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Abstract
Structural damage detection is of very importance to improve reliability and safety of civil structures. A novel sensor data-driven
structural damage detection method is proposed in this paper by combining continuous wavelet transform (CWT) with deep
convolutional neural network (DCNN). In this method, time-frequency images are obtained by CWT from original one-
dimensional sensor signals. And, DCNN is designed to mine structural damage features from the time-frequency images and
distinguish different structural damage condition. The proposed method is carried out on three-story building structure dataset
and steel frame dataset. The experimental results show that the proposed method has the high accuracy and robustness of the
damage detection compared with other existing machine learning methods.

Keywords Civil structures .Structuraldamagedetection .Continuouswavelet transform .Convolutionalneuralnetworks .Sensor
data

1 Introduction

Civil structures have been subjected to various kinds of dam-
age such as corrosion, fatigue, cracking, degradation, etc. It
might accelerate the deterioration of their service functions
and cause a major threat to public safety [1, 2]. Thus, health
monitoring and regular assessment are essential for the civil
structures. However, the effectiveness of traditional structural
condition assessment is limited by regular personnel inspec-
tions, which cause the delay in damage detection and increase
maintenance time and cost. It is urgently required for automat-
ically estimating health conditions of the civil structures by
using sensor networks and computer application systems. For
this purpose, many researchers have focused on structural
health monitoring (SHM) and structural damage detection
(SDD) systems to periodically perform data acquisition,

feature extraction, damage identification, and maintenance
decision-making [3–5].

With the rapid improvement in computing power, machine
learning (ML) algorithms have been widely used in the SDD
systems. TheML algorithms are adopted to interpret available
history data and gain knowledge from those, then make deci-
sions or prediction on new data. In recent years, it has been
proved that the ML methods are superior to traditional rule-
based learning methods, especially in dealing with small sam-
ple data. For examples, support vector machine [6–8], ensem-
ble algorithm [9] and Bayesian algorithm [10] are used for
extracting sensitive features from vibration signals and evalu-
ating the structural health condition. In addition, Rogers [11]
and Wu [12] used unsupervised ML methods to monitor and
evaluate the health status of civil structures. However, these
classical ML algorithms have an obvious limitation that they
are not good at dealing with massive and polluted data.

With the continuous increase of big data and the revolution
of deep learning, deep learning methods have attracted wide
attention and applied in many fields such as image classifica-
tion [13–15], and natural language processing [16]. It is be-
cause the deep learning methods have the ability to perform
automatic feature extraction from raw data [17, 18]. By
adopting the deep learning methods, vision-based SSD
methods are widely used in the engineering field. Recent inves-
tigations show that crack and corrosion detection methods
based on image processing techniques with CNN are
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meticulous and superior than the ML methods [19–21]. Xue
[22] and Gao [23] proposed the vision-based SSD methods
localize and display the cracks and corrosions with very high
accuracy. However, vision-based SDD methods have an obvi-
ous limitation that they cannot detect invisible structural dam-
age. In actual civil structures, the joints of the structure and
many other components are not easy inspected. Sensor-based
SDD methods can potentially identify invisible structural dam-
ages [24, 25]. Sensor-based deep Bayesian belief network was
proposed by Pan [26] to extract structural information and
probabilistically determine structural conditions, which
achieves good results. Abdel [27] and Zhang [28] proposed
the structural damage identification method based on sensor
data processing techniques with one-dimensional CNN, which
can detect the small local structural rigidity and mass changes.
However, the damage identification method based on one-
dimensional CNN has poor performance for contaminated data,
because it directly processes one-dimensional sensor signal,
which may regard the contaminated information as
fault information. Hence, many scholars have studied pre-
processing methods for contaminated data to improve the ac-
curacy of damage identification in noisy environments. For
example,

