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Abstract
Dialog state tracking (DST), which estimates dialog states given a dialog context, is a core component in task-oriented
dialog systems. Existing data-driven methods usually extract features automatically through deep learning. However, most
of these models have limitations. First, compared with hand-crafted delexicalization features, such features in deep learning
approaches are not universal. However, they are important for tracking unseen slot values. Second, such models do not work
well in situations where noisy labels are ubiquitous in datasets. To address these challenges, we propose a robust dialog
state tracker with contextual-feature augmentation. Contextual-feature augmentation is used to extract generalized features;
hence, it is capable of solving the unseen slot value tracking problem. We apply a simple but effective deep learning paradigm
to train our DST model with noisy labels. The experimental results show that our model achieves state-of-the-art scores in
terms of joint accuracy on the MultiWOZ 2.0 dataset. In addition, we show its performance in tracking unseen slot values
by simulating unseen domain dialog state tracking.

Keywords Human-machine interaction · Task-oriented dialog systems · Dialog state tracking · Contextual self-attention ·
Learning with noisy labels

1 Introduction

Task-oriented dialog systems, as typical human-machine
interaction systems, have attracted intensive research
interest in recent years. They allow for natural, personalized
interactions with users to help them achieve simple goals
such as finding restaurants or booking flights. Dialog state
tracking (DST) is a core component of the task-oriented
dialog system [8, 42]. It estimates the state of a conversation
based on the current utterance and the conversational
history. In DST, a state is described by a triplet of the form
(domain, slot, value). This triplet represents the values of
requested slots given an active domain. A turn state is the
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specific value of the current utterance. A joint goal is the set
of all turn states accumulated across conversational turns.
DST aims to track the joint goal of a dialog. Figure 1 shows
an example of a dialog with an annotated dialog state, in
which the user first books train tickets, and then considers
attractions.

For the multi-domain dialog state tracking problem, we
assume that there are M domains. D = {d1, d2, ..., dM}.
Taking the MultiWOZ 2.0 dataset as an example, there are
seven domains, namely, hotel, taxi, restaurant, attraction,
train, police and hospital.Each domain d ∈ D has Nd slots

Sd =
{
sd

1 , sd
2 , sd

3 , ...sd
Nd

}
, and each slot s ∈ Sd has Ks

possible values V s = {vs
1, v

s
2, v

s
3, ...vs

Ks }. For example,
the hotel domain has a slot named area, and the possible
values are east, west, south, north and central. However, for
some slots, it is difficult to predefined their values V s in
the domain-ontology. Taking the slot named arrive by in the
train domain as an example, since the size of V s can be
very large, it is a bad choice to list all possible arrival times
that the user may require. In addition, the domain-ontology
also varies with time. We denote the dialog context as X =
{(U1, R1), (U2, R2), ..., (UT , RT )}, where Ut is the user
utterance and Rt is the agent response in turn t . Formally,
we represent the dialog state as B = {B1, B2, ...BT } , where
Bt is the dialog state in turn t .
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Fig. 1 Dialog example. The dashed lines separate the turns in the dialog. A turn contains a user utterance (pink), a corresponding turn state(blue),
a joint goal (purple) and the system response (green)

The dialog state Bt is a group of (domain, slot, value)
tuples. Suppose that there exist J possible (domain, slot)
pairs, and Yj represents the value of the j -th (domain, slot)
pair. If the slot value has not been specified by a user or
the user indicates that they do not care about the slot value,
we set the slot value as “None” or “does not care”.
Accordingly, B is the target that the model needs to predict.
The input of the DST model is domain D, dialog history X,
and slot S, and the output is slot value Y .

Considering that building large-scale task-oriented
datasets for new domains is costly and time-consuming,
we pay attention to the state tracking ability of the model

for execution on an unseen domain [4]. In realistic scenar-
ios, the number of domains is prohibitively large. In unseen
domain DST, we assume that we have no training data in a
new domain; namely, we train on M − 1 domains and test
on the M-th domain. This verifies the generalization per-
formance of our model on an unseen domain. Formally, we
represent the training data as (X, Dsource, Ssource, Ysource)

and the test data as (X, Dtarget , Starget , Ytarget ).
Traditional approaches usually extract delexicalization

features to achieve generalization by replacing the slot
values that vary lexically or morphologically with generic
tags. However, they rely on hand-crafted generic features
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and complex domain-specific lexicons [17, 17, 23, 37,
47]. Recent data-driven deep learning models have shown
promising performance in DST.

The picklist-based approaches treat domain-slot pairs
as picklist-based slots, where the values are predicted by
performing classification on the candidate value list [22,
28, 45]. They can only work on an ontology with a fixed
domain; that is the slots and values in the ontology are
predefined and cannot vary dynamically. However, this is
not suitable for a real scenario. For example, new attractions
or restaurants are often added in the tourism domain, which
leads to the dynamic changes in the ontology.

Recent generative approaches generate slot values for
DST without relying on fixed vocabularies or domain
ontologies [19, 39, 41]. However, such generative methods
would generate ill-formatted strings (e.g., repeated words)
when generating long strings. For example, with a long hotel
address, a small difference makes the whole dialog state
tracking result incorrect.

Xu et al.[18], Wu et al.[5], and Le et al. [11] propose
span-based approaches, which treat domain-slot pairs as
span-based slots, where the values can be converted into
substrings of dialog context. However, it is difficult to
handle situations where values do not appear in the dialog
context. In the example in Fig. 1, the user specifies the value
of the “book people” slot in the “train” domain as
“1” by saying “just for me please.”.

