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Abstract
Due to the limitations of infrared imaging principles and imaging systems, many problems are typically encountered with collected
infrared images, such as low resolution, insufficient detail information, and blurred edges. In response to these problems, a method
of infrared image super-resolution reconstruction that uses recursive attention and is based on a generative adversarial network is
proposed. First, according to the characteristics of low-resolution infrared images such as uniform pixel distributions, low contrast,
and poor perceived quality, a deep generator structure with a recursive-attention network is designed in this article. The recursive-
attentionmodule is used to extract high-frequency information from the feature maps, suppress useless information, and enhance the
expressiveness of the features, which facilitates the reconstruction of texture details of infrared images. Then, to better distinguish the
reconstructed images from the original high-resolution images, we designed a discriminator that was composed of a deep
convolutional neural network. In addition, targeted improvements were made to the content loss function of GAN. We used the
pre-trained VGG-19 network features before activation to calculate the perceptual loss, which helps recover the texture details of the
infrared images. The experimental results on infrared image datasets demonstrated that the reconstruction performance of the
proposed method is higher than those of several typical methods, and it realizes higher image visual quality.
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1 Introduction

With the development of infrared sensor technology, infrared
images have been widely used in military, aerospace, medical,
remote sensing, and other applications [1, 2]. Due to the lim-
itations of infrared imaging principles and hardware perfor-
mance, compared with natural images, infrared images have
low spatial resolution and inconspicuous contrast. The indus-
try mainly improves the hardware performances of infrared
imaging systems by improving the manufacturing processes
of infrared sensors to increase the spatial resolution of the
obtained infrared images. Compared overcoming the

limitations of hardware, it is more economical and practical
to increase the resolution of infrared images by using super-
resolution reconstruction (SR) technology.

Image super-resolution reconstruction is a typical ill-posed
problem [3], in which the objective is to reconstruct visually
satisfactory high-resolution (HR) images from one or more
low-resolution (LR) images. To solve this ill-posed problem,
many scholars have proposed a variety of super-resolution
reconstruction methods, which include interpolation-based
[4] methods, reconstruction-based [5] methods and learning-
based [6–12] methods. Limited by the lack of prior informa-
tion inside low-resolution infrared images, infrared images
that are reconstructed based on interpolation and reconstruc-
tion methods still cannot satisfy the requirements of the indus-
try [13]. With the rapid development of deep learning and the
emergence of high-performance GPUs, learning-based
methods are widely used in image super-resolution recon-
struction. Learning-based methods [14, 15] realize image
super-resolution reconstruction by training many LR images
and HR images in pairs to obtain the mapping relationship
between the sample pairs. In 2014, Dong et al. [16] introduced
a three-layer convolutional neural network into image super-
resolution reconstruction and proposed super-resolution using
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convolutional neural networks (SRCNNs). The model utilizes a
convolution operation instead of traditional manual feature ex-
traction, which can directly learn an end-to-end mapping be-
tween LR images and HR images, and has realized significant
improvements over traditional methods. The structure of the
network is simple, and the training is fast. However, the network
model is too small and the range of pixels that can be used in the
learning process is too small, thereby resulting in few feature
extractions and limited reconstruction performance. In 2016,
Kim et al. [17] proposed the deeply-recursive convolutional
network for image super-resolution (DRCN), which realized
significant progress comparedwith SRCNN. To further improve
the visual quality of the reconstructed images, the generative
adversarial network (GAN) [18] was introduced into the field
of super-resolution reconstruction. In 2017, Ledig et al. [19]
proposed super-resolution using a generative adversarial net-
work (SRGAN) for the generation of more realistic images via
the addition of adversarial losses. However, SRGAN is based on
ordinary convolution, which treats the extracted image informa-
tion equally, hence, it is highly inefficient in this calculation.
Other algorithms without attention mechanisms all treat the ex-
tracted feature maps equally. When reconstructing infrared im-
ages, it is easy to produce false textures that are inconsistent with
the original image. Methods that are based on deep learning
have yieldedmore accurate results. However, the infrared image
pixels are evenly distributed and the gradient range is small,
thus, it is difficult for these methods to obtain sufficient effective
feature information. The reconstructed image texture remains
unsatisfactory in vision applications.

