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Abstract
3D face reconstruction from single face image has received much attention in the past decade, as it has been used widely in
many applications in the field of computer vision. Despite more accurate solutions by 3D scanners and several commercial
systems, they have drawbacks such as the need for manual initialization, time and economy constraints. In this paper, a novel
framework for 3D face reconstruction is presented. Firstly, landmarks are localized on the database faces with the proposed
landmark-mapping strategy employing a model template. Then, an autoencoder assisted by the proposed energy function to
simultaneously learn the facial patch subspace and the keypoints positions is employed to predict the landmarks. Finally,
an unique 3D reconstruction is obtained with the proposed predicted landmark based deformation. Meta-parameters are
incorporated into the energy function during the training phase to enhance the performance of the autoencoder network in
reconstructing the face model. The experiments are carried out on two databases namely the USF Human ID 3-D Database
and the Bosphorus 3D face database. The experimental results show that the Autoencoder based Face REconstruction with
Simultaneous patch Learning and Landmark Estimation method (SL2E-AFRE) is efficient and the performance of the same
is significantly upgraded in each iteration.

Keywords 3D Face reconstruction · Autoencoder · Landmark estimation · Shape deformation

1 Introduction

Three-dimensional knowledge about a human face is
very much beneficial for computer vision and computer
animation fields. 3D Face Reconstruction can be defined
as promoting a 2D face image into a 3D geometry. Since
a 3D face model provides a mathematical representation
of the face surface in three dimension, which is consistent
despite change in the pose, illumination and expression,
3D face reconstruction is therefore essential for real-time
applications in face recognition, plastic surgery, facial
animation [10, 29], entertainment [9] and computer games
[38, 39], 3D rendering of comic cartoon characters [26,
27] etc. In the media and entertainment industry(M&E),
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it is contemporary to use 3D rendering of human faces
in various segments such as cinema, advertising and
gaming. In the medical field, 3D printing exhibits abundant
applications such as 3D modeling of human organs from
computed tomography(CT) data [43]. 3D reconstruction is
essential to generate 3D-printed model of the anatomical
structure for pre-surgical preparation and also to carry out
cosmetic surgery. In criminal investigation [14, 32, 41],
facial recognition is of predominant importance and 3D
technology is used for precise recognition.

A 3D face model can be represented by polygonal mesh
or B-spline. The ambiguity feature of the human face limits
the accuracy of 3D face modeling. 3D point cloud obtained
by the 3D scanners could be the best input for generating
3D face model. But it is very expensive. So, researchers
started focusing on 3D face reconstruction from 2D images
captured by the camera. Also, acquiring multiple views of a
face is not feasible in all the real time applications. So, using
a single face image as input for 3D modeling gains more
importance. Irrespective of the methods used to capture the
input, the result will be greatly affected by the person’s pose
and illumination. Several 3D face reconstruction methods
have been presented in the state-of-the art. However, dealing
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with pose and illumination variation is still a significant
problem. This affects the semantic details of the resultant
3D model.

Many datasets include images and 3D shapes annotated
with the primary (eyes,mouth,nose) and secondary(facial
outline,chin,hair) face features, which is not sufficient for
detailed 3D face geometry reconstruction. Therefore, to
handle cheek and contour information, the intermediate
serving keypoints(ISK) are introduced in this work. And, in
some datasets, though such uncalibrated images and models
are there, the keypoints are not available, which is crucial
for learning based 3D modeling. Therefore, in order to
prepare the publicly available 3D face databases without
required keypoints, to be useful for research purpose, a
Landmark-mapping strategy is proposed in this work, to
localize the landmarks on the faces in the database, adopting
a model template consisting of required keypoints. It needs
no manual intervention. The proposed landmark-mapping
strategy can map a set of landmarks from one template
model to any arbitrary model.

Most of commercial systems have restrictions in model-
ing 3D shape such as the requirement of frontal and profile
views, manual localization of feature points. In the pro-
posed work, the problem of 3D face modeling from a frontal
face image with automated feature localization using cluster
analysis [16, 40, 42] is particularly focused. Instead of gen-
erating 3D face using the generic model, the SL2E-AFRE
follows predicted landmark based reference model defor-
mation approach resulting in an unique 3D shape model
divergent from the generic model. The literature which has
given high accurate 3D models have used the deep learn-
ing for both 2D as well as 3D subspace learning purpose.
The proposed approach is confined to learn the 2D subspace
only using autoencoder, which is basically a dimensionality
reduction technique. Since the regression based landmark
estimation [44] is sensitive to the face appearance inside the
bounding box [45], clustering based landmark estimation is
proposed in this work.

1.1 Contributions

As key contribution, this work presents a new energy func-
tion to be optimized within the autoencoder architectures.
The energy function simultaneously learns the subspace and
landmarks positions. The overall contribution of this paper
are as follows: In this work, a three-step 3D face recon-
struction approach is presented which includes adapting
the database to the proposed 3D reconstruction framework,
landmarks estimation and shape deformation.