To address the aforementioned challenges and take
advantage of both span-based slots and picklist-based
methods, Zhang et al.[44] and Zhou et al. [46] propose
combined approaches that treat domain-slot pairs as span-
based slots and picklist-based slots. The values of each
span-based slot can be found through span matching with
start and end positions in the dialog context, and the values
for each picklist-based slot are found in the corresponding
candidate value list. It is a manual process to decide whether
a slot is a span-based slot or a picklist-based slot.

However, most of these models have some limitations.
First, in many approaches the features extracted do not
take into account some generic features similar to the
delexicalization features in [17, 37]. Thus, they cannot
effectively track unseen slot values. Second, existing DST
systems based on deep learning generally need large
datasets with high-quality labels, which require many passes
of expensive human quality assurance [40]. The presence
of noise in the dataset hinders the model performance.
Regrettably, noisy data are unavoidable in a real scenario.
For example, the recently-released MultiWOZ-2.0 [27] in
its current form has certain annotation errors [11, 44].
First, the annotations lack consistency. For example, some
annotations are “guesthouse” but others are “guest
house”. Second, there are erroneous delays in the state
updates, which sometimes extend the turns in dialogs

[44]. The error of delay has a negative influence on the
performance of DST models.

To address these challenges, in this paper, we propose
a robust dialog state tracker with contextual-feature
augmentation. As mentioned above, dialogue state tracking
can benefit from extracting delexicalization features that
are irrelevant to specific slot values [17, 17, 23, 37,
47] . Therefore, we use a carefully modified TRADE
[39] as the backbone network and extract delexicalization
features by contextual-feature augmentation after the
encoder stage to enhance the effectiveness of dialog
history representation. Contextual-feature augmentation
is achieved by a Diagonalized Masked Self-Attention
(DMSA) mechanism. The DMSA extracts the contextual
features of each word that are irrelevant to itself,
such as “serving 〈value〉 food”, that are similar to
the delexicalization features. In previous works, such
delexicalization features were obtained using hand-crafted
semantic lexicons. To the best of our knowledge, we are the
first to propose extracting similar delexicalization features
with a novel neural network. In the decoder stage, our
tracker uses a copy mechanism to generate slot values from
the input user’s utterance, where the importance of each
word depends on its contextual features. For a slot, the
unseen slot values have similar contextual characteristics to
the existing slot values. Thus, the tracker can copy words
that are relevant to the unseen slot values, which solves the
unseen slot value-tracking problem.

In addition, it is well known that noise in the dataset,
which is unavoidable in real scenarios, hinders the model
performance. We align our motivation to the new training
method (co-teaching) [13] and develop a novel and effective
deep learning paradigm to train deep networks robustly.
As mentioned above, there are certain annotation errors in
the commonly used dataset of DST tasks. In our proposed
learning paradigm, we view such annotation errors as noisy
data and only sample clean data to update the parameters
during training. That is, we filter data while training
the model, update the model with the clean data, and
discard the noisy data. With our proposed deep learning
paradigm, we can train the DST model robustly even
with certain annotation errors. Although our proposed deep
learning paradigm is motivated by co-teaching, there are
fundamental differences between them. The original co-
teaching method share the loss function across the data
filtering and model update steps. This, however, is not
reasonable in general. The optimization loss of many tasks
is composed of multiple losses, each of which has a different
meaning and is not suitable for sample data. Our proposed
deep learning paradigm overcomes this by segmenting the
loss function into an update loss function and a sample loss
function. Furthermore, we refine the algorithm for updating
the model and sampling data. To the best of our knowledge,
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we are the first to propose an improved network training
paradigm to deal with annotation errors in DST datasets for
stronger performance.

Our contributions are as follows:

– A robust network model with contextual-feature aug-
mentation is proposed for high-performance dialog
state tracking.

– We propose a novel contextual-feature augmentation
method with a new DMSA mechanism, which can
extract the similar delexicalization features that play
a crucial role in tracking unseen slot-values. Such
delexicalization features are obtained using hand-
crafted semantic lexicons in previous works, and we are
the first to propose extracting them with a novel neural
network.

– We develop a simple but effective deep learning
paradigm to train our DST networks robustly with
certain annotation errors .

– The experimental results show that the proposed
method outperforms state-of-the-art methods on the
recently-released MultiWOZ corpus.

The source code will be made available upon publication.

2 Related work

Dialog state tracking Dialog trackers often jointly learn
spoken language understanding and dialog state tracking
to avoid accumulating errors from spoken language
understanding [15, 26, 38]. Subsequent delexicalization
trackers utilize hand-crafted semantic dictionaries to hold
all the key terms, rephrasing and alternative mentions to
delexicalize and achieve generalization [16, 17, 32, 36, 37].

Recently Mrks̆ić et al. proposed using a convolutional
neural network to learn utterance representation and
achieved better performance than handcrafted feature-based
models [22]. However, parameters are not shared across
slots. Nouri et al. shared parameters between different slots
by introducing a global module [24]. Zhong et al. proposed
a global-local architecture using local module to learn slot-
specific features [45]. Subsequently, Ren et al. presented a
novel model named StateNet, which compares the distances
between the dialog history representation and the value
vectors in the value-list set [28]. However, they usually
require a predefined ontology that is difficult to obtain in
advance. The number of slots and values may be large and
changeable even though the ontology exits.