To increase the feature extraction performance and obtain
satisfactory high-resolution infrared images, we introduced at-
tention mechanisms [20–22] into SRGAN and proposed a
super-resolution reconstruction method for infrared images that
was based on the generative adversarial network. Due to the
characteristics of low-resolution infrared images, such as low
contrast and poor perceived quality, we introduced a recursive-
attention network into the generator to extract more high-
frequency features of the image and suppress the useless infor-
mation, thereby enhancing the expressiveness of the features
and contributing to the reconstruction of texture details. In ad-
dition, since infrared images are less visually recognizable than
natural images and contain less key semantic information, a loss
function is optimized. One strategy is to use pre-trained VGG-
19 network features prior to activation to calculate the percep-
tual loss, which can increase the image reconstruction accuracy.
The other is to use theWasserstein [23, 24] distance to guide the
adversarial training of GAN and ensure its convergence.

2 Related work

Generative adversarial network theory is derived from the
two-person zero-sum game in game theory, which is a

probability generation model. It was proposed by Ian
Goodfellow [18] in 2014. In recent years, GAN has been
widely used in image generation [25], image inpainting [26],
image super-resolution reconstruction [19], and other fields
due to its powerful image generation capabilities. In image
super-resolution reconstruction, SRGAN is the first mature
network, which includes a generator (G) and a discriminator
(D). The basic framework of SRGAN is illustrated in Fig. 1.

In Fig. 1, the generator is represented by function G, and
the discriminator is represented by functionD. The parameters
of each function can be trained. First, a noise z, which was
sampled from LR training images, is sent to G to generate a
false-sample x that is similar to HR images that were input into
D. At the same time, HR training samples are also sent toD as
real samples, andD tries to distinguish the difference between
the false-sample x and the real-sample HR. The objective of
the generator G is to continuously produce high-resolution
images that are as close to the real samples as possible until
the generated high-resolution images can deceive the discrim-
inator D, namely, to make D(G (z)) as close to 1 as possible.
The objective of the discriminator D is to make D(G) as close
to 0 as possible, and eventually, it will realize a balance in the
mutual game. By adding a discriminant loss to the traditional
perceptual loss, SRGAN can generate texture details that are
closer to those of the HR images, thereby making the images
more realistic. However, due to the uniformity among the
infrared image pixels, SRGAN still does not reconstruct some
texture details sufficiently clearly, and it may produce fuzzy
artifacts. Moreover, the perceptual loss that is based on the
VGG-19 classification network cannot capture the high-
frequency information that is required for infrared image
super-resolution reconstruction.

3 Proposed method

Based on the basic framework of SRGAN, we redesigned the
generator to generate infrared imageswith higher visual quality
by introducing a recursion attention module. In addition, the
loss function is improved as an optimization strategy to bal-
ance the objective evaluation index and the subjective visual
quality. The objective of infrared image super-resolution re-
construction is to estimate a high-resolution reconstructed im-
age ISR according to a low-resolution input image ILR such that
ISR is as close to the real high-resolution image IHR as possible,
which is pursued by training a generator networkG to generate
a high-resolution image that is as similar to the real high-
resolution image IHR as possible. ISR is expressed as:

ISR ¼ Gθ ILRð Þ ð1Þ
where ILR is obtained from the corresponding high-resolution
image IHR with scale down-sampling factor r and θ represents
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the parameters of the network, which can be obtained through
continuous optimization of the loss function in the adversarial
training. The parameters must satisfy the following expression:

θ ¼ arg min∑LSR ISR; IHRð Þ ð2Þ
where LSR(ISR, IHR) represents the reconstruction error.

3.1 Design of the generator

Due to its strong feature mapping performance, a neural net-
work can map low-resolution feature maps to high-resolution
space; hence, neural networks are often used in super-
resolution reconstruction tasks. Infrared images often suffer
from a uniform pixel distribution and a small gradient range,
and some weak details are not easy to extract. Therefore, we
introduced the recursion attention module into the generator
structure. The main functions of the recursive attention mod-
ule are to further extract the important texture information that
is needed for image reconstruction and to suppress the useless
information. These texture details are especially important for
the generation of high-resolution images. The more high-
frequency information that is extracted during training, the
more accurate the reconstruction results will be. The generator
structure is illustrated in Fig. 2.