Raich [29] adopted implicit redundant representation (IRR)
genetic algorithm to solve the problems of damage detection in
noise environment. Zhao [30] combined variational mode de-
composition (VMD) and probabilistic principal component
analysis (PPCA) to denoise the collected vibration signals from
a test rig and then achieve signal feature extraction and fault
classification with convolutional artificial neural network
(CNN). However, the pre-processing methods for one-
dimensional sensor signal with contaminated may eliminate
the damage information, resulting in unsatisfactory damage de-
tection results. Thus, it is highly demanded that an SDDmethod
is converted sensor data into image data and used to identify
invisible structural damages. Mousavi [31] and Zhao [32] de-
signed SDD method based on Hilbert-Huang transform and
artificial neural network to analyze the nonlinear structural re-
sponse and identify structural damage condition. Tehrani [33]
proposed SDD method based on short time fourier transform
(STFT) to identify structural damage condition,which achieves
good results. However, these methods mentioned above have
some shortcomings. For instance, the STFT method is not suit-
able for analyzing non-stationary signals whose statistic charac-
teristics vary with time, and HHT method has mode aliasing,
end effects and stop conditions. Time frequency analysis meth-
od based onCWT can effectively solve the above shortcomings,
owing that it is very suitable for non-stationary and noisy vibra-
tion signals. Fault diagnosis methods based on CWT-CNN [34,
35] are used for accurately diagnosing machinery fault in noisy
environments. However, it is unclear whether this method can
be widely used in civil structures and achieve high-precision
identification of structural damage in noisy environments.

In this paper, a high precision and robust SSD method is
proposed based on CWT-DCNN. In this method, CWT is
introduced to convert one-dimensional sensor signal into
time-frequency images, and the built DCNN model is trained
to detect and locate damages. Noted that raw signal is directly
transformed into time-frequency images without any pre-pro-
cessing. Such a transformation provides highly redundant in-
formation and helps DCNN to analyze information hidden in
the signals. Since DCNN has a strong capability of extracting
hidden features from time-frequency images, the proposed
method might achieve a high accuracy damage detection
and positioning, despite the signals having noise and unrelated
patterns. Finally, the proposed method is evaluated by a three-
story building structure from LOS ALAMOS national labora-
tory [36] and a steel frame from Qatar University Grandstand
Simulator (QUGS) [37]. The three-story building structure
and steel frame are commonly used to evaluate machine
learning-based SHM and SSD.

The main contributions of this paper are summarized as
follows. (1) A novel sensor data-driven structural damage de-
tection method is proposed by combining CWT with DCNN,
which can directly process the sensor signal and accurately
identify the structural damage condition. (2) The comprehen-
sive experiments based on two structure equipment are con-
ducted on explore the effectiveness of the proposed method.
The results demonstrate that the proposed method might
achieve a high accuracy damage detection and positioning,
despite the signals having noise and unrelated patterns.
Meanwhile, several existing SSD approaches built on ML
algorithms and deep neural networks are selected for compre-
hensive analysis, and the results demonstrate the effectiveness
and superiority of the proposed method.

The rest of the paper is organized as follows. Section 2
describes the proposed CWT-DCNN architecture in detail.
Section 3 introduces structural damage detection method
based on CWT-DCNN. Section 4 presents the evaluation of
the proposed method using the three-story building structure
dataset and steel frame dataset. Finally, Section 5 summarizes
the proposed methods and potential topics for future research.

2 Proposed CWT-DCNN architecture

The architecture of the designed CWT-DCNN is shown in
Fig. 1. It consists of thirteen layers, i.e., input layer, CWT
layer, convolutional layers (Conv1, Conv2, Conv3, Conv4,
Conv5), max pooling layers (MP1,MP2,MP3), fully connect-
ed (FC) layers, and classification layer (SFM). In this frame,
raw sensor data are processed in the CWT layer.
Representative features are extracted in the convolutional
layers and the max pooling layers from the output of the
CWT layer. The Batch normalization (BN) and Dropout are
used to prevent model overfitting in the convolutional layers
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and the max pooling layers. Non-linear functions are adopted
in the FC layers to fit the extracted features. The structural
damage conditions are identified in the SFM layer.