To tackle these issues, several methods are proposed to
extract the slot values through span matching with start
and end positions the in dialog context. For example, Xu
et al. [41] utilized an index-based pointer network to copy
values from the dialog context. Chao et al., Gao et al., and

Perez et al. formulated dialog state tracking as a reading
comprehension task and use a neural network to determine
the state as a span over tokens within the dialog context [11,
26]. However, tracking states from only the dialog context
is not sufficient as many values in DST cannot be found in
the context due to annotation errors or diverse descriptions
for slot values from users.

Lei et al. [19] and Wu et al. [39] address a drawback
of span-based methods; their model generates the values of
all slots without relying on fixed vocabularies or spans by
using a hierarchical decoder. In such generative methods,
however, it is easy to generate ill-formatted strings when the
slot value we need to generate is a long string. In contrast,
both picklist-based and span-based methods can rely on
existing strings rather than generating them.

Zhang et al. [44] proposed separating the slots into
span-based slots, whereas a picklist-based slot depends
on human heuristics. For example, the requests for
“internet” are usually “yes” or “no” with limited
choices when users book a hotel; such slots are treated
as picklist-based slots. The number given in response to
“book people” has unlimited values, and they can be
found in context; such slots are treated as span-based
slots. Zhou et al. [46] modeled multi-domain DST as a
question-answering problem. They constructed two types
of questions: 1) multiple-choice questions for slots with
a limited number of value options and 2) span prediction
questions, of which the answers are spans in the context,
and are designed for slots that have a large or infinite
number of value options. In addition, they developed a
dynamically-evolving knowledge graph to improve model
performance.

Deep learning with noisy labels A deep network will learn
noisy data eventually during training, which makes deep
learning with these noisy data challenging. Consequently,
there are a number of studies that have put forward solutions
to deal with noisy labels [21, 35].

For instance, Veit et al. proposed a multi-task neural
network that jointly trains for cleaning noisy labels with a
small amount of clean data, and they utilized this neural
network to decrease noise in extensively noisy data [34].
Li et al. found that the “side” information, which consists
of little clean data and label relations, is important for
combating noisy data. Based on this motivation, they
proposed a distillation algorithm to utilize this “side”
information to “hedge the risk” of noisy labels [20].
Rodrigues et al. introduced a crowdsourcing layer after the
output layer to learn with noisy labels [30]. Tanaka et al.
designed a joint optimization framework for learning the
parameters and estimating the true labels at the same time
[31]. Ren et al. presented a novel reweighting algorithm that
uses the recently proposed meta-learning method to assign
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weights to the training data according to their gradient
directions [29].

3 Robust dialog state tracker

3.1 Basemodel

Our DST model is based on the encoder-decoder architec-
ture with attention-based copying (TRADE) [39]. TRADE
is composed of three main parts, namely, the utterance
encoder, slot gate and state decoder. For each dialog turn,
TRADE takes the dialog history of the turn and (domain,
slot) pair as its input and then outputs the value of the
(domain, slot).

A GRU is used as the encoder to encode the dialog
history Xt of the current turn t into an array of fixed-length
vectors.

Ht, ht = GRU(Xt) (1)

where Xt ∈ R
|Xt |×demb represents the concatenation of all

the words in the dialog history. |Xt | is the number of words
in the dialog history, and demb represents the size of the
embedding. Ht ∈ R

|Xt |×dhdd is the encoded dialog history,
and ht ∈ R

dhdd is the vector representation of the dialog
history, where dhdd is the hidden size of the encoder.

The model uses a GRU as the state decoder to decode
multiple output tokens for all (domain, slot) pairs; that is,
the decoder decodes J times independently for all (domain,
slot) pairs. For the j -th (domain, slot) pair, the slot value
is presented as Yj = [wj0, wj1, ..., wjK ], where K is the
character number of the slot value. At decoding step k ∈ K ,
GRU takes wj(k−1) and hdec

j (k−1) as its inputs and outputs

a hidden state hdec
jk . wj(k−1) is the word embedding of the

token at step k − 1, and wj0 is the summed embedding of
the domain and slot. hdec

j (k−1) is the hidden state at step k−1,

and hdec
j0 is the output ht of the encoder.

hdec
jk = GRU(wj(k−1), h

dec
j (k−1)) (2)

First, we obtain a probability distribution on the
vocabulary P vocab

jk by mapping the hidden state hdec
jk into

the vocabulary space with the vocabulary embedding E ∈
R

|V |×dhdd , where |V | is the size of the vocabulary. At
the same time, a probability distribution on the dialog
history P

history
jk is obtained by calculating the attention

score between the hidden state hdec
jk and the encoded dialog

history Ht :

P vocab
jk = Sof tmax(E · (hdec

jk )�) ∈ R
|V |

P
history
jk = Sof tmax(Ht · (hdec

jk )�) ∈ R
|Xt | (3)

The final probability distribution P
f inal
jk is the weighted-

sum of two distributions:

P
f inal
jk = P

gen
jk × P vocab

jk + (1 − P
gen
jk ) × P

history
jk (4)

where P
gen
jk is a trainable parameter.

