. On the
other hand, a CNN can extract a local text representation.
Xue et al. [39] proposed a model based on convolutional
neural networks with gating mechanisms. First, the novel
gated tanh-ReLU units selectively outputs the sentiment
features according to a specified aspect or entity. Second, the
model computation was easy to parallelize during training.

However, the above models ignored both syntactical
constraints [29] and long-range sentiment dependencies [7]
while mistakenly identifying irrelevant contextual words
as clues for judging aspect sentiment. For instance, in
the sentence “Certainly not the best sushi in New York,
however, it is always fresh, and the place is very clean and
sterile”, the CNN model convolves only the information of
consecutive words; thus it cannot judge the sentiment of
nonadjacent words. Accordingly, it may mistakenly identify
the phrase “not the best” as a clue for judging the aspect
“sushi” but ignore the influence of the word “fresh” on the
aspect “sushi”. In addition, these models usually use aspect-
independent encoders to encode sentences, which could
result in a lack of aspect information. In that same sentence,
the words “sushi”, “best” and “fresh” are irrelevant for
sentiment prediction when the considered aspect is “place”.
The use of an aspect-independent encoder when encoding
sentences can cause these words to be mistaken as clues
for judging “place”, leading to an erroneous prediction.
Therefore, we aim to use a graph convolutional network
(GCN) [13] containing an aspect gate to address these
shortages. A GCN has the ability to process data with
generalized topological graph structure and extract spatial
features; therefore, it can update the feature information by
capturing the long-range sentiment dependencies between
adjacent nodes. Zhang et al. [45] was the first to apply
a GCN to aspect-based sentiment analysis. Their model
exploits the syntactical dependency structures within a
sentence and resolves the long-range multiword dependency
issue for aspect-based sentiment classification, but it still

exploits aspect-independent encoders to encode sentences,
which can lead to a lack of aspect information.

In this paper, we propose the aspect-gated graph convo-
lutional network (AGGCN) model for aspect-bas-ed senti-
ment analysis. First, we design an aspect gate based on a
long short-term memory (LSTM) network that can guide
the encoding of aspect-specific information from the out-
set while discarding aspect-indepen-dent information. Then,
we generate a dependency tree based on aspect-specific
information and construct a GCN on the dependency tree
to fully capitalize on the syntactical information and long-
range sentiment dependencies. Finally, we use a novel
retrieval-based attention mechanism to obtain the hid-
den representation of the attention from GCN to predict
aspect sentiment. Experimental results on multiple SemEval
datasets de-monstrate the effectiveness of our proposed
approach, and our model outperform the strong baseline
models.

Our main contributions can be summarized as follows:

1. We propose an aspect-gate mechanism based on LSTM.
The specific aspect gate can select an aspect-specific rep-
resentation by controlling the token embedding trans-
formation at each time step, which enables the LSTM
to guide the encoding of aspect-specific from the out-
set and discard aspect-independent information. This
mechanism solves the noise and bias problems caused
by the weaker encoders used in previous models.

2. We propose a novel aspect-based sentiment analysis
framework that employs a GCN to capture syntactical
information and long-range sentiment dependencies.
The proposed framework enables the model to perceive
context through the syntactical information and long-
range sentiment dependencies, and uses a novel atten-
tion mechanism to obtain the hidden representation of
the attention from GCN. This framework can help iden-
tify irrelevant context words more accurately and avoid
identifying them as clues for judging aspect sentiment.

3. We evaluate our method on multiple SemEval datasets.
The experiments show that our model achieves higher
accuracy than most of the baseline models and outper-
forms the strong baseline models.

The remainder of this paper is organized as follows. After
introducing the related works in Section 2, we elaborate our
proposed model in Section 3, and then conduct experiments
in Section 4. Finally, we summarize our work and provide
an outlook of future work in Section 5.

2 Related works

Aspect-based sentiment analysis has become one of the
most active research fields in natural language processing
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(NLP) and has spread from computer science to the social
sciences [18, 20] and network sciences [16, 19], includ-
ing marketing, finance, politics, communication, medical
science and even history. Due to its clear commercial advan-
tages, aspect-based sentiment analysis has aroused concerns
throughout society. The previous aspect-based sentiment
analysis models [10, 33] mostly used traditional methods
based on dictionaries and machine learning methods. How-
ever, training those models was dependent on the quality
of annotated data sets and obtaining high-quality datasets
requires substantial investments of labor and high costs.