In Fig. 2, ILR and ISR represent the input and output, respec-
tively of the generator. First, the generator extracts the shallow
information of the low-resolution image by using two-layer

convolution, which is accompanied by the PReLU [27] acti-
vation function and can be expressed as follows:

Fl ILRð Þ ¼ max λ* Wl*Fl−1 ILRð Þ þ Blð Þ;Wl*Fl−1 ILRð Þ þ Blð Þ
ð3Þ

whereWl is convolution filter l, which can be expressed as n *
k * k * 1, where n represents the number of convolution ker-
nels and k represents the size of the convolution kernels; Bl is
the bias of layer l, Fl − 1(ILR) is the feature map of the previous
layer’s output; and λ is the learnable parameter in the activa-
tion function PReLU.

Then, the extracted shallow feature maps are sent into the
recursion attention module as new inputs. The attention layer
structure is illustrated in detail in Fig. 3.

There are abundant low-frequency components and a few
valuable high-frequency components in the low-resolution in-
frared image space. The low-frequency part is flatter, and the
high-frequency part is typically full of edges, textures, and other
details. In super-resolution tasks, high-frequency channel fea-
tures are more important for reconstruction; thus, we introduced
an attention mechanism to focus on such channel features. We
can assign attention resources to each feature channel by recur-
sively calling the attention layer. With the increase in the num-
ber of recursions, the trained attention maps can increasingly
highlight the detailed texture and related structure.

In Fig. 3, GAP represents global average pooling. The at-
tention layer uses this structure to average the information of
all points in space into one value so that it can shield part of the

Fig. 2 Generator structure: k is the size of the convolution kernel, n is the number of convolution kernels, s is the convolution step, and r is the number of
recursions

Fig. 1 Basic framework of SRGAN
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smooth low-frequency information and retain more texture
information of features. As illustrated in Fig. 3, feature maps
withC channels and of sizeH ×W undergo GAP to obtain the
global information z among the C feature maps. The global
information zc of the c-th feature map is calculated as follows:

zc ¼ HGAP xcð Þ ¼ 1

H �W
∑
H

x¼1
∑
W

y¼1
xc x; yð Þ ð4Þ

where xc(x, y) represents the value at position (x, y) in the c-th
feature map xcandHGAP represents the global average pooling
function. Such channel statistics help express the entire image
information [28]. Then, z passes through a gating unit that is
composed of two fully connected layers and a sigmoid func-
tion to fuse the feature map information of each channel. The
unit is expressed as:

s ¼ g F2δ F1zð Þð Þ ð5Þ
where g and δ represent the sigmoid function and the ReLU
function, respectively, and F1z represents a fully connected
operation. After a ReLU, the dimension is reduced to C/r,
where r is the scale factor. Then, after a fully connected layer
F2, the dimension is increased back to C. Finally, the sigmoid
function is used to obtain the weight value of the feature map,
which is between 0 and 1, to reduce the disturbance to the
feature information, and the attention layer obtains an en-
hancement matrix with the same size as the input feature.
This enhancement matrix is multiplied pixel-by-pixel with
the input feature map to realize effective feature enhancement
and further suppress unimportant features. Then, the resulting
attention feature maps are sent as new input to the next layer of
the recursive network.

Assume that the output of the r-layer recursive attention
module is Fr, which can be expressed as follows:

Fr ¼ HATT ;r Fr−1ð Þ ¼ HATT ;r HATT ;r−1 ⋯ HATT ;1 F0ð Þ� �
⋯

� �� �
ð6Þ

where HATT represents the function of the attention module,
and r represents the number of recursions.

Finally, the feature maps pass through up-sampling layers
and three convolutional layers to realize up-sampling with

magnification factors of 2, 3, and 4 to obtain the final HR
reconstructed image. After comparing several commonly used
up-sampling methods such as transposed convolution, nearest
up-sampling + convolution, and sub-pixel convolution [29],
we select two sub-pixel convolutional layers, which are supe-
rior in terms of computational complexity and performance.