1. In the first step, a set of Intermediate Serving Key-
points(ISK) is computed on the model template and
an enhanced keypoint set is formed using ISK along

with the base keypoints to derive more accurate facial
shape. Then, the proposed landmark mapping strategy
is applied to adapt the 3D face database to the proposed
3D face reconstruction approach by mapping the land-
marks from the model template to the database, which
does not require any manual intervention.

2. In the second step, a novel architecture based on auto
encoders for 3D face landmarks prediction is presented,
where learning the patch subspace and Landmark
positions are carried out simultaneously with the help
of the proposed energy function. Only 2D images are
learned with the deep network, which can dramatically
reduce computation.

3. In the third step, a deformation method based on pre-
dicted landmarks is proposed to obtain a personalized
unique 3D face shape, where instead of using a generic
face, a reference model to be deformed is selected from
the training examples based on the predicted landmarks.
A model is selected by performing interpolation fol-
lowed by finding distance between predicted landmarks
and landmarks of training examples.

4. The proposed system is tested with two databases,
namely The Bosphorus 3D Face Database [31] and the
USF Human-ID 3D Face database [6].

The performance of proposed approach is comparable
to other state-of-the-art works. However, the proposed
approach is far faster than the existing methods as it does
not employ complex architectures.

This paper is formulated as follows. Section 2 describes
related works. A new methodology for 3D face reconstruction
is presented in Section 3. Section 4 analyses the experimen-
tal results obtained. Section 5 concludes the paper.

2 Related work

Existing 3D face reconstruction approaches can be classi-
fied into three categories: 3D Morphable Model(3DMM),
Shape-from-Shading(SFS), Learning-based Methods. Shape
from Shading methods determine the shape using shading
information(brightness variation from one pixel to another)
inherited from the image [18]. The main drawback of the
SFS method is that its presumption of lambertian surface
and a single point light source at infinity which led to unre-
alistic 3D face reconstruction [8]. In [23], Kemelmacher
et al. exploit the similarity of faces and combines the input
image’s shading information with that of the generic model.
To overcome the problem arose by the assumptions, the
researchers have proposed various approaches [35]. How-
ever, SFS does not provide an unique solution owing to the
complex albedo variations in the face. Since SFS captures
the fine-scale facial geometric details, it is being used as the
tune-up phase in some approaches [21].
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In 3DMM approach, a deformable model is generated
based on a linear combination of example 3D models [6].
Then the parameters are estimated by optimizing the cost
function, which is the difference between the 2D projection
of the model and the input image. The 3D model can be
generated using the estimated parameters. Because of using
the intensity information while fitting the model, the process
becomes time-consuming and most probably trapped into
local minima, which results in unrealistic 3D geometry.
To overcome the local minima problem, researchers started
using the facial landmarks in the deformable model to
fit those in the input 2D image [20]. These approaches
require human intervention to locate the landmarks and the
estimated parameters are less accurate. Zhou et al. [49]
introduces shape-space model, where each basis shape can
be rotated and so it is robust to arbitrary initialization.
Baumberger et al. [4] used silhouette information to deform
the generic model. Dou et al. [12] proposed a deep neural
network based End-to-End 3D face reconstruction and
generate 3D model from unconditional inputs. Richardson
et al. [30] generates a coarse face model using CNN,
employs another network to refine the coarse model and
uses a rendering layer to connect the networks. Tran et al.
[36] employs bump mapping method, in which global shape
is computed before local features estimation. Ding et al.
[11] presented a local linear fitting (LLF) based 3D face
reconstruction with sparse key points. Luo et al. [25] used
ICF (Iterative Closest Point) algorithm, where each vertex
is provided with an optimal weight for aligning the 3DMM
to the given depth image.

Learning based methods used to learn the 2D images
subspace and the corresponding 3D models subspace. Then
the mapping can be computed between these two subspaces
to generate the 3D face model for the input face image
[47]. Han et al. [15] proposed an approach based on
cascaded regression, where a shape incremental feature
was used, which exploits the information from 2D face
and the current estimated model at that stage. It could not
handle pose variations. In [33] and [24] coupled radial
basis function is used to get the intermediate face. The
model is optimized through landmarks using a coupled
dictionary, which relates 3D face model and 3D landmarks,
and another coupled dictionary, which relates 2D and 3D
landmarks(to obtain z-coordinates). Sun et al. [34] proposed
a coupled statistical model which incorporates both face
image and depth map of the face. In this approach, a new
database is generated by illuminating the training dataset
with an illumination parameter estimated from the average
face model and the input image. This method is robust
to different light conditions. Zhang et al. [48] used the
Stacked Contractive Autoencoder (SCAE), which learns
nonlinear image subspace and corresponding 3D model
subspace. Then a one-layer neural network is used to

compute the mapping between the subspaces. The drawback
of this approach is its computation complexity. Similarly,
Arslan and Seke [2] used conditional generative adversarial
networks(CGAN) for computing depth. Jackson et al. [19]
and Feng et al. [13] learn the mapping from 2D to 3D
coordinates using CNN(Convolutional Neural network).
Jackson et al. [19] develops the volumetric representation,
which however does not consider the semantic significance
of the points but the method proposed by Feng et al. [13]
does. Tran et al. [37] used deep neural networks (DNN),
where in-the-wild images are used for training.

