
https://doi.org/10.1007/s10489-020-01994-9

Fast Top-K association rule mining using rule generation property
pruning

Xiangyu Liu1 · Xinzheng Niu1 · Philippe Fournier-Viger2

Accepted: 1 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Traditional association rule mining algorithms can have a long runtime, high memory consumption, and generate a huge
number of rules. Browsing through numerous rules and adjusting parameters to find just enough rules is a tedious task
for users, who are often only interested in finding the strongest rules. Hence, many recent studies have focused on mining
the top-k most frequent association rules that have a minimum confidence so as to limit the number of rules by ranking
them by frequency. Though this redefined task has many applications, the performance of current algorithms remains an
issue. To address this issue, this paper presents a novel algorithm named FTARM (Fast Top-K Association Rule Miner) to
efficiently find the set of top-k association rules using a novel technique called Rule Generation Property Pruning (RGPP).
This technique reduces the search space by analyzing the internal relationships between items of the database to be mined
and the parameters set by users. Furthermore, a novel candidate pruning property is used by this technique to speed up the
mining process. FTARM’s efficiency was evaluated on various public benchmark datasets. A substantial reduction of the
association rule mining time and memory usage was observed, and that FTARM has good scalability, which can benefit to
many applications.

Keywords Data mining · Association rule mining · Top-k rules · Rule expansion

1 Introduction

Data mining techniques [28, 29] are applied in numerous
domains to discover insightful, novel, and interesting pat-
terns, as well as to build understandable, descriptive, and
predictive models from large volumes of data. It encom-
passes various algorithms such as principle component anal-
ysis, clustering, sequence detection, association rule mining,
and classification [40]. Association rule mining (ARM) is

� Xinzheng Niu
xinzhengniu@uestc.edu.cn

Xiangyu Liu
ericliu uestc@163.com

Philippe Fournier-Viger
philfv@hit.edu.cn

1 School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China

2 School of Humanities and Social Sciences, Harbin Institute of
Technology Shenzhen Graduate School, Shenzhen, China

an unsupervised data mining task that consists of extract-
ing interesting associations and frequent patterns from sets
of items in a transaction database or other data repositories
[38]. ARM is often considered as an exploratory data min-
ing technique, as it can be used to find associations between
values that can help to better understand the data.

Association rules have a wide range of applications in
many fields. A well-known application of association rules
is in the business field [19], where discovering associations
between purchased products is very useful for decision-
making and devising effective marketing strategies. In addi-
tion, some classification methods based on association rules
have also been developed that achieved high classification
accuracy on datasets from the UCI machine learning reposi-
tory [2]. For classification, association rules may not always
have the best accuracy but they are rules that are generally
easily interpretable by humans. Apart from the aforemen-
tioned applications, association rule mining is also used
for inventory control, analyzing protein sequences, medical
diagnosis, fraud detection, monitoring telecommunication
networks and many other applications [39].

To consider various factors, several variants of the
association rule mining problem have been studied such

/ Published online: 26 October 2020

Applied Intelligence (2021) 51:2077–2093

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01994-9&domain=pdf
mailto: xinzhengniu@uestc.edu.cn
mailto: ericliu_uestc@163.com
mailto: philfv@hit.edu.cn

as fuzzy association rule mining, relational association
rule mining, weighted association rule mining, temporal
association rule mining and also several measures have
been proposed to select interesting rules. The task of
traditional association rule mining is to enumerate all
rules satisfying some predefined minimum support and
confidence thresholds in a given database [30]. The rule
mining process is usually divided into two parts. Part one is
to mine frequent patterns such as itemsets and subsequences
that have a frequency that is no less than a given threshold
in large transactions or relational datasets. Then, part two
consists of deriving all association rules from the frequent
patterns under the minimum confidence constraint.

In general, mining association rules requires that users
set the corresponding minimum thresholds in advance. But,
it is not intuitive for users to find appropriate values for
these parameters, which have a direct impact on the number
of generated association rules. The reason is that these
parameters are dataset dependent. In many cases, ARM
generates a large number of association rules, which cannot
be understood or verified by the end users, thus limiting
the usefulness of data mining results [31]. To address this
problem, the TopKRules algorithmwas proposed for mining
the top-k association rules [14], where k is a parameter set
by users to indicate the number of association rules to be
found. Different from the traditional two-step mining of
association rules, TopKRules uses rule expansions to find
the top-k association rules that meet the user requirements.
Although TopKRules accomplishes its mission, it explores
a huge search space. To improve the performance of top-
k association rule mining, the ETARM (Efficient Top-K
Association Rule Miner) algorithm was proposed [34],
which uses two pruning properties to reduce the search
space. Experiments have shown that ETARM outperforms
TopKRules. However, performance still remains an issue.

Top-k association rule mining is a more difficult problem
than traditional ARM since the user does not have to
set a minimum support threshold. As a consequence, the
search for the top-k rules must be done starting with a
minimum support threshold value of zero to ensure that all
the desired rules can be found. Besides, the traditional two-
step approach is not efficient for mining the top-k rules, thus
it is necessary to design new pruning strategies to reduce the
search space for mining rules.

In this paper, to further improve the performance of top-
k association rule mining, we propose an algorithm named
FTARM (Fast Top-K Association Rule Miner). It extends
the ETARM algorithm with a novel search space reduction
technique called rule generation property pruning (RGPP)
to improve the performance. A significant advantage of
FTARM is that it can raise the minimum support threshold
more quickly, causing many low frequency rules to be

ignored from the beginning, thus greatly reducing the search
space.

The rest of the paper is organized as follows. Section 2
reviews relevant studies on mining the top-k association
rules. Section 3 presents the basic definitions. Section 4
describes the proposed FTARM algorithm for mining
the top-k association rules. Section 5 presents results
from detailed experiments to compare the performance of
the FTARM, ETARM and TopKRules algorithms. Lastly,
Section 6 draws a conclusion and discusses future work.

2 Related work

Agrawal et al. introduced the concept of ARM in 1993
to identify interesting relationship between dataset entities
[1]. Then, numerous researchers have joined the research
on ARM to improve the performance of mining algorithms
from different angles. Some people have focused on
improving the performance using optimization techniques.
Son et al. [38] proposed a method based on animal
migration optimization to reduce the number of association
rules by ignoring rules that are weakly supported by the
data. In [47], Wen et al. presented a hybrid temporal
ARM method with genetic algorithm to mine temporal
association rules. Moslehi et al. [32] proposed a hybrid
framework based on genetic particle swarm optimization
algorithms to discover rules in continuous numeric datasets.
Zhang et al. [49] introduced a method to mine association
rules by integrating a multi-dimension and multi-objective
double group discrete firefly algorithm (MODGDFA) with
Pareto rules. Besides, some efficient data structures have
also been used to improve the performance of ARM. For
example, Anand et al. [3] proposed a mining algorithm
which applies a priority model to find interesting relations
in a database using the treap data structure. Hashem et al.
[18] introduced a newmemory efficient data structure called
dynamic superset bit-vector to represent the relationship
between frequent closed itemsets in a lattice, and Mai
et al. [30] proposed a lattice-based algorithm for mining
high utility association rules. ARM is an active research
field and several other improvements have also been
proposed [5, 10, 22, 25, 33, 44].