2.1 Continuous wavelet transform layer

The CWT is introduced to transform time-domain data into
time-frequency image. Extraction steps of wavelet time-
frequency images are shown in the Fig. 2. First of all, n con-
secutive time-domain data points are randomly sampled from
the original signal with sliding window. Then, the CWT of the
consecutive time-domain data s tð Þ is defined as:

W a; bð Þ ¼ 1ffiffiffi
a

p
Z þ1

s tð Þ t b
a

dt ð1Þ

wherea andb represent control scaling and wavelet translation
factor of the s tð Þ, respectively.  tð Þ is wavelet basis function.
The frequency distribution corresponding to the signal scale is
obtained as:

Fa ¼ Fc f s
a

ð2Þ

where Fc is the center frequency of the wavelet and describes

the general characteristics of the wavelet. The f s is the sam-
pling frequency of the raw signal, andFa is the actual frequen-
cy corresponding to the scale a. The coefficient matrix con-
verted by CWT is transformed into time-frequency image.
Finally, the unified time-frequency images with the size of
224*224 are inputted into DCNN.

2.2 Convolutional layer

Convolutional operation is used to extract feature images by
sliding on the image with convolution kernel. In this paper,
time-frequency images inputted into the convolutional layer
are defined as xlðrl; clÞ, where rl and cl represents the length
and width of the time-frequency images respectively. Output
Cln of the convolutional layer is formulated as:

Cln ¼ f ðW 1ð Þxl þ B 1ð ÞÞ ð3Þ

where W 1ð Þ and B 1ð Þ represent weight and bias, respectively.
f represents activation function of nonlinear mapping.
Actual size of feature image Cln is described as:

S Clnð Þ ¼ rl þ 2 p rl
s

þ 1

cs þ 2 p cs
s

þ 1 KC ð4Þ

where KC is the number of convolution kernel, the rs and cs
respectively represents the length and width of the convolu-
tion kernel. Thep represents the edge extension parameter, and
thes is the step size of the convolution kernel.

2.3 Pooling layer

After pooling layer, the dimension of output features and the
number of parameters will increase, which makes the model
easy to over fit and has low fault tolerance. Based on this,
the pooling layer is used to reduce the dimensionality of
output feature maps. Pooling operation is used to replace

Input
Layer CWT

Layer
Conv1 MP1 Conv2 MP2 Conv3 Conv4 Conv5 MP3 FC1 FC2

Cov7×7 BNPoll fcCov5×5 Cov3×3 Droput

SFM

Fig. 1 Architecture of the CWT-DCNN

Fig. 2 Flowchart of time-frequency image extraction
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the output of a certain position in the network with the over-
all statistical characteristics of its neighboring outputs,
which reduce parameters of the network structure and
amount of calculation. In this paper, maximum pooling ker-
nel is defined as Pðrp cpÞ, where rp and cp respectively
represents the length and width of the maximum pooling
kernel. The Clðr cÞ is output of the convolutional layer.
Pi (i ¼ 1; 2; 3KpÞ are multiple feature images. The maxi-
mum pooling process is expressed as:

Pi ¼ MaxPðrp cpÞ Clð Þ ð5Þ

The output size of max pool layer is derived as:

S Pið Þ ¼ r þ 2 p rp
s

þ 1
cþ 2 p cp

s
þ 1 Kp

ð6Þ
whereKp is the number of pooling kernel and p represents the
edge extension parameter. s is the step size of the convolution
kernel.

2.4 Fully-connected layer

The multiple neurons in the Fc layer are used to non-linearly
fit its input from the MP3 layer. The connected operation is
described as:

Y ¼ f
X

u wþ b ð7Þ

where u is the outputs of the MP3 layer, Y represents the
outputs of FC layer such as FC1. The w and b denotes the
weight and additive bias term respectively, and f is activa-
tion function. In this paper, the activation function of the FC
layers is rectified linear unit function. In addition, dropout
between FC layers is added to improve the generalization
ability of the network and avoid overfitting of the network.