3Methodology

The proposed approach is succinctly illustrated in Fig. 1. It
includes three components: 1) landmark mapping across 3D
databases; 2) patch subspace learning and facial landmark
estimation with autoencoder; 3) predicted landmark based
deformation.

Initially, we need to find N 3D facial landmarks L =
{l1, l2, ..., lN }, in the normalized 3D mean frontal face
geometry. In this work, to localize the landmarks in the 3D
face model, a landmark mapping approach across database
is presented. Then, the reconstruction problem is solved by
simultaneous clustering and relevant keypoints estimation
procedures by incorporating the proposed energy function
within the autoencoder network. The Energy function to be
minimized to find the landmarks is as follows:

E = AEloss + α.landmarkloss − β.clusterloss (1)

where AEloss ensures the consistent result though the code
layer data of autoencoder is used. landmarkloss is the error
in the landmarks predicted. Since the code layer is the base
for clustering, which is the base for landmark prediction
and the input is not represented precisely in the code layer,
clusterloss takes a part in this energy function.

Autoencoder network is used with the intention of com-
pressing the dimension, since it can learn the non-linear map-
ping in an unsupervised way effectively. Autoencoder maps
the high dimensional data to low dimensional space. Exist-
ing deep learning based approaches [12, 19] obtain non-lin-
ear subspaces of both 2D and 3D samples, entailing computa-
tionally intensive methods. In this proposed approach, only
2D subspace of facial patches is learned with autoencoder
network. Then 3D geometry of different patches of a face is
generated, each from different individuals, by performing
cluster analysis and 3D landmark estimation simultane-
ously. Finally, a reference model chosen from the training
dataset based on the prediction of landmarks, is deformed
using the estimated keypoints by the laplacian deformation
technique. In this paper, the set of 3D face landmarks is rep-
resented as L = {l1, l2, ..., lN }, and each 2D face image is
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Fig. 1 The proposed SL2E-AFRE framework for 3D face reconstruction

divided into three partitions P = {Pe, Pn, Pm}, where li ∈
R

3n; Pe, Pn and Pm are the sets encompassing eye patches,
nose patches and mouth patches respectively. The edge map
of the face image Pf is also used to estimate keypoints.

3.1 Enhanced keypoint set

An Enhanced keypoint set of 342 keypoints (Fig. 2) is
built with intermediate serving keypoints for smooth
deformation. It includes 68 base keypoints, 113 facial

contour vertices, 100 cheek vertices, 40 eye and eyebrow
vertices, 20 nosebase vertices and 1 nosetip. In the z-axis,
the largest valued vertex is taken as the nosetip vertex.

Since the target and reference shapes are aligned to each
other, by exploiting the groundtruth landmark points from
the reference shape, target shape’s landmarks get inherited.
The quantity of landmarks is expanded with the following
landmark function:

{ν′} = {ν} ± Δ (2)

Fig. 2 a 68 base keypoints, b
Enhanced keypoint set
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where {ν} is a set of preset landmark vertices; Δ =
{δ1, δ2, ..., δn}. A small value δi is added and subtracted
from {ν} to obtain a new set of landmarks {ν′}. The set of
supplementary eye landmarks is defined by,

Le = {(νe, ν
′
e) ∈ V | ν′

e can be obtained from

νe by applying (2)} (3)

the set of supplementary nose landmarks is defined by,

Ln = {(νn, ν
′
n) ∈ V | ν′

n can be obtained from

νn by applying (2)} (4)

and the set of supplementary contour landmarks is defined
by,

Lc = {(νc, ν
′
c) ∈ V | ν′

c can be obtained from

νc by applying (2)} (5)

where V is the vertices in the 3D shape model.

3.2 Landmarkmapping across 3D databases

The proposed landmark mapping method is depicted
in Fig. 3. The prerequisite to achieve 3D point cloud
correspondence is that the shape of all the subjects(the
topology of landmarks irrespective of the size of the subject)
should be similar, so that all the subjects have equal
number of vertices. In this paper, 3D facial landmarks are
recognized with the use of 3dMDLab benchmark [7] as the
reference. In some previous methods [28], locations of li is
achieved with multivariate Gaussian distribution, i.e.,

p(y|x, Θ) = N(1, σ 2) (6)

p(mi, li |Θ) is defined as,

p(mi, li |Θ) = p(mi |li , Θ)p(li |Θ)

∝ exp

(
−||mi − sURli − t ||2

2σ 2
i

− ||li − μi ||2
2ρ2

i

)
(7)

where mi represents the 2D frontal face feature points and Θ
represents pose parameters Θ = {s, R, t}, because a 2D face
image can be formed by projecting the 3D shape geometry
with Enhanced pose parameters such as rotation ‘R’, scaling

