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Abstract
In this work, an improved moth-flame optimization algorithm is proposed to alleviate the problems of premature convergence
and convergence to local minima. From the perspective of diversity, an inertia weight of diversity feedback control is
introduced in the moth-flame optimization to balance the algorithm’s exploitation and global search abilities. Furthermore,
a small probability mutation after the position update stage is added to improve the optimization performance. The
performance of the proposed algorithm is extensively evaluated on a suite of CEC’2014 series benchmark functions and four
constrained engineering optimization problems. The results of the proposed algorithm are compared with the ones of other
improved algorithms presented in literatures. It is observed that the proposed method has a superior performance to improve
the convergence ability of the algorithm. In addition, the proposed algorithm assists in escaping the local minima.

Keywords Moth-flame optimization · Diversity · Inertia weight · Mutation

1 Introduction

In recent years, many applications constitute non-convex
optimizations problems. These non-convex problems are
very complex in nature. The traditional gradient algorithms
are unable to achieve ideal results [1]. Some population-
based random search algorithms inspired by nature have
been proposed to solve these problems. These proposed
solutions are considered effectively. Since Holland pro-
posed the Genetic Algorithm (GA) [2], the meta-heuristic
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random search algorithm has led to a different approach in
solutions. At present, this meta-heuristic algorithm based
on natural phenomena is mainly divided into three cat-
egories. These include Genetic Algorithm(GA) [2], Dif-
ferential Evolution algorithm(DE) [3], and Cultural Algo-
rithm(CA)[4]. The first group of solutions are a family of
intelligent optimization algorithms inspired by the laws of
natural evolution. The second set of solutions is inspired
by the group behavior of creatures like the Particle Swarm
Optimization(PSO) [5] that mimics the foraging behavior
of birds, the Gray Wolf Optimization(GWO) [6] that mim-
ics the hunting behavior of gray wolves. In addition, there
are Salp Swarm Algorithm(SSA) [7], Ant Colony Opti-
mization(ACO) [8], Bat Algorithm(BA) [9], Artificial Bee
Colony algorithm (ABC) [10], and Firefly Algorithm(FA)
[11]. The third is inspired by natural physical phenomena,
such as Gravitational Search Algorithm(GSA) [12] based
on the interaction force between particles, Water Cycle
Algorithm (WCA) [13], Simulated Anealing algorithm(SA)
[14], Ion Motion Optimization (IMO)[15], and Multiverse
Optimization(MVO) [16]. Until now, intelligent comput-
ing algorithms created by taking inspiration from nature
are still incessantly emerging. Kaveh et al developed the
Water Strider Algorithm(WSA) [17] based on the social
life behavior of water strider. Hayylalam et al. proposed a
Black Widow Optimization algorithm(BWO) [18] inspired
by the breeding behavior of black widow spiders. Faramarzi
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et al. respectively developed the Marine Predators Algo-
rithm(MPA) [19] and the Equilibrium Optimizer(EO) [20]
based on biological and physical phenomena. In addition,
MPA was inspired by foraging strategies among organisms
in marine ecosystems. It uses three different movement pat-
terns to simulate the interaction between predator and prey.
While the EO is a physics-based optimization algorithm,
which originates from the control volume mass balance
model. Due to their excellent convergence properties, there
have been some research reports on their practical applica-
tions.

Metaheuristics are usually considered a promising alter-
native for the complex optimization problems. For example,
Faris et al. [21] combines GA with Random Weight Net-
work (RWN) and propose a hybrid spam detection system,
Auto-GA-RWN. The experimental results on three email
corpora show that this method achieves higher recognition
and detection rate. For the Feature Selection(FS) problem,
Faris et al. [22] designed an enhanced binary SSA optimizer
by selecting the best transfer function. The comparison with
several advanced methods proves that the proposed method
has better accuracy. Taradeh et al. [23] applies GSA to solve
the FS problem, and for the first time propose the use of evo-
lutionary crossover and mutation operators to improve the
exploration and exploitation capabilities of GSA. Extensive
research shows that this method is significantly better than
other similar methods when dealing with FS tasks.

The Moth-Flame Optimization algorithm(MFO)[24] is a
new intelligent optimization algorithm proposed by Mirjalili
in 2015. The algorithm is inspired by a peculiar navigation
mechanism of the moth, i.e., transverse orientation. The
moths are able to keep flying straight at night because they
use the moon as a reference and always fly at a fixed angle to
the moon. However, this mechanism is only effective when
dealing with long-range reference objects. When moths are
disturbed by artificial light sources, the same positioning
method will only mislead them to fly around the light
sources, resulting in fire-fighting behavior. Inspired by this
notion, Mirjalili simulated the night flight principle of the
moth and proposed this optimization method based on a
mathematical model of spiral motion.

The MFO algorithm has attracted a wide attention due
to its simple structure, robustness, and easy implementa-
tion[15]. This algorithm has been applied in many fields.
Yildiz et al. [25] used the MFO algorithm to determine the
optimal machining parameters in the manufacturing process
and solved the milling optimization problem in the manu-
facturing process. Yousri et al. [26] used the MFO algorithm
to extract the diode parameters in the polycrystalline silicon
solar module. The experiment proves that MFO has a bet-
ter performance when solving this type of problem. Lei et
al. [27] proposed a moth-flame optimization based protein
complex prediction algorithm, and applied it to solve the

problem of protein complex recognition in Protein-Protein
Interaction(PPI) networks. The experimental results demen-
strate that this method has certain advantages over other
similar methods. However, MFO has insufficient global
convergence ability in the optimization process and is prone
to getting stuck in the local minima. To address the afore-
mentioned problems, Xu et al. [28] combined MFO with a
series of mutations to help the algorithm escape the local
optimal solution and avoid premature convergence when
dealing with high-dimensional multi-modal problems. Chen
et al. [29] combined the distributed computing spark plat-
form with the MFO. The experiments of this combined
setup reveal that the algorithm effectively improves the
classification performance of feature selection. Wang et
al. [30] used the diploid structure of replication coding to
update the moth population, thereby improving the global
search ability of the algorithm. Emary et al. [31] proposed
an improved moth-flame optimization algorithm based on
search and development speed control by changing the path
of moth spiral motion. The study shows that the improved
MFO can establish a better balance between exploration and
exploitation when compared with other methods. Xu et al.
[32] introduced the Cultural Learning(CL) mechanism and
Gaussian Mutation(GM) operator into the MFO. The testing
of the benchmark functions shows that it improves the insuf-
ficient search ability of the algorithm and easily mitigates
the local optimal issue, thus resulting in the improved solu-
tion quality and reliability. Huang et al. [33] guided moths
to constantly seek better values by establishing a ring net-
work between flames. This technique improves the explo-
ration ability of the algorithm and provides good results in
practical engineering applications. Sapre et al. [34] com-
bined MFO with opposite learning, Cauchy mutation and
evolutionary boundary constraint handling. The simulation
results show that these methods can significantly enhance
the exploration and exploitation capabilities of MFO. Li et
al. [35] opined that chaotic maps are one of the best ways to
improve the performance of meta-heuristic algorithms. The
authors use chaotic maps to improve the MFO algorithm
by proposing a chaos enhanced MFO algorithm. The pre-
sented method verifies the effectiveness of the method on
the basis of benchmark function tests and practical engineer-
ing applications. Zhang et al. [36] proposed an improved
MFO algorithm that combines Broyin-Fletcher-Goldfarb-
Shanno method(BFGS) and Orthogonal Learning (OL). The
results show 0that this method effectively alleviates the
shortcomings of stagnant MFO evolution to improve con-
vergence. To mitigate the stagnation of local optimization
of MFO, Pelusi et al. [1] divided the optimization process
of MFO into exploration, hybrid exploration and exploita-
tion, and exploitation to ensure that MFO is able to establish
a better balance between exploration and exploitation. Li
et al. [37] proposed the use of differential evolution flame
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generation and dynamic flame guidance to guide the pop-
ulation evolution and improve the global search capability
of MFO. In addition, Khalilpourazari et al. [38] also intro-
duced the water cycle algorithm into MFO, and proposed
a hybrid meta-heuristic algorithm for water cycle moth
flame optimization to enhance the exploitation capabili-
ties of MFO. The results show that this method effectively
assists the MFO to get rid of local minima.