3.2 Design of the discriminator

In addition to improving the generator, we have also made
targeted improvements to the discriminator. The improved
discriminator network structure and parameter settings are
presented in Fig. 4. In the figure, SR is a high-resolution image
that is generated by the generator, and HR is the real high-
resolution image. The discriminator adopts the deep convolu-
tion structure. A study [30] showed that in super-resolution
reconstruction tasks, the batch norm (BN) layer tends to de-
stroy image spatial information and reduce the reconstruction
performance; hence, we removed the BN layer and used
Leaky_ReLU (λ = 0.2) as the activation function. After the
7-layer convolutions, the feature maps were input into two
fully connected layers and classified by the sigmoid activation
function to judge the output high-resolution image as true or
false.

3.3 Loss function

In the process of network training, the loss function has a
substantial influence on the network model. To reconstruct
high-resolution infrared images with clear texture, the loss
function of SRGAN has been improved. The adversarial loss
of GAN is:

min
G

max
D

V G;Dð Þ ¼ E logDθ IHRð Þ½ � þ E log 1−Dθ Gθ ILRð Þð Þð Þ½ �
ð7Þ

where E is the probability expectation of the log function and
Gθ(ILR)represents the reconstructed high-resolution image.
The overall loss function of this article consists of the follow-
ing parts.

Fig. 3 Schematic diagram of the attention layer
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3.3.1 Pixel-wise loss

To measure the similarity between the high-resolution image
that is reconstructed by the network and the real high-
resolution image, their mean square error (MSE) is typically
calculated in pixels. The objective is to minimize the differ-
ence between the reconstructed image and the real high-
resolution image in the pixel domain, which is referred to as
the pixelwise loss. This loss can be expressed as:

Lpixel ¼ 1

W � H
∑
W

x¼1
∑
H

y¼1
IHRð Þx;y−G ILRð Þx;y

� �2
ð8Þ

where W×H is the size of the image, and (x,y) is the pixel
value in the image.

3.3.2 Perceptual loss

The perceptual loss is defined on the activation layer of the pre-
trained deep network, and the corresponding loss function can
be calculated from the activated feature values, which can pre-
vent the network from generating blurred images. However, in
deeper networks, after activation, the features will become high-
ly sparse, thereby resulting in poor supervision performance.
Hence, we used the feature values before activation to calculate
the perceptual loss. The features before activation can better
represent the feature information of the image; thus, the texture
consistency between the reconstructed image and the original
image can bewell supervised. In this article, the trainedVGG-19
network is used to obtain the feature values of the corresponding
activation layer before activation. Then the Euclidean distance
between the generated high-resolution image and the original
image is calculated to obtain the perceptual loss:

Lper ¼ 1

W � H
∑
W

x¼1
∑
H

y¼1
ϕi IHRð Þx;y−ϕi G ILRð Þx;y

� �� �2
ð9Þ

where ϕi represents the feature values of the activated layer after
the i-th convolutional layer of VGG-19.

3.3.3 Adversarial loss

We used theWGAN loss [31] to stabilize the training process.
In WGAN, the loss function is defined as the Wasserstein
distance between the target image IHR and the reconstructed
image ISR. This is equivalent to adding a regularization term to
the discriminator loss function as a gradient penalty strategy,
which makes the training smoother. Via this approach, formu-
la (7) can be optimized as follows:

LWGAN ¼ E Dθ IHRð Þ−Dθ Gθ ILRð Þð Þ½ � þ λE ∇ID Ið Þ2−1
�� ��2h i

ð10Þ

where the second term on the right side of the equal sign is the
gradient penalty term,∇ID(I)2represents the two-norm of the

gradient of the discriminator D, and I represents an image that
was randomly selected from the generated image samples and
the real image samples.

In our method, the weighted sum function that is obtained
by linearly combining three loss functions, namely, the pixel-
wise loss, perceptual loss, and adversarial loss functions, is
used as the global loss function of our method. It can be
expressed as follows:

LG ¼ LWGAN þ αLpixel þ βLper ð11Þ
LD ¼ LWGAN þ βLper ð12Þ

where α and β are the linear combination weights of the cor-
responding loss functions Lpixel and Lper, respectively, in the
target function.