‘s’, translation ‘t’. The 2D projection is carried out with
U2×3=[1 0 0 ; 0 1 0] and the depth has not been included.
Standard deviation σ and ρ are computed from the training
dataset. And, p(li |mi, Θ) is defined as,

p(li |mi, Θ) = p(mi |li , Θ)p(li |Θ)

p(mi |Θ)
(8)

p(mi |Θ) is represented by,

p(mi |Θ) =
∫

p(mi, li |Θ)dli (9)

In this work, the landmarks are detected using a template
model with landmark annotations. First, the mean shape of
the USF database is rigidly aligned with the reference shape
using the most widely used Iterative Closest Point(ICP)
algorithm [5] for 3D shape registration. ICP aligns two
moderately overlying meshes. This registration method
establishes correspondence between the mean-USF and the
reference triangulated mesh [1]. It first selects sample points
from the target shape employing random sampling method,
finds the closest points in the source mesh iteratively for 10
iterations employing knn search.

Then weights are provided to each correspondence based
on (10).

W(m, bi) = exp(−D(m, bi))∑N
i=1 exp(−D(m, bi))

(10)

where m is a vertex in the reference mesh, bi is the ith

closest vertex in the source mesh and D(m, bi) is the
euclidean distance between m and bi .

It uses sum of squared distance as the error metric to be
minimized to derive final transformation.

vert alignedtarg = knn search(vtarg, vref ) (11)

where vert alignedtarg is the aligned vertices of the target
shape, which is the mean shape of USF database, vtarg is the
vertices from the target shape, vref is the vertices from the
reference shape. Then, the landmark points are recognized
with the use of the reference 3D shape geometry landmarks.

Fig. 3 Landmark mapping across 3D databases
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Fig. 4 Patches extraction and
3D face geometry generation

3.3 Patch subspace learning & facial landmarks
estimation with autoencoder

The autoencoder network for 3D landmarks estimation is
shown in Fig. 7, in which, each layer is a fully connected
layer. It comprises stacked dense layers. To assist the 3D
face shape reconstruction, the input 2D face image is
partitioned into three patches and the edge map of the face
region is extracted.

3.3.1 Face partitioning

The proposed approach starts with partitioning the input
faces into patches: eye, nose, mouth. Figure 4 shows how the
patches are extracted and utilized to derive the landmarks
for generating the final 3D geometry. Each facial patch with
the predefined dimension is given as one dimensional input
to the autoencoder network.

3.3.2 Edgemap for chin-cheek contour keypoints prediction

We can extract the chin-cheek region keypoints with the
help of Sobel operator by detecting horizontal edges using
the threshold value as 0.01. Edge detection operation
depends on the quality of image. Therefore, preprocessing
of image and post processing of edgemap should be
performed accordingly. Here, the input image is converted
into gray image followed by image dilation, which

makes the edges sharper. Then, edges are detected by
applying sobel edge operator. Edge detection is followed by
morphological close operation and area opening operation,
which removes all the unwanted small edges consisting
of less than a specific number of pixels. Unwanted eye
and mouth region are removed through hole filling and
deleting connected components with significant number of
pixels. Finally, contour is extracted through morphological
operations, namely dilation, extraction of largest blob and
erosion. Only the lower half of the resultant image is
analysed for predicting the required chin-cheek contour
keypoints. Though we obtain similar result when other
edge operators such as prewitt and canny are used, noise
suppression characteristics of sobel is better than prewitt
and sobel is computationally less expensive compared to
canny [22]. The output after applying sobel method is shown
in Fig. 5. The proposed method benefits from this edgemap
by obtaining more accurate chin-cheek contour keypoints,
resulting in an accurate facial shape.

3.3.3 Subspace learning and landmark estimation

After acquiring sufficient landmarks on the database faces
using the proposed landmark mapping strategy and dividing
each face into patches Pe, Pn, Pm and Pf , each patch set
is given as input for the concerned autoencoders, since each
category of patches is handled by different autoencoder
networks separately. A simple autoencoder is shown in

Fig. 5 Contour Extraction with Sobel
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Fig. 6 Layers in a simple Autoencoder

Fig. 6. An autoencoder [3, 17] has two partitions: an encoder
and a decoder. The patches are encoded using the 11-
layered autoencoder depicted in Fig. 7. Here, the input
is the pixel values of the pixels in each patch image. A

patch pi is encoded using the scaled exponential linear unit
activation function. The decoder reconstruct the input pi

from the encoded input. Generally, an autoencoder network
is trained, such that the mean squared error between actual
input(xi) and the obtained output(x′

i ) gets minimized, since
the expected output is nothing but the input itself.

MSE = 1

N

N∑
i=1

||xi − x′
i ||2 (12)

where N indicates the total number of objects. The autoen-
coder network parameters are obtained by minimizing the
mean squared error.

