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Abstract
Imbalanced distributions present a great problem in machine learning classification tasks. Various algorithms based on cost-
sensitive learning have been developed to address the imbalanced distribution problem. However, classes with a hierarchical
tree structure create a new challenge for cost-sensitive learning. In this paper, we propose a cost-sensitive hierarchical
classification method based on multi-scale information entropy. We construct an information entropy threshold for each
level in the tree structure and assign cost-sensitive weights accordingly. First, we use the class hierarchy to divide a large
hierarchical classification problem into several smaller sub-classification problems. In this way, a large-scale classification
task can be decomposed into multiple, controllable, small-scale classification tasks. Second, we use a logistic regression
algorithm to obtain the probabilities of classes at each level. Then, we consider the information entropy at each level as a
threshold, which decreases inter-level error propagation in the tree structure. Finally, we design a cost-sensitive model based
on the information of each class and use hierarchical information entropy weights as cost-sensitive weights. Information
entropy measures the information of the majority and minority classes and allocates them different cost weights to solve
imbalanced distribution problems. Experiments on four imbalanced distribution datasets demonstrate that the cost-sensitive
hierarchical classification algorithm provides excellent efficiency and effectiveness.

Keywords Imbalanced distribution · Information entropy · Cost-sensitive · Hierarchical classification

1 Introduction

The imbalanced distribution problem is a special classi-
fication task in machine learning [22, 36, 44] in which
the minority classes include a smaller number of samples
than the majority classes. Therefore, there is a large num-
ber of minority classes, which are ignored and difficult
to model effectively. The imbalanced distribution problem
exists in numerous areas [7, 12, 29], such as image classifi-
cation [11], age estimation [24], cancer diagnosis [28], and
face recognition [47].

There are three challenges in addressing the imbalanced
distribution problem. First of all, the minority classes are
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an important part of the whole dataset. Thus, we should
consider them as seriously as the majority classes. Secondly,
traditional classifiers were initially designed for balanced
datasets. The lack of ability leads to hyperplane bias in the
majority classes. Thirdly, the samples in the minority classes
cannot contain rich information. The samples in different
classes cannot be correctly recognized.

The existing approaches above have tried to tackle
the imbalanced problem in binary and multi-classification.
However, many datasets contain dozens or hundreds of
imbalanced distribution classes, which are organized in
hierarchical trees. Hierarchical tree structures exist in
various applications, such as image classification [17,
50], protein classification, and texture classification [35].
The increasing number of classes within a hierarchical
structure [48] provides great supplementary information for
solving imbalanced distribution problems.

In this paper, we combine hierarchical classification [10,
26, 38] and cost-sensitive learning [25] to address imbal-
anced distribution datasets. The algorithm takes advantage
of the hierarchical information of classes in datasets to
design a cost-sensitive model. First, we make use of the
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hierarchical structure to divide a large-scale classification
problem into several small-scale ones. Small-scale classifi-
cation tasks are much easier to control and compute. Sec-
ond, the logistic regression algorithm is used to calculate the
probabilities of all classes on each level. This model obtains
more accurate classification probabilities without assuming
the distribution of the datasets. The hierarchical structure
provides hierarchical information of different classes. Then,
we set a threshold based on information entropy to deter-
mine the cost-sensitive factor for balancing the majority and
minority classes. The threshold extracts and measures the
information of the majority and minority classes to decide
the cost-sensitive factor that suits each class. The thresh-
old increases the accuracy of minority classes and reduces
inter-level error propagation on each level.

Finally, we design a cost-sensitive model based on hier-
archical information entropy [6] and the information [39,
41] of different classes. Two cost-sensitive methods provide
different punishments to prevent the classifier from bias-
ing the majority classes. We compare the proposed model
with the traditional hierarchical classification approach. In
terms of improving the overall accuracy, the accuracies of
the minority class are increased significantly.

The contributions of this paper are as follows:

• We build a quick, cost-sensitive, hierarchical classifi-
cation model to address imbalanced distribution data
problems. It is different from existing cost-sensitive
classification models, mainly on hierarchical structure.

• We construct an adaptive threshold strategy instead of a
fixed threshold value. With this strategy, the threshold
value is decided by the data rather than given by users.

• We compare the proposed algorithm with seven state-
of-the-art hierarchical algorithms on five imbalanced
distribution datasets to demonstrate its great efficiency
and effectiveness.

The remainder of this paper is presented as follows. In
Section 3, we introduce the proposed cost-sensitive hier-
archical classification algorithm. The experiment settings
about datasets, compared algorithms and evaluation metrics
are given in Section 4. Experimental results and discussion
about hierarchical classification on imbalanced distribution
datasets are in Section 5. Finally, we present the conclusions
and future work of this paper in Section 6.

2 Related work

Resampling [14, 23, 32] and cost-sensitive learning [13]
are two traditional solutions to the imbalanced distribution
problem.

The resampling method solves this problem by balancing
the numbers of samples in the majority and minority classes.

The resampling method changes the original data structure,
which loses precious data. The resampling methods include
undersampling of the majority classes and oversampling of
the minority classes. Liu et al. [20] used two undersampling
strategies which include the cluster centers to represent
the majority class and the nearest neighbors of the cluster
centers to address the class imbalanced data. Castellanos
et al. [5] proposed an approach based on adapting the
well-known synthetic minority oversampling technique
algorithm to the string space.