Frequent itemset mining (FIM) is a sub-problem of
ARM. Its purpose is to extract any frequent itemset, that
is a set of values that has an occurrence frequency that is
no less than a given threshold. Since FIM was introduced
[1], many approaches have been designed using different
optimization strategies to improve the performance of this
task. Aryabarzan et al. [6] proposed an efficient algorithm to
quickly mine frequent itemsets using a data structure called
NegNodeset. An efficient algorithm using hashing and

2078 X. Liu et al.

lexicographic order for FIM was introduced in [7]. Djenouri
et al. [13] combined a heuristic with bio-inspired algorithms
for solving the FIM problem. To better handle large-scale
data, Han et al. [17] introduced a novel precomputation-
based FIM method to quickly identify frequent itemsets,
and Zhang et al. [50] proposed an algorithm for mining
high quality approximate frequent itemsets in very large
databases. In addition, some parallel methods have also
been proposed. Raj et al. [35] presented an efficient apriori-
based frequent itemset mining algorithm on Spark, and
Chon et al. [8] proposed a fast GPU-based FIM method for
analyzing large-scale data. Other related works can be seen
in [12, 15, 16, 48].

However, mining frequent itemsets still requires much
memory and time, and setting the non intuitive minimum
support parameter is an important limitation of FIM
algorithms. As a solution, the task of FIM was redefined
as top-k FIM [9, 43]. In recent years, the concept of top-
k pattern mining has been extended to many other pattern
types [23, 24, 26, 36]. To quickly complete this top-k mining
task, many researchers have improved the performance
using various data structures and pruning strategies. For
example, Deng et al. [11] proposed a fast algorithm for
mining the top-rank-k frequent itemsets using the Node-list
structure. In [20], an efficient and effective algorithm using
the N-list structure was proposed for mining the top-rank-
k frequent patterns. Vo et al. [42] used the Weighted N-list
(WN-list) structure and an early pruning strategy to mine the
top-rank-k frequent weighted itemsets. And Le et al. [27]
introduced a method for mining the top-k frequent patterns
with effective threshold raising strategies.

The idea of mining the top-k association rules is
analogous to the idea of mining the top-k itemsets, as
both are applied to meet the needs of users who are
only interested in the strongest rules or itemsets. As for
top-k ARM, algorithms were designed to discover k-
optimal rules [46] and filtered top-k association rules [45].
These algorithms were found to be very efficient, but
they are unable to mine rules with more than one item
in the consequent. To address this issue, the TopKRules
algorithm was proposed [14]. The traditional minsup

parameter is replaced by a k parameter, which is more
intuitive to set for users. TopKRules does not restrict
the number of items contained in the antecedent or
consequent of association rules. The algorithm finds the
top-k most frequent association rules satisfying a minimum
confidence in a transaction database using a process called
rule expansion. Although TopKRules offers a substantial
performance improvement compared with the traditional
two-step mining algorithms, the number of candidate rules
generated by rule expansions can still be huge and runtimes
remain long. To solve this problem, the ETARM algorithm
was recently proposed [34]. Two novel search space pruning

strategies are used to reduce the number of candidate rules,
which can considerably decrease the running time and
memory usage.

TopKRules and ETARM have been widely used in
recent years, and they each play an indispensable role
in different data mining tasks and practical applications
[4, 21, 33, 37, 41]. But in many cases, ETARM and
TopKRules still have long runtimes. Hence, it remains an
important research problem to design faster algorithms. For
top-k association rule mining algorithms, how quickly the
minimum support threshold is increased directly influences
performance. Based on this observation, this paper presents
a novel algorithm named FTARM, which extends ETARM
with novel techniques. FTARM prunes the search space
before and during rule expansions to speed up the mining
process. A key to the success of FTARM is that it can raise
the minimum support threshold to a higher level before even
starting the rule expansion process.

3 Problem definition

This section is divided in two subsections, which describe
the traditional problem of ARM and that of top-k ARM,
respectively.

3.1 Traditional association rule mining

Let I = {i1, i2, i3, ..., im} be a set of items or features,
and DB = {T1, T2, T3, ..., Tn} be a set of transactions,
where each transaction Tj (1 ≤ j ≤ n) comprises a
subset of items, and has a transaction identifier (tid) j .
An association rule r is an implication having the form
X → Y where X and Y are sets of items and X ∩ Y = ∅.
X and Y are called the antecedent and consequent of the
rule, respectively. The meaning of r is that if the antecedent
X appears in a transaction Tj , that is X ⊂ Tj , then the
consequent Y is likely to appear in the same transaction Tj .
Two important criteria in association rule mining are the
support and confidence as they can reveal reliable rules for
specific applications [14].

Definition 1 Tidset (Transaction identifier set)

The tidset of an itemset X can be expressed as t ids(X)

and defined as t ids(X) = {j |Tj ∈ DB ∧ X ⊆ Tj }. For
a rule r : X → Y , its tidset is denoted as t ids(r) and is
equivalent to t ids(X ∪ Y) = t ids(X) ∩ t ids(Y).

Example 1 The database DB1 of Table 1 is used to
provide examples illustrating definitions throughout this
section. According to Definition 1, t ids(b) = {1, 2, 3, 5},
t ids({a, b, d}) = {1, 2, 5}.

2079Fast Top-K association rule mining using rule generation property pruning

Table 1 An example database DB1

Tid Items

1 a,b,c,d

2 a,b,c,d,e

3 a,b,c,e

4 a,c,d,e

5 a,b,d

Definition 2 Support

The support sup(r) of an association rule r : X → Y

is defined as the proportion of transactions satisfied by r in
DB, where Tj is said to be satisfied by r if it contains all
the items of r . The support sup(X) of an itemset X in a
database is similarly defined.

sup(X) = |t ids(X)|
|DB| (1)

sup(r) = |t ids(X ∪ Y)|
|DB| (2)

Definition 3 Confidence

Rule confidence is defined as the probability that the
consequent Y of a rule is satisfied when its antecedent X is
satisfied. This quality measure thus assesses how dependent
the set of items Y is on the set of items X.

conf (r) = |t ids(X ∪ Y)|
|t ids(X)| (3)

Both minsup and minconf are parameters that users
need to set before starting the association rule mining
process, and their values are in the [0,1] interval.

Example 2 Table 2 lists some association rules found in
the DB1 database and their corresponding support and
confidence values.

Rules that both have a support no less than minsup and a
confidence no less than minconf are called strong rules or

Table 2 Example association rules

Rule Support Confidence

{a}→{c} 0.80 0.80

{d}→{a,e} 0.40 0.50

{b,c}→{a} 0.60 1.00

{a,d}→{c} 0.60 0.75

{a,c,e}→{b} 0.40 0.67

valid rules, and mining them in a given database is the task
of ARM.

3.2 Top-k association rule mining

To address the problem that setting the minsup parameter
is unintuitive in traditional ARM, it was proposed to mine
the top-k association rules.

Given a transaction database DB, an integer k and
the minconf threshold, the problem of mining the top-k
association rules is to discover a set L with k rules such that
for each rule r ∈ L|conf (r) ≥ minconf , and there is no
rule s /∈ L|conf (s) ≥ minconf ∧ sup(s) ≥ sup(r) [14].
It can be seen that the set L contains the k most frequent
association rules that satisfy the confidence threshold. In
addition, it is important to note that when multiple rules
have the same support, the set L can contain more than k

rules. Besides, it is also possible that no set L having k rules
may be found if the database is too small. In this case, a set
L of less than k rules may be shown to the user.