4 Experiment

4.1 Experimental environment and parameter
settings

The platform of the experiments is a Windows 10 operating
systemwith an Intel 2.2 GHz i7-8750h CPUwith 8 Gmemory
that is configured with an NVIDIA GTX 1080 GPU, and we
trained the model under the GPU-based TensorFlow deep
learning framework. In the article, the MSRA method [32],
which was proposed in reference [30], was used to initialize
the weights, and the Adam [33] optimizer with a momentum
and weight decay of 0.9 and 0.0001, respectively, was used to
optimize the network. The batch size was set to 16, and the
initial learning rate was 10−4. Since the generator is complete-
ly convolutional, it can be applied to images of any size. The
training consisted of two parts: First, the generator was pre-
trained with MSE to avoid the local optimization of the GAN
network with direct training. The pre-training learning rate
was 10−4 for 200 iterations. Then, the generator and the dis-
criminator were alternately trained, and the learning rate was
10−4 10,000 iterations. At the same time, the Wasserstein dis-
tance was used to optimize the adversarial training. For per-
ceptual loss, the feature values before the activation of the
second convolutional layer in the second module of the
VGG-19 network were used to calculate the perceptual loss.
All the above parameter values of our experiments are the
values that yielded the best results in multiple sets of
experiments.

4.2 Datasets

Few public infrared image data sets are available for selection.
In the experiments, the infrared parts of the CVC-09 and
CVC-14 datasets were selected for training and testing. We
also built an infrared data set for directly evaluating the
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performance of our model. Our self-built infrared data set was
collected using refrigerated infrared cameras and the images
included pedestrians, cars, traffic signs, and buildings. We
selected 1000 infrared images from the CVC-09 dataset as
the high-resolution images of the training set and down-
sampled them using the bicubic interpolationmethod to obtain
low-resolution images. The down-sampling factors are 2, 3,
and 4, respectively. In addition, infrared images from the
CVC-14 data set and the self-built data set were selected as
the testing set. Due to the small number of images in the
training set, it is necessary to enhance the training set to better
match the proposed model. The enhancement method rotates
to rotate the original images clockwise by 0°, 90°, 180°, and
270°and mirrors them to obtain 8000 images in total. Original
images from the training set are shown in Fig. 5.

4.3 Evaluation indices

Image quality evaluation is important for judging the perfor-
mances of super-resolution reconstruction algorithms. The

evaluation methods of super-resolution reconstruction can be
divided into subjective evaluation and objective evaluation.
Subjective evaluation refers to the evaluation of image quality
according to the subjective feelings of the experimenters.
SRGAN proposed a mean opinion score (MOS) [19], which
requires a specified number of raters to score the resulting
images of super-resolution reconstruction methods to evaluate
their subjective visual quality. However, this index requires
large labor cost and cannot be reproduced; hence, more accu-
rate image quality evaluation methods are urgently needed.
However, before proposing the new evaluation method, two
commonly used full-reference image quality evaluation
methods, namely, PSNR and SSIM, were used to objectively
evaluate the model. The two evaluation indices differ in terms
of visual perception, but both involve reference images for
comparison. However, in a real infrared image super-
resolution reconstruction scenario, only low-resolution images
must be reconstructed, but no corresponding high-resolution
reference images are available; hence, it is necessary to intro-
duce quantitative free-reference image quality evaluation

Fig. 4 Discriminator structure and parameter settings

Fig. 5 Sample images from the training dataset
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methods. In this article, the average gradient [34] (AG) and the
natural image quality evaluator [35] (NIQE) are used as
methods of image quality evaluation without reference images.

The peak signal-to-noise ratio (PSNR) is an objective im-
age evaluation index that is based on the error between corre-
sponding pixels, which is defined as follows:

PSNR ¼ 10� lg
2n−1ð Þ2
MSE

ð13Þ

whereMSE represents the mean square error between images,
which is expressed as:

MSE ¼ 1

H �W
∑
H

x¼1
∑
W

y¼1
IHR x; yð Þ−ISR x; yð Þ½ �2 ð14Þ

The smaller theMSE value is, the larger the PSNR value is
and, thus, the closer the image is to the comparison image.