We use the context-enhanced slot gate to decide whether
any of the candidate (domain, slot) pairs are mentioned.
The context vector that is computed using the encoded
hidden state Ht is mapped to a probability distribution over
the “pointer”, “none”, and “don’t care” categories.
Essentially, the slot gate is a three-way classifier. For each
(domain, slot) pair, if the gate predicts “pointer”, we fill
its value with the words generated from the state generator.
Otherwise, if the predicted value is “don’t care” or
“none” , we take “does not care” or “none” as the
value. The slot gate for the j -th (domain,slot) pair Gj is a
linear layer parameterized by Wg ∈ R

3×dhdd :

Gj = Sof tmax(Wg · (cj0)�) ∈ R
3 (5)

where cj0 is the context vector calculated with the first

probability distribution on the dialog history P
history

j0 :

cj0 = P
history

j0 · Ht ∈ R
dhdd (6)

We optimize both the state decoder and the slot gate.
The loss of the state decoder £decoder is the cross-entropy
loss between the predicted P

f inal
jk and the true words Yj =

[wj0, wj1, ..., wjK ], where J is the number of the (domain,
slot) pair and K is the character number of the value for the
j -th (domain, slot) pair:

£decoder =
J∑

j=1

K∑
k=1

−log(p
f inal
jk · (wjk)

�) (7)

Another cross-entropy loss £gate between the predicted gate
Gj and the true label y

gate
j is used. It is defined as:

£gate =
J∑

j=1

−log(Gj · (ygate
j )�) (8)

£ is the weighted-sum of the losses using hyper-parameters
α and β:

£ = α£gate + β£decoder (9)

3.2 Robust dialog state tracker with
contextual-feature augmentation

Delexicalization features are considered the key means for
efficient unseen slot value tracking. Our model essentially
introduces contextual-feature augmentation to the backbone
described above, extracting generic features similar to
Delexicalization features. Specifically, inputs are processed
using the same encoder of the backbone network with
learnable parameters, yielding an encoded dialog history
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Ht . Then, we employ a contextual-feature augmentation
module, as proposed in Section 3.2.1 , to obtain the
contextual features of each word Ct that is unrelated to itself
in the dialog history. Subsequently, the contextual features
are used to decode the value of the (domain, slot) pair
with the decoder of the backbone network. Additionally, our
model introduces a simple but effective training paradigm to
address annotation errors. More details about this are given
in Section 3.2.2 .

3.2.1 Contextual-feature augmentation

Recently, attention mechanisms and their variants have
brought excellent progress to recent studies and have
performed extremely well in many visual tracking tasks
[9, 10] owing to their capability of modeling contextual
information. Motivated by this, we propose contextual-
feature augmentation based on a novel diagonalized masked
self-attention (DMSA) mechanism to extract contextual
features.

DMSA Token2token self-attention is used in the Trans-
former [33] to obtain context-aware vector representations
at each position. However, a context-aware vector represen-
tation is related to the corresponding position word because
this word is not excluded from the calculation. To obtain
a contextual feature that is irrelevant to the word itself, we
should exclude the word itself from the weighted sum, i.e.,
disable the attention of each token to itself. Based on the
above analysis, we propose the DMSA mechanism.

Specifically, we define DMSA as fellows:

DMSA(Q, K, V ) = softmax(E + Mdiag)V (10)

where Q, K, and V are the inputs of DMSA. Q is a matrix
of queries, K is a a matrix of keys, and V is a matrix of
values. E is a similarity matrix between Q and K . The i-th
row of Q is denoted as qi , and the j -th row of K is denoted
as kj , indicating how well qi and kj match. The element Eij

of matrix E is the similarity score between qi and kj :

Eij = qi · kT
j (11)

We propose a diagonalized masked matrix Mdiag =
{Mdiag

ij } and add it to the similarity score matrix E.

M
diag
ij =

{
0 i �= j

−∞ i = j
(12)

The −∞ value at the diagonal position of Mij leads to an
attention score of 0 after the softmax function. This means
that we disable the attention of each token to the token at
the same position. Thus, the context-aware vector of each
word is irrelevant to the word itself. Figure 2 depicts the
computation graph of the DMSA mechanism.

Contextual-feature Augmentation We propose a
contextual-feature augmentation method, which applies
a masked transformer, replacing token2token self-
attention with DMSA. The input of the contextual-feature
augmentation is the output of the utterance encoder Ht .

Fig. 2 The architecture of the
proposed DMSA. We propose a
diagonalized masked matrix
Mdiag , the value at the diagonal
position of which is −∞. Then,
it is added to the similarity score
matrix E. The attention score at
the diagonal position is equal to
0 after the softmax function.
That is, we disable the attention
of each token at the same
position. Thus, we exclude the
token itself from weighted sum
when calculating the
context-aware vector
representation of each word
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First, we map the matrix Ht to n parallel head repre-
sentations using linear projections with hyper-parameters
WQ, WK and WV . Specifically, for the i-th head:

Qi, Ki, Vi = HtW
Q
i , HtW

K
i , HtW

V
i where i ∈ [1, n]

(13)

Then, these representations are sent to the DMSA module
to obtain the contextual features at the i-th head:

Gi = DMSA(Qi, Ki, Vi) where i ∈ [1, n] (14)

Multi-head self-attention learns different context represen-
tations in multiple semantic spaces:

MultiHeadAttention(Ht ) = concat(G1...Gn)W
O (15)

where WO is a hyper-parameter. Between the input and
output of the encoder, residual connections are used. Then,
the model applies layer normalization after the residual
connection to stabilize the activations of the deep neural
network:

I = LayerNorm(Ht + MultiHeadAttention(Ht )) (16)

The output is sent to a feed-forward network parameter-
ized by W1 and W2:

FFN(I ) = ReLU(IW1)W2 (17)

Then the residual connection and layer normalization are
exploited to get the final output:

Ct = LayerNorm(FFN(I ) + I ) (18)

We present the general architecture in Fig. 3. The output
Ct ∈ R

|Xt |×dhdd is the contextual representation.
With contextual-feature augmentation, we obtain the

contextual representations of each token. Consider the
utterance ‘West of Chinese street serving
French food’ as an example. We calculate the contex-
tual features for ‘Chinese’ using its context ‘West of
〈value〉 street serving French food’ , and the
contextual features for ‘French’ using its context ‘West
of Chinese street serving 〈value〉 food’.