The aforementioned methods tend to enhance the perfor-
mance of the solution. However, sometimes the considera-
tion of diversity is insufficient. For instance, Xu et al. [28]
improved the algorithm using the notion of mutating search
agents, while traditional mutation operators such as Gaus-
sian mutation perform non-directional mutations. These
mutations are unable to increase the diversity of the popu-
lation. The high-frequency operation greatly increases the
complexity of the algorithm. Therefore, the improvement of
diversity is undoubtedly an important aspect to enhance the
optimization performance of the algorithm. When the popu-
lation diversity is poor and the solution has fallen into local
minima, the calculation results do not exhibit any substan-
tial improvements even if the algorithm continues. Jacques
et al. [39] proposed a particle swarm optimization algorithm
using diversity measures to control the population. The
experiment proved that it is significantly better than other
contrast algorithms in handling multimodal optimization
problems. Wang et al. [40] improved the search diversity of
the ant colony algorithm by using both positive and negative
feedback at the same time. The experimental results show
that the performance of the improved algorithm is signifi-
cantly improved in dealing with combinatorial optimization
problems. In order to enhance the search capability of dif-
ferential evolution algorithm, Yang et al. [41] proposed an
Auto-Enhanced Population Diversity (AEPD) mechanism
to improve the algorithm. The simulation results demon-
strate that the modified algorithm has better performance
than other similar algorithms.

To improve the optimization performance of the algo-
rithm, a diversity and mutation strategy base moth-flame
optimization algorithm (DMMFO) is proposed. The main
contributions of this paper are as follows:

• In the exploration phase of the moth-flame optimiza-
tion, a diversity weight component is integrated to
alleviate the premature convergence caused by the rapid
evolution of the algorithm. This component can contin-
uously switch the population between divergence and
contraction within a limited iteration time to maintain
the diversity of the population, and balance the explo-
ration and exploitation capabilities of the algorithm.

• The dimensional mutation operator is employed to
improve the algorithm’s ability to update the optimal
solution. It allows the algorithm to explore unknown

area in space in a reasonable way, so that the population
can cover a wider range of feasible solutions, and avoid
stagnation in evolution.

• The optimal control parameters of the proposed method
are obtained through the sensitivity test of the control
parameters.

At present, there are few studies on embedding diversity
and mutation strategies in MFO algorithms. This analysis
forms the basis of this work. The rest of the manuscript is
organized as follow. Section 2 presents the main structure
of the MFO. Section 3 discusses the proposed DMMFO
which combines diversity and mutation based on MFO. The
experiments and results are analyzed in detail to validate the
validity in Section 4. Section 5 investigates the effectiveness
of the proposed algorithm in solving four constrained
engineering optimization problems. Section 6 contains the
conclusions of the paper.

2Moth-flame optimization

This section presents the mathematical model of the MFO
as a simple and efficient optimization technique.

2.1 Population initialization and storagemechanism

The MFO algorithm uses the following relation to initialize
the population position in the search space.

M = R(n, d) × (ub − lb) + lb (1)

where, ub and lb represent the upper and lower bounds
of the searching space, respectively. n represents the pop-
ulation size, d represents the number of variables, i.e., the
number of dimensions, R represents the random numbers
that generate random numbers with a uniform distribution
between (0, 1). The initial position corresponding to each
moth is stored in the matrix M .

M =
⎡
⎢⎣

m1,1 · · · m1,d

...
. . .

...
mn,1 · · · mn,d

⎤
⎥⎦ (2)

When the positions of all moths in the search space are
obtained, the fitness value of each moth is calculated by
using fitness function, and the calculated result is stored in
fitness matrix OM .

OM = [
om1 om2 · · · omn

]T
(3)

It is notable that another variable is introduced here, i.e.,
flame. The moths and flames are actually candidate solu-
tions. The flame can be seen as the flag of the moth in the
search space. The moth is responsible for moving in the
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search space and finding the best position, and the flame
represents the best position that has been found so far. The
position of the flames and the corresponding fitness values
are stored in the matrices F and OF , respectively.

F =
⎡
⎢⎣

f1,1 · · · f1,d

...
. . .

...
fn,1 · · · fn,d

⎤
⎥⎦ (4)

OF = [
of1 of2 · · · ofn

]T
(5)

where n represents the number of moths.

2.2 Position updatemechanism

This mechanism mimics the fire-fighting behavior of moths
in real life. According to the sorted flames, the moths fly
around the flames in a spiral motion. This phenomenon is
described as

Mi = S(Mi, Fj ) (6)

S(Mi, Fj ) = Di × ebt × cos(2πt) + Fj (7)

Di = |Fj − Mi | (8)

where, Mi represents the updated position of the i-th moth,
S represents a logarithmic spiral curve, Fj represents the
j th flame, b represents a constant, t represents a random
number between [a, 1], where a decreases linearly from -
1 to -2 as the number of iterations increases, and Di is the
distance from the i-th moth to the j -th flame.

Please note that to improve the ability to develop and
explore the optimal solution and improve the convergence
rate of the algorithm in the later stages, MFO adopts an
adaptive reduction mechanism for the number of flames, as
described by the following relation

Num − f lame = round

(
N − T × N − 1

Tmax

)
(9)

where, N represents the maximum number of flames, T rep-
resents the current number of iterations, and Tmax represents
the maximum number of iterations.

3 The proposedmethods

This section elaborates on the two important components
integrated in the MFO, and explains the principle of action.
Finally, the computational complexity of the proposed
method is analyzed.

3.1 Inertia weight

The poor diversity is often considered as the main reason
for premature convergence of the MFO algorithm. Thus,

its richness is of great significance for the process of
population optimization. When the population has a high
diversity, it searches a larger range in a limited area. In other
words, the high population diversity directly represents that
a large area in the search space has been searched. In
contrast, the rapid decrease of diversity in the evolutionary
process results in a smaller search space for the algorithm.

In the MFO, the position update of moths is divided into
two categories. When the number of moths is less than or
equal to the number of flames, each moth flies around the
corresponding flame and updates its position. Due to the
presence of an adaptive flame reduction mechanism, when
the number of moths is greater than the number of flames,
all moths update their positions based on only one flame. In
this work, the inertia weight of a diversity feedback control
[42] is added to the first case by manipulating (7). The
updated relation of the moths is

S(Mi, Fj ) = W × Di × ebt × cos(2πt) + Fj (10)

Please note that a smaller value of W means that all
groups in the search space are more likely to converge to the
optimal advantage. The relation for calculating the inertia
weight is

W = e−C ×
(

1 − T

Tmax

)
(11)

C = 1

N × L
×

N∑
i=1

×
√√√√

dim∑
j=1

(MT
i,j − M̄T

j )2 (12)

where, N represents the population number, dim represents
the dimension, and MT

i,j represents the value of the i-th

moth in the j dimension at the T -th iteration, and M̄T
j rep-

resents the mean value of the moth in the j dimension at the
T -th iteration.

The symbol L is defined as the maximum diagonal
distance of the search space and is obtained as

L =
√√√√

dim∑
j

(ubj − lbj )2 (13)

where, ubj and lbj represent the upper bound and lower
bound of the j -th dimension in the search space, respec-
tively.