In the proposed approach, the objective is minimizing
image reconstruction error and landmark error simultane-
ously. The proposed energy function as specifed in (1)
is,

min
W,b

1

N

N∑
i=1

||pi − p′
i ||2 + α

√√√√ 1

N

N∑
i=1

(ypi
− ŷpi

)2

−β||enc(pi) − ci ||2 (13)

where N is the size of the dataset, yPi
and ŷPi

are
actual and obtained keypoints for the patch pi ; enc(pi)
and p′

i are encoded and decoded version of input face
patch, ci is the centroid to which pi belongs. Since the
landmark prediction relies on the clustering performance,
which depends on the code layer output and the autoencoder
does not provide the same encoded representation for the
identical input, clusterloss is subtracted from the computed
error. clusterloss is obtained by taking L2 distance between
the encoded input and the centroid it belongs. α and β

are meta-parameters used to help estimating the model
parameters and are set by trial and error.

Fig. 7 The autoencoder network for 3D landmarks estimation
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To compute the loss, in every iteration, clusters have
been computed based on the 2D subspace dimension at the
code layer. During the first iteration centroids are selected
randomly. Each facial patch is assigned to a patch cluster
centroid in every iteration.

ci = min
ck

||enc(pi) − ck||2 (14)

Thereby, the centroids get updated for the next iteration.

ck
t+1 =

∑
pi∈Ck

t enc(pi)
t

|Ct
k|

(15)

where ck is kth centroid and Ck is the set of patches
belonging to ck . The algorithm for subspace learning and
landmark estimation is shown in Algorithm 1.

To find the relevant samples among the cluster of
samples, SSIM(Structural Similarity Index Measure) is
computed between the input and each of the cluster samples.
SSIM can be defined as,

SSIM(p, q) = [l(p, q)α .c(p, q)β .s(p, q)γ ] (16)

where,α, β, γ are weights given to each of the compara-
tive measures luminance(l), contrast(c), structure(s).

l(p, q) = 2μpμq + C1

μ2
p + μ2

q + C1
(17)

c(p, q) = 2σpσq + C2

σ 2
p + σ 2

q + C2
(18)

s(p, q) = σpq + C3

σpσq + C3
(19)

With, C3 = C2/2 and setting α, β, γ to 1, the equation can
be reduced to,

SSIM(p, q) = (2μpμq + C1)(2σpq + C2)

(μ2
p + μ2

q + C1)(σ 2
p + σ 2

q + C2)
(20)

Then, based on a threshold value ε, a subset is selected from
the cluster, named as enhanced cluster Mc. For a patch pi ,
Mc is computed as follows:

Mc = {s = [s1, ...sm, ...sn]; s ⊂ Ck, sm ∈ Ck ∧ SSIM(pi, sm) < ε}
(21)

where Ck is the cluster comprising the samples belonging to
the cluster centroid ck . The cluster subset is used to estimate
the facial patch landmarks.

ŷpi
= 1

|Mc|
∑

sm∈Mc

y[sm] (22)

where |Mc| is the number of samples in Mc and y[sm] is the
keypoints of sm. It is explained in the Algorithm 2.

In each iteration, the mapping function and the landmark
loss function need to be optimized (13) via back-
propagation.

Upon completion of the learning process, the code layer
dimension(5th layer output) is utilized as feature vector for
the new test input face patch. Based on its closest centroid
and (21), landmarks are predicted. The patch landmarks are
combined together to obtain the complete face landmarks.

After the facial landmarks estimation, laplacian coordi-
nate based surface deformation is carried out by deforming
a reference model, which is structurally similar to the
predicted keypoints.
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3.4 Predicted landmark based deformation

Since the resultant 3D shape achieved through deforming
the mean shape lags in the fine details, predicted landmark
based deformation is proposed here, in which the depth of
non-landmark vertices are assigned to the most similar 3D
face according to the predicted keypoints. The reference 3D
face geometry is chosen in accordance with the minimum
gap between the predicted 3D landmark vertices and the
reference shapes’ 3D landmark vertices. Since the 2D
coordinates are different, first the reference landmark points
get interpolated at the predicted 2D coordinates to reproduce
the depth value. Thereafter, the distance is measured with
(23), using the difference between the interpolated depth
value and the predicted depth value.

distance = √‖depthinter − depthpredict‖ (23)

where depthinter is the reproduced depth value after interpo-
lation and depthpredict is the predicted landmarks’ depth
coordinate values. Then, the selected reference 3D model is
deformed with the predicted landmarks using laplacian defor-
mation method with Iterative Closest Point(ICP) algorithm.

4 Experimental results

This section presents the information about the databases
used, the results and the comparative analysis which shows
the effectiveness of the system that has been proposed.