With the in-depth study of deep learning technology,
neural networks are now widely used in aspect-based
sentiment analysis. RNN models [23, 25, 31] have been
applied to aspect-based sentiment analysis because they can
flexibly capture the semantic relationship between an aspect
and its context words. Tang et al. [31] were the first to
introduce an LSTM into aspect-based sentiment analysis.
They developed two target-dependent LSTM models that
automatically considered target information. However, not
all the information in a sequence is important to an RNN;
thus, the attention mechanism [22, 35, 37] was introduced
into the RNN model to cause it to pay more attention
to the more important parts of the sequence. Wang et al.
[36] proposed an attention-based LSTM for aspect-
level sentiment classification. The attention mechanism
concentrated on different parts of a sentence as different
aspects were taken as input. Recursive neural network
(RecNN) models [1, 26, 30] were applied to aspect-based
sentiment analysis to replace RNNs because RNNs were
unsuited for the tree and graph structures that information
contains. Dong et al. [8] were the first to apply a RecNN
model to aspect-based sentiment analysis. They proposed
the adaptive recursive neural network (AdaRNN), which
adaptively propagated the word sentiments to targets based
on the context and syntactic relationships between words.
However, RecNNmay suffer from syntax parsing errors [34,
42]. With the development of word embedding technology,
CNNs [5, 39, 40] have been widely employed in aspect-
based sentiment analysis due to their ability to extract both
local and global representations. Fan et al. [9] proposed a
novel convolutional memory network that incorporated an
attention mechanism. Their model sequentially computed
the weights of multiple memory units corresponding to
multiple words and can capture both word and multi-word
expressions in sentences for use in aspect-based sentiment
analysis.

Due to the unsatisfactory performance of neural net-
works such as RNN and CNN for processing graph data,
related Graph algorithms [15] are introduced into NLP,
especially GCNs have been widely used in aspect-based
sentiment analysis. A GCN performs excellently for pro-
cessing graph data containing rich relational information. A

GCN possesses a multilayer architecture in which each layer
encodes and updates the node representations in the graph
using the features of the node’s immediate neighbors. Zhao
et al. [46] proposed a novel aspect-level sentiment clas-
sification model based on GCNs that effectively captures
the sentiment dependencies between multiple aspects in
one sentence. The model first introduced a bidirectional
attention mechanism with position encoding to model the
aspect-specific representations between each aspect and its
context words and then employed a GCN over the attention
mechanism to capture the sentiment dependencies between
the different aspects in one sentence.

3 Our proposedmodel

In this section, we describe the proposed model AGGCN
for aspect-based sentiment analysis in detail. The AGGCN
is shown in Fig. 2. Specifically, we first define the model
notations in Section 3.1. Then, we introduce an aspect-gated
LSTM in Section 3.2 and construct the GCN based on the
output of the aspect-gated LSTM in Section 3.3. Next, we
describe the use a retrieval-based attention mechanism to
generate an attention representation for sentiment analysis
in Section 3.4. Finally, we present the model training
process in Section 3.5.

3.1 Definition

First, we introduce some notations to facilitate the
subsequent descriptions : S = {

xc
1, x

c
2, · · · , xc

n

}
denotes

an input sentence, which contains a corresponding aspect
X = {xa

k+1, x
a
k+2, · · · , xa

k+m} starting from the (k + 1)-th
token. We embed each word token into a low-dimensional
real-valued vector space [3] with an embedding matrix
E ∈ R

demp×|V |, where demp denotes the dimension of word
embedding, and V indicates the number of words involved
in the corpus.

3.2 Aspect-gated LSTM

A conventional LSTM first discards irrelevant information
via its forget gates, then it adds useful information through
the input gate, and finally, it determines which information
will be output through the output gate. Instead, we
design an aspect gate in LSTM that selects aspect-specific
representations by controlling the transformation of token
embedding at each time step. At time step t, the hidden state
hc

t is formulated as follows:

hc
t = ot × tanh (Ct ) (1)

where hc
t ∈ R

2dh represents the hidden state vector at
time step t from the bidirectional aspect-gated LSTM; dh
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Fig. 2 The framework of our
proposed model. A special
aspect gate is designed to guide
the encoding of aspect-specific
information from the outset. The
model constructs a graph
convolution network on the
dependency tree. In particular,
we use position-aware
transformation and GCN
masking in the GCN to fully
utilize the syntactical
information and long-range
sentiment dependencies. The
position-aware transformation
reduces noise and bias during
graph convolution process, and
GCN masking perceives
contexts around the aspect in a
way that considers both
syntactical information and
long-range sentiment
dependencies