The structural similarity (SSIM) measures the similarity of
images from three aspects: brightness, contrast, and structure.
Its value ranges from 0 to 1. The larger the value, the lower the
distortion of the image.

SSIM x; yð Þ ¼ L x; yð ÞC x; yð ÞS x; yð Þ ð15Þ
where L (x, y), C (x, y) and S (x, y) represent the brightness,
contrast, and structure, respectively.

The average gradient (AG) refers to the average value of the
gray level change rate, which is often used to express the image
clarity. The larger the value is, the clearer the image is. It is
defined as:

G x; yð Þ ¼ dx i; jð Þ þ dy i; jð Þ ð16Þ

dx i; jð Þ ¼ I iþ 1; jð Þ−I i; jð Þ ð17Þ

Fig. 6 Visual result comparison of variousmethods and the proposedmodel on Test1-car with an upscaling factor of 3. (a) Ground-truth HR; (b) Bicubic
interpolation; (c) SRCNN; (d) DRCN; (e) SRGAN; (f) ESRGAN; and (g) Ours

Table 1 Average PSNR(dB)/SSIM values on Test1 and Test2 of the proposed method and five other SR methods

Dataset Scale Bicubic
PSNR/SSIM

SRCNN
PSNR/SSIM

DRCN
PSNR/SSIM

SRGAN
PSNR/SSIM

ESRGAN
PSNR/SSIM

Ours
PSNR/SSIM

2 35.229/0.980 37.823/0.934 38.382/0.937 37.553/0.931 37.653/0.930 38.689/0.948

Test1 3 32.008/0.856 33.971/0.909 34.590/0.919 33.595/0.899 33.580/0.909 34.703/0.912

4 30.242/0.795 31.503/0.840 32.142/0.867 31.039/0.856 31.033/0.861 32.230/0.872

2 31.280/0.835 32.001/0.845 32.905/0.869 31.824/0.844 32.258/0.855 33.176/0.874

Test2 3 28.169/0.811 28.906/0.830 29.988/0.858 29.079/0.831 29.909/0.835 30.566/0.862

4 22.683/0.758 24.067/0.794 25.005/0.821 24.055/0.791 24.066/0.807 25.697/0.826

Q.-M. Liu et al.2024



dy i; jð Þ ¼ I i; jþ 1ð Þ−I i; jð Þ ð18Þ

where I is the value of the image pixel, (i, j) is the coordinate
of the pixel, and x and y represent the horizontal and vertical
directions, respectively.

The natural image quality evaluator (NIQE) is an image
quality evaluation algorithm that was proposed by the
University of Texas. It constructs a series of features for mea-
suring image quality and uses these features to fit a multivar-
iate Gaussian model to measure the differences in the multi-
variate distribution of the image The smaller the value, the
clearer the image. It can be defined as:

Î x; yð Þ ¼ I x; yð Þ−μ x; yð Þ
σ x; yð Þ þ 1

ð19Þ

μ x; yð Þ ¼ ∑
M

k¼−M
∑
N

l¼−N
ωk;lI xþ k; yþ lð Þ ð20Þ

σ x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

k¼−M
∑
N

l¼−N
ωk;l I xþ k; yþ lð Þ−μ x; yð Þ½ �2

s
ð21Þ

where M and N are the length and width, respectively, of the
image, and ω is a Gaussian weight function.

4.4 Results and analysis

We mainly investigated the reconstruction effect of the model
on low-resolution infrared images with down-sampling fac-
tors of 2, 3, and 4. Test1 and Test2 were composed of 15
images from the CVC-14 dataset and 9 images from the
self-built dataset, respectively, and were compared using
bicubic interpolation, SRCNN [16], DRCN [17], SRGAN
[19], and ESRGAN [30]. All methods are retrained and tested
on our training set, and the codes are the source codes that
were published by the authors. The quantitative results of the
peak signal-to-noise ratio (PSNR) and structure similarity in-
dex (SSIM) are presented in Table 1. The larger the values, the
better the reconstruction effect.