2.5 Classification layer

The structural damage degrees are identified in the SFM layer.
Softmax is adopted in the SFM layer, which is used to solve
the multi-classification problem. The calculation is given by

Y i ¼ exp uið ÞPn
i¼1exp uið Þ ð8Þ

where Y i is the structural-state identification result, ui repre-
sents the outputs of FC2 layer. The Eq. (8) describes that
probabilities of all predictive candidates are evaluated, and
the candidate with the highest possibility is output as the final
result.

3 Proposed CWT-DCNN based on structural
damage detection method

A CWT-DCNN based SSD method is proposed by adopting
CWT to convert one-dimensional sensor signal into time-
frequency image, DCNN to mine structural damage features
from the time-frequency images and distinguish different
structural damage condition. Figure 3 shows the specific steps
of structural damage detection. Firstly, the datasets are obtain-
ed from slicing with raw vibration sensor signal. The datasets
are randomly divided into training datasets, verification
datasets and testing datasets according to a certain proportion.
Then, time-frequency images are obtained by CWT on train-
ing datasets, which are inputted into the DCNN model to
continuously iterate and update the model parameters by the
loss function and optimizer. The purpose of verification
datasets is to prevent the DCNN model from overfitting and
evaluate the quality of each training mode. Finally, identifica-
tion performance and robustness of the CWT-DCNN model
are evaluated on the testing datasets.

In the training process of CWT-DCNN model, the one-
dimensional vibration time domain signal is directly inputted
into CWT layer, and time-frequency images are automatically
extracted. The unified time-frequency images with the size of
224*224 are inputted into the convolution layers for convolu-
tion operation to extract the feature images (Cln ). The Max
pool layers selects representative features from the feature
image (Cln ) to reduce the dimension of the feature images.
In order to prevent the model from overfitting, (BN) and drop-
out are added after the convolution layers and the max pooling
layers. After five convolutions and three max pooling opera-
tions, all the neurons from the MP3 layer are connected in FC
layers, and initial structural damage degree are identified in
the SFM layer. Then, the model is iterated and updated by
optimizer and loss function. The optimizer is used to contin-
uously optimize the DCNN model parameters. Adam

Training 
dataset

Validation
dataset

Testing
dataset

CWT layer

Convolution layer

Max pooling layer

Classification 
layer

D
am

age conditions

training

testing
Training 
dataset

Validation
dataset

Testing
dataset

CWT layer

Convolution layer

Max pooling layer

Classification 
layer

D
am

age conditions

training

testing

Fig. 3 Flowchart of the proposed CWT-DCNN base on structural dam-
age detection
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optimization used in the paper is configured as: learning rate =
0.0001, 1 =0.9, 2 =0.999, ϵ=10−8, and decay=0.001. The
loss function is used to evaluate the training result and decide
whether the training process stops. The CrossEntropyLoss
function is used in the paper, which is expressed as:

cross entropyloss
XN

K¼1
ðPK log qkÞ ð9Þ

where PK represents the true value, qk is the predicted value.
Finally, the completion of the model training process de-

pends on whether the CWT-DCNN model achieve high iden-
tification accuracy and the loss error is the lowest. After the
model training process, the testing datasets is used to evaluate
the trained model. If the testing accuracy meets the require-
ments, the trained CWT-DCNN model can be applied to ac-
tual structural damage detection.

4 Experiment studies

The section uses two case to evaluate the effectiveness of the
proposed method.