Example 3 For the database DB1, k = 5 and minconf =
0.80, the set L of top-k association rules is shown in Table 3
. In this case, the total number of rules exceeds k.

Definition 4 Candidate item

To explore the search space of rules, algorithms such as
TopKRules and ETARM repeatedly apply a process called
rule expansion, which consists of adding an item to either
the left or right side of a rule to obtain a new rule. A
candidate item is an item that is larger than all items in the
expanded side (left or right) of a rule according to the total
order and that does not appear in the other side.

Definition 5 Left expansion

A left expansion is the process of adding an item i ∈ I

to the antecedent of a rule X → Y to generate a new rule
X ∪ {i} → Y .

Definition 6 Right expansion

Table 3 The top-5 association rules found in DB1

Rule Support Confidence

{a}→{b} 0.80 0.80

{b}→{a} 0.80 1.00

{a}→{c} 0.80 0.80

{c}→{a} 0.80 1.00

{a}→{d} 0.80 0.80

{d}→{a} 0.80 1.00

2080 X. Liu et al.

A right expansion is the process of adding an item i ∈ I

to the consequent of a rule X → Y to generate a new rule
X → Y ∪ {i}.

Property 1 For an item i ∈ I , the two association rules
r : X → Y and r ′ : X ∪ {i} → Y satisfy sup(r) ≥ sup(r ′).

Property 2 For an item i ∈ I , the two association rules
r : X → Y and r ′ : X → Y ∪ {i} satisfy sup(r) ≥ sup(r ′).

Proof According to Definition 1, the tidset of a rule r is
the intersection of the tidsets of all items that it contains.
Therefore, whether r is left expanded or right expanded, the
tidset of the new rule r ′ obtained must be a subset of the
tidset of r , that is, |t ids(r)| ≥ |t ids(r ′)|. From Definition 2,
sup(r) = |t ids(r)|/|DB|, and sup(r ′) = |t ids(r ′)|/|DB|,
that is, sup(r) ≥ sup(r ′). Hence, Properties 1 and 2 are
proved.

Properties 1 and 2 indicate that applying left and/or right
expansions to a rule will only produce rules having a support
that is not greater than that of the original rule, which
means that an infrequent rule cannot generate frequent
rules through expansions. It should be noted that the above
conclusions do not apply to the confidence of rules, as the
next two properties state.

Property 3 If an item i ∈ I is added to the antecedent of a
rule r : X → Y to generate a new rule r ′ : X ∪ {i} → Y ,
then the confidence of r ′ may be greater than, equal to, or
less than that of r .

Property 4 For an item i ∈ I , the two association rules r :
X → Y and r ′ : X → Y ∪ {i} satisfy conf (r) ≥ conf (r ′).

Proof According to Definition 3, for the rule r : X → Y

and r ′ : X → Y ∪ {i}, conf (r) = |t ids(X ∪ Y)|/|t ids(X)|
and conf (r ′) = |t ids(X ∪ Y ∪ {i})|/|t ids(X)|. Where
t ids(X∪Y ∪{i}) is a subset of t ids(X∪Y), that is |t ids(X∪
Y)| ≥ |t ids(X ∪ Y ∪ {i})|. Therefore, conf (r) ≥ conf (r ′)
and Property 4 is proved.

4 The FTARM algorithm

To find the top-k association rules, the state-of-the-
art ETARM and TopKRules algorithms perform rule
expansions starting from rules containing two items and
using an internal minsup threshold set to zero. Then when k

rules are found, these algorithms raise theminsup threshold
to that of the least frequent rule among the top-k rules
until now, which allow to reduce the search space. Though
this process guarantees finding the top-k association rules,

performance is often unsatisfying and largely depends on
how fast the minsup threshold can be raised.

The proposed FTARM algorithm uses a novel rule
generation property pruning (RGPP) technique to improve
mining performance, and one of its significant advantages
is that it can raise the minsup threshold more quickly.
Different from existing algorithms, FTARM prunes the
search space before and during rule expansions. Before
rule expansions, the internal relationships between items in
the input database and parameters set by the user are first
analyzed. Not only useless items are eliminated directly,
but also the internal minimum support value that influences
the number of rules is set based on that analysis instead of
being set to zero (as in ETARM and TopKRules). Then, in
the process of rule expansion, a variable used to record the
largest database item is updated in real time as the minsup

threshold is raised so as to further reduce the search space.
This section first explains the novel propositions adopted

by FTARM. Then, the detailed design of FTARM is
described and an example is provided to illustrate how it is
applied.

4.1 Three novel propositions

The next paragraphs first present two properties that will be
used to discuss the novel propositions.

Property 5 Let there be a set of items I = {i1, i2, i3, ...,
im}. The total number of rules that can be generated from
these items is given by the following equation:

S =
m−1∑

j=1

C
j
m(2m−j − 1) (4)

By Property 5, the minimum number of items m needed
to generate k rules can be derived from the user-defined
parameter k. For example, when k = 30, the minimum
number of required items m is 4.

Property 6 Let there be a database DB = {T1, T2, T3, ...,
Tn} and a set of items I = {i1, i2, i3, ..., im} such that Tj ⊆ I

(1 ≤ j ≤ n). If a set I ′ = {is , is+1, is+2, ..., ie} is a subset of
the set I , then the support of the rules generated using the set
I ′ should be greater than or equal to Ms , and the confidence
of the rules generated by the set I ′ should be greater than or
equal to Mc.

Ms = |t ids(is ∪ is+1...ie−1 ∪ ie)|
|DB| (5)

Mc = |t ids(is ∪ is+1...ie−1 ∪ ie)|
|Max{t ids(is), tids(is+1), ..., tids(ie−1), tids(ie)}|

(6)

2081Fast Top-K association rule mining using rule generation property pruning

Proof According to Definition 2, the support of a rule r :
X → Y is sup(r) = |t ids(X ∪ Y)|/|DB| = |t ids(X) ∩
t ids(Y)|/|DB|. That is, the support of r should be the same
as the support of the least supported item among all the
items it contains. Therefore, if the rule r ′ contains all the
items in the set I ′, its support must be the lowest support
among all the rules that I ′ can generate, that is, Ms =
sup(r ′) = |t ids(is ∪ is+1...ie−1 ∪ ie)|/|DB|. Assume that
r ′ : X′ → Y ′ is the rule having the lowest confidence among
rules that can be generated using the set I ′. Then, according
to Definition 3, conf (r ′) = |t ids(X′ ∪ Y ′)|/|t ids(X′)|, the
numerator part should be the smallest of all possible cases,
that is |t ids(X′ ∪ Y ′)| = |Min{t ids(is), ..., tids(ie)}| =
|t ids(is ∪ is+1...ie−1 ∪ ie)|, and the denominator part should
be the largest of all possible cases, that is |t ids(X′)| =
|Max{t ids(is), ..., tids(ie)}|. Therefore, Mc = conf (r ′) =
|t ids(is ∪ is+1...ie−1∪ ie)|/|Max{t ids(is), ..., tids(ie)}| and
Property 6 is proved.

Proposition 1 Initialization of the minsup variable

Under the premise that the user has set the k and
minconf parameters, the FTARM algorithm uses Property
5 to calculate the minimum number of items m required
to generate k rules, and then sorts the items in descending
order of support in the given database, and preferentially
select m items from the items with higher support to form a
set I ′. If the Mc value of set I ′ is greater than or equal to the
minconf threshold, the process is stopped and minsup can
be initialized to the Ms of I ′.