represents the dimension of the hidden state vector from
the unidirectional aspect-gated LSTM; ot is the output gate,
which outputs the cell state through a sigmoid neural layer
and a dot multiplication operation. Each element of the
sigmoid layer output is a real number between 0 and 1
that represents the weight of the corresponding information
passing through. For example, 0 means “no information”
and 1 means “let all information pass”. We process the cell
state Ct through tanh (obtaining a value between −1 and 1)
and multiply it with the output of the output gate to obtain
the hidden state hc

t . The formula for the cell state Ct is as
follows:

Ct = ft × Ct−1 + it × C̃a
t (2)

where ft is the forget gate, which determines what
information is discarded from the cell state. The forget
gate outputs a value between 0 and 1 through hc

t−1 and
xa
t , where a 1 means “fully reserved”, and a 0 means

“completely abandoned”. The it represents an input gate,
which determines how much new information is added to
the cell state. We multiply the previous cell state Ct−1 by
ft to discard information determined a discardable. Then,
we add the product of it and the candidate cell state Ct−1

to obtain a new cell state Ct . In particular, we design the
aspect gate to be located between the input gate it and the
output gate ot . The aspect gate controls the transformation
of aspect information together with the tanh function, and
it plays a part in determining the candidate cell state C̃a

t .
The C̃a

t is formulated as follows:

C̃a
t = tanh

(
Wch

c
t−1 + gt · (

Wgx
c
t

)) + lt · Hc
t

(
xc
t

)

+ gt · Ha
t

(
xa
t

)
(3)

where ga
t is the aspect gate, which is designed to guide

the encoding of aspect-specific information from the outset.
The aspect gate can control the transformation of aspect
information together with the tanh function, and it plays
a part in the candidate cell state C̃a

t . xc
t and xa

t represent
the input word embedding and the aspect embedding at
time step t. lt [21] is the linear transformation gate for
xc
t , Hc

t and Ha
t represent the linear transformations of

the input xc
t and xa

t , respectively, controlled by the linear
transformation gate lt and the aspect gate ga

t . Equations
(1) and (2) show that the hidden state hc

t is controlled by
the previous cell state Ct−1, C̃a

t , lt and gt . The aspect gate
structure alleviates the vanishing gradient problem because
this approach provides a linear transformation path as a
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supplement between consecutive hidden states. Wc and
Wg denote the weight matrix and bias, respectively. The
remaining terms, ot , it , ft , lt , gt , Hc

t

(
xc
t

)
and Ha

t

(
xa
t

)
are

formulated as follows:

ot = σ
(
Wo · [

hc
t−1, x

c
t

] + bo

)

it = σ
(
Wi · [

hc
t−1, x

c
t

] + bi

)

ft = σ
(
Wf · [

hc
t−1, x

c
t

] + bf

)

lt = σ
(
Wl · [

hc
t−1, x

c
t

] + bl

)

gt = Relu
(
Wg · [

hc
t−1, x

a
t

] + bg

)
(4)

Hc
t

(
xc
t

) = Whcx
c
t

Ha
t

(
xa
t

) = Whax
a
t (5)

where σ represents the sigmoid function, ReLU is the
activation function. Wo, Wi , Wf , Wl , Wg , Whc, Wha are
weight matrices and bo, bi , bf , bl , bg are bias vectors to be
learned during training.

In (3)–(5), the aspect gate gt controls the nonlinear
transformation of the input xc

t under the guidance of the
given aspect at time step t. According to the current
input xc

t , xa
t and the previous hidden state hc

t−1, we
adopt the linear transformation gate lt in the cooperative
aspect gate gt to control the linear transformation of input.
Therefore, a specific aspect gate can select an aspect-
specific representation by controlling the token embedding
transformation at each time step, which enables the LSTM
to guide the encoding of aspect-specific from the outset and
discard aspect-independent information.

