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Abstract
With the expansion of data size and data dimension, feature selection attracts more and more attention. In this paper,
we propose a novel feature selection algorithm, namely, Hybrid filter and Symmetrical Complementary Coefficient based
Multi-Objective Genetic Algorithm feature selection (HSMOGA). HSMOGA contains a new hybrid filter, Symmetrical
Complementary Coefficient which is a well-performed metric of feature interactions proposed recently, and a novel way
to limit feature subset’s size. A new Pareto-based ranking function is proposed when solving multi-objective problems.
Besides, HSMOGA starts with a novel step called knowledge reserve, which precalculate the knowledge required for fitness
function calculation and initial population generation. In this way, HSMOGA is classifier-independent in each generation,
and its initial population generation makes full use of the knowledge of data set which makes solutions converge faster.
Compared with other GA-based feature selection methods, HSMOGA has a much lower time complexity. According to
experimental results, HSMOGA outperforms other nine state-of-art feature selection algorithms including five classic and
four more recent algorithms in terms of kappa coefficient, accuracy, and G-mean for the data sets tested.

Keywords Feature selection · Feature interaction · Hybrid filter · Symmetrical complementary coefficient ·
Multi-objective genetic algorithm

1 Introduction

Feature selection plays an important role in many aspects
of machine learning such as multivariate classification
(including the binary classification) where each instance
has just one class, and the multi-label classification [18,
19] where there is more than one class variable or each
instance can belong to multiple classes at the same time, and
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sometimes there are dependencies between these classes.
These classification tasks all need to learn the input data,
and the features are used to characterize the data from
different perspectives. Whereas, for a data set, sometimes
many features of it are not helpful for learning and mining
tasks, or even harmful [20]. Thus, correct features are
essential. Nowadays, there is a growing requirement of
feature selection, as data sets are getting bigger and wider.

1.1 Literature review

Features which need to be coped with can be divided
into three types, i.e., irrelevant features, redundant features
and interactive features. Irrelevant feature refers to the one
which does not help with learning and mining tasks, as it
has no connection or weak connection with the target [26].
Redundant feature refers to the one whose information
or knowledge can be provided by other features [48].
Irrelevant features and redundant features need to be
removed. Whereas, the interactive features need to be
retained for further observation. Feature interaction refers
to that multiple features contribute more than the sum of
these individual features’ contribution, and these features
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are interactive features [25]. A typical example of it is the
exclusive OR operation, i.e., Y = X1 ⊕ X2, and Y, X1, X2

are Boolean. A single feature X1 or X2 is irrelevant to
Y , but when they are combined together, they have a
strong correlation with Y . Therefore, removing any one
of them will lead to a serious consequence. More and
more scholars are beginning to pay attention to feature
interactions [41, 43, 44, 49]. Recently, [50] proposed a
new well-performed metric of feature interaction named
Symmetrical Complementary Coefficient (SCom) which
measures feature interaction based on classifiers at high
speed. Whereas, they have to determine SCom’s threshold
artificially, which is troublesome.

Feature selection can be divided into four types. Firstly,
filter method such as ReliefF [28] which determines the
weight of features by calculating the distance between
randomly selected instances and their nearest neighbors of
the same and different classes, mRMR [34] which quantify
candidate feature’s relevancy and the redundancy between
each candidate feature and the selected features based on
the information theory, and CRF [14] which can find the
composition of feature relevancy and maximize feature
relevancy while minimizing feature redundancy based on
the information theory. Secondly, wrapper method such as
RFE [39] which builds the models iteratively, and then
selects the best (or worst) features based on the fitness
function, and Boruta [29] which iteratively creates new
feature set composed of shadow features and original
features, builds model, and then determines important or
unimportant features. Thirdly, embedded method which
evaluates features during the model building process such
as L1, L2 regularization [33] and Random Forest [3].
Finally, hybrid method such as BBHFS algorithm [7] which
incorporates some advantages of filter and wrapper methods
through a natural stopping criterion and the concept of
boosting, [22] combines filter and wrapper methods which
takes advantage of both the filters and wrappers, [45]
combines two different optimal filters and a component co-
occurrence based feature relevance measure is proposed,
[46] combines several filters and calculate the multi-filter
wights and the multi-feature weights, then using a new
Q-range based feature relevance calculation method and
the greedy searching policy to get the final feature subset.
Among them, the hybrid method is getting more and more
popular, as it combines several different feature selection
algorithms which belong to different kinds of methods or
the same kind of method, and normally performs better.

Besides, these traditional methods are often combined
with the evolutionary algorithms which showed promising
results, [23]. Combined Genetic Algorithm (GA) with filters
and wrappers, and both the parsimonious feature selection
and excellent classification accuracy of the new algorithm
are presented. [51] proposed PSO-based multi-objective

feature selection algorithm which consists of a probability-
based encoding technology and an effective hybrid operator
can evolve a set of non-dominated solutions automatically.
[15], combined six well-known filters and an enhanced
GA in a wrapper approach. Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) algorithm [4, 12, 31, 37]
could brilliantly complete the problem space exploration
through the lens of chosen features, and generate a set
of solutions which is both diverse and high-performing.
[52], proposed two-archive multi-objective artificial bee
colony algorithm (TMABC-FS) which contains two new
operators, i.e., convergence-guiding search for employed
bees and diversity-guiding search for onlooker bees, and
two archives, i.e., the leader archive and the external archive.
[16], proposed a wrapper-filter combination of Ant Colony
Optimization (ACO) which can reduce computational
complexity and performs well. [53], improved the binary
differential evolution algorithm based on a new binary
mutation operator, a new one-bit purifying search operator
(OPS), and a novel efficient non-dominated sorting operator
to solve the multi-objective feature selection problems.
[40], proposed the variable-size cooperative coevolutionary
particle swarm optimization algorithm (VS-CCPSO) which
is competitive in solving the problem of high-dimensional
feature selection problems. [24], proposed a novel two-step
method called Information Gain Directed Feature Selection
(IGDFS) algorithm, in which Information Gain reduces the
feature space of possible configuration, and GA is combined
with a wrapper to get the optimal solution. [21], proposed
a tri-objective GA-based feature selection algorithm which
considers the number of features, mutual information, and
accuracy at the same time. [6], proposed a bi-objective
GA-based feature selection algorithm whose two fitness
functions are based on rough set theory and Kullback-
Leibler divergence.

Although many scholars have combined hybrid methods
with evolutionary algorithms, there are still some defects.
Firstly, most of them [6, 15, 16, 21, 23, 24] use wrappers
which means their methods are classifier-dependent in
each generation. As evolutionary algorithms have many
generations and there are many individuals in each
generation, the time cost has increased significantly.
Secondly, when generating the initial population, a large
proportion of studies use random [15, 16, 21, 23, 24] or
some pseudo-random pattern generator [6], which does not
take full advantage of knowledge or information of data set
used. Finally, at present, no research has combined feature
interaction with GA-based feature selection algorithm.

1.2 Contribution

In this paper, a novel feature selection algorithm is pro-
posed, which can solve these problems and performs better,
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i.e., Hybrid filter and Scom based Multi-Objective Genetic
Algorithm feature selection (HSMOGA). Main contribu-
tions of this paper are as follows.

– HSMOGA contains three new fitness functions includ-
ing a hybrid filter which performs more balanced than
these single filters, a new usage of the feature interac-
tion metric SCom which solves the problem of [50] that
needs to determine the threshold of SCom artificially,
and a novel way to limit the feature subset’s size. In
this way, no wrapper method is contained in HSMOGA,
and HSMOGA is classifier-independent in each gener-
ation. Which also makes it faster than other GA-based
algorithms, and we are the first to combine GA-based
feature selection algorithm with the feature interaction
metric.