The value of C is determined by the difference in
positions of the moths in different dimensions. In (10), the
smaller W indicates that the whole population continuously
evolves toward the optimal value. At the beginning of
the iteration, as the value of T is small, the value of C

has a greater impact on (11). When the overall trend of
convergence reaches to a certain point, W increases rapidly,
making the group approach the optimal point in a stable
form. The current convergence result will reduces W in the
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next iteration, so that the moths conduct a more detailed
search within a smaller flight radius near a better solution.

The effect of diversity on population evolution is
graphically presented in Fig. 1. It is evident from Fig. 1a
that in the early stage of the iterations, due to the influence
of weights, the population in the search domain is relatively
scattered. For some complex functions, the algorithm easily
falls into the local minima trap during the evolution process.
However, increasing the diversity of the population reduces
this risk as presented in (Fig. 1b). Even though most
solutions fall into local optima, there are still search agents
that jump out of the trap and approach global optima due to
the expansion of search space. In the later stages of iteration,

W decreases due to the gradual approach of 1 − T

Tmax

to

zero. At this time, more moths will find the best flame
mainly based on (10). Finally, the population converges
when a termination criterion is met as presented in (Fig. 1c).

3.2 Position variation

In the MFO algorithm, the pros and cons of flame fitness are
all calculated and ranked by the moth’s position calculation.
The sorted moth can only be updated according to the
corresponding flame. If the first moth falls into the local
minima, the algorithm faces a hard time to exit this minima.
Therefore, at the end of each position update, (1) with
a small probability is usded to initialize the positions of
the three moths with the best fitness values in the random
dimensions. This is presented in Fig. 2.

This not only retains some of the original attributes of
the moth, but also changes its position in a certain direction
,causing the search starting point to shift. In other words,
the flame corresponding to the first moth is not necessarily
the brightest. There may be brighter flames around it, but
the distance dimmed their glow. The random variation is
similar to the wind in nature. It has the probability to
blow from different directions to change the position of the
moths, thereby helping the moths to find a better solution.
Because the amplitude and frequency of the mutations
are low, the moth do not lose the search for the original
solution significantly. The probability calculation procedure
is (if rand < 0.1). The random dimension selection
procedure is

data = rand(1, dim) (14)

index = f ind(data < 0.3) (15)

3.3 Computational complexity analysis

The time computational complexity of the DMMFO mainly
depends on the maximum number of iterations (Q),

initialization, sorting, position update, inertia weight and
mutation mechanism. The time complexity during the ini-
tialization process is O(n × d), where n is the number of
moths. Since the fast method is adopted, the complexity of
each iteration sort is O(Q × n2) in the worst case. Con-
sidering the population with n moths and d-dimensional
optimization problem, the positions are updated and the
diversity weight requires O(Q × n × d). Since it is a
probabilistic mutation and only the best three moths are
selected for mutation, the worst case requires O(Q×3×d).
After the data is sorted out, the upper bound of DMMFO
computational complexity is:O(Q(n2 + nd)). The pseu-
docode of the proposed DMMFO is as presented below.

4 Simulation experiment

The CEC’2014 benchmark functions [43] were selected to
test the performance of the proposed DMMFO method (see
Table 1) and were compared with the basic MFO, PSO,
and other improved algorithms [28]. CEC’2014 includes the
four parts, namely 3 unimodal functions (1-3), 13 simple
multimode functions (4-16), 6 hybrid function (17-22), and
8 composition functions (23-30).
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Fig. 1 Diversity diagram, moths(�), global optimal solution(•), local optimal solution(×)

4.1 Discussion of control parameters

The parameters of meta-heuristic algorithms often have
a greater impact on the convergence performance of the
algorithm. The main control parameter of MFO is b in (7).
This parameter defines the shape of the logarithmic spiral
curve. To explore the evolution caused by the different
values of b and analyze the effect of b on convergence,
the algorithm runs in six different types of functions with
the following fixed parameters: population number n=50,
maximum fitness evaluation times MaxFEs = 10000 ×
dim. Tables 2, 3, 4 show the test results in three different
dimensions under different values of b.

As presented in Table 2, the optimization results are
obtained when b=1 with the best results among the
five functions. But the situation has changed when the
dimension is 30, the best results are only achieved when
b=1 in the F7 and F30 functions. Except for b=1.5, the other
values have the same effect. For 50 dimensions, when b=1,
the best optimization effect will be achieved, followed by
0.2. Therefore, this paper sets b to 1 in order to ensure best
performance.

For the purpose of the fairness in comparisons, all
algorithms are executed in the same environment in this

paper. The software used for executing all the algorithms is
Matlab2018b. The OS used of the PC used for performing
simulations is Windows10. The CPU is Intel Core i7
3.0Hz. The experimental parameters are the number of
population equal to 50, and the maximum fitness evaluation
times are MaxFEs = 10000 × dim. Each algorithm
runs independently 50 times and the execution results of
the algorithm in l0 dimensions, 30 dimensions, and 50
dimensions are collected. The collected results are then
subject to statistical analysis. The control parameters of all
algorithms and their variant versions are consistent with the
corresponding literatures.

4.2 Evaluation standard

To evaluate the performance of the algorithm, this paper
introduces the commonly used evaluation indexes, namely,
average convergence value and standard deviation. The
mean value reflects the convergence accuracy of the
algorithm, while the standard deviation shows the stability
of the algorithm. So as to further compare the algorithms
more comprehensively, wilcoxon symbol rank test is also
used in this work [44]. This method uses a limited number of
samples to evaluate the pros and cons of the algorithm. First,

Fig. 2 Position variation
diagram
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Table 1 Descriptions of the test functions

NO Functions Optimum

1 Rotated High Conditioned Ellip-
tic Function

100

2 Rotated Bent Cigar Function 200

3 Rotated Discus Function 300

4 Shifted and Rotated
Rosenbrock’s Function

400

5 Shifted and Rotated Ackley’s
Function

500

6 Shifted and Rotated Weierstrass
Function

600

7 Shifted and Rotated Griewank’s
Function

700

8 Shifted Rastrigin’s Function 800

9 Shifted and Rotated Rastrigin’s
Function

900

10 Shifted Schwefel’s Function 1000

11 Shifted and Rotated Schwefel’s
Function

1100

12 Shifted and Rotated Katsuura
Function

1200

13 Shifted and Rotated HappyCat
Function

1300

14 Shifted and Rotated HGBat
Function

1400

15 Shifted and Rotated Expanded
Griewank’s plus Rosenbrock’s
Function

1500

16 Shifted and Rotated Expanded
Scaffer’s F6 Function

1600

17 Hybrid Function 1 (N=3) 1700

18 Hybrid Function 2 (N=3) 1800

19 Hybrid Function 3 (N=4) 1900

20 Hybrid Function 4 (N=4) 2000

21 Hybrid Function 5 (N=5) 2100

22 Hybrid Function 6 (N=5) 2200

23 Composition Function 1 (N=5) 2300

24 Composition Function 2 (N=3) 2400

25 Composition Function 3 (N=3) 2500

26 Composition Function 4 (N=5) 2600

27 Composition Function 5 (N=5) 2700

28 Composition Function 5 (N=5) 2800

29 Composition Function 5 (N=5) 2900

30 Composition Function 8 (N=3) 3000

Search Range:[-100,100]

the final convergence result indicators of the two algorithms
in the same test function are paired and subtracted, and
the differences are accumulated and recorded as R+ and
R−, respectively. It is generally believed that the former
algorithm is better when the number of R+ is greater

than the number of R−, and vice versa. Generally, the
significance level is set to 0.05 in this paper. Please note
that, symbols “ + ”, “ - ” and “ = ” indicate that the algorithm
proposed in this work is superior to, inferior to, and equal to
the algorithm to which it is being compared. gm represents
the total difference between the symbols “ + ” and “ - ”.