3.3 Graph convolutional network

In Section 3.2, we obtain the output Hc = {hc
1, hc

2, · · · ,

hc
k+1, · · · , hc

k+m, · · · , hc
n} of the aspect-gated LSTM. B-

ased on this Hc output, we first construct a syntactical
dependency tree1 and convert each tree into its correspond-
ing adjacency matrix A, to make a GCN suitable for the
modeling dependency tree. Then, the GCN is executed in
an L-layer convolutional fashion on top of the aspect-gated
LSTM output Hc, i.e., Hl = Hc to create context-aware
nodes. Finally, the hidden representation of each node is
updated through a graph convolution operation with a nor-
malization factor [13]. The graph convolution was inspired
by contextualized Graph Convolutional Networks [44] as
shown below:

hl
i = Relu

⎛

⎝
n∑

j=1

AijWl gl−1
j /di + bl

⎞

⎠ (6)

where hl
i ∈ R

2dh is the i-th token’s hidden representation
of the l-th GCN layer, and gl−1

j ∈ R
2dh is the j -th token’s

1We use spaCy toolkit:https://spacy.io/

representation evolved from the (l − 1)-th GCN layer.Aij ∈
R

n×n denotes the adjacency matrix. Specifically,based on
the idea of self-looping, each word is manually set adjacent
to itself, i.e., the diagonal values of A are all ones. Wl is the
weight matrix and bl is the bias vector to be learned during
training. Then, di = ∑n

j=1 Aij represents the degree of the
i-th token in the tree.

Specifically, to reduce the noise and bias during the
graph convolution process, we conduct a position-aware
transformation [11, 17, 36] before hl

i is input into GCN.

gl
i = pih

l
i (7)

pi =
⎧
⎨

⎩

| i−k−1
n

| 0 < i < k + 1
0 k + 1 ≤ i ≤ k + m

| k+m−i
n

| k + m < i ≤ n

(8)

where pi ∈ R is the position weight of the i-th token.
The final hidden representation of the L-layer GCN is
HL = {

hL
1 , hL

2 , · · · , hL
k+1, · · · , hL

k+m, · · · , hL
n

}
, where

hL
t ∈ R

2dh . Table 1 describes the above process.

3.4 Retrieval-based attention

In this section, we use a retrieval-based attention mech-
anism to generate an attention representation. This idea
was derived from the aspect-specific graph convolutional
network [45]. The retrieval-based attention mechanism

Table 1 The formal pseudo-code for Graph Convolution is presented
in Algorithm 1
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retrieves significant features that are semantically relevant
to the aspect words from the hidden state vectors and
sets a retrieval-based attention weight accordingly for each
context word.

We first add a masking mechanism on top of the GCN
to mask out nonaspect words. This operation enables the
model to perceive context through syntactical information
and long-range sentiment dependencies.

HL
Mask =

⎧
⎨

⎩

0 0 < t < k + 1
hL

t k + 1 ≤ t ≤ k + m

0 k + m < t ≤ n

(9)

When the current word is not an aspect word, we set the
value of HL

Mask to 0. Conversely, when the current word is
an aspect word, we use the value from (6). Table 2 describes
the process of GCN Masking.

Then, we produce the retrieval-based attention represen-
tation based on Hc and HL

mask and formulate it as follows:

hR =
n∑

t=1

αth
c
t (10)

αt = exp (βt )∑n
i=1 exp (βi)

(11)

βt =
n∑

i=1

(
hc

t

)�
hL

i =
k+m∑

i=k+1

(
hc

t

)�
hL

i (12)

Table 2 The formal pseudo-code for GCN Masking is presented in
Algorithm 2

where hR is the retrieval-based attention representation, αt

represents the attention weight, and βt is the attention-
aware function to obtain the semantic correlation between
the aspect and context.

Finally, we input the attention representation hR into the
sof tmax layer for aspect-based sentiment analysis:

y = sof tmax
(
WphR + bp

)
(13)

where y ∈ R
|C| is the sentiment distribution prediction, and

Wp ∈ R
2dh×|C| and bp ∈ R

|C| are the trainable parameters.
C is the dimension of the sentiment labels.

3.5 Training of model

The purpose of model training is to optimize all the
parameters to minimize the loss function insofar as possible.
Our model is trained using cross-entropy with the L2-
regularization term and formulated as follows:

loss = −
N∑

i

yi log
(
ŷi

) + λ‖θ‖2 (14)

where N is the number of samples in the dataset, yi

is the ground truth probability, and ŷi is the estimated
probability of an aspect. λ is the L2-regularization factor
and θ represents all the trainable parameters.