Table 1 quantitatively compares the proposed method with
five other super-resolution methods. The PSNR and SSIM
values of the proposed method mostly exceed those of the

Fig. 7 Visual result comparison of various methods and the proposed model on Test2-people with an upscaling factor of 4. (a) Ground-truth HR; (b)
Bicubic interpolation; (c) SRCNN; (d) DRCN; (e) SRGAN; (f)ESRGAN; and (g) Ours
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other methods under the same magnification factors and the
same dataset. In Table 1, the PSNR and SSIM values of the
proposed method are significantly improved compared to
those of SRGAN and ESRGAN, and those of the DRCN
model are the closest to ours. The DRCN model is based on
the deep convolutional structure of the MSE loss, and it does
not pursue the improvement of visual effects. Similar results
are obtained in the article, which proved that the proposed
recursive-attention structure and the optimization of the loss
function that are adopted in the article are effective. When the
scale factor is 3, compared with the ESRGAN model, the
PSNR of the proposed method increased by approximately
0.89 dB and the SSIM by approximately 0.015.

Figures 6 and 7 present the qualitative evaluation results of
the above methods on test1-car and test2-people, respectively.
To facilitate the visual evaluation, various areas in the above
pictures are marked with boxes and enlarged separately.

According to Figs. 6 and 7, the bicubic interpolation method
produces the worst visual effect, and the overall picture is
relatively fuzzy. The reconstruction performance of SRCNN
is only slightly higher than that of bicubic interpolation, and
the details of the picture are still blurred. Compared with the
previous two methods, the reconstruction quality of the
DRCN method has significantly improved, and the image is
clearer, but some of its details are too sharp. As shown in Fig.
6d, the license plate even produces pseudo textures, which is
not in line with the visual perception of human eyes. The
proposed method has realized the most satisfactory visual ef-
fect. Compared with SRCNN and DRCN, the addition of the
adversarial loss can produce more visually satisfactory results.
The model is no longer limited to the simple pixel-wise loss
but generates high-quality images that are closer to human
visual perception. Compared with SRGAN and ESRGAN,
the recursive-attention module can coordinate the relationship

Fig. 8 Actual magnifications of 5 images in Test2 via various methods, the scale factor is 2

Table 2 Average AG/NIQE
values of 5 images in Test2 for the
proposed method and various SR
methods, with a scale factor of 2

Data Scale Bicubic
AG/NIQE

SRCNN
AG/NIQE

DRCN AG/
NIQE

SRGAN
AG/NIQE

ESRGAN
AG/NIQE

Ours AG/
NIQE

image1 2 4.589/8.768 5.173/8.074 5.443/7.558 5.411/7.499 5.471/7.485 5.508/7.445

image2 2 4.819/6.855 6.506/6.491 6.801/5.886 7.010/5.690 7.110/5.685 7.125/5.305

image3 2 3.929/7.454 4.483/6.511 4.574/6.080 4.788/5.964 4.788/5.961 4.707/5.788

image4 2 6.425/6.876 8.147/5.846 8.311/5.506 8.808/5.377 8.882/5.067 8.881/4.998

image5 2 2.936/7.478 3.358/6.590 3.421/6.757 3.645/5.206 3.668/5.116 3.587/5.114

Average 2 4.540/7.486 5.533/6.702 5.710/6.357 5.932/5.947 5.984/5.863 5.962/5.730
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between the feature information in the image well and can use
the global features of the image to generate a clearer high-
resolution image. In conclusion, compared with other
methods, the proposedmethod is not only yieldsmore realistic
visual restoration results but also produces sharper edges and
clearer textural fineness in the enlarged area. The proposed
method has improved the visual quality of the reconstructed
image while simultaneously reducing the generation of false
textures. The reconstruction performance is better than those
of the comparison methods; hence, the proposed method is
practicable.

To further evaluate the efficiency of the proposed model in
real scenes, we randomly selected five images from the Test2
to conduct another set of comparative experiments. In the
experiment, we directly input the LR test images into the
network without down-sampling, which is more in line with
the actual degradation process. The results are shown in Fig. 8.