4.1 Datasets

To evaluate the proposed methodology, experiments are
implemented with two datasets. The Bosphorus 3D Face
Database [31] includes 105 subjects with different expres-
sions. In this database, facial information are captured by
structured-light based 3D digitizer and the resolution of the
2D pictures are high (1600×1200 pixels). The resolution
in x, y and z coordinates are 0.3mm, 0.3mm and 0.4mm
respectively and this database incorporates six universal
expressions (Happy, Sadness, Surprise, Disgust, Angry,
Fear). In this experiment, neutral expression has been con-
sidered. The USF Human-ID 3D Face database [6] consists
of 100 laser scanned 3D faces, scanned under controlled
viewing conditions and each subject in the database has
75972 vertices. The 2D face images were obtained by taking

Fig. 8 Examples of the 3D
shapes obtained by deforming
the mean USF using the
landmarks predicted with the
proposed landmark mapping
strategy. The first column is the
face images, the second column
shows the 3D shapes from the
database, the third column shows
the deformed 3D shapes using
the landmarks predicted, the
fourth column shows the error
map(Blue-Green-Yellow-Red)
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Table 1 Performance evaluation of ISK

Intermediate USF Database Bosphorus Database

serving Avg. reconstruc- Avg. Avg. reconstruc- Avg.

keypoints tion error RMSE tion error RMSE

Without ISK 4.17±0.51 0.187 4.13±0.81 0.092

With ISK 3.86±0.69 0.132 3.05±1.02 0.043

snapshots of the 3D face geometry. 3dMDLab benchmark
[24] used in landmark mapping purpose provides around
68 keypoints locations. In addition, intermediate serving
keypoints are found by adding and subtracting small num-
bers of consecutive vertices as in (2), from important fea-
tures among the 68 landmarks. The proposed autoencoder
based 3D face reconstruction method is implemented using
python on a 64-bit Windows operating system over Intel(R)
Core(TM) i5-8300H processor @ 2.30GHz with NVIDIA
Geforce GTX 1060 GPU and 8.0 GB RAM.

4.2 Results

4.2.1 Landmark detection

Manual landmark localization is most probably error prone
and tedious task. So, the 3D landmarks are found with the
use of the mean shape of some publicly available faces from
3dMDLab benchmark [7] and the annotated landmarks.
Initially, 68 primary and secondary keypoints are found
with the proposed landmark mapping method, and then, in
addition, 274 intermediate serving keypoints are generated
from the obtained keypoints by adding and subtracting

small numbers of consecutive vertices. Figure 8 shows some
examples of the 3D shapes obtained by deforming the
mean USF using the landmarks predicted with the proposed
landmark mapping strategy.

This 3D face reconstruction work represents a valuable
alternative to the state-of-the-art conventional [23, 44,
46] and deep neural network learning based [2, 21, 24,
33] methods. In the former, shading information and
sophisticated algorithms are used and in the later, 2D face
subspace as well as the corresponding 3D shape geometry
are learned with computationally expensive networks.
However, the proposed work learns only 2D face subspace
without such non-trivial networks. In addition, intermediate
serving keypoints carry contour and cheek shape details.

4.2.2 3D face reconstruction comparison with and without
ISK

The performance of the ISK on the proposed SL2E-AFRE
method is evaluated. First, 3D reconstruction is carried
out with the 68 base keypoints. With them, the facial
shape could not be recovered more accurately. For that,
a new enhanced keypoint set including base as well as
intermediate serving keypoints is introduced and used for
the proposed approach. The Table 1 summarizes overall
performance of the introduced ISK. As the number of
important keypoints increases, the system generates more
accurate 3D geometry.

4.2.3 Optimal choice of number of clusters

The optimal choice of the number of clusters to be used
influences the performance to some extent. Experiments

Fig. 9 Impact of choosing the
optimal number of clusters
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Fig. 10 a Input image, b Reconstruction with generic face, c Reconstruction with landmark based reference face, d Ground truth.

are carried out to determine the optimal number of clusters
that both the datasets impart better performance. Figure 9
showed the number of clusters versus RMSE value. The
proposed algorithm works efficiently at the value of 18 and
so the number of clusters for the experiment is set to 18.
Compared to the method without ISK, the method with ISK
performed better on two datasets.

4.2.4 Deformation on generic face vs landmark based
reference face

As shown in Fig. 10, when the generic face is used as the
reference for deformation, it’s semblance will be there in all
the reconstructed models. Also, unique appearance details
will be missed out. Hence, the landmark based reference
model, which is structurally similar to the test subject is
used for the deformation leading to a personalized unique
3D model. In the figure, the respective reconstruction errors
are overlaid.

4.3 Comparison

4.3.1 Experiments on USF human-ID 3D face database

First, the proposed method is evaluated on USF Human-ID
3D Face database. Since, the less availability of large 3D
face database is a big constraint in 3D face reconstruction
task, training and testing is carried out in 90:10 ratio. The
training set is further partitioned into train and validation
sets. To deal with the over fitting problem, the samples for
validation are randomly selected at each epoch. The meta-
parameters has been set manually in (13) as α = 3.2×10−3

Table 2 Face patches and their dimensions

Patch name Dimension

Eye 50 × 23

Nose 20 × 30

Mouth 50 × 21

Face contour 50 × 50

and β = 5 × 10−3. The evaluation is carried out with the
neutral expression as the baseline. The resolution of the
input patches are given in the Table 2.