4 Experiments

In this section, we first describe the datasets and experimen-
tal settings in Section 4.1. Then, we describe the baseline
models in Section 4.2 and the experimental results and
analyses in Section 4.3. Next, we provide a discussion of
AGGCN in Section 4.4, and we present an ablation study in
Section 4.5. Finally, we describe a case study in Section 4.6

4.1 Datasets and experimental settings

To demonstrate the effectiveness of our proposed model,
we conduct experiments on five datasets, namely Lap14,
Rest14, Rest15, Rest16 and Twitter, which are originally
from SemEval 2014 task 4,2 SemEval 2015 task 12,3

SemEval 2016 task 54 and Twitter5 respectively. The
SemEval datesets consist of data in two categories:
Restaurant and Laptop. The word embeddings that are
fixed in the Twitter dataset consist of data in one category:
T witter , and the reviews include three sentiment polarity

2Available at: http://alt.qcri.org/semeval2014/task4/
3Available at: http://alt.qcri.org/semeval2015/task12/
4Available at: http://alt.qcri.org/semeval2016/task5/
5Available at: http://goo.gl/5Enpu7
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labels: positive, negative, and neutral. The dataset statistics
are shown in Table 3.

In our experiments, we apply the pretrained GloVe
vectors with 300 dimensions to initialize the word
embeddings. The dimension of the hidden state vectors is
set to 300. All the weight matrices obtain their initial values
from a uniform distributed U (−0.1, 0.1). All the models are
optimized using the Adam optimizer with the learning rate
set to 0.001. The L2 regularization is set to 0.00001, and
the batch size is set to 32. In addition, the number of GCN
layers is set to 2, which was the best depth found during
the experiment. To evaluate the performance, we obtain the
experimental results by averaging the results of 20 runs with
random initialization, and we adopt accuracy and the macro-
averaged F1-score (Macro-F1) as the evaluation metrics.
The Macro-F1 metric is more appropriate when the data set
is unbalanced.

4.2 Baselinemodels

To evaluate the effectiveness of our model, we compare it
with the following baseline models on all five datasets:

TD-LSTM constructs aspect-specific representation by
the left context with aspect and the right context with
aspect and then employs two LSTMs to model them [31].
ATAE-LSTM generates an attention vector by combin-
ing aspect embedding with hidden state, and it appends
the aspect embedding into each word vector to better
capitalize on the aspect information [36].
MenNet uses a deep memory network on the context
word embeddings for sentence representation to capture
the relevance between each context word and the aspect.
Finally, the output of the last attention layer is used to
infer aspect polarity [32].
IAN first learns attention from the contexts and aspect
terms. Then, the representations for aspect terms and con-
texts are generated separately. Finally, it concatenates

Table 3 Dataset description

Dataset Positive Negative Neutral

Lap14 Train 994 870 464

Text 341 128 169

Rest14 Train 2164 807 637

Text 728 193 196

Rest15 Train 978 307 36

Text 326 182 34

Rest16 Train 1230 417 62

Text 440 107 28

Twitter Train 1561 1560 3127

Text 173 1743 346

the aspect term representation and the context representa-
tion to predict the sentiment polarity of the aspect terms
within its contexts [24].
AOA jointly learns the representations for aspects and
sentences and automatically focuses on the important
parts in sentences [12].
TNET proposed context-preserving transformation (C-
PT) to preserve and strengthen the informative part of
contexts [17].
AS-GCN exploits syntactical dependency structures
within a sentence and resolves the long-range multiword
dependency issue for aspect-based sentiment classifica-
tion [45].
DMTL uses a shared layer to learn the common features
of sentiment prediction (SP) and position prediction (PP).
Then, it uses two task-specific layers to learn the features
specific to the tasks and perform PP and SP in parallel
[49].