The contextual representations that are irrelevant to
the word itself, such as the delexicalization feature,
are replaced or ignored. Previous works extract the
delexicalization features depending on predefined semantic
dictionaries. In the proposed method, these features can be
found automatically in the training process.

In the decoding process, Ct participates in decoding
instead of Ht :

P
history
jk = Sof tmax(Ct · (hdec

jk )�) ∈ R
|Xt | (19)

For an unseen slot value that is not involved in the
training, such as “Beijing” in the utterance “West
of Chinese street serving Beijing food”,
becau-se “Beijing” has a similar context as “French”,
the contextual-features of “Beijing” are similar to those

Fig. 3 Contextual feature augmentation

of “French”. Thus, the history attention score for the
token “Beijing” is high at the decoder step so that the
unseen slot-value can be tracked correctly.

3.2.2 Robust training paradigm

We propose extending the recently introduced co-teaching
algorithm [13] for DST to address annotation errors. The
main idea is to train two deep neural networks at the same
time. As shown in Fig. 4, each DST network chooses
small-loss training examples in the batch data as useful
examples, and teaches such useful examples to its peer
neural network for further training. Therefore, we can train
a more robust DST deep learning network than previous
methods. Suppose the error comes from the biased choice
of the training examples in the first mini-data batch.

In common deep neural networks, the error from the
neural network will be passed straight back to itself in the
second mini-data batch, and the error flow accumulates
progressively. However, in our training paradigm, two deep
networks are trained simultaneously, and they have different
learning abilities. They can select different kinds of errors
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Fig. 4 Robust training paradigm with annotation errors for DST

produced by noisy data. In such an exchange process,
the error flow can be mutually reduced by the peer-to-
peer network. In addition, nonlinear deep networks using
stochastic optimization with momentum can memorize
clean data first to become robust [2]. Thus, the peer-to-peer
network can resist this error from noisy data owing to its
robustness when an error flows into it.

One major challenge when applying co-teaching to DST
is that the original approach assumes that the loss function
is shared across data filtering and model optimization.
This, however, is not reasonable in general because the
optimization loss of many tasks is composed of multiple
losses, each of which has a different meaning and is not
suitable for sample data. For example, the optimized loss of
the DST system introduced above is the weighted-sum of
the loss function of the slot gate and the loss function of the
state decoder. However, the noisy labels come mainly from
the state decoder. We address this issue by distinguishing
the update loss function £u from the sample loss function
£s . Here, £u is the optimized loss and £s is the loss function
of the state decoder:

£u = £ = α£gate + β£decoder

£s = £decoder (20)

Furthermore, annealing the learning rate, by either
using cosine functions or step functions [14], has been
proven to be crucial for learning models with higher
generalization power. Cosine annealing scheduling has been
especially effective in producing state-of-the-art results
while removing the need for hyper-parameter searching on
the learning rate space[1]. Thus, we propose applying the
cosine annealing scheduling in the optimizer. Algorithm 1
below shows the robust training algorithm for DST.

We maintain two neural networks g (with parameter wg )
and f (with parameter wf ). For each epoch T in [0, Tmax],
we first shuffle the training data (step 1), where Tmax is the
maximum epoch number. When a mini-batch D̄ is obtained
(step 4), we let g choose R(T ) percent of the samples in
mini-batch D̄g that have a small training loss (step 5). The
process for network f is the same as for g (step 6). Then,
the selected samples are fed into the peer neural network
as useful knowledge for the parameter update (steps 7 and
8). We repeat this process (steps 4-8) Nmax times. Then, we
update the learning rate ηT and R(T ) (step 9), where the
hyper-parameters τ and Tk are as specified in Section 4.3.

Another important question for designing Algorithm 1
above is that of why sampling small-loss examples
according to a dynamic RT helps us to obtain clean data.
The reason is that it helps us to understand the connection
between small loss and clean data. Intuitively, small-loss
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examples have more potential to be the ones with the correct
labels. Therefore, our DST network should be more robust
and resistant to noisy labels if we train it only using small-
loss examples in each mini-data batch. However, the above
analysis requires the network to be trustworthy enough that
the small-loss examples are truly clean.

Fortunately, we can address this problem exactly by
recent studies on the memorization mode of deep neural
networks. That is, deep neural networks first memorize
clean data and then noisy data when training, even in the
presence of noisy data [2, 43]. Thus, they can separate out
noisy examples utilizing the loss values at the beginning of
training. However, they will overfit noisy data eventually
as the number of epochs grows. To address this issue, it is
wise to retain more examples in the mini-batch in the initial
epochs; that is, RT is large. Then, we gradually decrease RT

so that our networks can preserve the clean examples and
abandon noisy examples before they are memorized.