4.3 Unimodal test functions result analysis

Tables 5, 6, 7 summarize the performance indicators
of several algorithms on the unimodal test functions in
different dimensions. Except for F3, the proposed DMMFO
is dominant in all evaluation indicators. These functions
are unimodal and non-separable plate shape problems.
So even though there is only a single minimum, it is
difficult for the algorithm to converge on this minimum.
Although the DMMFO is less accurate than LGCMFO in
the F3 of each dimension, it is better than CMFO. The
convergence graphs of average best-so-far solutions are
shown in Figs. 3, 4, 5, 6, 7 and 8. Note that, the proposed
DMMFO does not converge prematurely as compared to
MFO and CMFO in the test function F1 and nor does the
echelon form appear. In addition, the convergence speed
of the proposed DMMFO is faster than LGCMFO. This
indicates that DMMFO has the ability to continuously
converge when dealing with this type of problem. The
underlying reason is that our added diversity weight raises
the search space of the population and enables the algorithm
to find a better solution in a limited range. Moreover, it
also guides the population to evolve towards the global
optimum, thereby improving the convergence speed of the
algorithm. This shows that the exploitation ability of the
proposed method on the unimodal problem has been greatly
improved.

4.4 Simplemultimodal text functions result analysis

As presented in Tables 8, 9, 10, the DMMFO has a great
advantage in the calculation of different dimensions. The
main reason is that the diversity weight and mutation strat-
egy in DMMFO establishes a balance between exploration
and exploitation. For F5 and F12 functions, the gaps of
several algorithms are very small. The DMMFO still has
a slight lead after several runs. For function F7, the opti-
mization performance of the DMMFO displays a quali-
tative leap as the number of dimension increases. From
Figs. 9, 10 11, 12, 13 and 14, the convergence graph of the
simple multimodal test function has a step-like or cliff-like
decline. This suggests that the algorithm has a relatively
prominent exploration ability. Although the functions F7,
F14, and F15 have experienced several local optimal solu-
tions, they always evolve continuously. This shows that
the diversity weight in this work effectively improves the
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Table 2 10-dimension function
test Function 10dim

b=0.2 b=0.5 b=1 b=1.5 b=2

F1 Mean 1.38E+05 2.05E+05 1.18E+05 1.30E+05 1.33E+05

Std 2.63E+05 3.63E+05 7.04E+04 8.21E+04 7.13E+04

F2
Mean 6.44E+03 6.13E+03 5.76E+03 5.94E+03 7.16E+03

Std 4.12E+03 4.02E+03 4.52E+03 4.56E+03 4.27E+03

F7 Mean 1.64E-01 1.63E-01 1.55E-01 2.15E-01 1.70E-01

Std 9.74E-02 1.21E-01 1.03E-01 1.20E+00 9.19E-02

F8 Mean 3.05E+00 2.93E+00 2.43E+00 1.87E+00 1.45E+00
Std 2.25E+00 1.70E+00 2.19E+00 1.31E+00 1.52E+00

F18 Mean 9.68E+03 9.13E+03 8.98E+03 1.31E+04 1.33E+04

Std 1.14E+04 1.03E+04 8.76E+03 1.38E+04 1.31E+04

F30 Mean 7.12E+02 6.96E+02 5.72E+02 5.97E+02 5.85E+02

Std 1.99E+02 2.11E+02 1.04E+02 1.72E+02 1.10E+02

The bold entries indicated that the value is optimal in the same row

Table 3 30-dimension function
test Function 10dim

b=0.2 b=0.5 b=1 b=1.5 b=2

F1 Mean 1.56E+06 1.59E+06 1.68E+06 1.98E+06 2.41E+06

Std 8.60E+05 1.12E+06 8.11E+05 1.08E+06 1.25E+06

F2 Mean 1.23E+04 1.46E+04 1.40E+04 1.58E+04 1.66E+04

Std 1.42E+04 1.46E+04 1.58E+04 1.58E+04 1.62E+04

F7 Mean 1.34E-02 3.63E-02 1.31E-02 1.49E-02 1.54E-02

Std 1.66E-02 1.08E-01 1.62E-02 1.98E-02 1.64E-02

F8 Mean 5.63E+01 4.66E+01 3.05E+01 1.82E+01 1.02E+01
Std 1.31E+01 1.28E+01 8.79E+00 8.39E+00 5.11E+00

F18 Mean 4.44E+03 4.38E+03 7.58E+03 7.90E+03 1.36E+04

Std 5.18E+03 4.70E+03 8.93E+03 7.70E+03 9.69E+03

F30 Mean 3.71E+03 4.48E+03 2.20E+03 3.88E+03 3.93E+03

Std 1.23E+03 4.40E+03 5.98E+02 1.23E+03 8.96E+02

The bold entries indicated that the value is optimal in the same row

Table 4 50-dimension function
test Function 10dim

b=0.2 b=0.5 b=1 b=1.5 b=2

F1 Mean 2.89E+06 2.87E+06 2.81E+06 3.80E+06 5.01E+06

Std 1.41E+06 7.63E+05 1.01E+06 1.32E+06 1.71E+06

F2 Mean 8.80E+03 1.40E+04 1.35E+04 1.34E+04 1.72E+04

Std 9.59E+03 1.17E+04 1.19E+04 1.21E+04 1.15E+04

F7 Mean 1.15E-02 1.02E-02 8.76E-03 1.71E-02 1.63E-02

Std 2.26E-02 1.42E-02 1.39E-02 3.81E-02 3.14E-02

F8 Mean 1.70E+02 1.38E+02 7.57E+01 4.52E+01 2.99E+01
Std 3.83E+01 2.48E+01 2.37E+01 1.44E+01 1.36E+01

F18 Mean 2.11E+03 2.92E+03 3.18E+03 4.44E+03 4.61E+03

Std 1.78E+03 2.13E+03 1.96E+03 2.48E+03 2.43E+03

F30 Mean 1.23E+04 1.29E+04 1.17E+04 1.26E+04 1.35E+04

Std 2.05E+03 2.54E+03 2.54E+03 2.86E+03 2.57E+03

The bold entries indicated that the value is optimal in the same row
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Table 5 10-dimension
unimodal function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F1 Mean 1.184E+05 2.305E+06 1.470E+06 3.679E+05 5.295E+06

Std 7.738E+04 6.994E+06 4.919E+06 5.194E+05 1.933E+07

Wilcoxon + + + +

F2 Mean 5.752E+03 7.655E+03 7.049E+03 6.042E+03 2.251E+05

Std 4.268E+03 4.035E+03 4.396E+03 4.571E+03 2.486E+05

Wilcoxon + + + +

F3 Mean 7.154E+03 1.641E+04 1.435E+04 8.673E+02 7.280E+02
Std 7.408E+03 1.217E+04 1.147E+04 2.845E+02 1.756E+03

Wilcoxon + + - -

+/-/=/gm 10/2/0/8

The bold entries indicated that the value is optimal in the same row

Table 6 30-dimension
unimodal function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F1 Mean 1.735E+06 1.021E+08 6.850E+07 4.670E+06 4.179E+07

Std 9.457E+05 9.651E+07 7.050E+07 2.466E+06 4.221E+07

Wilcoxon + + + +

F2 Mean 1.406E+04 9.378E+09 1.093E+10 1.746E+04 2.727E+09

Std 1.512E+04 6.088E+09 7.041E+09 1.374E+04 2.261E+09

Wilcoxon + + + +

F3 Mean 1.758E+04 8.936E+04 8.821E+04 7.622E+03 1.556E+04

Std 1.467E+04 5.349E+04 4.138E+04 3.550E+03 1.391E+04

Wilcoxon + + - +

+/-/=/gm 11/1/0/10

The bold entries indicated that the value is optimal in the same row

Table 7 50-dimension
unimodal function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F1 Mean 2.856E+06 3.176E+08 2.836E+08 9.183E+06 1.017E+08

Std 1.199E+06 2.191E+08 2.491E+08 3.862E+06 6.618E+07

Wilcoxon + + + +

F2 Mean 1.358E+04 3.972E+10 4.204E+10 2.038E+04 9.584E+09

Std 1.218E+04 1.607E+10 1.392E+10 6.249E+04 7.067E+09

Wilcoxon + + + +

F3 Mean 2.724E+04 1.708E+05 1.700E+05 1.769E+04 2.503E+04

Std 1.349E+04 7.729E+04 7.556E+04 6.353E+03 1.689E+04

Wilcoxon + + - -

+/-/=/gm 10/2/0/8

The bold entries indicated that the value is optimal in the same row
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Fig. 3 10-dimension unimodal function convergence curve
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Fig. 7 50-dimension unimodal function convergence curve

diversity of the population and alleviates the clustering
and trampling of the population in the multimodal prob-
lem. The mutation strategy added after the position update
is completed changes the evolution direction of the pop-
ulation after the algorithm falls into the local optimum.
This helps the proposed algorithm to jump out of the local
solutions.