4.3 Experimental results and analyses

As shown in Table 4, we report the performance of all the
baseline models and our proposed AGGCN model. From
Table 4, we can make the following observations:

Compared with the baseline models, AGGCN achie-ves
the best performances on the Rest14, Rest16 and Twit-
ter datasets. On the Rest14 datasets, compared with the
best baseline model DMTL, AGGCN achieves absolute
increases of 2.14% and 1.33% in accuracy and Macro-
F1, respectively. These results demonstrate the effectiveness
of using the syntactic information and long-range senti-
ment dependencies. On the Rest16 and Twitter datasets,
compared with the best baseline model AS-GCN, AGGCN
achieves absolute increases of 1.54% and 1.07% in accu-
racy, respectively, and it also achieves absolute increases of
6.44% and 1.80% in Macro-F1. These results demonstrate
that encoding the aspect-specific information from scratch
can increase the model accuracy for sentiment analysis. The
accuracy of AGGCN is slightly below that of AS-GCN on
Lap14, and AS-GCN also achieves the best performance on
the Lap14 datasets. AS-GCN makes full use of the syntac-
tical dependency structures within a sentence and resolves
the long-range multiword dependency issue. One possible
reason for this discrepancy is that the Lap14 datasets are not
as sensitive to aspect-specific information but they are more
sensitive to syntactic information. In addition, the perfor-
mance of AGGCN is lower than that of DMTL on Rest15,
where DMTL also shows the best performance on Rest15.
DMTL uses a shared layer to learn the common features of
SP and PP. Then, it utilizes two task-specific layers to learn
the features specific to the tasks and performs PP and SP in
parallel. DMTL pays more attention to the influence of posi-
tion information on the model. Its best results on the Rest15
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Table 4 Average accuracy and
macro-F1 score over 20 runs
with random initialization. The
two best results on each dataset
are shown in bold font

Model Lap14 Rest14 Rest15 Rest16 Twitter

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

TD-LSTM 71.80 68.46 78.00 68.43 76.39 58.70 82.16 54.21 69.89 66.21

ATAE-LSTM 68.88 63.93 78.60 67.02 78.48 62.84 83.77 61.71 70.14 66.03

MenNet 70.64 65.17 79.16 69.53 77.89 59.52 83.04 57.91 71.48 69.90

IAN 71.95 67.14 79.42 70.01 78.18 52.45 84.74 55.21 72.45 71.26

AOA 73.11 68.47 79.06 70.13 78.17 57.02 87.50 66.21 72.30 70.20

TNET 74.95 70.16 80.77 72.03 78.19 60.67 88.72 70.16 72.57 71.13

AS-GCN 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 72.15 70.40

DMTL 73.35 68.93 82.23 72.49 82.72 66.94 88.13 71.48 – –

AGGCN 73.53 68.99 84.37 73.82 80.27 64.51 90.53 73.92 73.64 72.20

datasets may be because the Rest15 dataset is not as sensi-
tive to syntactic information and long-range dependencies
as it is to position information.

4.4 Discussion of AGGCN

One highly important parameter in AGGCN is the number
of GCN layers because that value affects the performance of
our model. To demonstrate the effectiveness of our proposed
model, we investigate the effect of the layer numberL on the
final performance of AGGCN, and we conduct experiments
with different numbers of GCN layers from 1 to 9. The
performance results are shown in Figs. 3 and 4.

As the results in Figs. 3 and 4 show, the model achieves
the best performances when the number of GCN layers
is 2. When the number of GCN layers is larger than 2,
the performance degrades as the number of GCN layers
increases on both datasets. One possible reason for this
performance drop phenomenon may be that as the number

Fig. 3 The effect of the different layers number in Accuracy

of model parameters increases, the model becomes more
difficult to train and tends to overfit.

4.5 Ablation study

To investigate the impacts of each component on AGGCN, we
conducted an ablation study. The results are shown in Table 5.

AGGCN w/o AG denotes a model with the aspect gate
component removed. As the results show, when we remove
the aspect gate, the performance of AGGCN degrades on the
Rest14, Rest15, Rest16 and Twitter datasets but it improves
on the Lap14 data sets. These results demonstrate that
the aspect gate helps the model better identify and extract
information on specific aspects. Specifically, recalling the
result on the Lap14 datasets in Table 4, the reasons for
the performance degradation of our proposed model may
be that Lap14 datasets are less sensitive to aspect-specific
information but are more sensitive to syntactic information.
The notation w/o AGGCN w/o GCN denotes a model from

Fig. 4 The effect of the different layers number in Macro-F1
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Table 5 Ablation study of the AGGCN on five datasets, AG means aspect gate