Cost-sensitive learning is a powerful tool for solving the
imbalanced distribution problem without altering the orig-
inal data. Researchers have done much work to address
imbalanced distribution problems with cost-sensitive meth-
ods [21, 37, 46]. For instance, Sahin et al. [30] proposed
a cost-sensitive decision tree algorithm for minimizing the
sum of misclassification costs and improving the true-
positive proportion of datasets. Similarly, Braytee et al. [2]
addressed a cost-sensitive strategy using the imbalanced
proportion of classes for feature extraction to punish the
majority classes. In addition, Cao et al. [4] designed a
novel framework for training a cost-sensitive classifier that
is driven by imbalanced evaluation criteria.

Some researchers have focused on cost-sensitive prac-
tical applications [33]. For instance, Sheng et al. [34]
constructed a decision tree to decrease the total misclassi-
fication costs and feature costs of medical diagnostic tests.
Zhang et al. [47] proposed two cost-sensitive methods using
Bayes decision theory and a k-NN classifier for solving
group face-recognition tasks.

3 Cost-sensitive hierarchical classification
algorithm

3.1 Basic framework

The framework involves cost-sensitive hierarchical classi-
fication via multi-scale information entropy for data with
an imbalanced distribution. It contains two cost-sensitive
weighting processes and an important threshold strategy.
The proposed framework is listed in Fig. 1, which contains
the following three parts:

(1) The first part of Fig. 1 introduces the hierarchical
structure used for imbalanced data and hierarchical
classification. The hierarchical class structure and
number of samples are listed in this tree. For instance,
there are three sub-classes of Class Animal, which
number 500, 30, and 300, respectively. The number
of samples varies greatly from class to class, which
results in imbalanced data with a hierarchical structure.
For hierarchical classification, the classifier classifies
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Fig. 1 The framework of cost -sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced distribution

the samples from coarse- to fine-grained. For the new
samples, we first divide them into coarse classes and
then subdivide them into fine classes.

(2) The second part of Fig. 1 presents hierarchical
classification with a threshold strategy. The classifier
computes the probability on the second level. The
algorithm computes the difference between the two
maximum probabilities. The algorithm computes
information entropy, based on the probability of each
class, as the threshold value.

(3) The third part of Fig. 1 introduces hierarchical clas-
sification with cost-sensitive learning. The algorithm
gives different cost-sensitive weights to different
classes based on the threshold. The classifier selects
the class according to the weighted probability.

3.2 Hierarchical structure and classification

We decompose a large-scale classification task into multiple
controllable small-scale classification tasks. All the classes
are grouped into the hierarchical tree structure. The root
node is at the top of the hierarchical tree structure. A sibling
node means that two or more nodes share the same parent
node. Nodes on the second level have sibling and child
nodes. Leaf nodes only have sibling nodes. An example of
a hierarchical tree structure is shown in Fig. 2. From this
figure, we have the following:

(1) Root node is Node Object;
(2) Node Animal is a sibling node of Node Plant;
(3) Node Animal has three leaf nodes.

Let X ∈ R
m×n be a data matrix, where m is the

number of samples, and n is the number of features. We
use xi to represent the i-th sample, xi ∈ R

m×n and X=
{x1;x2;· · · ;xm}. Let Y ∈ R

m×1 be a class vector. We use
yi to represent the class of xi , where yi ∈ Y and Y=
{y1;y2;· · · ;ym}.

Logistic regression is a great classification algorithm
used in supervised learning and has many advantages. It
can directly model the classification possibility without
assuming the data distribution in advance, thus avoiding

Fig. 2 Hierarchical classification tree structure (h = 3)
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problems caused by an inaccurate hypothesis distribution.
It can not only predict the category but can also predict
the approximate probability. The computing cost is low and
large amounts of data can be processed with few resources.
We can obtain parameter w and parameter b after training
the training set of the dataset. Parameter w is a matrix and
parameter b is a vector. We use a sigmoid function for the
probability p. The sigmoid function is denoted as follows:

p = 1

1 + e−wT xi−b
. (1)

In the hierarchical tree structure, logistic regression first
computes the probability of every node from the root node
to the leaf node. The probability that the i-th sample belongs
to j -th class on the h-th level is computed as the following
equation:

p
j
h = 1

1 + e−(wi
h)T xi−bi

h

. (2)

We define parameter pmax
h as the maximum probability

from all p
j
h on the h-th level. Maximum probability means

that the node has the shortest distance between itself and the
hyperplane that the classifier builds. The classifier selects
that node after comparing it with the probability of nodes
on the same level. The classifier computes the probability
of the child nodes of that node and selects the child node
with the maximum probability. In a top-down process, the
classifier repeats these two steps until the end is reached.
We can understand the process of hierarchical classification
better by referring to Fig. 2. The classifier determines the
probabilities of Nodes Animal, Furniture and Plant, which
are 0.2, 0.6, and 0.2, respectively. The classifier selects the
Node Furniture as the best choice. The classifier makes
the right choice on this level and computes the probability
of nodes that belong to Node Furniture on the next level.
The classifier still selects the node with the maximum
probability on this level. The leaf label finally selected is the
predicted label round after round.

3.3 Hierarchical classification with threshold

Hierarchical classification simply and directly selects the
node with the maximum probability as the best choice on
one level. However, there is only a slight gap between the
maximum probability and others. Direct selection of the
classifier leads to errors. The errors are passed to other
branches along the tree structure, such that the classifier
cannot obtain the correct classification and classification
accuracy is reduced. To avoid the classifier directly selecting
that node straight, the threshold is used as a judgment

condition. We set the threshold for re-measuring the node
with maximum probability.

The datasets we build are a collection of information.
We extract and measure the information we want from
all aspects of the classification. We make decisions about
what to do based on mathematical expectations in real life,
and information entropy is the mathematical expectation
of a random variable. We use information entropy as a
quantitative index of the information content of a system
so that it can be further used as a criterion for the
parameter selection. In the information entropy formula,
the negative logarithm of probability indicates the amount
of information carried by possible events. The sum of all
possible information multiplied by the probability of its
occurrence represents the expected value of all information
in the whole system.