– A new Pareto-based ranking function which is more
suitable than the traditional one in NSGA-ii for these
three fitness functions is proposed.

– We make great improvements in the structure, whose
superiority is obvious. HSMOGA starts with a new
step called knowledge reserve, which precalculate
the knowledge required for the calculation of fitness
functions and the initial population generation. Com-
pared with other GA-based feature selection methods,
HSMOGA has a much lower time complexity and its
parameter tuning can save a lot of time.

– Its initial population generation makes full use of the
knowledge of data set, which makes solutions converge
faster. Moreover, it is related to the third fitness function
that controls the size of the feature subset, and jointly
promotes HSMOGA to obtain better results.

We design three experiments to objectively evaluate the
effectiveness of the two of three fitness functions and the
Pareto-based ranking function proposed in this paper, and
two experiments to objectively compare and assess the
relative performance of HSMOGA in terms of classification
performance and time cost. According to the experimental
results, the fitness functions and ranking function proposed
in this paper are satisfactory. For the data sets tested,
HSMOGA outperforms other nine state-of-art feature
selection algorithms including five classic and four more
recent algorithms. Moreover, for the data sets tested,
HSMOGA is much faster than other GA-based feature
selection algorithm which is classifier-dependent in each
generation, and even if the max number of generations
increases a lot, the time cost will not increase much.

The structure of this paper is as follows. Section 2
introduces the preliminaries. In Section 3, we introduce
HSMOGA step by step. Section 4 presents experiments,
results, and analyses. Section 5 concludes our work.

2 Preliminaries

We introduce some methods related to this article. Firstly,
the three feature filters. Secondly, the Symmetrical Com-
plementary Coefficient. Finally, the Multi-objective genetic
algorithm.

2.1 Three filters

2.1.1 Information gain

Considering the data set with N instances, n features, and 1
class variable, S = (X, Y ) = {(xi1, xi2, · · · , xin, yi)}(i =
1, · · · , N), where X = (X1, · · · , Xn), yi ∈ {1, 2, · · · , C},
and C is the number of class.

Entropy is a measure of variable’s uncertainty [5].
Entropy of the class variable Y is in (1).

H(Y) = −
C∑

k=1

pk log2 pk (1)

where pk is the proportion of instances whose class is k.
According to values of a specific feature A ∈

{Xj }, j = 1, · · · , n, instances are divided into V

subsets. Therefore, class variable Y is divided into
{Y 1, Y 2, · · · , Y V }. Information Gain (IG) of feature A is in
(2).

IG(A) = H(Y) −
V∑

v=1

|Y v|
|Y | H(Yv) (2)

IG quantifies the information shared by feature A and
class variable Y , which is often used as a filter to measure
whether a feature is good or not for the classification
problem. One of its most famous applications is the ID3
decision tree algorithm [35]. Although it has a defect that
favors the features with more values.

2.1.2 Information gain ratio

Information Gain Ratio (IGR) is an improvement of IG to
overcome the above defect through adding a penalty term,
as in (3).

IGR(A)= IG(A)

−∑V
v=1

|Yv |
|Y | log2

|Yv |
|Y |

= H(Y)−∑V
v=1

|Yv |
|Y | H(Y v)

−∑V
v=1

|Yv |
|Y | log2

|Yv |
|Y |

(3)

IGR is also known as a feature filter and is applied to the
C4.5 decision tree [36]. Whereas, IGR favors the features
with fewer values. So, at each split point of C4.5 decision
tree, firstly, select those features whose IG are greater than
the average, and then select the feature with the largest IGR.
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2.1.3 ReliefF

ReliefF is a distance-based filter method [28]. It assigns
higher weights to the features which make distance between
instances with the same class shorter, while distance
between instances with different classes longer, and vice
versa. It calculates feature’s weight iteratively through select
m instances randomly, as in (4).

W(A)= W(A) −
k∑

i=1

diff (A, R, NHj )/(mk)+

∑

c �=class(R)

⎡

⎣ p(c)

1−p(class(R))
·

k∑

j=1

diff (A,R,NMj (c))

⎤

⎦ (mk)

(4)

diff (A, R1, R2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|R1[A]−R2[A]|
max(A)−min(A)

If A is continuous;
0 If A is discrete and

R1[A] = R2[A];
1 If A is discrete and

R1[A] �= R2[A];
(5)

where W(A) is the weight of feature A. R is the current
selected instance. NHj(j = 1, 2, . . . , k) are R’s k nearest
neighbor instances which have the same class with R.
NMj(c)(j = 1, 2, . . . , k) are R’s k nearest neighbor
instances whose class are c and c is different from the class
of R. class(R) is the class of R. p(c) is the proportion of
class c. R[A] is the value of R on A.

2.2 Symmetrical complementary coefficient

Symmetrical Complementary Coefficient (SCom) [50] is an
effective metric of feature interactions. Feature interaction
refers to that multiple features contribute more than the
sum of these individual features’ contribution. k-way
feature interaction acts on k features A1, A2, . . . , Ak . Let
e(Y ; A1, A2, . . . , Ai) (i = 1, 2, . . . , k) be the contribution
of feature(s) to the class variable Y . So, k-way feature
interaction exists if (6) exists [25].

e(Y ; A1, A2, . . . , Ak) ≥
k∑

i=1

e(Y ; Ai) (6)

SCom measures feature interaction based on classifiers
at a high speed. Considering two features Xi, Xj , firstly,
they are used individually to represent the characteristics
of the data set, namely, new data set Si = (Xi, Y ),
Sj = (Xj , Y ). Then, two classification models Mi, Mj are
established through learning Si, Sj . Then, get two models’
corresponding misclassified instances Di, Dj . Note that, in

this step, reserved validation data set can be used, or use the
OOB data [2] if the classifier are Bagging-based ensemble
method such as Random Forest just like [50] did. Next,
Di, Dj are classified by Mj, Mi respectively. Define Di’s
subset which are correctly classified by Mj is Dij . Define
Dj ’s subset which are correctly classified by Mi is Dji .

Therefore, define ECom(i, j) is the Enhanced Comple-
mentary Coefficient from Xj to Xi , as in (7). ECom(j, i)

is the Enhanced Complementary Coefficient from Xi to Xj ,
as in (8). SCom(i, j) is the SCom between Xi and Xj , as in
(9).

ECom(i, j) = |Dij |
|Di | (7)

ECom(j, i) = |Dji |
|Dj | (8)

SCom(i, j) = SCom(j, i)= ECom(i, j)+ECom(j, i)

2

= 1

2

( |Dij |
|Di | + |Dji |

|Dj |
)

(9)

The situation of two groups of features can be given
similarly. However, it will cost much more time, while
calculating SCom between two features takes very little
time, as we only need to use one feature to create the
classifier. This paper only considers the circumstances
of two features. Note that, a large SCom(i, j) does not
represent Xi, Xj should be contained, but only represents
Xi, Xj should be considered simultaneously, and we should
combine SCom with two features’ contribution to class
variable to decide whether to keep them or not [50].
Thus, SCom can be combined with some feature evaluation
methods and feature subset searching algorithms to obtain a
better feature subset.

2.3 Multi-objective genetic algorithm

Genetic algorithm (GA) [8] is a kind of heuristic
evolutionary algorithms based on language of natural
genetics and biological evolution. In GA, each variable
corresponds to a gene and one solution of these variables
corresponds to a chromosome. There is a fitness function
to evaluate chromosomes’ performance by calculating their
fitness values. According to these fitness values, selection,
crossover, and mutation operation are implemented to these
chromosomes to generate new individuals. These steps are
cycled until the stopping criteria is reached. In this paper,
‘chromosome’, ‘individual’, and ‘solution’ are the same,
and feature subset corresponds to them.