Rationale For set I ′, the number of rules S that can meet
the minconf threshold is greater than or equal to k, and
the support of all rules is not less than Ms . Therefore, the
support of the top-k frequent association rules to be mined
must not be less than Ms , and the value of the minsup

variable can be initialized to Ms .

Proposition 2 Remove useless items

According to the minsup variable that has been
initialized, each item i from the database such that sup(i) <

minsup can be removed from the database and ignored
when performing subsequent rule expansions.

Rationale Expanding a frequent rule r : X → Y with an
item i satisfying sup(i) < minsup will result in a rule r ′
that is infrequent no matter whether the rule r is expanded
to the left or right with item i.

However, in the TopKRules and ETARM algorithms, the
minsup variable is initialized to zero and all items in the

database are preserved before starting rule expansions. As
a consequence, these algorithms can generate much more
candidate rules than the proposed FTARM algorithm, and
they typically perform much more expansion operations as
it will be shown in the experimental evaluation of this paper,
and this results in consuming more time and memory.

Proposition 3 Update the largest item in real time

During the execution of the algorithm, when the minsup

value is raised, the largest item in the database is updated
to the item that satisfies the minsup threshold and is the
largest according to the total order.

Rationale In the ETARM algorithm, if the largest item in
the antecedent (consequent) of a rule according to the total
order is also the largest item in the database, the rule should
not be expanded by a left (right) expansion. But ETARM
does not take into account the following situation: let Ic be a
candidate item set for the antecedent (consequent) of a rule,
if there is no item i ∈ Ic|sup(i) ≥ minsup, the rule should
also not be expanded by a left (right) expansion. Proposition
3 was defined based on this observation.

4.2 The proposed algorithm

The pseudocode of the proposed FTARM algorithm is shown
in Algorithm 1. FTARM takes as parameter a database and
the k and minconf parameters. FTARM consists of two
parts: expansion preparation and rule expansion.

At the beginning of the algorithm, the tidset of each item
contained in the database DB is calculated and items are
sorted according to a total order (such as the lexicographical
order). Next, the Initialize Remove procedure is called to
initialize the minsup variable and remove the useless items
from DB. Then, for all rules generated using a pair of
remaining items (i, j) such that sup(i) ≥ minsup and
sup(j) ≥ minsup, if the rule r is valid, it is added to a set
L containing the top-k rules so far, and if r is frequent, it
is added to a set R of rules to be considered for subsequent
expansions. When the largest item of the antecedent of r is
larger than or equal to MaxI tem, its flag expandLR is set
to false, otherwise it is set to true.

In the rule expansion phase, the algorithm loops to find
the rule r with the highest support in the set R. If its flag
expandLR is set to true, it will be expanded from the left
and right, otherwise it will only be expanded from the right.
After the above operations are completed, r is removed
from R, and at this time, the rules having a support less
than minsup in R are also removed. When R is empty, the
algorithm terminates, and the rules in L are the top-k rules.

2082 X. Liu et al.

The Initialize Remove procedure As shown in Algorithm 2,
the minimum number of itemsm required to generate k rules
is first calculated, and then under the condition that all items

in the database DB are arranged in descending order of
support, the m items are preferentially selected from items
with higher support to form a set I ′. If the Mc of I ′ satisfies
the constraint that Mc is greater than or equal to minconf ,
then the search process is stopped and theminsup variable′s
value is initialized to the Ms of I ′. Finally, the procedure
traverses the database to remove items having a support less
than minsup, and ignores them in the following search for
the top-k rules.

The Save procedure (Algorithm 3). The main task of this
procedure is to update the set L, minsup and MaxI tem in
real time during the algorithm’s execution. Firstly, the rule
r is added to L. Then, if L still contains at least k rules after
removing the rules with a support of minsup, these rules
are removed. After the removal operation, the procedure sets
minsup to the lowest support of the rules in the current L,
and scans items to find the item i that meets minsup and is
the largest according to the total order, and finally records it
in MaxI tem.

As mentioned earlier, during the rule expansion phase,
the Expand L and Expand R procedures perform the
expansion operations on the candidate rules to obtain more
valid rules and then add them to the set L.

Expand L procedure is shown in Algorithm 4. The candi-
date item set Ic of the antecedent of the rule r to be expanded
is first calculated, and then each item i in Ic is individu-
ally added to the left side of r to obtain a new rule r ′. For
the rule r ′, if it is frequent, r ′ is added to the set R. If r ′
is frequent and its confidence is not less than minconf , the
save procedure is called to add r ′ to the set L. For the flag
expandLR of r ′, if the largest item of the antecedent of
r ′ is larger than or equal to MaxI tem, it is set to false,
which means that r ′ is only considered for right expansions,

2083Fast Top-K association rule mining using rule generation property pruning

otherwise it is set to true, and r ′ can be considered for both
left and right expansions.

The Expand R procedure is shown in Algorithm 5. It is
very similar to the expand L procedure, adding qualified
candidate items to the right side of the rule r to generate a
new rule r ′. The main difference is that the conditions for r ′
to be added to the set R are more strict. Based on Property
4, r ′ is only added to the set R for right expansions if r ′ is
valid and the largest item of its consequent is smaller than
MaxI tem.

The FTARM algorithm recursively performs left and
right expansions starting from rules containing one item
in the antecedent and one item in the consequent, which
ensures that all possible rules can be generated. To avoid
generating the same rule twice by different combinations
of left and right expansions, FTARM never does a left
expansion to a rule that was generated by a right expansion
(based on the flag expandLR, which is set to false by
Expand R). Besides, to avoid exploring all possible rules,
the algorithm does not expand a rule that has a support lower
than minsup (based on Properties 1 and 2) and does not
do a right expansion of a rule that has confidence lower

than minconf (based on Property 4). Note that a rule that
has a confidence lower than minconf cannot be eliminated
for left expansions due to Property 3. To further improve
performance, this paper has introduced three propositions,
which also guarantee that only rules that are not top-k rules
are eliminated (by Properties 5 and 6). Hence, all the desired
top-k rules can be obtained by FTARM.

4.3 An illustrative example

Consider that k = 10 and minconf = 0.8. Mining the top-k
association rules in the database of Table 4 using FTARM is
done as follows.

Step 1. Initialize sets R and L, traverse the database to
calculate and record the tidset of each item (Table 5), and
record the largest item in MaxI tem (MaxI tem = h).

Step 2. Based on Property 5, calculate the minimum
number of items m required to generate k rules (m = 3).

Step 3. Sort all items in descending order of support,
preferentially select m items from higher support items and
combine them to obtain the set I ′ satisfying the constraint
that Mc is no less than minconf , then initialize minsup to
theMs of I ′, and remove all items whose support is less than
minsup. In this example, I ′ is finally composed of items
b, c and e, minsup is initialized to 0.8, and the value of
MaxI tem is modified to e after items a, d, f, g and h have
been removed.