We define parameter ie as the value of the information
entropy factor on each level. Parameter ie can be computed
as per the following equation:

ie = 1

2
∗

⎛
⎝1 −

k∑
j=1

p
j
hlog2p

j
h

⎞
⎠ , (3)

where j is the j -th class on this level, and k is the number
of classes on this level. We add one to the information
entropy value and multiply it by one in two. This step is
taken to prevent the information entropy value being >1.
We know that the difference between the two probabilities
is <1. We define parameter pmax2

h as the second maximum
probabilities on the h-th level, and parameter γ as the
difference between pmax

h and pmax2
h . We compare γ with ie

and assign a cost weight.

3.4 Hierarchical classification with cost-sensitive
learning

After judgment of the threshold, the cost-sensitive method
is used. We design a cost-sensitive model to re-measure
the importance of the node with maximum probability if
γ is greater than the value of the threshold. It combines
the prior and posterior probabilities, which avoids the
subjective bias of using only the prior probability and the
overfitting phenomenon of using the sample information
alone. Information entropy is composed of the uncertainty
of each node, and the variation in uncertainty between
nodes causes them to contribute different proportions to
the information entropy. In this way, we set the proportion
of information entropy as the posterior probability to
determine the greatest importance of each node.

In the hierarchical tree structure, the root node at the
top contains the coarse-grained information. By contrast,
the leaf node at the bottom has fine-grained information.
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Different levels of precision result in different information
weights, and different levels have different information
weights. An imbalanced distribution dataset is built with
classes containing more or fewer samples than others. The
more similar the numbers of samples in each class, the more
fair the classifier is. We consider hierarchical information
entropy and the number of samples in each class as two cost-
sensitive factors for balancing the gap between the majority
classes and minority classes. The value of hierarchical
information entropy at the h level can be denoted as ieh and
can be computed with the following equation:

ieh = 1

2
∗ Lh ∗

⎛
⎝1 −

k∑
j=1

p
j
hlog2p

j
h

⎞
⎠ , (4)

where Lh is the weight of the h-th level in the hierarchical
tree structure, h is the height of the hierarchical tree. We
set the level of the root node as L0. Since L0 is the root
node of the hierarchical tree, the weight of level L0 is set
to 0. We set the weight to be the same as the number of
levels. For example, the weight of level L1 is set to 1.
We can understand the process of calculating hierarchical
information entropy on each level more easily by referring
to Fig. 3.

The differences between the majority and minority
classes include the numbers of samples and the proportions
of each child class. The majority classes have more child
classes than the minority classes. We define parameter tj as
the proportion of child class of the i-th class. Similarly, we
count the number of samples of the j -th class as parameter
Nj . After comparing the threshold, we propose two cost
weights to address the imbalanced distribution of datasets.
We multiply p

j
h by tj to solve the imbalanced problem of

child classes on the upper level if γ is greater than ie. We
offer a cost weight if γ is less than ie. We consider ieh and
Nj as a cost weight for balancing the sample gap between
the majority and minority classes. We take the square
root of Nj as a factor to avoid an extremely imbalanced
distribution of sample numbers. We define parameter pc

j
h

Fig. 3 The calculation process of hierarchical information entropy on
each level

as the probability of the j -th class on the h-th level with a
cost-sensitive weight. We compute pc

j
h using the following

equation:

pc
j
h = p

j
h ∗ 1

(
√

Nj + ieh)
. (5)

In summary, we use information entropy as the threshold
in the hierarchical classification system. The cost-sensitive
model will be used for measurement work if γ is greater
than the threshold. The cost-sensitive model is based on
the posterior probability and the proportion of classes.
This process re-measures and confirms the advantage of
the node with the maximum probability on this level. We
use hierarchical information entropy and the number of
samples in each class as a cost-sensitive weight. We find
the square roots of these numbers to balance and reduce the
gap between the majority and minority classes. The cost-
sensitive algorithm supports the minority classes for higher
costs and reduces the gap between the high and low levels if
γ is less than the threshold.

An example of a cost-sensitive hierarchical algorithm
with a threshold is shown in Fig. 4. We make p2

1 = 0.1,
p3
1 = 0.8 and p4

1 = 0.1. The value of ie is equal to 0.95, so
the value of γ is less than the threshold. After reassigning
weights, we obtain Class 3 as the best choice. We obtain
p5
2 = 0.1 and p6

2 = 0.9. The value of ie is approximately
equal to 0.71 and the value of γ is greater than the threshold.
The cost-sensitive hierarchical algorithm assigns different
cost weights to different classes based on two conditions.
Finally, we obtain the best leaf node as Class 5.

The process of cost-sensitive hierarchical classification
for imbalanced distribution datasets based on information
entropy (CSHC) is set out in Algorithm 1. The threshold
strategy of CSHC is introduced in Line 11 of Algorithm 1,
and two cost-sensitive weights of CSHC are illustrated in
Lines 12, 13, 15, and 16 in Algorithm 1. The computational
complexity of the CSHC algorithm is O(cmn), where c is
the number of classes, m represents the number of samples,
and n is the number of features.

4 Experimental settings

We used 10-fold cross-validation in these experiments. We
used a computer with an Intel Core i7-3770 processor, 16
GB of memory, and theWindows 10 operating system.1 The
five imbalanced distribution datasets in our experiments are
introduced in Section 4.1. Seven state-of-the-art algorithms
used for comparison with our algorithm are introduced in

1Datasets and code used in this research have been uploaded to
GitHub. They are accessible at: https://github.com/fhqxa/CSHC.
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Fig. 4 Comparison of
hierarchical classification and
cost-sensitive hierarchical
classification with the threshold

Section 4.2. In Section 4.3, we introduce the two evaluation
metrics used in our experiments.