GA deals with just one fitness function. Whereas, a large
proportion of real-world problems are multi-objective inher-
ently, in which more than one objective needs to be satisfied
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simultaneously. Moreover, sometimes these objectives are
conflicting. Apparently, using a single fitness function will
cause that the promising resolution cannot be found. Multi-
objective genetic algorithm (MOGA) [9, 27] was proposed
to solve these problems. MOGA contains more than one
fitness function, i.e., F1(·), F2(·), · · · , Fm(·). In each gen-
eration, these fitness functions’ values of all solutions need
to be calculated.

A solution ch1 dominate another solution ch2 if the
following two condition are met:

1. ∀i ∈ {1, 2, · · · , m}, Fi(ch1) ≥ Fi(ch2)

2. ∃j ∈ {1, 2, · · · , m}, Fj (ch1) > Fj (ch2)

The dominating relation is not reflexive and symmetric
but transitive. Considering one generation’s solution set
R, its non-dominated solution set R′, which is also called
the Pareto front, refers to a subset whose members are
not dominated by any member of R. Some of MOGA’s
operations are implemented based on it.

3 HSMOGA

In this section, a novel feature selection algorithm is pro-
posed, i.e., Hybrid filter and Symmetrical Complementary
Coefficient based Multi-Objective Genetic Algorithm fea-
ture selection (HSMOGA). Let’s introduce HSMOGA step
by step.

3.1 Knowledge reserve

Unlike the traditional GA and MOGA, we are not starting
with generating the initial population, but starting with
knowledge reserve. Knowledge reserve refers to calculation
and storage of knowledge or information that will be used in
subsequent steps including the initial population generation
and calculation of fitness functions. Reserved knowledge is
divided into two parts, features’ hybrid weights, i.e., HW =
(hw1, hw2, · · · , hwn), and their SComs, i.e., SCn×n. The
hybrid filter is made up with three classic filter, i.e., IG,
IGR, and ReliefF. HW is the normalization of the average
ranking of IG, IGR and ReliefF weights of these features,
as in (10) and (11). SCn×n is a symmetric matrix of SCom
of these features, and each element of it is the SCom of the
two corresponding features, as in (12).

HWtemp = rank(IG(X)) + rank(IGR(X)) + rank(W(X))

3
(10)

HW = HWtemp − min(HWtemp)

max(HWtemp) − min(HWtemp)
(11)

SC=

⎛

⎜⎜⎜⎜⎝

0 SCom(1, 2) SCom(1, 3) · · · SCom(1, n)
SCom(2, 1) 0 SCom(2, 3) · · · SCom(2, n)
SCom(3, 1) SCom(3, 2) 0 · · · SCom(3, n)

...
...

...
. . .

...
SCom(n, 1) SCom(n, 2) SCom(n, 3) · · · 0

⎞

⎟⎟⎟⎟⎠

(12)

where X = (X1, · · · , Xn). IG(·), IGR(·), W(·), SCom

(i, j) are calculated according to (2), (3), (4) and (9), respec-
tively. IG(X), IGR(X), W(X) are all vectors, and each of
their elements represents weight of the corresponding fea-
ture. rank(·) means calculating the rank of every element
in a vector. The lowest is assigned 1, the second lowest
is assigned 2, etc. min(·), max(·) represent the minimum
and maximum values in a vector, respectively. Denote that
HW [k] = hwk, SC[i, j ] = SCom(i, j).

The reason for choosing IG, IGR and ReliefF is that
they are commonly used filters which have good effects.
Meanwhile, using both IG and IGR can solve the problem
of their respective bias, which is somewhat similar to
C4.5 [36].

Given that a single filter may performs better on some
data sets and worse on some other data sets [46], in this
paper, we just want to get a hybrid filter that performs well
on different kinds of data sets, that is, a more balanced
hybrid filter. Of course, it can be replaced with other
different kinds of filters or hybrid filters. Therefore, we
choose to average the results of these three commonly used
filters. Moreover, rank(·) can avoid the deviation caused by
metrics of different filters. For example, there are a data set
with two features A and B,

IG(A) = 0.19, IGR(A) = 0.1, W(A) = 0.1

IG(B) = 0.1, IGR(A) = 0.12, W(A) = 0.12
IG(A) + IGR(A) + W(A)

3
= 0.39

3
IG(B) + IGR(B) + W(B)

3
= 0.34

3
rank(IG(A)) + rank(IGR(A)) + rank(W(A))

3

= 2 + 1 + 1

3
= 4

3
rank(IG(B)) + rank(IGR(B)) + rank(W(B))

3

= 1 + 2 + 2

3
= 5

3

By inspection, the latter is more reasonable. In the experi-
ment section, we will design an experiment to demonstrate
that this hybrid filter performs more balanced on different
data sets, and always has a good performance.
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3.2 Population generation

Generating the initial population is a crucial thing in GA,
MOGA or some other evolutionary algorithms. Whereas,
a large proportion of studies use random [15, 16, 21, 23]
or some pseudo-random pattern generator [6]. Knowledge
of the used data set should be fully utilized. Although,
this bring in more time cost. Therefore, we introduced the
knowledge reserve to share time cost with other steps.

Every generation contains M chromosomes. A chromo-
some chs(s = 1, 2, · · · , M) is a binary vector whose length
is n. Each chromosome is a feature subset, in which ‘1’
represents its corresponding feature is contained, and vice
versa. When generating the first generation of individuals,
each element of chs , i.e., chs[k](k = 1, 2, · · · , n) is ‘1’
with a probability pk and is ‘0’ with a probability 1 −pk , as
in (13). The formula of pk(k = 1, 2, · · · , n) is in (14) and
(15).

chs[k] =
{

1 pk

0 1 − pk
(13)

pk,temp = HW [k] + bias (14)

pk =
⎧
⎨

⎩

0 if pk,temp ∈ [−1, 0]
pk,temp if pk,temp ∈ (0, 1)

1 if pk,temp ∈ [1, 2]
(15)

where bias is a control term that controls the size of
feature subsets when facing a specific data set. Range of
bias is [−1, 1]. Thus, we can control the size of feature
subset by controlling the probability that each element of
chromosome takes ‘1’. Meanwhile, it is guaranteed that the
better the feature (the larger the HW [k]), the greater the
probability that it appears in the feature subset.

3.3 Fitness functions

In this paper, three new fitness functions are combined
with MOGA. They are proposed from three perspectives,
i.e., average hybrid weight, average strength of feature
interaction, and size of feature subset, as in (16), (17) and
(18), respectively. Values of these three fitness functions are
the larger the better.

F1(chs) = 1

|K|
∑

k∈K

HW [k] (16)

F2(chs) = 2

|K|(|K| − 1)

∑

k1∈K

∑

k2∈K∧k2>k1

SC[k1, k2] (17)

where K is the collection of sequence numbers of
elements that are not ‘0’ in chs . |K| is K’s length, and
|K| is also the size of the feature subset which corresponds

to chs . For example, if chs = (1, 0, 1, 1, 0), then K =
{1, 3, 4}, |K|=3.

F3(chs) = − ||K| − en| (18)

en =
n∑

k=1

pk (19)

where en represents the expected size of feature subset, as
the probability that each feature appears in the initial feature
subset is pk . By searching for the optimal bias, we can
get the optimal en and make the feature subsets of every
generation closer to en.