4.1 Case one: damage detection of building structure

4.1.1 Experimental setup and data description

The proposed CWT-DCNN model is validate by using a
three-story building structure dataset from LOS ALAMOS
national laboratory [36]. As shown in Fig. 4, the three-story
building model is made of aluminum columns and plates con-
nected by bolts, and the structure can move along the track in
the x direction. Each layer of the structure passes through 4
aluminum columns (17.7 cm × 2.5 cm × 0.6 cm), and the up-
per and lower ends are connected to an aluminum plate
(30.5 cm × 30.5 cm × 2.5 cm) to form a four-degree-of-
freedom system. The change of the structural stiffness is

added additional mass. Furthermore, the degree of nonlinear
damage is adjusted by regulating the gap between the cantile-
ver column and the buffer under the top layer of the structure.

Table 1 shows 17 different scenarios of three-story
building structure. Each scenario is repeated ten times,
and the four sensors recorded the response data of each
testing. Due to the damage of the structure mainly caused
by nonlinearity, the degree of structural damage is related
to the gap between the cantilever column and the buffer
[20]. Therefore, the 17 scenarios can be divided into six
scenarios depending on the degree of structural damage,
as listed in Table 2. In this experiment, in order to expand
the number of data sets, four sensor data are used, and
training samples is enhanced during the training process.
Datasets are sliced with the window of 1024 points. 2280
samples are obtained from each scenario datasets. Then,
the datasets are divided for training datasets, verification
datasets and testing datasets according to the ratio of
80%:10%:10%, as listed in Table 2.

4.1.2 CWT-DCNN testing result

Raw one-dimensional signal that is set to a scale factor of
1024, is analyzed by CWT in the time-frequency domain.
The 1024 × 1024 coefficient matrix is extracted by wavelet
function from each acquired signal. Then, the coefficient ma-
trix is converted to time-frequency image, and the time-
frequency images are set as image size of 224 × 224.
Figure 5 shows the process of extracting time-frequency im-
ages for six different structural damage condition, which are
10% damage, 20% damage, 30% damage, 40% damage and
50% damage. It can be seen from Fig. 5 that the time-
frequency images of different structural damage condition
are different, and the frequency fluctuation of the time-
frequency image increases with the increase of damage de-
gree. In this way, DCNN model can better identify different
structural damage degree.

Fig. 4 Experiment setup of case
one
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The detailed configuration of the applied DCNN mod-
el for structural damage degree detection is shown in
Table 3. The five-fold cross-validation results of the
three-story building structure dataset are shown in
Table 4. In each iteration, the training accuracy is close
to 100%, the verification accuracy is 99.802% on average
and the testing accuracy is 99.795% on average. This
result shows that the CWT-DCNN model is suitable for
structural damage detection. The training history of Fold
1 is presented as an example in Fig. 6. Plotted are the
accuracies of the training, testing and validation datasets
in each epoch. The accuracies of validation and testing
reached 90% after Epoch7. It is seen that CWT-DCNN
model is trained at faster convergence speed and balance.

Figure 7 presents the confusion matrix of the best of five
trials. Seen from Fig. 7, the overall identification accuracy of
six structural damage condition is 99.92%, error rate is 0.08%,
and undamaged, 20% damage and 50% damage are 100%.
While the 10% damage and 30% damage had wrong

identification, but its accuracy are still over 99%. In addition,
it can also be seen that there is no misidentification between
undamage and damage, which is an important assessment
standard for actual SSD.

4.1.3 Compared with other methods

The classical ML methods could extract sensitive features
from sensor data to assess the structural damage degree.
Table 5 shows the comparison of the identification accuracy
between the proposed methods and existing ML methods and
other deep neural networks. It should be seen that the pro-
posed method achieves the higher identification performance
than the existing methods including support vector machine
(SVM), CWT-SVM, random forest, back propagation (BP),
k-nearest neighbor (KNN), gaussian naive bayes
(GaussianNB) and deep Bayesian Belief Network Learning
proposed by Pan [27]. Therefore, this result also shows that
the proposed method has high identification ability in civil
structural damage degree.