Due to the lack of reference high-resolution images, we
used two representative indices (AG and NIQE) for evalua-
tion, and the comparison results are presented in Table 2. AG
and NIQE can reasonably evaluate the sharpness of images
and can reflect the content sharpness, detail contrast, and

texture diversity of images The larger the AG value, the small-
er the NIQE value and the clearer the image. According to
Table 2, ESRGAN has obtained the optimal value for AG,
whereas the proposed method has obtained the optimal value
for NIQE. That may be because the quality of our self-built
dataset is relatively high and the pixel sharpness is relatively
high. When we reconstruct directly, the visual effect is better.
Hence, the significant improvement of the visual expression
and quantitative indices of the reconstructed image has fully
proven the effectiveness and practicability of the proposed
method. The combination of recursive-attention learning and
adversarial learning strategies has shown substantial advan-
tages in the super-resolution reconstruction of infrared images.

4.5 Model analysis

4.5.1 Recursive learning

The recursive learning of the attention module can reduce the
number of parameters of the network and the storage demand
while extracting the feature information of infrared images.
However, as the number of recursions increases, the gradient
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Fig. 9 The number r of the
attention module versus the
performance for scale factor 3 on
the Test1 dataset

Table 3 Average PSNR/SSIM values of Test1 and Test2 on various loss functions, with a scale factor of 3

Loss Scale Test1 Test2

PSNR SSIM PSNR SSIM

Lpixel þ L
0
per × 3 34.148 0.886 29.937 0.829

Lpixel þ LWGAN þ L
0
per Lpixel + LWGAN + Lper 34.586 0.908 30.421 0.853

34.703 0.912 30.566 0.862
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disappearance of the network will become increasingly se-
vere, and the overall training difficulty will substantially in-
crease. Therefore, we examined the relationship between the
number of recursions r of the attention module and the recon-
struction performance of the model. The performance evolu-
tion of the model with various values of r and a scale factor of
3 on dataset Test1 is presented in Fig. 9. The average PSNR of
the model gradually increases with the increase of r initially,
and the maximum is attained when r = 8, after which the
PSNR begins to decline slowly. Therefore, based on the re-
construction speed and the training difficulty, the number of
recursions r of the attention module in our implementation of
the model was set to 8.

4.5.2 Loss functions

We conducted a set of experiments to evaluate the influence of
the loss function on the super-resolution performance. The

experimental results are presented in Table 3, where L
0
per rep-

resents the perceptual loss using the feature values of VGG-19
after activation and Lper represents the loss using the feature
values of VGG-19 before activation. The experimental results
demonstrate that the average PSNR and SSIM values of the
reconstructed images were severely degraded without the
Wasserstein distance loss. The model that uses the feature
values of VGG-19 before activation slightly outperforms the
model that uses the feature values of VGG-19 after activation.
This is because the perceptual loss is constrained by the use of
the features of the VGG-19 network before activation, which
can better supervise the texture restoration of infrared images.
This proved the effectiveness of the improvement. The exper-
imental results have demonstrated that the proposed model
can reconstruct infrared images with realistic texture.

5 Conclusions

We present a novel model that uses recursive attention learn-
ing that is based on generative adversarial network to super-
resolve infrared images. We design a generator network with
recursive-attention modules, which can adaptively adjust the
feature channel information and enhance the expressiveness
of features. The recursive attention learning strategy can not
only make the texture of infrared images more natural and
realistic but also reduce the generation of pseudo textures.
For the loss function, feature values of the VGG-19 network
before activation are used to constrain the perceptual loss,
which can be better monitored recursively. The Wasserstein
distance is also used to optimize adversarial training and to
increase the stability of the network training. The experimen-
tal results have demonstrated that the proposed model has a
significant effect on the super-resolution reconstruction of

vehicle infrared images. Compared with those of several ad-
vanced models, the objective indices of the reconstructed im-
ages have improved significantly, along with the visual tex-
ture details However, the proposed method did not perform
well on other images, such as natural images and thermal
infrared images. Increasing the general performance of our
model will be the focus of our next study.
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