F1(·) is the average hybrid weight of a feature subset.
F2(·) is the average feature interaction strength of every
two features. At present, no research has combined feature
interaction with GA-based feature selection algorithm. So,
we proposed the F2(·) function to quantify the feature
interaction degree of each feature subset generated by
MOGA. F2(·) solves the problem that [50] needs to
artificially determine the threshold of SCom. Here we only
need to calculate the average value and compare it with the
values of other feature subsets. F3(·) is the limitation of
feature subset’s size, and it can also be seen as the limitation
of F1(·) and F2(·). The feature subset whose size is closer
to en has a larger value of F3(·).

These three functions are conflicting to some extent,
which is suitable for MOGA. If there is no limitation, the
best solution which maximize F1(·) will be the feature
subset with just one feature, and this feature has the largest
hybrid weight. Similarly, the best solution which maximize
F2(·) will be the feature subset with only two features,
and the SCom between these two features are the largest.
We can be find that F1(·) and F2(·) conflict with F3(·)
respectively. As the F1(·)-optimized solution conflicts with
F2(·)-optimized solution (One of two contains one feature
and the other contains two features), F1(·) conflicts with
F2(·). As F3(·) exists, feature subset’s size will be closer to
en.

When dealing with multi-objective problems, the most
commonly used approaches are weighted sum, altering
objective functions, and Pareto-based ranking approaches
[27]. In this paper, Pareto-based ranking approach is used,
and we propose a new ranking function to assign solution
chs (s = 1, 2, · · · , M) a rank within every generation, as in
(20).

RANK(chs) = (M − nbedom(chs) + ndom(chs))/2 (20)

where nbedom(chs) is the number of solutions which
dominate chs , and ndom(chs) is the number of solutions
which are dominated by chs within the current generation.
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In the multi-objective optimization problem, the relation-
ships between two individuals are more complicated, i.e.
in addition to being completely superior to and completely
inferior to, it may be unable to determine which one is bet-
ter. In fact, M − nbedom(chs) and ndom(chs) can be seen as
the upper and lower approximation limitation of chs’s rank,
where the former indicates the number of individuals that
are not better than chs the latter indicates the number of
individuals that are worse than chs , and the average of them
can be seen as the rank of chs within the whole generation.

Figure 1 gives an example of RANK(·). There are
two fitness functions. The dot represents chs , and triangles
represent other solutions. The small ellipse represents the
solutions dominated by chs , and the large ellipse represents
the solutions which dominate chs . Therefore,

ndom(chs) = 6, nbedom(chs)=6, M−nbedom(chs)=11

RANK(chs) = (6 + 11)/2 = 8.5

The reason for constructing such a new ranking function
is that the commonly used fast non-dominated sorting and
the crowding-distance estimation [27] are not suitable for
the three fitness functions proposed in this paper. We want
those solutions who perform well on all three functions are
used to generate the next generation, and those edge points
on different non-dominated fronts should be discarded.
The fast non-dominated sorting and the crowding-distance
estimation which are the methods used by NSGA-ii to
solve multi-objective problems, cannot solve these above
problems, as edge points will have higher ranks and will be
used to form the next generation.
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Fig. 1 An example of ranking function

In the experiment section, we will design several exper-
iments to demonstrate the superiority and effectiveness of
these fitness functions and the new ranking function.

The rank of each solution, instead of its fitness function
values, will be used to perform the evolution operation, i.e.,
selection, crossover, and mutation.

3.4 Evolution operation

The flow chart of evolution operation we used is in Fig. 2.
The solution with a larger rank has a greater chance of being
selected. Chromosomes are selected through the roulette
wheel strategy. Moreover, the chromosomes whose ranks
are smaller than the average will not be selected.

When performing crossover operation, two chromo-
somes also called parents are selected at a time, and two
children are generated. One-point crossover is used. Firstly,
randomly select one point indicating the position of gene in
chromosome. Then, parents exchange the gene sequences
after the selected point mutually, and get two children.

When performing mutation operation, one chromosome
is selected at a time. In this paper, each gene of the parent
chromosome will mutate with a mutation rate rm. The gene
to be mutated will change from ‘0’ to ‘1’ or from ‘1’ to ‘0’.

Besides, we make some minor changes to improve our
work. In the crossover and mutation operation, child(ren)
identical to parent(s) is prohibited. If such situation happens,
we will repeat the crossover and mutation operation.

Moreover, we add the replace operation to guarantee
that the next generation will not be worse than the current
generation. If parents dominate their children, then children
will be replaced by their parents. In other words, in this
case, parents will take the place of children into the next
generation.

Fig. 2 Evolution operation flow chart
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Individuals generated by crossover and mutation opera-
tion make up the next generation, and each generation has
the same number of individuals.

3.5 HSMOGA algorithm

The proposed HSMOGA algorithm is made up with these
previous parts. It contains three new fitness functions and
a new ranking function. The three new fitness function are
proposed from three conflicting perspectives, i.e., average
hybrid feature weights, average feature interaction strength,
and the limitation of feature subset’s size. The new rank-
ing function is Pareto-based and it considers the upper and
lower approximation limitation of every solution’s rank at
the same time. HSMOGA’s initial population generation
makes full use of the data set’s knowledge. Moreover, the
knowledge or information needed for the fitness functions

calculation and the initial population generation is pre-
calculated, which indicates these parts will run at a very
fast speed. Besides, we add some minor steps to improve the
algorithm, as follows. Chromosomes whose ranks are smaller
than the average will not be selected. In the crossover and
mutation operation, child(ren) identical to parent(s) is prohib-
ited. The replace operation is added to guarantee the next
generation will not be worse than the current generation.

Flow chart of HSMOGA is in Fig. 3, where the compo-
nents contained in the dotted box is the main part where
HSMOGA differs from other GA-based algorithms. The
pseudo-code of HSMOGA is in Algorithm 1. HSMOGA
outputs individuals of the last generation. If you want to
reduce time cost, you can choose the highest ranked indi-
vidual as the final feature subset. In this paper, in order to
get better results, the top 50% of individuals will be selected
and compared by the classifier to get the best feature subset.

Fig. 3 HSMOGA flow chart
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3.6 Time complexity analysis

As the knowledge needed for the fitness function is pre-
calculated, the calculation of fitness functions takes very
little time. Even though the maximum number of gener-
ations is large, it won’t take too much time. Therefore,
the two parts that take the most time are the knowledge
reserve and the final selection of the best feature subset
using classifier.

As filter method of feature selection is very fast, main
part of the former’s time cost is the calculation of SCn×n.
It can be separated into two parts, i.e., the establishment of
n models and classification of the misclassified instances

between each two classifiers. In this paper, Random Forest
is selected as the classifier just like [50] did, as Random
Forest has fast speed, high accuracy, and the OOB data as a
validation set [2] brings great convenience in calculating the
SCom and parameters’ tuning.