3.3 Unseen-domain DST

As described in Section 1, unknown-domain DST is
trained a dataset (X, Dsource , Ssource, Ysource) and tested on
(X, Dtarget , Starget , Ytarget ), where X is the dialog context;
Dsource, Ssource, and Ysource are the domain, slot, and
slot value, respectively, in the source domain; and Dtarget ,
Starget , and Ytarget are the domain, slot, and slot value
respectively, in the target domain. Although Dsource and
Dtarget are different, they may share some of the same
slots S. For the slots that are already learned in the source
domain, our DST model can directly track them when
they are present in the target domain. Contextual-feature
augmentation can utilize the contextual features of each
token to decode the slot value. For the same slot across
Dsource and Dtarget , even if some slot values in Ytarget are
unseen in Ysource, they still can be effectively tracked, as
they have a similar context as the slot values in Ysource. For
example, if our model can track the “book people” slot
in the “hotel” domain, then this tracking can transfer to
the “train” domain, which shares a similar context. It is
challenging to track slots in Starget that do not appear in
Ssource, since the model has never been trained to track such
slots.

4 Experimental setting

4.1 Data

We use the recently-released MultiWOZ-2.0 dataset [4]
and MultiWOZ 2.1 [7], which are composed of multi-
domain dialogs. These dialogs come from seven different
domains (attraction, hotel, restaurant, train, taxi, police, and

hospital) and consist of 37 slots across different domains.
MultiWOZ 2.1 is a refined version of MultiWOZ 2.0
in which annotation errors are corrected. Given that two
domains (hospital and police) only appear in the training
set and have very few dialogs, we conduct experiments
on only the other five domains. The DST labels from the
training, development and testing datasets are used in our
experiments. The datasets we used consist of a total of
30 (domain, slot) pairs and 10438 task-oriented dialogs.
Table 1 shows the statistics of the datasets.

4.2 Metrics

We focus on two evaluation metrics described in [22, 39]:

1. Goals (“joint goal accuracy”): the proportion of dialog
turns where the dialog state is correctly identified. At
each dialog turn t , we compare the predicted dialog
state to the label Bt from the original dataset, and the
predicted results are considered correct only if all the
predicted values exactly match the values in label Bt .

2. Slots (“slot accuracy”): In contrast, we compare each
(domain, slot, value) triplet to its truth label.

4.3 Implementation details

In our experiments, we set the number of headers n in
multi-head self-attention to 12. The rate of dropout is set
to 0.2 at the output of each module to prevent overfitting.
We perform mini-batch training with a batch size of 32
using the Adam optimizer (momentum=0.9), and we run
100 epochs. The learning rate annealing is in the range of
[0, 0.001]. The model is trained on two NVIDIA Tesla P100
GPUs in parallel. Both α and β in (9) are set to one. We set

RT = 1 − min
{

T
Tk

τ, τ
}

with Tk= 10 and τ = 0.35.

We initialize the word embeddings by concatenating
GloVe embeddings [25] and character embeddings [3],
where the dimension of each word is 400. Our model
employs a greedy search strategy for our state decoder since
the slot values are often short in length.

4.4 Models

We compare our results with those of five published
baselines and briefly describe these baseline models below:

– GLAD [45]: This model proposes a global-local archi-
tecture. The global module learns transfer knowledge
by sharing the parameters across all the slots, and the
local module learns slot-specific features. It computes
the semantic similarity between utterances and each
predefined slot value. A slot value is selected when the
score is higher than a threshold.
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Table 1 Statistics of the datasets. The last three rows show the number of dialogs related to each domain

Domain Hotel Train Restaurant Attraction Taxi All Domains

Slots parking price range book
stay internet type book
people book day stars
name area

book people destination
departure day leave at
arrive by

book people area
price range name
book time food
book day

name type area destination
arrive by leave
at departure

30 slots

Train 3381 3103 3813 2717 1654 14668

Dev 416 484 438 401 207 1946

Test 394 494 437 395 195 1915

– HYST [12]: This is a hybrid approach based on
hierarchical RNNs and open-vocabulary candidate-
generation.

– TRADE [39]: This is the current state-of-the-art model
based on generation. It bases the DST model on
an encoder-decoder architecture with attention-based
copying. The source sentences are the dialog history,
and the target sentences are the dialog state labels.

– NADST[18]: This uses a transformer-based non-
autoregressive decoder to decode the dialog state of the
current turn.

– DST-QA[46]: This method formulates the DST task as
a question answering problem and proposes a question
answering model for DST. Additionally, it is noted that
the (domain, slot) pairs are related, and this method first
introduces a knowledge graph to learn the relationships
between (domain, slot) pairs.

– SST[6]: This method proposes a schema-guided multi-
domain dialog state tracker with graph attention
networks (SST) that predicts dialog states from dialog
utterances and schema graphs that contain slot relations
in the edges. We also introduce a graph attention-

Table 2 Joint goal and slot accuracy on the MutiWOZ 2.0 test sets

Model Goals(%) Slots(%)

GLAD 35.57 95.44

HYST 38.10 95.63

TRADE 48.62 96.92

DS-DST 51.21 -

DST-QA 51.44 97.24

SST 51.17 -

Our Model 53.68* 97.58*

-DMSA 51.88† 97.25†

-robust training 50.98∗ 96.89†

An asterisk indicates statistically significant improvement over the
baseline trackers (paired t-test; p < 0.01). A dagger indicates
statistically significant improvement over the baseline trackers (paired
t-test; p < 0.05)

matching network to fuse information from utterances
and graphs and a recurrent graph attention network to
control state updating.