In this case study, all experiment methods are performed on
the same hardware and software environment and the same
dataset. Table 6 shows the proposed method consumes more
time than other MLmethods in training time of 10 epochs and
the testing time of one testing sample. This is mainly because
time consuming mainly depends on the computer perfor-
mance. If there are good computing resources, the consump-
tion of time can be further shortened. On the contrary, more
attention should be paid to the accuracy of structural damage
identification, because this is related to the safety and reliabil-
ity of the structure.

Table 1 Different scenarios of the
structure Label State Condition Description

State #1 Undamaged Baseline condition

State #2 Undamaged Added mass (1.2 kg) at the base

State #3 Undamaged Added mass (1.2 kg) on the 1st floor

State #4 Undamaged 87.5% Stiffness reduction in column 1BD

State #5 Undamaged 87.5% Stiffness reduction in column 1AD and 1BD

State #6 Undamaged 87.5% Stiffness reduction in column 2BD

State #7 Undamaged 87.5% Stiffness reduction in column 2AD and 2BD

State #8 Undamaged 87.5% Stiffness reduction in column 3BD

State #9 Undamaged 87.5% Stiffness reduction in column 3AD and 3BD

State #10 damaged Gap (0.20 mm)

State #11 damaged Gap (0.15 mm)

State #12 damaged Gap (0.13 mm)

State #13 damaged Gap (0.10 mm)

State #14 damaged Gap (0.05 mm)

State #15 damaged Gap (0.20 mm) and mass (1.2 kg) at the base

State #16 damaged Gap (0.20 mm) and mass (1.2 kg) at the base

State #17 damaged Gap (0.10 mm) and mass (1.2 kg) on the 1st floor

Table 2 Description of used dataset

Condition
Type

State
selection

Dataset Division
(Training/Validation/
Testing)

Undamage State 1- State 9 16,416/2052/2052

10% damage State 10, State 15, State 16 5472/684/684

20% damage State 11 1824/228/228

30% damage State 12 1824/228/228

40% damage State 13, State 17 3648/456/456

50% damage State 14 1824/228/228
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4.1.4 Effectiveness of the CWT-DCNN for structural
uncertainties due to noise interferences

In practice, vibration signal contains inevitable noise by de-
vice instability or human errors. Therefore, it is very important
to quantify the robustness of SDD applications in processing
noisy data. For this purpose, varying degrees of Gaussian
noise are added to the testing datasets. The proposed CWT-
DCNN method is evaluated using noisy datasets. Figure 8
depicts how the structural damage identification accuracy
evolves with respect to the noise amplitude. It can be seen that

the proposed method maintains highly accurate results at low
level of noise. The identification accuracy decreases with the
increasing noise level. However, the identification ability be-
tween structural damage and structural undamage is more val-
ued in practical SHM applications, while proposed method
remain a high identification ability between structural damage
and structural undamage with the increasing noise level.
These results confirm that the proposed method has strong
robustness and can be applied for data contaminated by actual
environmental noise.

50%Damage

40%Damage

30%Damage

20%Damage

10%Damage

Undamage

224×224 The time-frequency image

Time-domain Singal

Undamage 10%Damage 20%Damage

30%Damage 40%Damage 50%Damage

Fig. 5 Time-frequency image
transformation of six structural
damage states

Table 3 The configuration of the
DCNN No. Layer Type No.of Filters Kernel

Size
Stride Output Size Padding

1 Convolution 1 96 7 7 2 2 110 110 1

2 Max-pooling 1 N/A 3 3 2 55 55 1

3 Convolution 2 256 5 5 2 2 25 25 No

4 Max-pooling 2 N/A 3 3 2 13 13 1

5 Convolution 3 384 3 3 1 1 13 13 1

6 Convolution 4 256 3 3 1 1 13 13 1

7 Convolution 5 256 3 3 1 1 13 13 1

9 Max-pooling N/A 2 2 2 6 6 No

Ac
cu

ar
cy

(%
)

Epoch

Training

Validation

Testing

Fig. 6 Training procedure of the CWT-DCNN in case one

Table 4 Accuracy of five-fold cross validation

Training (%) Validation (%) Testing (%)