Step 4. Generate all rules having two items and add the
rules that meet the corresponding conditions to the sets R

(Table 6) and L, respectively.
Step 5. Select the rule r with the highest support in set

R (sup(r) ≥ minsup), and expand it according to its flag
expandLR. If expandLR is set to true, it will be expanded
from the left and right, otherwise it will only be expanded
from the right. Some examples of rule expansions can be
seen in Fig. 1. In that example, the rule {b}→{c} has a
support of 0.8 and a confidence of 1.0. Moreover, its flag
expandLR is set to true, indicating that this rule could be
left and right expanded. By performing a left expansion of
{b}→{c} with item e, the rule {be}→{c} can be obtained.
This rule has the flag expandLR set to false because the
largest item of its antecedent is equal to MaxI tem, and
it is only considered for right expansions. By expanding

Table 4 A second example database DB2

Tid Items

1 a,b,c,e,f

2 b,c,d,e,g

3 a,b,c,e,h

4 c,d,e,f

5 a,b,c,d,e,g

2084 X. Liu et al.

Table 5 Tidsets of items

Item Tidset Item Tidset

a {1,3,5} b {1,2,3,5}
c {1,2,3,4,5} d {2,4,5}
e {1,2,3,4,5} f {1,4}
g {2,5} h {3}

{b}→{c} with item e, the rule {b}→{ce} is obtained and
its expandLR flag is set to null because the largest item
of its consequent is not smaller than MaxI tem. Hence, it
cannot be added to the set R for further expansions. Other
examples in Fig. 1 describes the expansions of other rules in
a similar way. Through the process of expanding rules, the
new rules obtained from the expansions are added to sets R

and L respectively when the corresponding conditions are
met. After that, r and rules having a support that is less than
minsup are removed from R.

Then, step 5 is repeated until the set R is empty.
The algorithm returns the set L, which contains the top-k
association rules (Table 7).

5 Experiments

This section describes results from experiments to evaluate
the performance of the proposed FTARM algorithm.
Section 5.1 gives a detailed description of the datasets
and the testing environment. Section 5.2 presents results
from experiments that compare the performance of FTARM,
ETARM and TopKRules for two typical scenarios, in terms
of runtime and memory usage. Section 5.3 reports results
from scalability experiments where the size of both sparse
and dense datasets are varied to evaluate their influence on
performance. Lastly, Section 5.4 discusses and summarizes
the results.

5.1 Datasets and environment

The proposed FTARM algorithm has been implemented in
Java and its performance was compared with that of the

Table 6 Candidate rules with two items

Rule Support Confidence ExpandLR

{b}→{c} 0.80 1.00 true

{c}→{b} 0.80 0.80 true

{b}→{e} 0.80 1.00 true

{e}→{b} 0.80 0.80 false

{c}→{e} 1.00 1.00 true

{e}→{c} 1.00 1.00 false

state-of-the-art TopKRules [14] and ETARM [34] algo-
rithms. All the experiments were carried on a personal
computer having an Intel Core I7-9700K 3.6 GHz processor
and 16 GB of RAM, running Microsoft Windows 10. Each
algorithm was run 20 times and the average results were
calculated.

Standard benchmark datasets obtained from http://www.
philippe-fournier-viger.com/spmf/ were used to compare
the performance of the algorithms. Characteristics of
datasets are shown in Table 8 . They are well known datasets
for association rule mining and have different transaction
counts, item counts and densities. The Chess, Mushrooms,
Pumsb and Connect datasets have also been used in the
TopKRules and ETARM papers to test their performance.

5.2 Performance comparison

To better compare the performance of the FTARM, ETARM
and TopKRules algorithms, their performance was assessed
for two scenarios: the parameter k is varied and the
minconf parameter is changed.

Case 1: minconf was set to 0.8, and k was varied from
2000 to 16000.

Figure 2 shows the mining times of the algorithms for
the eight datasets and different k values. The parameter
settings in this experiment are similar to those used in the
ETARM paper. It is observed that the proposed FTARM
algorithm outperforms the other two algorithms. And as
the value of k increases, the gap in terms of runtime of
the three algorithms becomes larger. For example, for the
Accidents dataset (Fig. 2e), when k = 2000, the mining
times of the three algorithms are almost the same, but for
k = 16000, the runtime of FTARM is 23.57% less than
ETARM and 40.21% less than TopKRules. And for the
PAMP dataset (Fig. 2h), when k = 16000, the runtime
of FTARM is 32.68% less than ETARM and 45.10% less
than TopKRules. On the Chess, Mushrooms, Connect and
RecordLink datasets, the percentage of runtime reduction
obtained by FTARM compared with ETARM for k = 16000
are 30.35%, 21.36%, 27.83% and 41.93%, respectively.

Figure 3 shows the maximum amounts of memory used
by FTARM, ETARM and TopKRules for various k values.
It can be seen that FTARM consumes less memory than
the others. For the Connect dataset (Fig. 3d), when k =
16000, the memory consumption of ETARM reaches more
than twice that of FTARM, and under the same parameter
settings, the memory consumption of ETARM on the Pumsb
dataset (Fig. 3c) is equivalent to three times that of FTARM.
This reduction in memory consumption is also evident for
larger datasets, such as PAMP (Fig. 3h), where as k is
increased the memory consumption of FTARM increases
slowly, while under the same experimental conditions,
the memory consumption of ETARM increases to more

2085Fast Top-K association rule mining using rule generation property pruning

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

Fig. 1 Examples of rule
expansions

than twice that of FTARM, and the maximum memory
consumption of TopKRules even exceeds three times that of
FTARM.

Case 2: k was set to 8000, and minconf was varied from
0.3 to 0.8.

Figure 4 illustrates the runtimes of FTARM, ETARM
and TopKRules for the different datasets and parameter
values. The range of minconf values in this experiment
is larger than the one used in the TopKRules paper. It is
observed that FTARM performs best. For instance, on the
Chess dataset (Fig. 4a), when minconf = 0.8, the time
used by FTARM is 22.37% less than ETARM and 32.13%
less than TopKRules. And on the Connect dataset (Fig.
4d), when minconf = 0.8, the runtime of FTARM is
26.72% less than ETARM and 31.96% less than TopKRules.
Similarly, FTARM still performs well on larger datasets. For
the OnlineRetail dataset (Fig. 4f), the runtime of FTARM
changes less when minconf is varied than the other two
algorithms, and it tends to be more stable. Moreover, when
minconf = 0.8, the gap in terms of runtime between
FTARM and the other two algorithms is the largest, FTARM
takes 21.16% less time than ETARM and 26.89% less than

Table 7 The top-10 association rules found in DB2

Rule Support Confidence Rule Support Confidence

{b}→{c} 0.80 1.00 {c}→{b} 0.80 0.80

{b}→{e} 0.80 1.00 {e}→{b} 0.80 0.80

{c}→{e} 1.00 1.00 {e}→{c} 1.00 1.00

{c}→{b,e} 0.80 0.80 {c,e}→{b} 0.80 0.80

{b}→{c,e} 0.80 1.00 {b,e}→{c} 0.80 1.00

{e}→{b,c} 0.80 0.80 {b,c}→{e} 0.80 1.00

TopKRules. And on the RecordLink dataset (Fig. 4g), when
minconf = 0.8, FTARM takes 35.23% less time than
ETARM and even 55.12% less than TopKRules.