4.1 Datasets

A description of five experimental datasets is given in
Table 1. The description includes the number of sample,
feature, class, and height in these datasets.

ILSVRC57 [19]: The dataset is a subset of a public
dataset named WordNet. All classes are organized as same
as the hierarchical structure in WordNet dataset. The data of
ILSVRC57 are built in a three-level tree with 65 categories.
There are 57 leaf nodes and 4,096 features. These 57
leaf nodes are basically divided into 5 classes (Bird, Cat,

Dog, Boat, and Car). The leaf node with the most samples
involves 221 samples, and the leaf node with the least
samples includes 155 samples.

CAR196: CAR196 is an image classification dataset
which has 196 types of car pictures. There are 206 nodes
built in a three-level tree. It contains 15,685 samples into
196 leaf nodes. The leaf node with the most samples
contains 67 samples, and the leaf node with the least
samples has 18 samples.

SUN [43]: SUN dataset is modified by a scene
understanding image classification dataset. There are 343
nodes organized in a four-level height tree. 22,556 samples
are divided into 324 leaf nodes. The leaf node with the most
samples contains 1,075 samples, and the leaf node with the
least samples includes 36 samples.

DD [8]: DD is a protein dataset that contains protein
sequences. Protein sequences are represented by 473
features and divided into 27 important classes. It has a
three-level hierarchical tree structure that contains 4 non-
leaf nodes on the second level and 27 leaf nodes on the third
level. The leaf node with the most samples contains 361
samples, and the leaf node with the least samples contains
17 samples.

F194 [42]: F194 is also a protein dataset with a three-level
height tree. It includes 7 non-leaf nodes on the second level
and 194 leaf nodes on the third level. These 194 leaf nodes
stand for 194 protein classes. In these 194 classes, there are
361 samples in the leaf node with the most samples, but only
10 samples in the leaf node with the least samples.

Table 1 Data description

No. Dataset Sample Feature Node Leaf Height

1 ILSVRC57 11,845 4,096 65 57 4

2 CAR196 15,685 4,096 206 196 3

3 SUN 22,556 4,096 343 324 4

4 DD 3,625 473 32 27 3

5 F194 8,525 473 202 194 3
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4.2 Comparedmethods

(1) HFSNM: FSNM is a feature selection [3, 40] method
based on l2,1-norms minimization [27]. FSNM based
on loss function makes the process of feature selection
with joint sparsity efficient. The l2,1-norms used is
robust in outlier points. We make Transform FSNM
into a hierarchical feature selection algorithm named
HFSNM that is applied to hierarchical datasets. We
use support vector machine to classify the classes after
hierarchical feature selection.

(2) HmRMR: mRMR [28] algorithm is an approximation
of the best maximum dependency feature selection
algorithm in theory, which maximizes mutual infor-
mation between the selected features and the joint
distribution of classification variables. HmRMR [15]
has feature selection ability for hierarchical datasets.
After finishing hierarchical feature selection, we need
support vector machine to classify the classes.

(3) HRelief: Relief [18] algorithm is a feature selection
approach. Relief does subset search work instead of
global search and gives different weights to different
attributes. We modify Relief to HRelief for suiting
hierarchical datasets. After feature selection process,
support vector machine identifies the classes.

(4) HFISHER: Fisher Score [9] has good discriminating
capability for feature selection. Fisher Score finishes
the feature selection process using full data, which
is totally labeled. We modify FISHER Score feature
selection to HFISHER for hierarchical datasets and use
support vector machine to identify the labels.

(5) LBRM [45]: LBRM algorithm is a hierarchical clas-
sification method based on a local Bayes risk min-
imization approach. The LBRM algorithm balances
predicting risks for choose to go to a lower level or
to finish the prediction process at nodes on the tree
structure. The LBRM algorithm can decide not to go
down to the lower level. This step can greatly avoid
the inter-level error propagation in the hierarchical
structure.

(6) HCMP [16]: HCMP is a hierarchical classification
algorithm method using the best k-th paths for another
round classification at non-leaf nodes in a hierarchical
classification. The HCMP algorithm first classifies the
best several selection on each tree level with logistic
regression method. The HCMP algorithm then uses
random forest method to select the best node from
these several nodes.

(7) FSFHC [49]: FSFHC is a hierarchical classification
algorithm based on a recursive regularization feature
selection. FSFHC method uses the structural relation-
ship of hierarchical parent-child as its hierarchical
regularization strategy. Hilbert-Schmidt Independence

Criterion used in this method for measuring the dis-
tance of sibling nodes. Support vector machine algo-
rithm is used for identifying classes after hierarchical
feature selection.

4.3 Evaluationmetrics

Classification accuracy (accuracy) Accuracy is an important
evaluation metric to measure the classification performance
of classifiers. We compare the predicted labels of the
classifier with the correct labels, and the ratio of the correct
number of predicted labels to the total number is accuracy.

Hierarchical measure (FH ) Hierarchical F1 measure (FH )
is an important criterion for hierarchical classification. FH

measure considers the relationship between all ancestors
and descendants of each class. FH includes hierarchical
precision (PH ), hierarchical recall (RH ). PH , RH and FH

are defined as follows.