Flod1 99.997 99.913 99.919

Flod2 99.977 99.713 99.768

Flod3 99.971 99.742 99.742

Flod4 99.984 99.770 99.768

Flod5 99.984 99.871 99.777

Mean 99.987 99.802 99.795
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4.2 Case two: damage detection of steel frame

4.2.1 Experimental setup and data description

In this case, the proposed CWT-DCNN model is validate by
using a steel frame with 5 × 6 bolted joints from QUGS [37].
As shown in Fig. 9, the steel frame consists of 8 girders and 25
filler beams supported by 4 columns. The length of the 8

2052 0 0 0 0 0 100%

52.94% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0 683 0 0 0 0 100%

0.00% 17.62% 0.00% 0.00% 0.00% 0.00% 0.00%

0 1 228 1 0 0 99.13%

0.00% 0.00% 5.88% 0.00% 0.00% 0.00% 0.87%

0 0 0 226 0 0 100%

0.00% 0.00% 0.00% 5.83% 0.00% 0.00% 0.00%

0 0 0 1 456 0 99.78%

0.00% 0.00% 0.00% 0.00% 11.77% 0.00% 0.22%

0 0 0 0 0 228 100%

0.00% 0.00% 0.00% 0.00% 0.00% 5.88% 0.00%

100% 99.85% 100% 99.12% 100% 100% 99.92%

0.00% 0.15% 0.00% 0.88% 0.00% 0.00% 0.08%

undamage 10%damage 20%damage 30%damage 40%damage 50%damage

50%damage

undamage

10%damage

20%damage

30%damage

40%damage

Fig. 7 State identification
confusion matrix of the fold 1 in
case one

Table 5 Comparison of
the proposed method
with other methods

Methods Mean accuracy (%)

CWT-DCNN 99.9194

Pan [27] 95.1%

CWT-SVM 90.1547

SVM 89.9499

Random Forest 96.9078

BP 91.1764

KNN 95.9099

GaussianNB 73.0392

Table 6 Cost time for the proposed method and other method

Methods Training Time (s) Test Time (ms)

CWT-DCNN 3912.5 31

CWT-SVM 512.3 9.8

SVM 112.3 1.0

Random Forest 165.1 1.1

BP 95.8 0.8

KNN 84.5 0.5

GaussianNB 90.5 0.8

A
cc

ur
ac

y(
%

)

Added noise level(%)

Fig. 8 Evolution of identification accuracy on testing versus added-nosie
level

Fig. 9 Experiment setup of case two
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girders are 4.6 m, while the length of the 5 filler beams
in the cantilevered portion is about 1 m and the length
of the remaining 20 beams is 77 cm. In each experi-
ment, acceleration signals were collected in the environ-
ment of white noise shaker excitation at a sampling
frequency of 1024 Hz. The signals were recorded for
256 s, so that each signal contains 262,144 samples.
The QUGS experiment consists of 31 structural scenar-
ios, one of which is undamaged scenarios, and damage
was introduced to joints 1 to 30 in the scenarios 2–31,
respectively. The joint numbers are shown in the Fig. 9.
In this experiment, 2000 samples are obtained by slicing
with the window of 1024 points. Then, the datasets are
divided into training datasets, verification datasets and
testing datasets according to the ratio of 80%:10%:10%.
The training datasets, verification datasets and testing

datasets of each structural scenarios are 1600, 200,
200 samples respectively.

4.2.2 CWT-DCNN testing result

Five-fold cross-validation results in the QUGS dataset are
shown in Table 7. In each iteration, the training accuracy is
100%, the verification accuracy is 99.794% on average and
the testing accuracy is 99.610% on average. This result shows
that the CWT-DCNN model is suitable for structural damage
detection. In the Fig. 10, the label H represents undamage, and
the labels D1 to D30 represent the damage joints 1 to 30
respectively. Seen from Fig. 10, the overall identification ac-
curacy of 31 structural scenarios is 99.61%. It is also seen that
there is no misidentification between undamage and damage,
which is an important assessment standard for actual SSD.