5 Results and analysis

5.1 Results on belief tracking

The proposed model is used in 5 independent runs. The
average results are reported. Our model outperforms all the
models described in the previous section, indicating that the
proposed DST architecture can effectively track the state of
the dialog.

As seen in Table 2, our model achieves the highest
performance on MutiWOZ 2.0, 53.68% on joint goal
accuracy and 97.58% on slot accuracy, a 4.35% relative
improvement and a 2.24% absolute improvement over
“DST-QA” on the joint goal accuracy. Regarding the goals,
the gains are always statistically significant (paired t-test,
p < 0.01).

Table 3 shows the result on the MutiWOZ 2.1 dataset.
Compared with TRADE, our model has a 13.82% relative
improvement and a 6.27% absolute improvement on the
joint goal accuracy. Our performance gain can be attributed
to the model capability of learning contextual features that
are irrelevant to specific slot values, directly optimizing the
evaluation metric of cross-domain joint goal accuracy.

Table 3 Joint goal and slot accuracy on the MutiWOZ 2.1

Model Goals(%) Slots(%)

TRADE 45.35 96.55

Our Model 51.62* 97.33†

-DMSA 46.86∗ 97.30†

-robust training 49.74† 97.32†

The meaning of the asterisk and the dagger are the same as that in
Table 2
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Table 4 Joint goal accuracy of the unseen domain state tracking

Target domain Single training Zero-shot

TRADE Our model TRADE Our model

Attraction 71.64 72.51 19.87 20.54

Taxi 76.13 76.15 60.58 64.31

Hotel 55.52 54.98 13.70 14.35

Restaurant 63.35 63.21 11.52 14.40

Train 77.71 77.85 22.37 25.40

5.2 Results on unseen domain tracking

The model performance on unseen domains is shown in
Table 4. In our experiments, we choose four domains
in the MultiWOZ 2.0 dataset as the source domains
and the remaining domain as the target domain. In the
“Zero-Shot” experiments, models are first trained on
the source domains and then tested directly on the target
domain. In the “Single Training” experiments, the
models are trained and tested on the target domain. We
compare our model with TRADE in this experiment.

As shown in Table 4, in the “Single Training”
scenario, our model performs similarly to TRADE, while
in the “Zero-Shot” scenario, it consistently outperforms
TRADE. For example, the “train” domain achieves
a 3.03% absolute improvement over TRADE on the
“Zero-Shot” performance, which is much higher than
the 0.14% improvement on the “Single Training”
performance. This is attributed to contextual-feature aug-
mentation, which extracts generalized features that are
irrelevant to the slot values. In this way, based on the slots

already learned in the source domains, a DST model can
directly track the slots that are present in a target domain,
even if the slot values in the target domain are different
from those in the source domains. The performance on the
“Zero-Shot” experiments is not especially promising, as
it is extremely challenging for the model to track the slots in
target domains that do not appear in the source domains.

5.3 Ablation study

Tables 2 and 3 also show the results of the ablation study
of our model on the MultiWOZ 2.0 and MultiWOZ 2.1
datasets.

DMSA We experimented with a variant of our model using
token2token self-attention instead of DMSA. As shown in
Tables 2 and 3, the joint accuracy of the variant without
DMSA drops by 1.8% on the MultiWOZ 2.0 dataset and
4.7% on the MultiWOZ 2.1 dataset, demonstrating that
contextual-feature augmentation is important for tracking
mixed-domain dialog states.

To further illustrate, we take the user utterance “I
would like some Southeast Asian food
that is not too expensive” and the candidate
(r-estaurant-food) pair as an example. Figure 5 shows the
history attention score between the hidden state hdec

jk at
decoding step k and the encoded dialog history. For exam-
ple, k in Fig. 5 is set to 0,1 and 2 (the 0th, 1st and 2nd
output tokens of the slot value that we decode step by step).
The darker the colour is, the higher the attention score. The
figure on the top is the score with the DMSA module, that
is, the attention score in (19), and the figure on the bottom is
the score without DSMA, that is, the attention score in (3).

Fig. 5 The historic attention score between the hidden state hdec
jk

at decoding step k and the encoded dialog history with DMSA
(on the top) and without DMSA (on the bottom). The user
utterance is “I would like some Southeast Asian food
that is not too expensive” and the domain slot is a

(restaurant-food) pair. The darker the colour is, the higher the attention
score. Taking the top figure as an example, at the first decoding step
(k=0), the score is high in the token “Southeast”, and at the second
decoding step (k=1), the score is high in the token “Asian”. Step by
step, we can obtain the value “Southeast Asian food”
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Note that the “food” value “Southeast Asian”
does not appear in the training set; i.e., it is a new slot
value. The high score on “Southeast Asian” in the top
figure shows that our model with DMSA does focus on
the keywords relevant to the new slot value pair, even if
the word is not involved in training. That is, the contextual
features computed based on DMSA capture generic features
such as delexicalization features that are unrelated to the
word itself.

Robust training This experiment keeps the DMSA com-
ponent but removes the robust training paradigm, which
means we ignore the impact of noisy labels on the perfor-
mance. The 2.7% drop on the MultiWOZ 2.0 dataset and
the 1.8% drop on the MultiWOZ 2.1 dataset demonstrate
that noisy labels inevitably degenerate the robustness of the

learned models. Our proposed model with a robust train-
ing paradigm can train deep models robustly with noisy
supervision. Moreover, this method is simple but effective,
requiring no extra resources or more complex networks.