Time complexity of establishing n model where each one
contains just one feature is the same as that of establishing
a Random Forest model which contains n features, namely,
O(nN log2 N). Time complexity of Di(i = 1, 2, · · · , n)

being classified by other n − 1 models is O(n|Di |). So,
the time complexity of classification of the misclassified
instances between each two classifiers is O(n(|D1| +
|D2| + · · · + |Dn|)). Given that the number of misclassified
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instances is often not too much and normally n < N exists.
Therefore, time complexity of knowledge reserve is the
same as that of establishing a Random Forest model with n

features, i.e., O(nN log2 N).
Final selection of the optimal feature subset indicates

establishing M/2 models using M/2 feature subsets of the
last generation, where M is the generation size. Let n′ be the
average size of these M/2 feature subsets. As F3(·) limits
the size of feature subset, the size of these last generation
feature subset is close to the expected size en. So, time
complexity of final selection is O( 1

2Mn′N log2 N).
So, time complexity of whole method is O(max{nN

log2 N, 1
2Mn′N log2 N}). Normally, M is not very large. By

inspection, the HSMOGA algorithm proposed in this paper
has a fast speed. As HSMOGA is classifier-independent in
each generation except the last generation, its time complex-
ity is much lower than the time complexity of GA-based
feature selection algorithm which is classifier-dependent in
each generation, i.e., normally O(MGn′N log2 N), which
indicates that HSMOGA can use a larger maximum number
of generations G without increasing much time cost. More-
over, as the existence of knowledge reserve, parameters’
tuning does not have to go through all the steps, which sig-
nificantly reduces time cost. In the experiment section, we
will demonstrate that HSMOGA has a significant advantage
in terms of time cost over those GA-based feature selection
algorithms that are classifier-dependent in each generation.

4 Experiment

4.1 Data sets

In this paper, 17 real-world data sets in the UCI Machine
Learning Repository [10] are selected, which are all avail-
able to evaluate the performance of machine learning
methods. They come from different fields such as clinical
research, purchasing intention research, spam email classi-
fication, sonar target classification, molecular research, etc.
They are of different number of features, classes, instances,
and ratios of discrete and continuous features, which can
on behalf of a great part of real-world problems, so that
they can evaluate the performance of a method accurately.
Features of these data sets were normalized by Min-Max
scaling before experiments. Details of these data sets are in
Table 1. Their names are the first words or abbreviations of
the items in UCI Repository and more detailed description
of these data sets can be found there.

4.2 Experiment settings

We design three experiments to objectively evaluate the
effectiveness of the two of three fitness functions and the

Table 1 Date set description. N is the number of instances. n is the
number of features. Con is the number of continuous features. Dis is
the number of discrete features. Con + Dis = n. C is the number of
classes

Dataset N n Con Dis C

CMCa 1473 9 2 7 3

Thoracicb 470 16 3 13 2

Onlinec 12330 17 10 7 2

SPECTd 267 22 0 22 2

Defaulte 30000 23 13 10 2

Dermatologyf 358 34 1 33 6

SPECTFg 267 44 44 0 2

Spambaseh 4601 57 0 57 2

Connectionisti 208 60 60 0 2

Qualityj 287 69 62 7 3

Librask 360 90 90 0 15

Musk1l 168 166 166 0 2

Musk2m 6598 166 166 0 2

LSVTn 126 309 309 0 2

Gastro1o 76 698 698 0 3

Gastro2p 76 698 698 0 3

Internetq 3279 1558 3 1555 2

aThe ‘Contraceptive method used’ is the class variable
bThe ‘Risk1Y: 1 year survival period’ is the class variable
cThe ‘Revenue’ is the class variable
dThe ‘OVERALL DIAGNOSIS’ is the class variable
eThe ‘default payment’ is the class variable
fThe ‘Dermatology’ is the class variable
gThe ‘OVERALL DIAGNOSIS’ is the class variable
hThe ‘type spam’ is the class variable
iThe ‘label associated with each record’ is the class variable
jThe ‘consensus’ is the class variable
kThe ‘class’ is the class variable
lThe ‘class’ is the class variable
mThe ‘class’ is the class variable
nThe ‘Binary class’ is the class variable
oThe ‘the type of lesion’ is the class variable, and ‘the type of light
used’ is ‘white light (WL)’
pThe ‘the type of lesion’ is the class variable, and ‘the type of light
used’ is ‘narrow band imaging (NBI)’
qThe ‘class’ is the class variable

Pareto-based ranking function proposed in this paper, and
other two experiments to objectively compare and assess the
relative performance of HSMOGA in terms of classification
performance and time cost.

The first experiment is to evaluate the effectiveness of
the hybrid filter through demonstrating that the three single
filters, IG, IGR, and ReliefF, perform better on some data
sets and worse on some other data sets, while the hybrid
filter performs more balanced on different data sets, that is,
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performs well on different data sets. In this experiment, all
17 data set will be used.

Details of evaluating the effectiveness of SCom and its
superiority in combination with filters and feature subset
generation algorithms can be found in [50]. So, the second
experiment is to evaluate the effectiveness of F3(·) function
through demonstrating that the size of the feature subsets
will be close to en which is the expected size of optimal
feature subset and is controlled by bias. In this experiment,
the ‘Musk2’ data set will be used, as it has a relatively large
number of instances and features.

The third experiment is to evaluate the effectiveness of
RANK(·) through comparison with other two methods, as
follows. Note that, initial population generation method,
three fitness functions, and the final optimal feature subset
generation method are the same in all three cases. In this
experiment, all 17 data set will be used.

– Case 1: HSMOGA.
– Case 2: RANK(·) is replaced by fast non-dominated

sorting and the crowding-distance estimation. Binary
tournament selection is used, and the replace operation
is the same as HSMOGA, which is based on the three
fitness values.

– Case 3: RANK(·) is replaced by fast non-dominated
sorting and the crowding-distance estimation. Binary
tournament selection is used, and the replace operation
is replaced by the one in NSGA-ii, which is based on the
non-dominated ranks and crowding distances. Actually,
this kind of method is NSGA-ii [27].

The fourth experiment is to compare and assess the clas-
sification performance of HSMOGA through comparing it
with nine state-of-art feature selection algorithms including
five classic and four more recent algorithms. Algorithms for
comparison are as follows. Among them, mRMR, ReliefF,
MDG, CFR need to determine the size of feature subset arti-
ficially. So, searching algorithm are implemented in order
to get their feature subsets containing the first n′′ features.
n′′ is optimized by validation set. In this experiment, all 17
data set will be used.

1. mRMR [34], a commonly used filter method.
2. ReliefF [28], a commonly used filter method.
3. MDG [3], a commonly used embedded method,

included in the establishment of Random Forest.
4. RFE [39], a commonly used wrapper method.
5. Boruta [29], a commonly used wrapper method.
6. CRF [14], a more recent filter method, which

considers feature’s relevance and redundancy at the
same time.

7. RRSS [50], a more recent wrapper method, which
takes the feature interactions into account.

8. IGDFS [24], a more recent GA-base method, which
combines GA, a filter, and a wrapper.

9. FSBOGA [6], a more recent bi-objective GA-
based feature selection algorithm whose two fitness
functions are defined using rough set theory and the
Kullback-Leibler divergence.

10. HSMOGA, the algorithm proposed in this paper.

The fifth experiment is to demonstrate that HSMOGA
has a significant advantage over IGDFS and FSBOGA in
terms of time cost, and the latter two stands for state-of-art
GA-based feature selection algorithms which are classifier-
dependent in each generation. In this experiment, data sets
‘Online’, ‘Default’, ‘Musk2’, and ‘Internet’ will be used, as
they have a relatively large number of instances or features.
The hardware environment used to run this experiment is
equipped with 2.50-GHz i5-7300HQ CPU and 8 GB of
RAM.

Package of R language is used to perform Random
Forest. For easier comparison, the parameters of Random
Forest are set to default values where the number of selected
features at every splitting node is mtry = 
log2(the number
of features)�+1, and number of trees is set to ntree = 500.
On each data set, five times of five-fold cross-validation
are performed, and the average values are taken as the final
results.

Some of parameters used in HSMOGA are in Table 2.
These parameters are not the optimal, as the time cost is
reduced. bias is the most important parameter in our view,
because it not only controls the probability of occurrence
of each feature in the initial population, but also limits the
size of feature subset in each generation through the F3(·)
function. So, we search for its optimal value within [−1, 1]
to maximize the kappa coefficient. Note that, the test data
does not appear in any part of the model establishment
including the parameter tuning. The OOB data [2] of
training set is used as the validation set.