The number of clusters is set to 18 for both the dataset. To
derive the enhanced cluster set for each patch, the threshold
value ε = 0.63 is used, as detailed in Algorithm 1. To
evaluate the estimated landmarks, the reconstruction error
[23] is employed to be the performance metric and is
computed by,

reconstruction error = 100.|(zrec − ztruth)|
ztruth

(24)

where zrec is the z-coordinate value of the reconstructed
shape keypoints and ztruth is the z-coordinate value of the
ground truth keypoints.

The observable outcome of the proposed framework
on some human faces from the USF Human-ID 3D Face
database can be seen in Fig. 11. From the reconstruction
error overlaid on the obtained 3D shapes, it is understood
that the results are significant.

The proposed method is compared with [21, 23, 44, 46]
and [2].The method proposed by Kemelmacher et al. [23],
in which one reference model is used for generating 3D
models of all the test subjects resulting in reference model
resemblance in the final model. The compared methods
have been put forward with computationally very expensive
deep networks [30], but the proposed approach is able to
provide plausible result without such complex architectures.

We adopt the mean and standard deviation of the
reconstruction error to compare the performance, which
is detailed in Table 3, in which the best reconstruction is
displayed in boldface. From the table, it is inferred that,
SL2E-AFRE gives superior performance in obtaining the
chin keypoints, which leads to better facial shape. There are
still some failure cases due to the dataset constraint, since
the proposed method relies fully on the keypoints.

4.3.2 Experiments on Bosphorus database

When the proposed approach is evaluated on the Bosphorus
database, 90 out of 105 subjects are selected randomly
and employed for training and validation purpose. And, the
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Fig. 11 Sample Results. a The
2D image, b Groundtruth profile
view, c Reconstructed profile
view, d Groundtruth front view,
e Reconstructed front view. The
reconstruction error has been
overlaid on each reconstructed
face
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Table 3 Comparison of the mean and standard deviation of the reconstruction errors on the USF database