4.5 Hybrid text functions result analysis

The proposed algorithm is applied to the hybrid text
functions in Tables 11, 12 and 13. Except for F20 and F23,
the proposed DMMFO has the best optimization ability.
For the function F20, although the final convergence result
of the DMMFO is not as good as for the PSO algorithm,
its performance is clearly better as compared to MFO.
In the F18 test, the proposed DMMFO is significantly
better than the LGCMFO and a higher latitude yields a
better optimization performance. Compared with CMFO
and MFO, the solution accuracy has been greatly improved.
This may be the following reasons that the diversity
weight embedded in the exploration stage enhance the
algorithm’s global search capabilities, and the mutation
strategy increases the randomness of population movement

to a certain extent. Thus, DMMFO achieves a balance
between exploration and exploitation in the testing of
hybrid functions of different dimensions. From the box plot
presented in Fig. 18, it is observed that the results of the
algorithm are stable after multiple runs. In the tests of the
function F21 for different dimensions, the indicators of the
DMMFO outperform other presented algorithms. Hence,
although the proposed DMMFO has insufficient advantages
in low dimensions, its performance is quite competitive for
medium and high number of dimensions (Figs.15, 16, 17,
18, 19, and 20).

4.6 Composition text functions result analysis

Tables 14 15 and 16 present the comparison results for
the selected composition text functions. The performance
of the proposed DMMFO in comparison with MFO and
CMFO on F29 and F30 demonstrates that the former has
a better performance. It still maintains obvious advantages
in the remaining seven test functions. Although LGCMFO’s
performance is very stable on the F23 in each dimension
and F24, F25, F27, and F28 in tmiddle and high number
of dimensions. However, all five algorithms are unable
to find the global optimum. In the 50-dimensional F26
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Table 8 10-dimension simple multimodal function result statistics

Function This paper MFO CMFO LGCMFO PSO

F4 Mean 23.119 29.807 28.633 24.777 44.484

Std 15.594 12.891 10.682 15.315 61.424

Wilcoxon + + + +

F5 Mean 20.035 20.122 20.158 20.180 20.350

Std 0.068 0.096 0.145 0.124 0.076

Wilcoxon = + + +

F6 Mean 2.540 4.430 3.714 2.603 3.516

Std 1.469 1.836 1.678 1.543 1.565

Wilcoxon + + = +

F7 Mean 1.564E-01 1.041E+00 5.474E-01 1.896E-01 3.692E+00

Std 1.036E-01 1.839E+00 1.436E+00 1.074E-01 3.883E+00

Wilcoxon + + = +

F8 Mean 2.368E+00 1.901E+01 1.808E+01 1.518E+01 1.122E+01

Std 1.533E+00 8.364E+00 8.427E+00 5.822E+00 5.355E+00

Wilcoxon + + + =

F9 Mean 19.966 29.145 27.796 27.029 20.253

Std 7.190 12.480 12.859 11.727 8.190

Wilcoxon + + + +

F10 Mean 8.743E+01 4.865E+02 4.540E+02 3.896E+02 4.627E+02

Std 6.471E+01 2.270E+02 2.581E+02 2.475E+02 2.430E+02

Wilcoxon + + + +

F11 Mean 7.439E+02 1.032E+03 9.387E+02 7.719E+02 8.761E+02

Std 3.339E+02 3.139E+02 3.581E+02 2.964E+02 3.315E+02

Wilcoxon + + = +

F12 Mean 0.227 0.328 0.351 0.504 0.949

Std 0.195 0.255 0.223 0.337 0.266

Wilcoxon + + + +

F13 Mean 0.238 0.321 0.316 0.258 0.324

Std 0.083 0.108 0.097 0.106 0.072

Wilcoxon + + = +

F14 Mean 0.308 0.481 0.469 0.321 0.356

Std 0.143 0.286 0.310 0.127 0.262

Wilcoxon + + = =

F15 Mean 1.271 2.515 1.817 1.468 2.399

Std 0.476 6.508 0.907 0.612 0.685

Wilcoxon + + + +

F16 Mean 3.237 3.363 3.360 2.965 2.820

Std 0.312 0.320 0.474 0.354 0.383

Wilcoxon + + - -

+/-/=/gm 43/2/7/41

The bold entries indicated that the value is optimal in the same row

function test, the results of the two improved algorithms
are worse than MFO, but the proposed DMMFO improves
the accuracy of the solution. Hence, the performance of
this algorithm in the composition test functions is better
than MFO, CMFO, PSO, and second to LGCMFO. The
aforementioned results show that the diversity weight
and mutation strategy proposed in this work significantly

enhance the optimization performance of the algorithm
(Figs. 21, 22, 23, 24, 25, and 26).

4.7 Population diversity comparison

This section will discuss the role of the proposed method
in improving population diversity. Figures 27, 28, 29 show
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Table 9 30-dimension simple multimodal function result statistics

Function This paper MFO CMFO LGCMFO PSO

F4 Mean 8.005E+01 8.787E+02 6.358E+02 1.150E+02 2.573E+02

Std 3.500E+01 8.055E+02 5.763E+02 3.600E+01 1.778E+02

Wilcoxon + + + +

F5 Mean 20.066 20.292 20.260 20.554 20.925

Std 0.067 0.170 0.160 0.267 0.064

Wilcoxon + + + +

F6 Mean 18.805 21.841 23.276 18.265 24.482

Std 3.167 3.292 3.207 3.077 3.945

Wilcoxon + + = +

F7 Mean 1.175E-02 8.866E+01 8.479E+01 1.543E-02 39.974

Std 1.461E-02 4.909E+01 5.422E+01 1.509E-02 41.087

Wilcoxon + + = +

F8 Mean 2.948E+01 1.303E+02 1.293E+02 7.636E+01 7.626E+01

Std 8.142E+00 3.723E+01 4.068E+01 1.884E+01 2.165E+01

Wilcoxon + + + +

F9 Mean 138.937 193.256 199.637 158.250 152.098

Std 34.044 43.411 52.591 26.273 35.519

Wilcoxon + + + =

F10 Mean 9.921E+02 3.456E+03 3.302E+03 2.206E+03 3.205E+03

Std 3.113E+02 8.513E+02 1.004E+03 1.165E+03 7.136E+02

Wilcoxon + + + +

F11 Mean 3.549E+03 4.339E+03 4.016E+03 4.122E+03 4.521E+03

Std 5.976E+02 7.773E+02 7.100E+02 8.246E+02 8.742E+02

Wilcoxon + + + +

F12 Mean 0.301 0.426 0.436 0.780 2.364

Std 0.127 0.196 0.186 0.601 0.291

Wilcoxon + = + +

F13 Mean 6.441E-01 1.666E+00 1.672E+00 5.231E-01 1.008E+00

Std 1.247E-01 1.206E+00 1.148E+00 1.128E-01 7.852E-01

Wilcoxon + + - +

F14 Mean 9.007E-01 2.676E+01 2.627E+01 4.157E-01 1.114E+01

Std 3.167E-01 2.279E+01 1.802E+01 2.271E-01 1.523E+01

Wilcoxon + + - +

F15 Mean 1.468E+01 1.487E+05 1.256E+05 1.559E+01 3.528E+02

Std 6.265E+00 2.921E+05 2.111E+05 6.271E+00 1.462E+03

Wilcoxon + + + +

F16 Mean 12.381 12.576 12.577 12.116 11.989

Std 0.473 0.598 0.542 0.510 0.404

Wilcoxon + + - -

+/-/=/gm 44/4/4/40

The bold entries indicated that the value is optimal in the same row

a comparison chart of the diversity of MFO and DMMFO
under six different types of functions.The average distance
between all solutions during each iteration is presented in
the diversity chart of the algorithm.