Main parameters of comparison algorithms are as fol-
lows.

– The ‘mRMRe’ package of R language is used to
implement mRMR algorithm. All parameters are their
default values.

Table 2 Parameters of HSMOGA

Parameter Value

Population size(M) 50

Maximum number of generations(G) 20

Number of individuals generated by crossover operation(2a) 30

Number of individuals generated by mutation operation(b) 20

Mutation rate(rm) 0.1

3909Feature selection with multi-objective genetic algorithm based...



– The ‘CORElearn’ package of R language is used to
implement ReliefF algorithm. The number of iterations
is equal to the number of instances N . The number of
selected neighbor is k = 5.

– The number of parameter values of MDG are the
same of those in RF, i.e., mtry = 
log2(the number
of features)� + 1, ntree = 500.

– The ‘caret’ package of R language is used to implement
RFE algorithm. f unctions = rf Funcs, method =
“cv”, number = 5.

– The ‘Boruta’ package of R language is used to imple-
ment Boruta algorithm. pV alue = 0.01, mcAdj =
T RUE, maxRuns = 100.

– When implementing CFR, continuous features are
discretized by Ameva algorithm [17].

– When implementing RRSS, the parameter values of RF-
efficient-ReliefF are the same as those of ReliefF, and
the thresholds of SCom-SFS are determined according
to their piecewise function.

– For better comparison, population size and Maximum
number of generations of IGDFS are equal to those of
HSMOGA, i.e., 50 and 20. Other parameters of IGDFS
are consistent with [24], that is, tournament size is
2, mutation rate is 0.1, and mutation type is uniform
mutation.

– Similarly, population size and Maximum number
of generations of FSBOGA are equal to those
of HSMOGA, i.e., 50 and 20. Other parameters
of HSMOGA are consistent with [6], that is, the
probability of crossover is 0.9, and the probability of
mutation is 0.15.

4.3 Evaluationmetrics

When measuring the quality of a filter, i.e., rationality of
feature ranking, one commonly used method is to use the
first n′ features of its resulting order to build the model, and
n′ changes from 1 to n − 1, that is n − 1 models. Then, we
can compare two or more filters by calculating the rank of
their models when facing different n′. In experiment one,
the Average Rank (AR) is selected. One filter’s AR on each
data set is in (21).

ARi = 1

4(n − 1)

n−1∑

n′=1

rankin′ (21)

where i = 1, 2, 3, 4 represents IG, IGR, ReliefF, Hybrid
Filter (HF), respectively. rankin′ represents the i-th filter’s
rank when using the first n′ features of its resulting order to
build the model, and the best is ranked 1 and the worst is 4.
The range of ARi is [0, 1], and the lower, the better.

In this paper, kappa coefficient is the main evaluation
metric of models’ results. When facing a confusion matrix,

accuracy only considers the instances in the diagonal
direction which are classified correctly. Whereas, kappa
coefficient also takes the misclassified and unidentified
instances outside the diagonal into account, which indicates
that kappa coefficient is more reasonable especially when
facing the imbalanced data set. Its range is [−1, 1], and the
larger, the better. In this paper, parameter tuning of every
algorithm is also based on the kappa coefficient.

In addition, accuracy and G-mean are selected as
the secondary evaluation metrics, where G-mean is the
geometric mean of the recall rate of each class. The
range of them is [0, 1], and the larger, the better. Table 3
is a typical confusion matrix of C classes. Formulae of
accuracy, G-mean and kappa coefficient are in (22), (23) and
(24), respectively. In experiment three, kappa coefficient is
selected, as we’re just going to demonstrate the superiority
of the rank function. In experiment four, kappa coefficient,
accuracy and G-mean are selected.

accuracy =
∑C

i=1Ni,i

N
(22)

G − mean = C

√√√√
C∏

i=1

Ni,i

Ni

(23)

kappa coeff icient = p0 − pe

1 − pe

(24)

where

p0 = accuracy (25)

pe =
∑C

i=1Ni · N̂i

N2
(26)

4.4 Results and analyses

Experiments one to three are designed to objectively
evaluate the effectiveness of the two of three fitness
functions and the Pareto-based ranking function proposed
in this paper, and experiments four and five are designed to
objectively compare and assess the relative performance of
HSMOGA in terms of classification performance and time
cost. So, they are separated.

Table 3 A typical confusion matrix

Actual class

Predicted class 1 2 · · · C Total

1 N1,1 N1,2 · · · N1,C N̂1

2 N2,1 N2,2 · · · N2,C N̂2

· · · · · · · · · · · · · · · · · ·
C NC,1 NC,2 · · · NC,C N̂C

Total N1 N2 · · · NC N
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4.4.1 Experiments one to three

In experiment one, AR results of 4 filters on 17 data sets
are in Table 4. The last line of it is the average results of all
data sets, and the best filter for each data set is highlighted
in bold, the second best is highlighted in italic.

By inspection, we can find that single filters performed
better on some data sets and worse on some other data sets,
such as, IG performed well on Spambase data set but poorly
on CMC data set, IGR performed well on CMC data set
but poorly on SPECTF data set, ReliefF performed well on
SPECTF data set but poorly on Spambase data set. Whereas,
the hybrid filter is almost in the top two on all the 17 data
sets, and its average AR is the best. It is apparently that the
rank operation and average operation on these three single
filters are effective. The performance of the hybrid filter is
more balanced, and it is good on almost every data set.

In experiment two, in order to prove F3(·) function is
effective, we plot the average value of F3(·) function of each
generation, as in Fig. 4, where

Mean of F3 function = 0 means all the feature subsets in
that generation achieve the size of en which is our expected
size and it can be controlled by bias.

By inspection, we can find that as the number of
generations increases, the average value of F3(·) function
increases. Apparently, F3(·) function is effective. We can
adjust the bias term so that the size of the feature subsets is
close to the expected size, and F1(·) and F2(·) functions are
also optimized at the same time. Moreover, we can easily

Table 4 AR results of 4 filters on 17 data sets(%)

Dataset IG IGR ReliefF Hybrid filter

CMC 75.00 54.17 75.00 45.83

Thoracic 52.88 69.23 67.31 60.58

Online 52.17 84.78 72.83 40.22

SPECT 53.98 73.30 64.20 58.52

Default 66.18 63.24 76.47 44.12

Dermatology 61.40 70.59 59.93 58.09

SPECTF 69.32 88.07 38.07 54.55

Spambase 42.98 61.84 86.84 58.33

Connectionist 75.83 84.58 35.83 53.75

Quality 58.33 74.82 60.14 56.70

Libras 85.42 32.64 69.03 62.92

Musk1 49.10 61.75 77.86 61.30

Musk2 37.20 82.68 73.80 56.33

LSVT 63.83 65.45 66.02 54.69

Gastro1 57.16 63.61 71.80 57.43

Gastro2 50.97 55.78 82.51 57.75

Internet 54.79 63.52 71.09 59.767

Average 59.21 67.65 67.57 55.34
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Fig. 4 Experiment two on Musk2 data set

find that the average value of F3(·) function of the initial
population is almost in [en− 5, en+ 5]. It indicates that our
initial population generation method is very good, and the
population will converge faster.

In experiment three, in order to demonstrate the effective-
ness of RANK(·) function, HSMOGA was compared with
other two methods. Kappa coefficient results of these three
cases on 17 data sets are in Table 5, and the best method on
each data set is emphasized in bold.