PH = |D̂aug ∩ Daug|
|D̂aug|

, (6)

RH = |D̂aug ∩ Daug|
|Daug| , (7)

FH = 2 · PH · RH

PH + RH

, (8)

where Daug = D ∪anc(D), D̂aug = D̂ ∪anc(D̂), | · | is the
number of elements, D is the right label, D̂ is the predicted
label, and anc(D) is the parent label set of the right label to
which the sample belongs.

5 Experimental results and discussion

In this section, we present the experimental results
and discussion from three perspectives. In Section 5.1,
we compare the running times of eight hierarchical
classification methods to verify the efficiency of the
CSHC algorithm. In Section 5.2, we compare the local
classification accuracy at non-leaf nodes to discuss the
impacts of cost sensitivity weights and the threshold
strategy on hierarchical classification. In Section 5.3, we
report the global hierarchical experimental results of the
eight algorithms in terms of the two evaluation metrics
to demonstrate the effectiveness of the proposed CSHC
algorithm.

5.1 Running time comparison

Table 2 reports the performance of the eight hierarchical
algorithms on the five datasets. Bold texts in Table 2 are
used to emphasize the optimal calculation time of each
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Table 2 Running time
comparison of six algorithms
on five different datasets (s)

Dataset (Avg.Rank) ILSVRC57 CAR196 SUN DD F194

HFSNM (5.6) 2,088.4 (5) 1,385.3 (3) 11,788 (6) 132 (7) 804.7 (7)

HmRMR (5.8) 13,684.4 (6) 6,623.1 (8) 19,822 (7) 32.7 (5) 55.7 (3)

HRelief (6.8) 25,601 (7) 3,038.4 (7) 27,574 (8) 92.1 (6) 293.2 (6)

HFISHER (3) 1,260 (4) 2,738.4 (5) 5,439 (4) 0.39 (1) 2.24 (1)

LBRM (2.6) 447.4 (1) 477.6 (1) 1,322 (2) 16.5 (4) 164.5 (5)

HCMP (6.4) 5639 (5) 2839.8 (6) 9059.3 (5) 429.8 (8) 1018.9 (8)

FSFHC (2.6) 448.9 (2) 1938.7 (4) 2170 (3) 2.5 (2) 7.8 (2)

CSHC (2.6) 503 (3) 503.4 (2) 1,056.9 (1) 11.1 (3) 77.7 (4)

dataset. LBRM, HCMP, and CSHC are all capable of
hierarchical classification. In processing large numbers of
samples and features, the hierarchical classification system
learned from hierarchical data and quickly completed
classification of the ILSVRC57, CAR196, and SUN
datasets. The four hierarchical algorithms with feature
selection needed a long feature-selection process and took
more than 1000 s to classify these three datasets. CSHC
achieved the best result on the SUN dataset. HFISHER had
the perfect performance on the DD and F194 datasets. The
hierarchical classification with feature selection algorithms
showed advantages on the two smaller datasets. These two
datasets were much smaller than the others in terms of
both samples and features. CSHC was a close second place
and achieved classification in 11.1 and 77.7 s on these two
datasets, respectively. The running time rank of the FSFHC
algorithm on the five datasets was stable. HCMP needed two
classification methods for data processing. It spent much
more than 100 s on each of the five datasets. In terms
of average rank, CSHC demonstrated good efficiency in
handling large and small datasets.

5.2 Compared with traditional hierarchical
classification at non-leaf nodes

In this section, we compare the CSHC algorithm with a
traditional hierarchical classifier (THC) on non-leaf nodes
of the DD and F194 datasets. Tables 3 and 4 introduce the
non-leaf nodes, numbers of child nodes, proportions of each
non-leaf node sample in the total samples, and classification
accuracy at non-leaf nodes on the DD and F194 datasets.

Table 3 Information of non-leaf nodes and accuracy of two algorithms
on DD dataset (%)

Node α β α/β α+ β

Child node 6 9 9 3

Proportion 16.38 27.87 39.8 15.94

THC 94.8 95.14 95.01 72.17

CSHC 95.3 94.35 93.01 78.03

The DD dataset is built as a three-level tree. There are
four child nodes of the root node. Nodes α, β, α/β, and α+β

are non-leaf nodes, called Nodes 1 to 4 for short. Nodes
1 and 4 are minority classes that have six and three child
nodes, respectively. The proportions of their samples are
significantly less than those of the other two nodes. The
DD dataset includes 3,625 samples in total, but four of the
classes have >300 samples. Most classes have about 100
samples. There are <50 samples in three of the classes. We
know that CSHC’s classification accuracy of Nodes 1 and
4 is higher than that of THC. The classification accuracy of
Node 4 by THC is 72%, while CSHC increases the accuracy
to 78%. The accuracy of the other two non-leaf nodes is
slightly reduced. In exchange, the accuracy of a minority
class and the overall accuracy of this dataset are improved.

The F194 dataset is built as a three-level tree. There are
seven non-leaf nodes on the second level. Nodes α, β, α/β,
α+β, Multi-domain, Membrane and cell surface (MCS) and
Small-proteins are non-leaf nodes. We call them Nodes 1
to 7 for convenience. We know there is a big difference
between the majority and minority classes from Table 4.
Nodes 5 to 7 are the minority classes, which occupy a small
number of samples and <10% of the total child nodes. The
accuracy of the minority classes is much less than that of the
majority. Node 5 has only 0.76% samples in this dataset. We
can see more intuitively that the accuracy of the minority
classes is significantly higher than that of THC after the
cost-sensitive method and threshold strategy are applied.
THC works well on several nodes, except for Nodes 5 and
6. The accuracies of Nodes 5 and 6 classified by THC are
1.49% and 26.79%, respectively. CSHC greatly improves
the accuracies of Nodes 5 to 7 by 32% and 25% more than
THC, respectively.