As presented in Fig. 27, the population of proposed
DMMFO is very active in three different dimensions. For

the functions F2, F7, and F8 under 10 dimensions con-
dition, the MFO curve becomes smoother at the initial
stage of iteration due to the rapid loss of algorithm’s diver-
sity. In functional tests of 30 and 50 dimensions, it can
be clearly observed that the average distance between the
proposed DMMFO populations in the exploration stage is
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Table 10 50-dimension simple multimodal function result statistics

Function This paper MFO CMFO LGCMFO PSO

F4 Mean 9.830E+01 4.411E+03 4.451E+03 1.602E+02 8.013E+02

Std 2.588E+01 3.313E+03 3.081E+03 5.315E+01 6.854E+02

Wilcoxon + + + +

F5 Mean 20.071 20.289 20.360 20.721 21.134

Std 0.062 0.160 0.125 0.293 0.041
Wilcoxon + + + +

F6 Mean 39.567 44.878 45.251 39.998 47.296

Std 4.000 4.469 4.396 4.065 4.257

Wilcoxon + + = +

F7 Mean 1.223E-02 4.366E+02 3.960E+02 2.739E-02 6.736E+01

Std 1.643E-02 1.598E+02 1.730E+02 1.852E-02 5.412E+01

Wilcoxon + + + +

F8 Mean 7.415E+01 2.756E+02 2.667E+02 1.582E+02 1.993E+02

Std 1.902E+01 8.135E+01 6.925E+01 2.577E+01 3.792E+01

Wilcoxon + + + +

F9 Mean 343.583 474.315 463.644 281.711 340.330

Std 61.907 94.084 70.681 36.522 75.583

Wilcoxon + + - -

F10 Mean 2.651E+03 6.184E+03 5.898E+03 3.927E+03 6.608E+03

Std 5.638E+02 1.714E+03 1.724E+03 2.197E+03 1.397E+03

Wilcoxon + + - +

F11 Mean 6.327E+03 7.678E+03 7.524E+03 7.766E+03 9.139E+03

Std 8.631E+02 1.091E+03 1.086E+03 1.895E+03 1.438E+03

Wilcoxon + + + +

F12 Mean 0.387 0.461 0.441 1.055 3.239

Std 0.176 0.193 0.227 0.602 0.303

Wilcoxon + + + +

F13 Mean 6.945E-01 4.002E+00 4.060E+00 6.696E-01 1.041E+00

Std 1.083E-01 1.189E+00 9.975E-01 1.126E-01 7.990E-01

Wilcoxon + + = =

F14 Mean 1.098 1.239E+02 1.102E+02 4.947E-01 21.357

Std 0.321 5.117E+01 4.413E+01 2.511E-01 21.977

Wilcoxon + + - +

F15 Mean 5.805E+01 1.412E+06 1.271E+06 4.222E+01 4.004E+03

Std 2.180E+01 2.056E+06 2.180E+06 1.502E+01 8.141E+03

Wilcoxon + + - +

F16 Mean 21.887 21.970 22.106 21.459 21.467

Std 0.6479 0.6168 0.6299 0.664 0.461

Wilcoxon + + = =

+/-/=/gm 42/5/5/37

The bold entries indicated that the value is optimal in the same row

greater than that of the MFO. Moreover, the diversity curve
of the algorithm quickly approaches 0 when MFO opti-
mizes 50 dimensional functions F8, F18, and F30. From the
results in Section 4.4, this indicates that the population has
fallen into the trap of local minima. Due to the effect of
the diversity weight, the population of proposed DMMFO
is evenly distributed over the search space at the beginning

of the iterations. It balances the exploration and exploitation
ability of the algorithm. In addition, this allows the algo-
rithm to perform a global search more efficiently and jump
out of the local minima if trapped in one.

The convergence of the algorithm includes two stages,
divergence and contraction of particles. The divergence
process of the particles of the algorithm is the premise of
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Fig. 9 10-dimension simple multimodal function convergence curve
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Table 11 10-dimension hybrid
function test result statistics Function This paper MFO CMFO LGCMFO PSO

F17 Mean 2.120E+04 3.579E+04 3.944E+04 6.647E+03 5.755E+03
Std 2.677E+04 6.317E+04 6.245E+04 1.092E+04 5.358E+03
Wilcoxon + + - -

F18 Mean 8.906E+03 1.399E+04 1.179E+04 9.387E+03 1.151E+04

Std 9.956E+03 1.488E+04 1.419E+04 3.522E+03 1.054E+04

Wilcoxon + + + +

F19 Mean 1.908 2.900 2.881 2.611 4.153

Std 0.783 1.029 1.117 1.138 1.431

Wilcoxon + + + +

F20 Mean 4.253E+03 1.481E+04 9.115E+03 4.802E+03 3.251E+02
Std 4.803E+03 3.623E+04 9.777E+03 3.350E+03 5.150E+02
Wilcoxon + + + -

F21 Mean 4.801E+03 8.570E+03 7.636E+03 8.020E+03 6.396E+03

Std 6.701E+03 1.032E+04 8.634E+03 7.921E+03 8.259E+03

Wilcoxon + + + +

F22 Mean 35.016 68.387 57.002 44.653 91.915

Std 46.612 66.503 53.854 47.612 58.562

Wilcoxon + + + +

+/-/=/gm 21/3/0/18

The bold entries indicated that the value is optimal in the same row

the shrinking process, i.e., the diversity of the population is
reduced only if the diversity of population is increased first.
This is the purpose of introducing diversity weight in the
proposed DMMFO.

5 Engineering optimization examples

In this section, four typical pratical complex constraints
engineering optimization problems are employed to further

Table 12 30-dimensional
hybrid function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F17 Mean 2.903E+05 3.530E+06 3.044E+06 7.973E+05 1.751E+06

Std 1.880E+05 3.973E+06 3.911E+06 5.065E+05 2.723E+06

Wilcoxon + + + +

F18 Mean 5.321E+03 1.311E+07 1.055E+07 5.169E+06 1.034E+06

Std 6.041E+03 6.526E+07 5.057E+07 3.616E+07 1.364E+06

Wilcoxon + + + +

F19 Mean 10.856 57.931 52.231 16.703 34.575

Std 2.222 44.424 44.472 15.838 45.675

Wilcoxon + + + +

F20 Mean 3.316E+04 7.726E+04 5.863E+04 3.398E+04 5.179E+03

Std 1.922E+04 1.084E+05 3.462E+04 2.069E+04 1.080E+04

Wilcoxon + + + -

F21 Mean 1.619E+05 1.042E+06 7.326E+05 3.139E+05 3.810E+05

Std 1.518E+05 2.249E+06 1.008E+06 2.644E+05 4.762E+05

Wilcoxon + + + +

F22 Mean 539.756 754.711 746.957 633.668 562.269

Std 164.665 291.769 232.733 234.314 198.032

Wilcoxon + + + +

+/-/=/gm 23/1/0/22

The bold entries indicated that the value is optimal in the same row
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Table 13 50-dimension hybrid
function test result statistics Function This paper MFO CMFO LGCMFO PSO