Table 5 Kappa coefficient results of three cases (%)

Dataset Case1 Case2 Case3

CMC 24.16 20.45 17.07

Thoracic 3.69 3.24 -2.01

Online 60.15 57.63 58.87

SPECT 49.06 46.91 29.87

Default 37.49 37.17 36.50

Dermatology 97.26 95.78 95.72

SPECTF 29.34 28.40 25.54

Spambase 90.63 89.00 88.66

Connectionist 66.19 63.16 63.63

Quality 93.20 92.14 91.42

Libras 80.73 78.86 77.59

Musk1 78.11 76.71 75.72

Musk2 90.87 89.24 89.52

LSVT 65.15 62.98 63.19

Gastro1 43.31 39.33 42.43

Gastro2 44.99 40.14 44.24

Internet 91.90 91.81 91.04
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According to the results, we can find that HSMOGA is
better than the other two methods including the commonly
used NSGA-ii method on 17 data sets. It indicates that
the proposed RANK(·) function is more suitable for the
three fitness functions proposed in this paper. The reason
is that only those individuals who perform well on all the
three fitness functions are what we want, and actually they
represent better feature subsets. It seems like we focus on
those individuals that are more central in the Pareto front,
while NSGA-ii focuses more on finding the wider Pareto
front.

4.4.2 Experiments four and five

In experiment four, Kappa coefficient is the main evaluation
metric. Accuracy and G-mean are the secondary evaluation
metrics. Results of them of these ten algorithms on 17 data
sets are in Tables 6, 7, and 8, respectively. The best result
for every data set is emphasized in bold.

For more intuitive comparison, we calculate the Fried-
man’s ranks [13] of these three metrics of ten algorithms.
Firstly, each algorithm’s ranks on these 17 data sets are cal-
culated. The best algorithm is ranked 1, the second-best
algorithm is ranked 2, etc. Then average these ranks of
every algorithm. Table 9 gives Friedman’s ranks of these ten
algorithms, and the best one is emphasized in bold.

We perform Analysis of Variance (ANOVA) to prove
that there are significant differences between these ten algo-
rithms. Then, Tukey HSD test [1] and Nemenyi test [32] are
performed between every two algorithms. The significance

level of all tests is set to α = 0.05. If p−value ≤ 0.05
exists, then we can hold that these ten algorithms or the cor-
responding two algorithms are not equivalent. According to
Table 10, we can easily find that there are significant dif-
ferences between these ten algorithms. Tables 11 and 12
are the two statistical tests’ p−value results of the pairs of
algorithms with significant differences, respectively, and the
best one of each pair is emphasized in bold.

From these tables, we can get several points:

– HSMOGA performs well in terms of kappa coefficient,
accuracy, and G-mean. HSMOGA is significantly better
than other nine algorithms for the data sets tested.
It achieved the highest kappa coefficient on 12 of
17 data sets and it is almost the second or the third
highest on the other 5 data sets. Although we did not
optimize the model based on accuracy and G-mean,
HSMOGA’s accuracy and G-mean is still the highest
overall. According to Friedman’s ranks, HSMOGA is
the best one in terms of all three metrics, and far exceeds
the second place.

– The remaining nine algorithms have no significant
difference with each other for the data sets tested.
Among them, both IGDFS and FSBOGA performed
moderately well, and IGDFS ranked second, which
indicates the advantages of GA-based feature selection
algorithms. Possible reasons why their results are worse
than those of HSMOGA are as follows. The maximum
number of generations or the population size we used
are much smaller than those in [24] and [6]. IGDFS and

Table 6 Kappa coefficient results (%)

Dataset mRMR ReliefF MDG RFE Boruta CFR RRSS IGDFS FSBOGA HSMOGA

CMC 17.68 22.49 23.57 22.33 19.98 22.58 23.69 23.25 23.23 24.16

Thoracic -0.10 1.69 1.72 2.12 0.32 0.96 1.88 3.49 0.21 3.69

Online 58.77 59.13 59.63 58.40 55.91 59.60 59.28 58.40 58.77 60.15

SPECT 39.19 41.09 37.82 41.50 32.64 41.99 41.20 39.43 43.50 49.06

Default 37.32 37.35 37.12 36.97 36.25 36.81 36.91 36.83 36.29 37.49

Dermatology 96.56 97.19 96.76 97.05 96.99 96.84 96.99 96.63 97.20 97.26

SPECTF 26.89 28.93 26.91 25.44 26.17 22.24 29.97 26.13 22.82 29.34

Spambase 89.76 89.34 89.66 89.90 89.07 89.95 89.71 89.44 89.62 90.63

Connectionist 65.38 64.59 65.08 65.16 58.29 64.44 59.91 66.97 65.10 66.19

Quality 93.32 93.19 92.78 92.67 93.11 92.35 92.15 92.80 93.20 93.20

Libras 80.61 80.65 79.30 80.57 80.51 80.67 80.53 79.95 80.61 80.73

Musk1 77.86 76.94 77.88 76.14 76.14 76.82 77.11 78.77 74.94 78.11

Musk2 90.60 90.64 90.69 90.82 90.76 90.65 90.08 91.02 91.43 90.87

LSVT 64.01 58.81 57.00 61.51 61.43 61.13 64.76 63.76 61.78 65.15

Gastro1 38.42 40.02 38.68 38.28 39.04 30.91 32.89 32.45 40.65 43.31

Gastro2 41.90 35.90 33.10 35.40 42.97 37.61 36.11 39.01 35.27 44.99

Internet 91.14 90.28 91.90 90.94 88.53 91.14 91.04 91.14 89.41 91.90
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Table 7 Accuracy results (%)

Dataset mRMR ReliefF MDG RFE Boruta CFR RRSS IGDFS FSBOGA HSMOGA

CMC 78.22 78.32 77.76 77.42 77.91 77.91 78.11 77.76 78.21 78.11

Thoracic 84.21 84.00 84.26 83.15 83.91 82.89 84.30 83.32 84.04 84.26

Online 90.04 90.11 90.28 90.05 89.45 90.37 90.21 90.14 90.33 90.37

SPECT 81.43 81.88 80.67 82.92 79.63 81.95 81.50 80.52 82.40 84.56

Default 81.77 81.76 81.82 81.75 81.90 81.64 81.90 81.84 81.69 81.79

Dermatology 97.26 97.77 97.43 97.65 97.61 97.49 97.61 97.32 97.78 97.82

SPECTF 80.08 80.19 79.39 79.56 79.03 79.40 81.21 79.41 79.41 80.89

Spambase 95.18 94.94 95.10 95.20 94.81 95.22 95.16 94.98 95.07 95.67

Connectionist 82.89 82.49 82.76 82.79 79.40 82.40 80.18 83.65 82.71 83.28

Quality 95.55 95.46 95.19 95.12 95.41 94.90 94.77 95.21 95.47 95.47

Libras 81.90 81.94 80.68 81.87 81.81 81.96 81.83 81.30 81.90 82.02

Musk1 89.20 88.78 89.20 88.36 88.37 88.70 88.79 89.64 87.81 89.34

Musk2 97.68 97.68 97.70 97.73 97.71 97.68 97.55 97.77 97.91 97.74

LSVT 84.76 82.81 82.07 83.81 83.51 83.77 85.10 84.96 83.92 85.35

Gastro1 65.13 64.98 64.17 64.37 64.42 61.17 61.32 62.05 65.92 67.03

Gastro2 67.80 63.60 62.28 63.23 66.38 65.28 64.35 65.87 63.75 67.60

Internet 97.66 97.45 97.88 97.66 97.03 97.66 97.66 97.66 97.23 97.88

Table 8 G-mean results(%)