5.3 Experimental results and discussion
on the whole hierarchical tree

In this section, we discuss the experimental results for the
whole hierarchical tree. We first discuss the experimental
results of two smaller datasets. Figures 5 and 6 show the
experimental results in terms of two evaluation metrics
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Table 4 Information of non-
leaf nodes and accuracy of two
algorithms on F194 dataset (%)

Node α β α/ β α + β Multi-domain MCS Small-proteins

Child node 36 40 43 57 3 3 12

Proportion 17.28 23.37 29.74 23.24 0.76 0.95 4.66

THC 98.17 90.11 91.06 61.7 1.43 26.79 75.29

CSHC 98.1 89.9 89.49 61.75 33.51 51.98 88.03

on the DD and F194 datasets. HCMP obtained the best
results, with classification accuracies of 81.9% and 55.24%.
CSHC showed a great performance advantage on the two
datasets and is obviously more accurate than the other
hierarchical classification with feature selection methods,
achieving accuracies of 76.83% and 52.45% on the DD and
F194 datasets, respectively. HCMP selects several better
nodes on the basis of hierarchical classification and uses
the random forest method to perform another classification.
However, this causes HCMP to use much more running
time than CSHC. The other methods’ accuracies on the two
datasets are less than 70% and 50%, respectively. LBRM
behaves differently with the two datasets, producing an
accuracy of 67.77% on the DD dataset but only 17.92%
on the F194 dataset. HFSNM is second only to CSHC on
the two datasets, with accuracies of 69.1% and 34.08%,
respectively. The accuracy and FH of HFSNM and FSFHC
are exactly the same.

The CSHC, HCMP, and LBRM hierarchical classifica-
tion methods are ahead of the others in terms of the FH

metric. CSHC obtained FH of 89.4% and 78.74%, while
LBRM obtained FH of 88.65% and 75.52% on the DD
and F194 datasets, respectively. CSHC uses the threshold
strategy at non-leaf nodes and improves the accuracies of
minority classes on the second level. The advantages of this
strategy lie in its overall accuracy and hierarchical preci-
sion. Improvement in hierarchical precision makes CSHC

obtain a better value of the FH metric. LBRM balances
risks by considering going down or finishing the predic-
tion process at each node. It is like making decisions at
every non-leaf node. This process increases the hierarchi-
cal precision. HCMP takes advantage of two classification
processes at non-leaf nodes, which reduce errors at non-
leaf nodes and improve the FH . LBRM does not have good
accuracy on dataset F194, but the FH of LBRM means that
it classifies well at non-leaf nodes. HRelief is the worst
hierarchical classification algorithm and only obtained FH

values of 80.06% and 68.85% on the DD and F194 datasets,
respectively.

Figures 7, 8 and 9 show the experimental results of eight
hierarchical classification algorithms on three large datasets.
We observe the following:

The results of the four hierarchical classifiers that
use feature selection algorithms, in terms of the two
metrics, were averaged and are shown in Fig. 7a and b.
The accuracies of HFISHER, FSFHC, and HmRMR
were relatively close, at 85.01%, 85.53%, and 84.97%,
respectively. The accuracy of CSHC reached 86.61%, which
is 1% higher than the second-best classifier, FSFHC. The
FH of CSHC was 96.34%. The FH of HFISHER, HFSNM,
HmRMR, and HRelief were 95.8%, 95.77%, 95.81%, and
95.79%, respectively. LBRM reduced the gap with the
others, with an FH of 95.58%. The FH of HCMP and
HFSNM were the same, but the classification accuracy of

Fig. 5 Accuracy and FH on the DD dataset
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Fig. 6 Accuracy and FH on the F194 dataset

Fig. 7 Accuracy and FH on the ILSVRC57 dataset

Fig. 8 Accuracy and FH on the CAR196 dataset
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HFSNM was a little higher. The HCMP result is in sixth
place, as its two classification processes do not perform well
on this dataset.

The features in the CAR196 dataset were extracted after
deep learning. Figure 8 shows that the experimental results
of the four hierarchical classifiers with feature selection in
terms of the two evaluation metrics were similar, and only
a little less than that of CSHC. HCMP obtained a 67.21%
classification accuracy, which is at least 1.08% higher than
that of the others. The accuracy of LBRM was nearly
10% lower than that of the others. In the same way, the
performance of LBRM in terms of the FH evaluation metric
was poor. The four hierarchical classifiers with feature
selection algorithms use good-quality features to achieve
high accuracy and FH values. The accuracy of FSFHC was
lower than that of HCMP, but the FH value of FSFHC
was better. That shows that FSFHC performs better on the
inter-levels. Its accuracy and FH were 68.74% and 83.48%,
respectively. Therefore, the experimental results of CSHC
are very competitive.

Figure 9a and b reveal very different experimental results.
We can see that the accuracy of LBRM was the lowest,
but it was in third place in terms of the FH metric. This
indicates that LBRM has good performance in improving
the precision of non-leaf nodes but not the accuracy of final
leaf nodes. The result on the F194 and SUN datasets show
that LBRM is good in terms of the FH metric because of its
balanced risk strategy at non-leaf nodes. The two evaluation
metrics reflect the instability of LBRM and the advantage
of CSHC. The experimental results for HCMP and CSHC
are ahead of those of the other algorithms on the SUN
dataset. The HCMP algorithm had good results because
of its two classification processes. The results of FSFHC
on this dataset are normal. CSHC identified this image
classification dataset best, with accuracy and FH values of

67.01% and 86.06%, respectively. The results of the four
other hierarchical classification algorithms are consistent in
terms of the two evaluation metrics.