Table 7 Accuracy of five-fold cross validation

Training (%) Validation (%) Testing (%)

Flod1 100 99.785 99.613

Flod2 100 99.778 99.604

Flod3 100 99.805 99.613

Flod4 100 99.818 99.613

Flod5 100 99.785 99.607

Mean 100 99.794 99.610

H 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D1 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D2 0 0 198 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D3 0 0 1 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D4 0 0 1 0 198 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99%

D5 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D6 0 0 0 0 0 0 199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D7 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D8 0 0 0 0 0 0 0 0 199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D9 0 0 0 0 0 0 0 0 0 200 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D10 0 0 0 0 0 0 0 0 0 0 198 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D11 0 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D12 0 0 0 0 0 0 0 0 0 0 0 0 200 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D13 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D14 0 0 0 0 1 0 0 0 0 0 0 0 0 1 199 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 98.50%

D15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 99.50%

D16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100%

D17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 99%

D18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 0 1 0 0 1 0 0 0 0 0 0 0 99%

D19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 99.50%

D20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 100%

D21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 100%

D22 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 200 1 0 0 0 0 0 0 0 99%

D23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 1 0 0 0 0 0 0 99.50%

D24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 199 0 0 0 0 0 0 100

D25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 200 1 0 0 0 0 99%

D26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 1 0 0 0 99.50%

D27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 198 0 0 0 99.50%

D28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 200 0 0 99.50%

D29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 0 100%

D30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 100%

100% 100% 99% 100% 99% 100% 99.50% 100% 99.50% 100% 99% 100% 100% 99% 99.50% 99% 100% 99% 100% 100% 99% 100% 100% 99% 99.50% 100% 99.50% 99.50% 100% 100% 100% 99.61%
H D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30

P
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Fig. 10 Damage joints identification confusion matrix of the fold 1 in case two

Table 8 Comparison of
the proposed method
with other methods

Methods Mean accuracy (%)

CWT-DCNN 99.613

CWT-SVM 83.0545

SVM 82.9499

Random Forest 83.1488

BP 85.2044

KNN 85.1269

GaussianNB 83.0392
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4.2.3 Comparative analysis

Classical ML methods could extract sensitive features from
sensor data to detect the structural damage joints. Table 8
shows the comparison of the identification accuracy between
the proposedmethods and existingMLmethods. It is seen that
the proposed method achieves the higher performance than
the existing ML methods including (SVM), CWT-SVM, ran-
dom forest, BP, KNN, GaussianNB. This result also indicates
that the proposed method has high identification ability in
civil structural joints damage.

4.2.4 Effectiveness of the CWT-DCNN for structural
uncertainties due to noise interferences

Figure 11 depicts how the structural damage identification
accuracy evolves with respect to the noise amplitude. It can
be seen that the proposed method maintains highly accurate
results at low level of noise. The identification accuracy de-
creases with the increasing noise level, but the identification
accuracy has remained above 80%. These results confirm that
the proposed method has strong robustness and can be applied
for data contaminated by actual environmental noise.

5 Conclusions and future work

This paper proposes a sensor data-driven structural damage
detectionmethod based on CWT-DCNN. The proposedmeth-
od has been proved to have strong identification performance
and robustness by the three-story building structure dataset
from LOS ALAMOS national laboratory and the steel frame
from QUGS. The two conclusions are drawn from the results.
One is that the proposed CWT-DCNN method is suitable for
structural damage level identification and structural joints

damage identification. The other is that the proposed method
has strong robustness and can be applied to actual structural
damage detection.

This method also has some limitations. For example, this
method needs to rely on a large number of lost damage data.

In future work, we will study a deep transfer learning meth-
od to promote the successful applications of damage identifi-
cation of civil structures with unlabeled data.
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