Model Lap14 Rest14 Rest15 Rest16 Twitter

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

AGGCN 73.53 68.99 84.37 73.82 80.27 64.51 90.53 73.92 73.64 72.20

AGGCN w/o AG 75.53 71.04 80.76 72.01 79.66 62.01 89.04 67.52 72.12 70.36

AGGCN w/o GCN 72.33 68.41 81.15 72.42 78.24 63.95 88.70 73.47 74.54 73.14

AGGCN w/o pos. 73.07 68.70 82.37 73.12 75.99 63.36 90.36 73.73 73.22 71.19

AGGCN w/o mask 72.99 67.28 81.87 73.77 78.29 64.14 89.30 73.82 73.08 71.55

The two best results on each dataset are shown in bold font

which we removed the GCN mechanism. When we remove
the GCN component, the performance of AGGCN drops
on the Lap 14, Rest14, Rest15, and Rest16 datasets but
improves on the Twitter dataset. This result demonstrates
that the GCN simultaneously captures both the syntactic
information and the long-range sentiment dependencies.
One possible reason for the performance degradation
is that the Twitter dataset is not sensitive to syntactic
information and long-range sentiment dependencies. The
notation AGGCN w/o pos. denotes a model from which
we removed the position-aware transformation component.
Compared with the complete AGGCN, the performance of
AGGCN w/o pos. falls on all five datasets but especially
on Rest15. Recall the performance of the baseline model
DMTL in Table 4, which pays more attention to position
information. We can conclude that the Rest15 datasets

are more sensitive to position information. The notation
AGGCN w/o mask denotes a model from which we removed
the mask component. The performance of AGGCN w/o
mask falls on all five datasets, demonstrating that the mask
mechanism helps the AGGCN perceive contexts around the
aspect in a way that considers both syntactical dependencies
and long-range sentiment dependencies.

4.6 Case study

To provide an intuitive understanding of how the AGGCN
works with different components, we adopted a case study
as a test example for illustrative purposes. We constructed
heat maps to visualize the attention weights on the words
computed by the three models in which the color depth
denotes the semantic relatedness level between the given

Fig. 5 Visualization of attention
from AGGCN, AGGCN w/o AG
and AGGCN w/o GCN on a
testing example
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aspect and each word. More depth indicates a stronger
relation to the given aspect. The results are shown in Fig. 5.

In this sentence, the aspect word “restaurant” is the tar-
get of negative sentiment; the aspect words “drinks” and
“food” are connected by the conjunction “and” to express
positive sentiment; and the conjunction “but” reverses the
previous negative sentiment. By comparing the heat maps of
AGGCN and AGGCN w/o AG, we find that AGGCN accu-
rately focuses on three aspects in the sentence: “restaurant”,
“drinks” and “food” and it also pays attention to the con-
junctions “but” and “and”. This phenomenon indicates that
AGGCN not only identities aspect information but also
perceives the context in a way that considers both syntac-
tic information and long emotional dependency. When we
remove the aspect gate, as can be seen in the heat maps in
the second row, the color of the aspect words “restaurant”,
“drinks” and “food” becomes lighter. This phenomenon
indicates that the ability of AGGCN to focus on aspects is
weakened. When we remove the GCN, as seen from the
third heat maps, AGGCN no longer focuses on the con-
junctions “but” and “and”. The ASGCN w/o GCN model
predicts the polarity of aspect “drinks” by the word “fantas-
tic” and the polarity of aspect “food” by the word “superb”
in isolation, ignoring the relation between the two aspects.

From the above results, we can conclude that our pro-
posed model can not only identify the aspect and address
the lack of aspect information in prior models through the
special aspect gate but also perceive the contexts around
the aspect by considering both syntactical dependencies
and long-range sentiment dependencies. These mechanisms
make our model better for aspect-based sentiment analysis.

5 Conclusion and future work

In this paper, we proposed an Aspect-gated Graph Con-
volutional Network (AGGCN) for aspect-based sentiment
analysis. The AGGCN not only guides the encoding of
aspect-specific information from the outset and discards
aspect-independent information but also perceives contexts
around the aspect by considering both syntactical depen-
dencies and long-range sentiment dependencies. The exper-
imental results on multiple SemEval datasets demonstrate
the effectiveness of our proposed approach, and our model
outperforms the str-ong baseline models.

In future work, we plan to further improve the per-
formance of the model from the following aspects. First,
noise and biases may occur during the encoding of asp-
ect-specific information; therefore, it is necessary to intro-
duce a deep conversion transformation mechanism that can
decode the aspect information to ensure that it is com-
pletely and accurately embedded into the model. Second,

domain knowledge could be incorporated to improve model
generalizability.
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