In terms of memory consumption, as can be seen in
Fig. 5, FTARM still has an absolute advantage just as in
case 1. For instance, for the Pumsb dataset (Fig. 5c), when
minconf = 0.8, the memory consumption of ETARM is
more than twice that of FTARM, while TopKRules con-
sumes almost three times that of FTARM. And for the
Mushrooms dataset (Fig. 5b), when minconf = 0.8, the
maximum memory consumption of ETARM also reaches
more than twice that of FTARM, and under the same exper-
imental conditions, the memory consumed by TopKRules is
more than three times that of FTARM. Moreover, on larger
datasets, FTARM also significantly reduces memory con-
sumption compared to the other two algorithms, as only a
small amount of memory is used to complete the same min-
ing task. For example, on the RecordLink dataset (Fig. 5g),
when minconf = 0.8, FTARM consumes 41.99% less
memory than ETARM, and 60.91% less than TopKRules.

Table 8 Characteristics of the experimental datasets

Name Transaction count Item count Density

Chess 3,196 75 0.493

Mushrooms 8,416 119 0.193

Pumsb 49,046 2,113 0.035

Connect 67,557 129 0.333

Accidents 340,183 468 0.072

OnlineRetail 541,909 2,603 0.002

RecordLink 574,913 29 0.345

PAMP 1,000,000 141 0.170

2086 X. Liu et al.

Fig. 2 Time analysis for
different datasets in case 1 (a) (b)

(c) (d)

(e) (f)

(g) (h)

5.3 Scalability analysis

To assess the impact of database size on the performance
of the FTARM, ETARM and TopKRules algorithms,
scalability experiments were conducted on the Pumsb
(sparse) and Connect (dense) datasets for different database

sizes. The size of the database was increased by 20%, while
k and minconf were set to 16000 and 0.8 respectively,
and the runtime and memory consumption of the three
algorithms were recorded.

As can be seen in Fig. 6, as database size is increased,
the runtime of the three algorithms increases, while FTARM

2087Fast Top-K association rule mining using rule generation property pruning

Fig. 3 Memory analysis for
different datasets in case 1 (a) (b)

(c) (d)

(e) (f)

(g) (h)

always outperforms the other two algorithms. In terms of
maximum memory consumption, the three algorithms also
show an upward trend as database size is increased, and the
performance of FTARM in terms of memory consumption is
considerably better than that of the other two algorithms. On

overall, it is observed that the runtime and memory usage of
FTARM remains better than that of ETARM and TopKRules
when processing more data. Thus, it can be concluded that
the proposed FTARM algorithm has good scalability, and
scales well on both sparse and dense datasets.

2088 X. Liu et al.

Fig. 4 Time analysis for
different datasets in case 2 (a) (b)

(c) (d)

(e) (f)

(g) (h)

5.4 Discussion and summary

To comprehensively evaluate the proposed FTARM algo-
rithm’s performance, we compared its performance with
the state-of-the-art ETARM and TopKRules algorithms. We
conducted experiments to evaluate the influence of the k

parameter, theminconf threshold, and database size on per-
formance, in terms of memory and runtime. Based on the
three novel propositions proposed in this paper, FTARM
raises the internal minsup threshold faster, removes use-
less items and updates the largest item in real-time, all of
which greatly reduce the search space for mining the top-k

2089Fast Top-K association rule mining using rule generation property pruning

Fig. 5 Memory analysis for
different datasets in case 2 (a) (b)

(c) (d)

(e) (f)

(g) (h)

rules. Compared with ETARM and TopKRules, FTARM
generates much less candidate rules, which explains its sub-
stantially higher speed and lower memory consumption.
Experimental results also show that the proposed algorithm
can scale well on both sparse and dense datasets.

It should be noted that although the ETARM algorithm
and the FTARM algorithm prune the search space for
mining the top-k rules, the results of the three algorithms
are exactly the same. For ETARM, if the largest item in the
antecedent (consequent) of a rule is equal to MaxI tem, it

2090 X. Liu et al.

Fig. 6 Experimental results of
scalability evaluation (a) (b)

(c) (d)

is and should not be considered for left (right) expansions.
And if the confidence of a rule is less than minconf , it is
and should not be considered for right expansions. FTARM
extends ETARM with novel pruning strategies that also
reduce the number of unnecessary rule expansions, thus
further reducing the number of candidate rules. In general,
both ETARM and FTARM proposed additional pruning
strategies compared to TopKRules and those are based
on relevant properties of association rules. These pruning
strategies can eliminate some parts of the search space that
do not contain the top-k rules. Hence, these strategies have
no effect on the mining results.

6 Conclusion and future work

This paper presented a novel algorithm named FTARM
that uses a novel rule generation property pruning (RGPP)
technique to mine the top-k association rules. The advantage
of FTARM lies in that it removes useless items and raises
the internal minsup threshold before rule expansions by
analyzing the internal relationships between the parameters
set by users and the items of the database to be mined, and
in the process of rule expansion, a novel candidate pruning
property is also used to further reduce the search space
by updating the largest item in real time. Thus, the time
and memory required for mining the top-k association rules
are greatly reduced. Extensive experiments have shown

that FTARM outperforms both ETARM and TopKRules for
various datasets.

However, the proposed algorithm still requires that users
set the minconf parameter to mine the top-k association
rules. Thus, extending FTARM to mine the top-k rules
having the highest confidence without minconf parameter
is an interesting topic for future research. In addition,
besides the support and confidence, the lift and other
measures could be used to mine the top-k association rules.
And to process much larger datasets, a parallel/distributed
implementation of FTARM could be developed.

Acknowledgments This research is sponsored by the Science and
Technology Planning Project of Sichuan Province under Grant
No. 2020YFG0054, and the Scientific Research Project of State Grid
Sichuan Electric Power Company Information and Communication
Company under Grant No. SGSCXT00XGJS1800219.

References

1. Agrawal R, Imielinski T, Swami AN (1993) Mining association
rules between sets of items in large databases. In: Proceedings
of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, pp 207–216. https://doi.org/10.1145/170035.
170072

2. Alwidian J, Hammo B, Obeid N (2018) WCBA: Weighted Clas-
sification based on association rules algorithm for breast cancer
disease. Appl Soft Comput 62:536–549. https://doi.org/10.1016/
j.asoc.2017.11.013

2091Fast Top-K association rule mining using rule generation property pruning

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
https://doi.org/10.1016/j.asoc.2017.11.013
https://doi.org/10.1016/j.asoc.2017.11.013

3. Anand HS, Vinodchandra SS (2018) Association rule min-
ing using treap. Int J Mach Learn Cybern 9(4):589–597.
https://doi.org/10.1007/s13042-016-0546-7

4. Anwar T, Uma V (2019) CD-SPM: Cross-domain book recom-
mendation using sequential pattern mining and rule mining. Jour-
nal of King Saud University. https://doi.org/10.1016/j.jksuci.2019.
01.012

5. Aqra I, Ghani NA, Maple C, Machado JM, Safa NS
(2019) Incremental algorithm for association rule mining under
dynamic threshold. Appl Sci 9(24):5398. https://doi.org/10.3390/
app9245398

6. Aryabarzan N, Minaeibidgoli B, Teshnehlab M (2018) negFIN:
An efficient algorithm for fast mining frequent itemsets. Expert
Syst Appl 105:129–143. https://doi.org/10.1016/j.eswa.2018.03.
041

7. Bustiomartinez L, Letrasluna M, Cumplido R, Hernande-
zleon R, Feregrinouribe C, Bandeserrano JM (2019) Using
hashing and lexicographic order for Frequent Itemsets Min-
ing on data streams. J Parallel Distrib Comput 125:58–71.
https://doi.org/10.1016/j.jpdc.2018.11.002