5.4 Error analysis

We find that there are different types of prediction errors
through error analysis, which is conducive to improving
our model. The model prediction errors are divided into 3
categories, as shown in Table 5.

– Unmentioned slot error: This can happen when either
(1) our prediction is “None”, while the label is not
“None”; or (2) our prediction is not “None”, while the
ground truth is “None”. This kind of prediction error

Table 5 The different types of model prediction errors on the MultiWOZ 2.0 dataset

Category Predict Annotation Context %

Unmentioned
slot error

None attraction-name-school I want to visit some architecture; [A] ...
there are several magnificent churches.
the old schools are quite impressive as
well ... [U] Is there a phone number I can
get for the schools please; [A]the phone
number for old schools is ...

14.2

Restaurant-name-Prezzo None ...[A]there are several architectural attrac-
tions in the centre of town , such as all
saints church , holy trinity church , and
some others . would you like to know
more about them ? [U] can i please have
the postcode for the holy trinity church

14.9

Annotation
error

restaurant-food-african;
restaurant-area centre

None [U] I would like some south african
food that is not too expensive. [A]
unfortunately there are no restaurant -s
available that fit that criteria ... [U] are
there any african restaurant -s outside of
the city center?

22.7

Hotel-type-guesthouse Hotel-type-hotel ...[A] i was able to do that and your
reservation number is 6kq6nmiq . [U]
thanks i am also needing to book at a
guesthouse for 6 for 5 nights starting on
sunday

12.6

Wrong
slot value

hotel-internet-UNK hotel-parking-yes [U] I am looking for a place in cambridge.
it does not need to include internet and
should be a hotel [A] I was not able to find
a hotel type with no internet , but there
are hotel -s with internet; [U] okay, that
would be fine, as long as it has free
parking...

12.9

Train-departure-kings lynn Train-departure-
cambridge

...[A]where would you like to go to? [U]
i will be going from canbrige arriving in
kingls lynn ...

19.1

Attraction-name-riverboat Attraction-name-
riverboat georgina

...[A] cotto is located on 183 east road
city centre and has the postcode cb11bg.
is there anything else i could help you
with today? [U] i am also looking for an
attraction called riverboat georgina...

3.7
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is caused by incorrect predictions made by the slot gate
model.

– Annotation error: This occurs when the ground-truth
label in MultiWOZ 2.0 is incorrect. This category con-
tains two types of errors: 1) the annotators fail to obtain
the slots mentioned in the dialog history, and 2) the
annotators choose the incorrect value of a (domain, slot)
pair.

– Incorrect slot value: This occurs when the slot value
is not recognized by the model. This category contains
the following three types of errors: 1) Our model
misinterprets the user’s intent and fails to predict the
slot value based on the dialog history. 2) There are
several slot values in the dialog context, and the model
chooses the wrong one. 3) Our network refers to a span
that is either a subset or a superset of the correct span.

Table 5 shows the error examples and the percentage of each
type. An “unmen- tioned slot error” accounts
for 29.1% of the total errors, which reveals that more
attention should be paid to the slot gate module, especially
for complex and negative user utterances. In addition,
32% of errors are due to an “annotation error”.
All these errors are caused by the noise data in the
MultiWOZ 2.0 dataset. Unfortunately noise is unavoidable,
explaining the necessity of combating the noisy labels.
This finding also illustrates the necessity of introducing
a robust training paradigm and is in alignment with our
ablation studies in Table 2, where robust training can
boost performance in terms of the joint goal accuracy.
An “wrong slot value” accounts for 35.7% errors,

indicating misunderstanding of the dialog history. It may be
helpful to introduce a stronger language module.

6 Conclusion

We introduce a robust dialog state tracker with contextual-
feature augmentation, which is a new state-of-the-art model
for dialog state tracking. We propose a DMSA mechanism
to perform contextual-feature augmentation, extracting the
generic contextual features. The contextual features are si-
milar to the delexicalization features. Thus, the state deco-
der can capture the keywords relevant to the unseen slot va-
lues, as they have similar contextual features to the existing
values. To combat the noisy labels in the dataset, we intro-
duce a simple but effective training method for our DST mo-
del. The experimental results demonstrate that our approach
can track the dialog state effectively in an unseen domain
and that it significantly outperforms state-of-the-art methods.

In future work, we plan to further improve unseen dom-
ain performance, focusing on the new slots that are not seen
in the training set. A more powerful language model and a co-
reference resolution module may be introduced to improve
the ability of the model to understand complex utterances.

Appendix

A. Joint accuracy and context length

Figure 6 shows the model performance with different con-
text lengths. The context length refers to the number of pre-

Fig. 6 Joint accuracy. v.s.
context length
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Fig. 7 Error rate of each slot per
turn on the MultiWOZ 2.0
dataset

vious turns involved in the dialog history. Our baseline algo-
rithms above utilize all previous turns as the dialog history.

B. Error rate per slot

Figure 7 shows the error rate of each slot. We find that the
error rates of name related slots such as “attraction
name” , “restaurant name”, and “hotel name” are
high. This may be due to the very large value set of those
slots.

Unseen domain error analysis

In Fig. 8, we show the unseen domain analysis of
two selected domains, “hotel” and “train”. For the
slots that appear in the other four domains, our model
can track correctly. For example, the “area”, “price
range”, “people”, and “day” slots also appeared in
the “restaurant” domain. However, the “parking”,
“stars” and “internet” slots, which only appear
in the “hotel” domain, are difficult for our model to
track.

Fig. 8 Error analysis of unseen
domains
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