Dataset mRMR ReliefF MDG RFE Boruta CFR RRSS IGDFS FSBOGA HSMOGA

CMC 40.67 47.19 49.95 49.07 44.73 48.32 49.27 49.60 47.79 50.87

Thoracic 6.93 12.03 13.23 14.51 9.21 14.22 14.11 15.29 7.89 15.09

Online 75.12 75.13 75.23 74.33 72.95 75.31 75.19 73.98 73.33 75.56

SPECT 63.88 65.39 63.84 64.01 57.79 66.53 65.38 66.17 67.59 69.09

Default 59.29 59.32 58.85 58.84 56.99 58.90 57.69 58.29 58.11 59.63

Dermatology 96.23 96.71 96.45 96.52 96.54 96.25 96.51 96.01 96.85 96.69

SPECTF 50.96 51.90 52.26 48.83 52.68 45.56 52.95 51.92 47.82 52.79

Spambase 94.78 94.53 94.61 94.80 94.35 94.83 94.77 94.60 94.70 95.36

Connectionist 82.00 81.75 81.94 81.95 78.58 81.71 79.40 83.04 82.23 82.71

Quality 95.43 95.36 95.08 94.95 95.25 94.68 94.68 95.09 95.35 95.35

Libras 78.24 76.93 76.51 78.49 77.96 78.45 77.89 77.17 70.40 78.55

Musk1 88.62 88.04 88.67 87.75 87.69 88.07 88.25 89.13 87.14 88.69

Musk2 92.76 92.90 92.86 93.06 92.97 92.98 92.50 93.63 94.35 93.11

LSVT 79.71 76.37 75.17 77.78 78.06 77.46 79.77 78.54 77.52 80.79

Gastro1 18.50 37.91 35.30 31.06 38.32 18.05 35.52 24.00 37.80 38.45

Gastro2 29.16 26.46 25.89 30.20 44.51 14.28 26.85 26.05 17.12 45.91

Internet 94.33 93.64 94.45 93.17 92.22 94.33 93.75 94.33 92.93 94.45

Table 9 Friedman’s ranks

Evaluation metric mRMR ReliefF MDG RFE Boruta CFR RRSS IGDFS FSBOGA HSMOGA

Kappa coefficient 5.47 5.65 5.82 6.00 7.47 6.18 5.65 5.35 5.71 1.35

Accuracy 4.59 5.71 6.41 6.12 7.12 6.35 5.35 5.53 5.12 1.94

G-mean 5.94 5.81 6.25 5.44 6.75 6.13 5.75 5.13 6.19 1.63
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Table 10 Results of ANOVA

Df Sum Sq Mean Sq F value p-value

Groups 9 373.8 41.54 6.399 9.72 × 10−8

Residuals 160 1038.5 6.49

Table 11 p-values of Tukey HSD test on the pairs of algorithms which
have significant differences

Algorithm p-value

HSMOGA vs. mRMR 2.23 × 10−4

HSMOGA vs. ReliefF 9.38 × 10−5

HSMOGA vs. MDG 3.83 × 10−5

HSMOGA vs. RFE 1.52 × 10−5

HSMOGA vs. Boruta 2.97 × 10−9

HSMOGA vs. CFR 5.9 × 10−6

HSMOGA vs. RRSS 9.38 × 10−5

HSMOGA vs. IGDFS 3.92 × 10−4

HSMOGA vs. FSBOGA 6.98 × 10−5

Table 12 p-values of Nemenyi test on the pairs of algorithms which
have significant differences

Algorithm p-value

HSMOGA vs. mRMR 1.34 × 10−3

HSMOGA vs. ReliefF 6.2 × 10−4

HSMOGA vs. MDG 2.8 × 10−4

HSMOGA vs. RFE 1.2 × 10−4

HSMOGA vs. Boruta 3.4 × 10−8

HSMOGA vs. CFR 5.2 × 10−5

HSMOGA vs. RRSS 6.4 × 10−4

HSMOGA vs. IGDFS 2.18 × 10−3

HSMOGA vs. FSBOGA 4.9 × 10−4
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FSBOGA did not take feature interaction into account.
They have no means to control the size of the feature
subset.

– For the experiments performed in this paper, HSMOGA
is better than IGDFS and FSBOGA when using the
same maximum number of generations and the popula-
tion size. It indicates that HSMOGA works better when
using small G and M . This is precisely because when
generating the initial population, HSMOGA makes full
use of the knowledge of data set through controls the
occurrence of each feature according to the hybrid
weights and the control term bias, which makes the
results converge faster and performs better.

In experiment five, we compared the time cost of IGDFS,
FSBOGA and HSMOGA. Table 13 shows the time cost of
the two algorithms when maximum number of generations
G = 10, 20, · · · , 100. Note that, HSMOGA includes the
knowledge reserve part, MOGA part, and the final feature
subset selection part.

By inspection, we can easily find that HSMOGA has a
significant advantage over IGDFS and FSBOGA in terms of
time cost for the data sets tested. Moreover, as G increases,
time cost of HSMOGA does not increase much. For
example, when dealing with ‘Musk2’ data set, among the
whole HSMOGA, the knowledge reserve part costs nearly
16.8 minutes, the final feature subset selection part costs
nearly 4.5 minutes, and time cost of MOGA part changes
from 6.9 seconds to 10.8 seconds as G changed from 10 to
100. This is because the three fitness functions we proposed
are all independent of the classifier, and we precalculated the
knowledge or information required through the knowledge
reserve step. It indicates that HSMOGA not only has
the better results, but also run faster. Most parameters of
HSMOGA, such as G and bias, can be tuned at high speed.

5 Conclusion

We proposed a novel MOGA-based feature selection algo-
rithm, i.e., HSMOGA. It contains three new fitness func-
tions F1(·), F2(·), F3(·) and a new Pareto-based ranking
function RANK(·). F1(·) is the average hybrid weight
according to a new hybrid filter which performs more bal-
anced on different data sets. F2(·) is the average SCom of
every two features which is a measure of feature interac-
tion strength. F2(·) solves the problem that [50] needs to
determine the threshold of SCom artificially. F3(·) is the
limitation of F1(·) and F2(·) through ensuring that the size
of feature subset is close to an expected size. Compared
to traditional fast non-dominated sorting and the crowding-
distance estimation, the new ranking function RANK(·) is
more suitable for the three fitness functions proposed in

this paper. When generate the initial population, HSMOGA
makes full use of the knowledge of data set instead of
some random or pseudo-random pattern generator. The
probability of the occurrence of each feature is derived
from its hybrid weight and a control term. We proposed a
new step called knowledge reserve. It calculates features’
hybrid weights and their SComs before any other steps of
HSMOGA, which makes other steps including initial pop-
ulation generation, the calculation of fitness functions, and
the parameter’s tuning run faster.

We designed three experiments to objectively evaluate
the effectiveness of the two of three fitness functions and the
Pareto-based ranking function proposed in this paper, and
other two experiments to objectively compare and assess the
relative performance of HSMOGA in terms of classification
performance and time cost. According to the experimental
results, the fitness functions and ranking function proposed
in this paper are efficient, and HSMOGA outperforms
other nine state-of-art feature selection algorithms in terms
of kappa coefficient, accuracy, and G-mean for the data
sets tested. Moreover, HSMOGA has a significant time-
saving advantage over other GA-based feature selection
algorithms, as its three fitness functions are classifier-
independent and their knowledge needed is calculated
before, and even if the maximum number of generations
increases a lot, the time cost will not increase much.

In the future, we will try to construct a better hybrid filter
and combine HSMOGA with ensemble methods and Neural
Networks.
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