The experimental results for the five imbalanced
distribution datasets indicate that CSHC is more competitive
than the other algorithms. CSHC can complete classification
tasks quickly and maintain high accuracy. CSHC obtained
the best accuracy on three large datasets and the second-best
on two small datasets.

6 Conclusions and future work

We proposed a cost-sensitive hierarchical classification
method based on multi-scale information entropy for
addressing imbalanced distribution data. Unlike existing
cost-sensitive algorithms, our algorithm uses the hierarchi-
cal structure as additional and supplemental information. In
addition, we proposed an adaptive threshold method based
on hierarchical data that does not require users to specify
any parameters. Multi-scale information entropy is used in
our hierarchical cost-sensitive learning method to address
imbalanced distribution data. We compared our proposed
algorithm with seven powerful hierarchical algorithms on
five imbalanced distribution datasets. Our algorithm not
only improves the accuracy of classification with few sam-
ples, but also ensures the overall accuracy of classification.
For data with an imbalanced distribution, long-tail distribu-
tions create a new challenge because 80% of the samples are
distributed in 20% of the majority classes and the minority
only contain 20% of the samples. A good point to be con-
sidered is that we can get ideas from [1, 31] to build neural
network algorithms for big data issues. In future, we will
construct a neural network algorithm to address the long-tail
distribution problems.

Fig. 9 Accuracy and FH on the SUN dataset

5950 Cost-sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced...



Acknowledgements This work was supported by the National Natural
Science Foundation of China under Grant No. 61703196, the Natural
Science Foundation of Fujian Province under Grant No. 2018J01549,
and the President’s Fund of Minnan Normal University under Grant
No. KJ19021.

References

1. Ahmadian S, Khanteymoori A (2015) Training back propagation
neural networks using asexual reproduction optimization. In:
The 7th conference on information and knowledge technology,
pp 1–6

2. Braytee A, Wei L, Kennedy P (2016) A cost-sensitive learn-
ing strategy for feature extraction from imbalanced data. In:
International conference on neural information processing

3. Cai Z, Zhu W (2018) Multi-label feature selection via feature
manifold learning and sparsity regularization. Int J Mach Learn
Cybern 9(8):1321–1334

4. Cao P, Zhao D, Zaiane O (2013) An optimized cost-sensitive
SVM for imbalanced data learning. In: Pacific-Asia conference on
knowledge discovery and data mining

5. Castellanos F, Valero-Mas J, Calvo-Zaragoza J (2018) Oversam-
pling imbalanced data in the string space. Pattern Recognit Lett
103:32–38

6. Chen Y, Hu H, Tang K (2009) Constructing a decision tree
from data with hierarchical class labels. Exp Syst Appl 36:4838–
4847

7. Dekel O, Keshet J, Singer Y (2004) Large margin hierarchical
classification. In: International conference on machine learning

8. Ding C, Dubchak I (2001) Multi-class protein fold recognition
using support vector machines and neural networks. Bioinformat-
ics 17(4):349–358

9. Duda R, Hart P, Stork D (2001) Pattern classification. Wiley
10. Fan J, Gao Y, Luo H, Jain R (2008) Mining multilevel image

semantics via hierarchical classification. IEEE Trans Multimed
10(2):167–187

11. Fan J, Zhang J, Mei K, Peng J, Gao L (2015) Cost-sensitive
learning of hierarchical tree classifiers for large-scale image
classification and novel category detection. Pattern Recognit
48(5):1673–1687

12. Fawcett T, Provost F (1997) Adaptive fraud detection. Data Min
Knowl Discov 1(3):291–316

13. Feng F, Li K, Shen J (2020) Using cost-sensitive learning
and feature selection algorithms to improve the performance of
imbalanced classification. IEEE Access 10(99):1–12

14. Ghatasheh N, Faris H, Altaharwa I (2020) Business analytics in
telemarketing: cost-sensitive analysis of bank campaigns using
artificial neural networks. Appl Ences 10(7):2581–2592

15. Grimaudo L, Mellia M, Baralis E (2012) Hierarchical learning
for fine grained internet traffic classification. In: International
wireless communications and mobile computing conference

16. Guo S, Zhao H (2020) Hierarchical classification with multi-path
selection based on granular computing. Artif Intell Rev (1)1–23

17. Khan S, Hayat M, BennamounM, Sohel F, Togneri R (2018) Cost-
sensitive learning of deep feature representations from imbal-
anced data. IEEE Trans Neural Netw Learn Syst 29(8):3573–
3587

18. Kira K, Rendell L (1992) A practical approach to feature selection.
In: International workshop on machine learning

19. Krause J, Stark M, Deng J (2013) Li, F: 3D object representations
for fine-grained categorization. In: International IEEE workshop
on 3D representation and recognition

20. Lin W, Tsai C, Hu Y et al (2017) Clustering-based undersampling
in class-imbalanced data. Inf Sci 17(26):409–419

21. Ling C, Sheng S, Qiang Y (2006) Simple test strategies for cost-
sensitive decision trees. IEEE Trans Knowl Data Eng 8(18):1055–
1067

22. Liu J, Hu Q, Yu D (2008) A weighted rough set based method
developed for class imbalance learning. Inf Sci 178(4):1235–
1256

23. Liu X, Wu J, Zhou Z (2009) Exploratory undersampling for
class-imbalance learning. IEEE Trans Syst Man Cybern Part B
39(2):539–550

24. Lu J, Tan Y (2010) Cost-sensitive subspace learning for human
age estimation. In: Proceedings of the international conference on
image processing

25. Min F, He H, Qian Y et al (2011) Test-cost-sensitive
attribute reduction. Information Sciences An International Journal
181(22):4928–4942