8. Chon KW, Hwang SH, Kim M (2018) GMiner: A fast GPU-
based frequent itemset mining method for large-scale data. Inf
Sci:19–38. https://doi.org/10.1016/j.ins.2018.01.046

9. Chuang K-T, Huang J-L, Chen M-S (2008) Mining top-k frequent
patterns in the presence of the memory constraint. VLDB J
17(5):1321–1344. https://doi.org/10.1007/s00778-007-0078-6

10. Czibula G, Czibula IG, Miholca D, Crivei LM (2019) A novel con-
current relational association rule mining approach. Expert Syst
Appl 125:142–156. https://doi.org/10.1016/j.eswa.2019.01.082

11. Deng Z (2014) Fast mining Top-Rank-k frequent patterns
by using Node-lists. Expert Syst Appl 41(4):1763–1768.
https://doi.org/10.1016/j.eswa.2013.08.075

12. Djenouri Y, Belhadi A, Fournier-Viger P (2018) Extracting useful
knowledge from event logs: a frequent itemset mining approach.
Knowl Based Syst 139:132–148. https://doi.org/10.1016/j.knosys.
2017.10.016

13. Djenouri Y, Comuzzi M (2017) Combining Apriori heuristic and
bio-inspired algorithms for solving the frequent itemsets mining
problem. Inf Sci 420:1–15. https://doi.org/10.1016/j.ins.2017.
08.043

14. Fournier-Viger P, Wu C, Tseng VS (2012) Mining top-k associa-
tion rules. In: Proceedings of the 25th canadian conference on arti-
ficial intelligence, pp 61–73. https://doi.org/10.1007/978-3-642-
30353-1 6

15. Fournier-Viger P, Zhang Y, Lin JC, Fujita H, Koh YS (2019)
Mining local and peak high utility itemsets. Inf Sci 481:344–367.
https://doi.org/10.1016/j.ins.2018.12.070

16. Gan W, Lin JC, Fournier-Viger P, Chao H, Hong T, Fujita
H (2018) A survey of incremental high-utility itemset min-
ing. Wiley Interdiscip Rev-Data Min Knowl Discov 8(2).
https://doi.org/10.1002/widm.1242

17. Han X, Liu X, Chen J, Lai G, Gao H, Li J (2019) Efficiently
mining frequent itemsets on massive data. IEEE Access 7:31409–
31421. https://doi.org/10.1109/access.2019.2902602

18. Hashem T, Karim MR, Samiullah M, Ahmed CF (2017) An
efficient dynamic superset bit-vector approach for mining frequent
closed itemsets and their lattice structure. Expert Syst Appl
67:252–271. https://doi.org/10.1016/j.eswa.2016.09.023

19. Heydari M, Yousefli A (2017) A new optimization model
for market basket analysis with allocation considerations: a
genetic algorithm solution approach. Manag Market 12(1):1–11.
https://doi.org/10.1515/mmcks-2017-0001

20. Huynhthile Q, Le T, Vo B, Le B (2015) An efficient and effective
algorithm for mining top-rank-k frequent patterns. Expert Syst
Appl 42(1):156–164. https://doi.org/10.1016/j.eswa.2014.07.045

21. Jorritsma W, Cnossen F, Dierckx R, Oudkerk M, Van Ooijen
PMA (2016) Pattern mining of user interaction logs for a post-
deployment usability evaluation of a radiology PACS client. Int J
Med Inform 85(1):36–42. https://doi.org/10.1016/j.ijmedinf.2015.
10.007

22. Khan S, Parkinson S (2018) Eliciting and utilising knowledge
for security event log analysis: an association rule mining and
automated planning approach. Expert Syst Appl 113:116–127.
https://doi.org/10.1016/j.eswa.2018.07.006

23. Kieu T, Vo B, Le T, Deng Z, Le B (2017) Mining top-k
co-occurrence items with sequential pattern. Expert Syst Appl
85:123–133. https://doi.org/10.1016/j.eswa.2017.05.021

24. Krishnamoorthy S (2019) Mining top-k high utility itemsets with
effective threshold raising strategies. Expert Syst Appl 117:148–
165. https://doi.org/10.1016/j.eswa.2018.09.051

25. Le T, Vo B (2016) The lattice-based approaches for mining
association rules: a review. Wiley Interdiscip Rev-Data Min
Knowl Discov 6(4):140–151. https://doi.org/10.1002/widm.1181

26. Le T, Vo B, Baik SW (2018) Efficient algorithms for mining top-
rank-k erasable patterns using pruning strategies and the subsume
concept. Eng Appl Artif Intell 68:1–9. https://doi.org/10.1016/j.
engappai.2017.09.010

27. Le T, Vo B, Huynh V, Nguyen NT, Baik SW (2020) Mining top-
k frequent patterns from uncertain databases. Appl Intell:1–11.
https://doi.org/10.1007/s10489-019-01622-1

28. Li J, Ma X, Zhang J, Tao J, Wang P, Guan X (2017) Mining repeat-
ing pattern in packet arrivals: Metrics, models, and applications.
Inf Sci 408:1–22. https://doi.org/10.1016/j.ins.2017.04.033

29. Lin JC, Gan W, Fournier-Viger P, Hong T, Tseng VS
(2016) Fast algorithms for mining high-utility itemsets with
various discount strategies. Adv Eng Inform 30(2):109–126.
https://doi.org/10.1016/j.aei.2016.02.003

30. Mai T, Vo B, Nguyen LTT (2017) A lattice-based approach
for mining high utility association rules. Inf Sci 399:81–97.
https://doi.org/10.1016/j.ins.2017.02.058

31. Mlakar U, Zorman M, Fister I (2017) Modified binary cuckoo
search for association rule mining. J Intell Fuzzy Syst 32(6):4319–
4330. https://doi.org/10.3233/JIFS-16963

32. Moslehi F, Haeri A, Martinezalvarez F (2020) A novel hybrid
GA–PSO framework for mining quantitative association rules. In:
soft computing, pp 4645–4666. https://doi.org/10.1007/s00500-
019-04226-6

33. Nguyen D, Luo W, Phung D, Venkatesh S (2018) LTARM: A
novel temporal association rule mining method to understand
toxicities in a routine cancer treatment. Knowl Based Syst
161:313–328. https://doi.org/10.1016/j.knosys.2018.07.031

34. Nguyen LTT, Vo B, Nguyen LTT, Fournier-Viger P, Selamat
A (2017) ETARM: An efficient top-k association rule mining
algorithm. Appl Intell 48(5):1148–1160. https://doi.org/10.1007/
s10489-017-1047-4

35. Raj S, Ramesh D, Sreenu M, Sethi KK (2020) EAFIM:
Efficient apriori-based frequent itemset mining algorithm on
Spark for big transactional data. Knowl Inf Syst 62(9):3565–3583.
https://doi.org/10.1007/s10115-020-01464-1

36. Ryang H, Yun U (2015) Top- k high utility pattern mining
with effective threshold raising strategies. Knowl Based Syst
76(1):109–126. https://doi.org/10.1016/j.knosys.2014.12.010

37. Sahoo J, Das AK, Goswami A (2015) An efficient approach for
mining association rules from high utility itemsets. Expert Syst
Appl 42(13):5754–5778. https://doi.org/10.1016/j.eswa.2015.
02.051