F17 Mean 4.554E+05 1.062E+07 1.065E+07 1.592E+06 8.284E+06

Std 2.859E+05 1.175E+07 1.090E+07 2.069E+06 1.155E+07

Wilcoxon + + + +

F18 Mean 3.266E+03 2.755E+08 3.096E+08 3.884E+03 3.776E+08

Std 1.904E+03 4.338E+08 4.281E+08 2.029E+03 6.692E+08

Wilcoxon + + + +

F19 Mean 23.495 192.789 138.281 36.627 123.501

Std 3.339 132.587 72.996 17.843 92.890

Wilcoxon + + + +

F20 Mean 4.455E+04 1.252E+05 1.201E+05 3.029E+04 1.455E+04
Std 2.718E+04 1.135E+05 9.269E+04 1.396E+04 2.173E+04

Wilcoxon + + - -

F21 Mean 3.550E+05 7.089E+06 5.178E+06 6.471E+05 1.635E+06

Std 2.231E+05 1.175E+07 9.058E+06 4.353E+05 1.967E+06

Wilcoxon + + + +

F22 Mean 1.274E+03 1.634E+03 1.610E+03 1.436E+03 1.338E+03

Std 3.373E+02 3.703E+02 3.997E+02 4.129E+02 3.869E+02

Wilcoxon + + = =

+/-/=/gm 20/2/2/18

The bold entries indicated that the value is optimal in the same row

investigate the performance of DMMFO and compared with
other reported methods.

5.1 Problem of tension/compression spring design

This problem was raised by Belegundu (1982) [45], and it
requires solving for minimizing the weight of a tension /
compression spring (Fig. 30).

There are three design variables for this problem, namely,
the wire diameter d (x1), the coil diameter D (x2), and the
number of active coils P (x3). The optimization model of
the problem is formulated as

Minimize:

f (x) = (x3 + 2)x2x
2
1 (16)
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Table 14 10-dimension
composition function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F23 Mean 329.457 334.021 333.513 200.000 331.664

Std 1.696E-13 7.144 6.856 0.000 6.900

Wilcoxon + + - =

F24 Mean 133.530 138.355 135.737 179.166 125.963

Std 10.700 12.072 9.839 30.726 8.234

Wilcoxon + = + -

F25 Mean 196.232 195.072 197.570 200.000 176.336

Std 14.586 18.018 14.163 0.000 30.835

Wilcoxon + + + -

F26 Mean 100.221 100.300 100.287 100.231 100.280

Std 0.096 0.155 0.147 0.121 0.113

Wilcoxon = = = =

F27 Mean 288.967 329.284 320.465 169.096 325.974

Std 169.116 158.706 160.149 70.813 168.842

Wilcoxon + + - +

F28 Mean 387.255 393.140 389.708 200.000 544.849

Std 26.885 28.730 23.400 0.000 115.939

Wilcoxon + = - +

F29 Mean 6.219E+02 1.114E+03 1.009E+03 1.188E+03 6.043E+05

Std 3.474E+02 6.662E+02 5.471E+02 5.867E+02 1.128E+06

Wilcoxon + + + +
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Table 14 (continued)
Function This paper MFO CMFO LGCMFO PSO

F30 Mean 647.286 882.936 741.143 731.936 1268.894

Std 180.944 419.126 342.517 304.145 681.540

Wilcoxon + + + +

+/-/=/gm 20/5/7/15

The bold entries indicated that the value is optimal in the same row

Subject to:

g1(x) = 1 − x3
2x3

71785x4
1

≤ 0 (17)

g2(x) = 4x2
2 − x1x2

12566(x2x
3
1 − x4

1)
+ 1

5108x2
1

≤ 0 (18)

g3(x) = 1 − 140.45x1

x2
2x3

≤ 0 (19)

g4(x) = x1 + x2

1.5
− 1 ≤ 0 (20)

Variable range:

0.05 ≤ x1 ≤ 2.00 (21)

0.25 ≤ x2 ≤ 1.30 (22)

2.00 ≤ x3 ≤ 15.0 (23)
This problem has been solved by using different heuristic

algorithms, for instance, PSO [46], ES[47], GA[48],
DE[49]. In Table 17, the best results of this paper are
compared with the other methods. It is observed that the
proposed DMMFO effectively solves this problem and
provides the best design solution.

5.2 Problem of pressure vessel design

The design problem of a pressure vessel was first proposed
by Kannanet al. [50]. This problem focuses on computing
the minimum total cost (including material, forming, and

Table 15 30-dimension
composition function test result
statistics

Function This paper MFO CMFO LGCMFO PSO

F23 Mean 315.244 368.105 356.491 200.000 336.763

Std 0.000 39.009 27.262 0.000 24.178

Wilcoxon + + - +

F24 Mean 242.625 273.841 271.116 200.000 234.169

Std 5.806 30.870 23.552 0.000 8.696

Wilcoxon + + - =

F25 Mean 206.868 213.600 214.472 200.000 216.565

Std 2.579 5.273 7.278 0.000 5.667

Wilcoxon + + - +

F26 Mean 100.703 101.667 101.753 108.494 111.373

Std 0.477 1.033 1.061 26.984 26.581

Wilcoxon + + + +

F27 Mean 732.959 922.224 911.331 200.000 886.319

Std 227.407 174.326 194.839 0.000 266.369

Wilcoxon + + - +

F28 Mean 9.635E+02 1.079E+03 1.037E+03 2.000E+02 2.024E+03

Std 6.421E+01 1.967E+02 9.204E+01 0.000E+00 5.537E+02

Wilcoxon + + - +

F29 Mean 2.664E+03 2.680E+06 1.806E+06 3.524E+03 1.555E+07

Std 1.840E+03 3.671E+06 3.028E+06 8.085E+03 2.170E+07

Wilcoxon + + + +

F30 Mean 4.247E+03 3.410E+04 3.006E+04 6.843E+03 9.471E+04

Std 1.387E+03 3.716E+04 2.051E+04 1.727E+04 1.502E+05

Wilcoxon + + + +

+/-/=/gm 26/5/1/21

The bold entries indicated that the value is optimal in the same row
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Table 16 50-dimension composition function test result statistics

Function This paper MFO CMFO LGCMFO PSO

F23 Mean 344.035 521.264 506.079 200.000 434.891

Std 1.172E-06 95.743 95.311 0.000 65.035

Wilcoxon + + - +

F24 Mean 283.797 404.821 392.899 200.000 294.281

Std 5.496 68.039 59.066 0.000 17.179

Wilcoxon + + - =

F25 Mean 212.711 239.865 233.853 200.000 243.218

Std 4.494 24.128 19.089 0.000 11.370

Wilcoxon + + - +

F26 Mean 116.634 137.896 117.070 156.250 157.440

Std 49.595 94.669 62.266 49.357 47.820
Wilcoxon + = + +

F27 Mean 1.419E+03 1.597E+03 1.561E+03 2.000E+02 1.696E+03

Std 9.280E+01 1.105E+02 1.226E+02 0.000E+00 2.165E+02

Wilcoxon + + - +

F28 Mean 1.660E+03 1.769E+03 1.757E+03 2.000E+02 4.340E+03

Std 3.651E+02 5.492E+02 4.075E+02 0.000E+00 8.404E+02

Wilcoxon + + - +

F29 Mean 8.763E+06 3.384E+07 3.406E+07 2.000E+02 1.402E+08

Std 1.560E+07 1.080E+07 1.105E+07 0.000E+00 1.020E+08

Wilcoxon + + - +

F30 Mean 1.231E+04 1.232E+05 1.098E+05 2.000E+02 7.541E+05

Std 2.587E+03 7.945E+04 7.763E+04 0.000E+00 8.150E+05

Wilcoxon + + - +

+/-/=/gm 23/7/2/16

The bold entries indicated that the value is optimal in the same row

welding costs) of the pressure vessel. As presented in
Fig. 31, the vessel has four design variables, namely, Ts (X1,
cylinder thickness), Th (X2, head cover thickness), R (X3,
inner radius of the cylinder),and L (X4, cylinder length).
Two variables of Ts , Th are an integer multiple of 0.0625in
of the thickness of the steel plate. The optimization model
of this problem is formulated as below.