26. Nakano F, Pinto W, Pappa G, Cerri R (2017) Top-down strategies
for hierarchical classification of transposable elements with
neural networks. In: International joint conference on neural
networks

27. Nie F, Huang H, Xiao C, Ding C (2010) Efficient and robust
feature selection via joint l2,1-norms minimization. In: Interna-
tional conference on neural information processing systems

28. Peng H, Long F, Ding C (2005) Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–
1238

29. Qing T, Wu G, Wang F (2005) Posterior probability support
vector machines for unbalanced data. IEEE Trans Neural Netw
16(6):1561–1573

30. Sahin Y, Bulkan S, Duman E (2013) A cost-sensitive decision
tree approach for fraud detection. Exp Syst Appl 40(15):5916–
5923

31. Sajad A, Ali K (2019) Evolving artificial neural networks using
butterfly optimization algorithm for data classification. In: Inter-
national conference on neural information processing, pp 596–
609

32. Sandrine D, Jane F (2002) A prediction-based resampling method
for estimating the number of clusters in a dataset. Genome Biol
3(7):1–21

33. Sayed J, Sajad A, Abbas K et al (2020) Neuroevolution-based
autonomous robot navigation: a comparative study. Cogn Syst Res
62:35–43

34. Sheng S, Ling C, Ni A, Zhang S (2006) Cost-sensitive test
strategies. In: Conference on AAAI Press

35. Sun A, Lim E (2001) Hierarchical text classification and
evaluation. In: IEEE international conference on data mining

36. Sun Y, Kamel M, Wong A, Wang Y (2007) Cost-sensitive
boosting for classification of imbalanced data. Pattern Recognit
40(12):3358–3378

37. Thai-Nghe N, Gantner Z, Schmidt L (2010) Cost-sensitive learn-
ing methods for imbalanced data. In: International joint confer-
ence on neural networks

38. Tuo Q, Zhao H, Hu Q (2019) Hierarchical feature selection with
subtree based graph regularization. Knowl-Based Syst 163:996–
1008

39. Wang C, Wang Y, Shao M, Qian Y, Chen D (2009) Fuzzy rough
attribute reduction for categorical data. IEEE Trans Fuzzy Syst
pp(99):1–12

40. Wang S, Zhu W (2018) Sparse graph embedding unsupervised
feature selection. IEEE Trans Syst Man Cybern Syst 48(3):329–
341

5951W. Zheng and H. Zhao



41. Wang C, Huang Y, Shao M, Hu Q, Chen D (2019) Feature
selection based on neighborhood self-information. IEEE Trans
Cybern pp(99):1–12

42. Wei L, Liao M, Gao X, Zou Q (2015) An improved protein
structural prediction method by incorporating both sequence
and structure information. IEEE Trans Nanobiosci 14(4):339–
349

43. Xiao J, Hays J, Ehinger K, Oliva A, Torralba A (2010) Sun
database: large-scale scene recognition from abbey to zoo. In:
Proceedings of IEEE conference on computer vision and pattern
recognition, vol 23, pp 3485–3492

44. Yu X, Liu J, Keung J (2020) Improving ranking-oriented defect
prediction using a cost-sensitive ranking SVM. IEEE Trans Reliab
69(1):139–153

45. Yu W, Hu Q, Zhou Y, Hong Z, Qian Y, Liang J (2017) Local
bayes risk minimization based stopping strategy for hierarchi-
cal classification. In: IEEE international conference on data
mining

46. Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning
by cost-proportionate example weighting. In: IEEE international
conference on data mining

47. Zhang Y, Zhou Z (2010) Cost-sensitive face recognition. IEEE
Trans Pattern Anal Mach Intell 10(32):1758–1769

48. Zhao H, Hu Q, Wang P (2017) Hierarchical feature selection
with recursive regularization. In: International joint conference on
artificial intelligence, pp 3483–3489

49. Zhao H, Hu Q, Zhu P et al (2019) A recursive regularization based
feature selection framework for hierarchical classification. IEEE
Trans Knowl Data Eng PP(99):10–23

50. Zhou Y, Hu Q, Yu W (2018) Deep super-class learning for long-
tail distributed image classification. Pattern Recognit 80:118–128

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Weijie Zheng is currently a
M.S. student with the Fujian
Key Laboratory of Granular
Computing and Application,
Minnan Normal University,
Zhangzhou, China. His cur-
rent research interests on data
mining and machine learning
for hierarchical classification.

Hong Zhao received the
Ph.D degree from Tianjin
University, Tianjin, China, in
2019. She received her M.S.
degree from Liaoning Normal
University, Dalian, China,
in 2006. She is currently a
Professor of the School of
Computer Science and the
Fujian Key Laboratory of
Granular Computing and
Application, Minnan Nor-
mal University, Zhangzhou,
China. She has authored over
40 journal and conference
papers in the areas of granular

computing based machine learning and cost-sensitive learning. Her
current research interests include rough sets, granular computing, and
data mining for hierarchical classification.

5952 Cost-sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced...


	Cost-sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced...
	Abstract
	Introduction
	Related work
	Cost-sensitive hierarchical classification algorithm
	Basic framework
	Hierarchical structure and classification
	Hierarchical classification with threshold
	Hierarchical classification with cost-sensitive learning

	Experimental settings
	Datasets
	Compared methods
	Evaluation metrics
	Classification accuracy (accuracy)
	Hierarchical measure (FH)



	Experimental results and discussion
	Running time comparison
	Compared with traditional hierarchical classification at non-leaf nodes
	Experimental results and discussion on the whole hierarchical tree

	Conclusions and future work
	References