38. Son LH, Chiclana F, Kumar R, Mittal M, Khari M, Chatterjee JM,
Baik SW (2018) ARM-AMO: An efficient association rule mining
algorithm based on animal migration optimization. Knowl Based
Syst 154:68–80. https://doi.org/10.1016/j.knosys.2018.04.038

2092 X. Liu et al.

https://doi.org/10.1007/s13042-016-0546-7
https://doi.org/10.1016/j.jksuci.2019.01.012
https://doi.org/10.1016/j.jksuci.2019.01.012
https://doi.org/10.3390/app9245398
https://doi.org/10.3390/app9245398
https://doi.org/10.1016/j.eswa.2018.03.041
https://doi.org/10.1016/j.eswa.2018.03.041
https://doi.org/10.1016/j.jpdc.2018.11.002
https://doi.org/10.1016/j.ins.2018.01.046
https://doi.org/10.1007/s00778-007-0078-6
https://doi.org/10.1016/j.eswa.2019.01.082
https://doi.org/10.1016/j.eswa.2013.08.075
https://doi.org/10.1016/j.knosys.2017.10.016
https://doi.org/10.1016/j.knosys.2017.10.016
https://doi.org/10.1016/j.ins.2017.08.043
https://doi.org/10.1016/j.ins.2017.08.043
https://doi.org/10.1007/978-3-642-30353-1_6
https://doi.org/10.1007/978-3-642-30353-1_6
https://doi.org/10.1016/j.ins.2018.12.070
https://doi.org/10.1002/widm.1242
https://doi.org/10.1109/access.2019.2902602
https://doi.org/10.1016/j.eswa.2016.09.023
https://doi.org/10.1515/mmcks-2017-0001
https://doi.org/10.1016/j.eswa.2014.07.045
https://doi.org/10.1016/j.ijmedinf.2015.10.007
https://doi.org/10.1016/j.ijmedinf.2015.10.007
https://doi.org/10.1016/j.eswa.2018.07.006
https://doi.org/10.1016/j.eswa.2017.05.021
https://doi.org/10.1016/j.eswa.2018.09.051
https://doi.org/10.1002/widm.1181
https://doi.org/10.1016/j.engappai.2017.09.010
https://doi.org/10.1016/j.engappai.2017.09.010
https://doi.org/10.1007/s10489-019-01622-1
https://doi.org/10.1016/j.ins.2017.04.033
https://doi.org/10.1016/j.aei.2016.02.003
https://doi.org/10.1016/j.ins.2017.02.058
https://doi.org/10.3233/JIFS-16963
https://doi.org/10.1007/s00500-019-04226-6
https://doi.org/10.1007/s00500-019-04226-6
https://doi.org/10.1016/j.knosys.2018.07.031
https://doi.org/10.1007/s10489-017-1047-4
https://doi.org/10.1007/s10489-017-1047-4
https://doi.org/10.1007/s10115-020-01464-1
https://doi.org/10.1016/j.knosys.2014.12.010
https://doi.org/10.1016/j.eswa.2015.02.051
https://doi.org/10.1016/j.eswa.2015.02.051
https://doi.org/10.1016/j.knosys.2018.04.038

39. Telikani A, Gandomi AH, Shahbahrami A (2020) A survey of
evolutionary computation for association rule mining. Information
Sciences. https://doi.org/10.1016/j.ins.2020.02.073

40. Thabtah F, Qabajeh I, Chiclana F (2016) Constrained
dynamic rule induction learning. Expert Syst Appl 63:74–85.
https://doi.org/10.1016/j.eswa.2016.06.041

41. Tseng VS, Wu C, Fournier-Viger P, Yu PS (2016) Efficient
algorithms for mining Top-K high utility itemsets. IEEE Trans
Knowl Data Eng 28(1):54–67. https://doi.org/10.1109/TKDE.
2015.2458860

42. Vo B, Bui H, Vo T, Le T (2020) Mining top-rank-k fre-
quent weighted itemsets using WN-list structures and an
early pruning strategy. Knowl-Based Syst 201-202:106064.
https://doi.org/10.1016/j.knosys.2020.106064

43. Wang J, Han J, Lu Y, Tzvetkov P (2005) TFP: An efficient
algorithm for mining top-k frequent closed itemsets. IEEE Trans
Knowl Data Eng 17(5):652–664. https://doi.org/10.1109/TKDE.
2005.81

44. Wang L, Meng J, Xu P, Peng K (2018) Mining temporal
association rules with frequent itemsets tree. Appl Soft Comput
62:817–829. https://doi.org/10.1016/j.asoc.2017.09.013

45. Webb GI (2011) Filtered-top-k association discovery. Wiley
Interdiscip Revi-Data Min Knowl Discov 1(3):183–192.
https://doi.org/10.1002/widm.28

46. Webb GI, Zhang S (2005) K-Optimal Rule discovery. Data Min
Knowl Disc 10(1):39–79. https://doi.org/10.1007/s10618-005-
0255-4

47. Wen F, Zhang G, Sun L, Wang X, Xu X (2019) A
hybrid temporal association rules mining method for traf-
fic congestion prediction. Comput Ind Eng 130:779–787.
https://doi.org/10.1016/j.cie.2019.03.020

48. Xiong X, Chen F, Huang P, Tian M, Hu X, Chen B,
Qin J (2018) Frequent itemsets mining with differential pri-
vacy over Large-Scale data. IEEE Access 6:28877–28889.
https://doi.org/10.1109/access.2018.2839752

49. Zhang Z, Chai N, Ostrosi E, Shang Y (2019) Extraction of
association rules in the schematic design of product service system
based on pareto-MODGDFA. Comput Ind Eng 129:392–403.
https://doi.org/10.1016/j.cie.2019.01.040

50. Zhang Z, Pedrycz W, Huang J (2017) Efficient frequent itemsets
mining through sampling and information granulation. Eng
Appl Artif Intell 65:119–136. https://doi.org/10.1016/j.engappai.
2017.07.016

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2093Fast Top-K association rule mining using rule generation property pruning

https://doi.org/10.1016/j.ins.2020.02.073
https://doi.org/10.1016/j.eswa.2016.06.041
https://doi.org/10.1109/TKDE.2015.2458860
https://doi.org/10.1109/TKDE.2015.2458860
https://doi.org/10.1016/j.knosys.2020.106064
https://doi.org/10.1109/TKDE.2005.81
https://doi.org/10.1109/TKDE.2005.81
https://doi.org/10.1016/j.asoc.2017.09.013
https://doi.org/10.1002/widm.28
https://doi.org/10.1007/s10618-005-0255-4
https://doi.org/10.1007/s10618-005-0255-4
https://doi.org/10.1016/j.cie.2019.03.020
https://doi.org/10.1109/access.2018.2839752
https://doi.org/10.1016/j.cie.2019.01.040
https://doi.org/10.1016/j.engappai.2017.07.016
https://doi.org/10.1016/j.engappai.2017.07.016

	Fast Top-K association rule mining using rule generation property pruning
	Abstract
	Introduction
	Related work
	Problem definition
	Traditional association rule mining
	Top-k association rule mining

	The FTARM algorithm
	Three novel propositions
	Rationale
	Rationale
	Rationale

	The proposed algorithm
	The Initialize_Remove procedure
	The Save procedure
	Expand_L procedure
	The Expand_R procedure

	An illustrative example

	Experiments
	Datasets and environment
	Performance comparison
	Scalability analysis
	Discussion and summary

	Conclusion and future work
	References