Subjects Face Patch SFS Zeng et al Jiang et al WGAN Wu et al SL2E-AFRE

Subject 1 Eye 6.80±2.50 5.91±1.52 5.20±1.02 4.98±0.02 4.21±0.11 4.25±0.21

Nose 4.32±1.82 4.12±0.91 4.06±0.18 4.02±0.10 4.05±0.01 3.11±1.10

Mouth 6.02±1.92 6.00±0.18 5.16±0.12 4.18±1.21 4.21±1.16 4.20±0.09

Contour 3.19±1.09 2.89±1.06 3.18±1.01 2.82±0.10 3.01±0.10 2.51±0.11

Subject 2 Eye 6.85±1.89 5.82±0.68 4.89±0.02 4.88±0.01 4.85±1.02 4.31±1.10

Nose 4.19±1.02 5.02±1.02 4.07±1.01 4.06±0.90 4.10±1.01 3.12±1.28

Mouth 5.99±2.08 4.08±1.86 4.01±0.09 4.00±0.07 4.12±1.11 3.91±0.30

Contour 4.12±1.78 4.98±0.82 4.11±0.16 4.17±1.12 4.11±0.16 4.10±0.10

Subject 3 Eye 7.21±0.89 6.01±1.03 6.08±1.12 4.91±0.12 5.01±1.07 4.52±1.80

Nose 5.18±1.65 5.01±0.18 5.08±0.11 3.00±0.16 4.91±1.02 3.02±1.70

Mouth 6.81±1.34 5.88±1.20 5.81±1.02 4.08±1.52 4.11±0.16 4.02±1.50

Contour 5.81±2.18 4.09±1.18 4.11±0.08 2.91±0.12 2.17±0.01 2.12±0.08

Subject 4 Eye 5.91±1.56 4.19±0.88 3.91±1.50 3.71±0.11 3.19±1.01 3.20±1.50

Nose 4.22±2.18 4.09±1.08 3.08±1.17 3.01±0.08 2.17±1.91 2.90±1.21

Mouth 6.18±1.00 5.18±0.76 4.99±2.01 4.01±0.12 4.09±0.05 4.12±1.30

Contour 3.71±1.81 3.70±0.18 4.01±0.16 2.50±0.87 2.90±0.14 2.20±0.10

Subject 5 Eye 6.12±1.18 5.12±2.12 5.91±0.88 4.33±0.06 4.01±1.12 4.32±1.72

Nose 5.12±2.71 4.97±0.65 4.88±0.01 3.28±0.18 4.01±0.01 3.21±1.81

Mouth 4.72±2.72 4.03±1.09 3.99±1.76 3.61±0.61 4.00±0.02 3.52±1.52

Contour 4.18±2.01 5.76±2.12 4.19±0.42 4.30±0.03 5.01±0.12 4.28±0.72

Subject 6 Eye 5.42±1.08 5.01±0.19 4.31±0.12 3.01±1.21 3.22±1.09 3.31±1.05

Nose 5.19±0.19 4.91±1.71 4.11±1.11 4.21±0.51 4.09±0.66 4.25±0.15

Mouth 6.12±1.01 5.11±1.87 4.32±1.34 3.88±1.08 4.11±1.12 4.15±1.10

Contour 5.19±0.09 5.09±1.16 4.28±1.12 3.17±0.89 2.98±0.99 3.31±0.31

Subject 7 Eye 6.81±1.07 5.91±0.11 4.33±0.08 4.20±0.01 4.16±0.15 3.11±1.20

Nose 5.74±2.04 5.01±0.21 4.02±0.11 4.52±0.71 4.55±0.70 4.20±0.11

Mouth 5.17±1.08 5.07±0.17 4.65±0.06 3.01±0.01 3.89±0.11 4.01±0.08

Contour 6.07±0.28 4.91±0.21 4.59±0.71 3.92±0.17 3.99±0.12 3.91±0.11

Subject 8 Eye 5.39±1.12 5.21±0.11 4.28±0.12 4.02±1.01 3.91±1.11 4.17±0.11

Nose 5.26±0.17 4.19±1.00 4.11±0.06 3.56±0.11 3.67±1.12 3.81±0.90

Mouth 6.09±2.11 5.11±0.91 4.91±1.04 3.23±1.20 4.01±0.07 4.16±0.17

Contour 5.11±0.12 4.00±0.06 3.65±0.61 3.56±0.81 3.09±0.11 3.69±0.77

Subject 9 Eye 5.91±0.07 4.98±0.81 3.91±0.05 3.61±0.23 3.01±0.11 2.66±1.00

Nose 5.22±0.12 4.19±0.77 3.97±0.11 3.89±0.06 3.51±0.52 3.71±0.11

Mouth 5.08±0.21 4.92±1.07 3.67±0.20 3.08±0.17 3.11±0.71 2.91±0.11

Contour 6.11±0.01 5.11±1.10 4.86±0.45 3.96±1.30 3.91±1.20 3.01±0.01

Subject 10 Eye 5.39±0.66 4.38±1.02 4.41±0.06 3.01±0.08 3.31±0.12 2.76±0.16

Nose 4.98±0.08 4.67±1.01 4.03±1.00 3.90±1.01 3.23±0.81 3.01±0.78

Mouth 4.91±1.12 4.11±1.26 3.96±0.21 3.76±0.81 3.80±0.17 3.72±0.08

Contour 5.26±0.16 4.99±1.02 4.71±0.62 4.01±0.02 4.02±0.12 3.91±0.19

2265SL2E-AFRE : Personalized 3D face reconstruction using autoencoder with simultaneous subspace...



Fig. 12 Sample result of various state-of-the-art methods

subjects for the validation set are selected randomly in each
epoch.

The predicted keypoints are employed to deform the
selected 3D model from the training set of subjects chosen
based on the landmark prediction. The proposed method
is compared with [21, 23, 44, 46] and [2]. Kemelmacher
et al. [23] used a single generic model for generating all 3D
face models. However, the proposed approach uses different
reference models for different facial patches, ensuring
unique reconstruction and the RMSE for Kemelmacher
et al. [23] is larger than that for the proposed approach. Zeng
et al. [46] used both front and profile views of a face image,
but the proposed method utilizes only frontal face. The
methods proposed in [21] and [2] are deep neural network
based methods. Arslan et al. [2] uses Generative Adversarial
Networks(GAN), which incorporates both generator and
discriminator network. However the result of the proposed
approach is comparable to those computationally expensive
methods. Figure 12 presents a comparison on a sample

input. From the Fig. 13, it can be seen that, the proposed
method gives significant result on most of the subjects.

5 Conclusion and futurework

In this paper, a method for 3D face reconstruction
with a single frontal face image is presented. Initially
the keypoint localization in the databases is carried out
using the landmark mapping approach. The proposed
3D reconstruction method employs different reference
models for modeling different facial patches. It utilizes an
autoencoder network for learning the patch subspace and
selecting the reference models for landmark estimation.
Finally, a reference shape is chosen from the database,
which is considered as structurally similar to the test
subject according to the predicted landmarks. Then, laplace
deformation is carried out on the selected model with the
predicted keypoints.

Fig. 13 Graphical representation of RMSE values computed on 15 subjects from Bosphorus database
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Unlike existing approaches, the proposed method adopts
a single face image as input and does not rely on a single
reference model. The evaluation result has demonstrated
that obtaining plausible 3D face geometry is possible
without computationally expensive approaches. However
the findings might not be generalized to view-invariant face
images. Since the proposed method is kind of example
based method, the performance depends on the faces in the
training dataset.

Further studies, which take uncalibrated input images
into account will need to be undertaken in future. Also, it is
believed that this framework can be extended for generating
3D comic characters.
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