Minimize:

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4

+19.84x2
1x3 (24)

Subject to:

g1(x) = −x1 + 0.193x3 ≤ 0 (25)

g2(x) = −x3 + 0.00954x3 ≤ 0 (26)

g3(x) = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0 (27)

g4(x) = x4 − 240 ≤ 0 (28)

Variable range:

0 < x1 ≤ 99 (29)

0 < x2 ≤ 99 (30)

10 < x3 ≤ 200 (31)

10 < x4 ≤ 200 (32)

The proposed DMMFO is used to solve this problem,
and its results are compared with PSO [46], GA [51], DE
[49] and ACO [52] as presented in Table 18. Table 18
presents that an optimal design cost is obtained by using the
algorithm proposed in this work.

5.3 Problem of cantilever beam design

It is a weight minimizing problem for solving square cross
section cantilever beam [53]. As presented in Fig. 32,
the cantilever beam is composed of five hollow blocks,
so the number of parameters is also five, and the design
parameter Xi is the side length of the square block. The
comparison results of the proposed algorithm with the
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Fig. 21 10-dimension
composition function
convergence curve
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Fig. 23 30-dimension
composition function
convergence curve
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Fig. 24 30-dimension
composition function box plot
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Fig. 25 50-dimension
composition function
convergence curve
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Fig. 26 50-dimension
composition function box plot
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Fig. 27 10-dimension function diversity comparison

Fig. 28 30-dimension function diversity comparison
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Fig. 29 50-dimension function diversity comparison

methods GOA[54], CS[55], MMA[56], and SOS[57] as
presented in Table 19. The optimization model of this
problem is formulated as

Minimize:

f (x) = 0.6224(x1 + x2 + x3 + x4 + x5) (33)

Subject to:

g(x) = 61

x3
1

+ 37

x3
2

+ 19

x3
3

+ 7

x3
4

+ 1

x3
5

− 1 ≤ 0 (34)

Variable range:

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100 (35)

Fig. 30 A tension-compression spring schematic design problem

Table 19 presents the comparisons of the results. It is
observed that the proposed DMMFO performs significantly
better than other compared algorithms.

5.4 Problem of three-bar truss design

The three-bar truss problem [58] (Fig. 33) is a structural
optimization problem. It is focused on minimizing the
weight. There are two parameters that need to be addressed.
Due to its difficult constrained search space, this problem

Table 17 Comparison of results for tension/compression spring design
problem

Algorithm Optimal values for variables Optimum cost

d D P

This paper 0.051679 0.356485 11.302575 0.012665

PSO 0.517280 0.357644 11.244543 0.012675

ES 0.519890 0.363965 10.890522 0.012681

GA 0.051480 0.351661 11.632201 0.012705

DE 0.051609 0.354714 11.410831 0.012670

The bold entries indicated that the value is optimal in the same row
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Fig. 31 Pressure vessel design problem

Table 18 Comparison of
results for pressure vessel
design problem

Algorithm Optimal values for variables Optimum cost

Ts Th R L

This paper 0.7430 0.3842 40.319619 200.000000 6032.5484

PSO 0.8125 0.4375 42.091266 176.746500 6061.0777

GA 0.9375 0.5000 48.329000 112.679000 6410.3811

DE 0.8125 0.4375 42.098411 176.637690 6059.7340

ACO 0.8125 0.4375 42.103624 176.572656 6059.0888

The bold entries indicated that the value is optimal in the same row

Fig. 32 Cantilever beam design
problem

Table 19 Comparison of
results for cantilever beam
design problem

Algorithm Optimal values for variables Optimum cost

x1 x2 x3 x4 x5

This paper 5.98769 4.86147 4.49969 3.44926 2.14218 1.30667

GOA 6.01167 5.31297 4.48307 3.50279 2.16333 1.33996

CS 6.00890 5.30490 4.50230 3.50770 2.15040 1.33999

MMA 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

The bold entries indicated that the value is optimal in the same row
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Fig. 33 Three-bar truss design problem

has a wide range of application prospects. The formulation
of this problem is
Minimize:

f (x) = (2
√

2x1 + x2) × l (36)

Subject to:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P − σ ≤ 0 (37)

g2(x) = x2√
2x2

1 + 2x1x2
P − σ ≤ 0 (38)

g3(x) = 1√
2x2 + x1

P − σ ≤ 0 (39)

Variable range:

0 < x1, x2 ≤ 1 (40)

The proposed algorithm is used to solve this problem and
compare the results with the methods presented in [53, 58],
and [59]. As presented in Table 20, the proposed algorithm
outperforms the other presented methods.

As a summary, this section investigates the performance
of the proposed DMMFO on four practical engineering
examples. These examples are some complex constraint
problems within the unknown search space. The experimen-
tal results show that DMMFO can obtain a better solution

Table 20 Comparison of results for three-bar truss design problem

Algorithm Optimal values for variables Optimum cost

x1 x2

This paper 0.788687421 0.408213541 263.8958435

MBA [58] 0.788565 0.4085597 263.8958522

CS [53] 0.78867 0.40902 263.9716

Ray [59] 0.795 0.395 264.3

The bold entries indicated that the value is optimal in the same row

than other methods. All these provide a strong proof for the
applicability of DMMFO in dealing with real-life problems.

6 Conclusions and future work

This paper integrates two efficient mechanisms into the
MFO to improve the performance of the algorithm. The
global exploration ability of the algorithm is enhanced by
embeding an inertia weight of diversity feedback control in
a specific position update stage. The optimal solution of the
algorithm is obtained by updating and ranking according to
the position of the moth,reducing the optimization ability
of some moths. To mitigate this issue, the better moths are
mutated with a certain probability in the improved algorithm
to further ensure the diversity of the population and improve
the exploration capacity of the algorithm. CEC’2014 series
of functions were used to test the proposed algorithm and
comprehensively evaluate it with three indicators, namely,
average value, standard deviation, and Wilcoxon rank test.
Furthermore, the proposed algorithm was employed to
resolve four engineering problems. The experimental results
show that the improved algorithm proposed in this work
performs better in terms of convergence accuracy and the
ability to jump out of the local optimal solutions.

Although the DMMFO showed an acceptable perfor-
mance in the tested problems it has some limitations. It is
still prone to fall into the trap of local minima when it is
adopted to deal with the optimization of high-dimensional
problems. The duty of moths in DMMFO is to perform
a global search. If all the moths are trapped in a large
local minima, the underlying reason is that the radius of
the moth’s spiral motion is not large enough to find a bet-
ter solution to help the algorithm jump out of local optima.
Therefore, DMMFO’s exploration ability still needs to be
further improved.

There are many complex optimization problems, for
instance in practical design tasks, the barrel vault structure
design to meet the optimal weights and the marine propeller
shape optimization to achieve the least loss. These problems
are highly constrained and computationally expensive. The
results of this paper prove that DMMFO is a simple and
effective method to solve this type of constraint problem
within the unknown search space. In addition, apply it
to optimize the penalty factor and gamma of the support
vector machine to improve its adaptability, or to fit the
best undetermined parameters from the photovoltaic system
to improve the conversion efficiency is worth researching.
Moreover, it is also an interesting problem to use DMMFO
to optimize the site selection coordinates of the base station
on the map to obtain higher coverage. On the other hand, the
current study of MFO has focused on the single-objective
optimization problem. To find the techniques to apply this
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algorithm to multi-objective problems, it can be investigated
in future studies.
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