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Abstract
Feature selection (FS) is used to solve hard optimization problems in artificial intelligence and data mining. In the FS process,
some, rather than all of the features of a dataset are selected in order to both maximize classification accuracy and minimize the
time required for computation. In this paper a FS wrapper method that uses K-nearest Neighbor (KSN) classification is subjected
to two modifications using a current improvement algorithm, the Monarch Butterfly Optimization (MBO) algorithm. The first
modification, named MBOICO, involves the utilization of an enhanced crossover operator to improve FS. The second, named
MBOLF, integrates the Lévy flight distribution into the MBO to improve convergence speed. Experiments are carried out on 25
benchmark data sets using the original MBO, MBOICO and MBOLF. The results show that MBOICO is superior, so its
performance is also compared against that of four metaheuristic algorithms (PSO, ALO, WOASAT, and GA). The results
indicate that it has a high classification accuracy rate of 93% on average for all datasets and significantly reduces the selection
size. Hence, the findings demonstrate that the MBOICO outperforms the other algorithms in terms of classification accuracy and
number of features chosen (selection size).

Keywords Feature selection . Classification .Wrapper approach .Mutation operator . Crossover operator . Lévy flight.Monarch
butterfly optimization

1 Introduction

The widespread application of information technology at all
levels has contributed to an exponential growth in the volume
of stored data [1]. These data sets contain a wealth of infor-
mation that is not readily accessible, but which, if retrieved,
may be of great value and significance. The extraction of this
information from the data volume is called data mining [2–5].
The feature selection (FS) process is one of the important
stages in data mining as it is used to reach this information
in the fastest and most accurate way. The process involves
selecting the features that best fit the study problem. So, in-
stead of selecting all of the features, only the specific features
related to the study problem are chosen [6]. This means that
only those features that are important for making an informed

decision [7–9] about a particular problem are selected for fur-
ther processing. This approach therefore allows for consider-
able classification accuracy [10] and also helps to improve the
understanding of statistical structures and performance [11] in
a shorter time.

The FS process is composed of three key steps [12]. First,
the generation process generates subsets of the entire data
array. This is followed by the assessment phase and the vali-
dation phase [13]. In FS, the features associated with a prob-
lem are selected by using either a filter or a wrapper approach
during the assessment phase [14]. A number of specific ap-
proaches and selection criteria have been developed for the
filter approach, such as mutual information [15], information
gain [16], principal component analysis and others [17]. On
the other hand, a classifier in wrapper form, such as the K-
nearest Neighbor (KNN) and the support vector machine
(SVM) [18], can also be utilized.

If, in the generation process all the possible subsets of a
data set are obtained, this results in a problem with very high
complexity that requires a high computation time of 2^n,
where n is the number of features in a data set [19]. Many
artificial intelligence (AI)-based methods have been used to
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reduce the search time and at the same time ensure reliable and
accurate results. One of the AI methods that is most widely
used at the current time is the metaheuristic algorithm. This
type of algorithm can be employed as a tool to search for
patterns and traits so as to improve the performance of a clas-
sifier [20]. A metaheuristic algorithm can perform a random
search, thus accelerating the speed of finding relevant features.
Furthermore, to ensure accuracy, it takes into account the in-
formation gathered during the search to guide the ongoing
search process [21]. There are several types of metaheuristic
algorithm that are inspired by nature and have been proved to
be effective [22, 23],in finding solutions for many AI prob-
lems [24, 25].

Metaheuristic algorithms are widely used in problem solv-
ing of FS [26–28]. They randomly generate subsets based on
parameters that decide how those algorithms work [29], and
the execution times have been shown to be dramatically re-
duced and consistent results provided [30, 31]. Some of the
metaheuristics that have been used to solve FS problems in-
clude the mine blast algorithm (MBA), chaotic dragonfly al-
gorithm [32], ant colony optimization [33], particle swarm
optimization [34], bee colony optimization [35], grasshopper
optimization [36], the chaotic crow search algorithm [37],
evolutionary gravitational search algorithm [38], cat swarm
optimization algorithm [39], harmony search algorithm [40]
and cuckoo search algorithm [41] among others [8, 25, 31,
42–44].

Monarch butterfly optimization (MBO) is another
metaheuristic algorithm that is nature inspired. The MBO is
based on the migratory behavior of a North American butter-
fly, and was initially developed by Wang et al. [45].. The
MBO has obtained satisfactory results when applied to many
optimization problems and FS problems [46].

Building on this success, in this paper, the MBO is modi-
fied in two ways in order to try to achieve more reliable re-
sults. The first modification involves the use of an enhanced
crossover operator, and is namedMBOICO. The second mod-
ification involves the use of Lévy flight, and is named
MBOLF. The performance of these two proposed methods
is assessed and compared with four recent wrapper FS
methods, namely, the original MBO, the hybrid whale opti-
mization algorithm with SA (WOASAT), the mine blast algo-
rithm with simulated annealing (MBA-SA), gravitational
search algorithm (HGSA) and the (BGSA). The findings dem-
onstrate that MBOICO is superior to these approaches in
terms of classification accuracy and the number of features
chosen (selection size).

The remainder of this paper is structured as follows:
Section 2 provides an overview of the works that are the most
relevant to this study. Next, section 3 describes the MBO
algorithm. Then, section 4 introduces the proposed modified
MBO methods, namely, MBOICO and MBOLF. This is
followed by section 5, which describes the experiments and

discusses the results of those experiments. Finally, section 6
draws some conclusions and makes some suggestions for pos-
sible future research directions.

2 Related works

In the context of nature-inspired metaheuristics, the first note-
worthy study is that byWang et al. [47], who implemented the
(EWA) algorithm which was inspired by the earthworm’s two
forms of reproduction (named Reproduction 1 and
Reproduction 2). Reproduction 1 produces only one offspring,
while Rep roduction 2 generates one or more offspring at a
time, and nine enhanced crossover operators can effectively
do this. The researchers also added Cauchymutation (CM) the
EWA method. Nine different EWA methods based on nine
improved crossover operators were implemented with one,
two and three offspring, respectively, giving a total of 27
variations of the method. The findings indicated that
EWA23 improved performance, and on most of the tested
benchmark data sets, it was able to achieve a decent level of
fitness as compared to the others. In another approach, Sayed
et al. [48] introduced a hybridized model based on the slap
swarm algorithm (SSA) and chaos theory. The researchers
also evaluated the efficacy of tenchaotic maps as a means of
improving the results of the basic SSA. The outcomes dem-
onstrated that the SSA disorderly model greatly improved
SSA efficiency in respect of both the global and local search.

Chatterjee et al. [49] implemented S-shaped and V-shaped
conversion functions to transform the (SSD)‘s continuous
search space to binary form and also implemented a local
search algorithm, named (LAHC), to improve the SSD’s ex-
ploitation functionality. The results showed that this approach
achieved high classification accuracy with low selection size.
On the other hand, Ghosh et al. [50] instituted a mimetic
algorithm for handwritten word recognition based on
wrapper-filter FS. While, in another recent work,
Shunmugapriya et al. [35] introduced a new hybrid ant and
bee colony model for enhancement the FS problems. Zawbaa
et al. [51], used (ALO) in a wrapper approach to optimize FS,
whereas Shivalingegowda and Jayasree [52] proposed an ap-
proach to enhance the FS process in a wireless network by
using the gravitational search algorithm .

Abdelbaset et al. [53] tried to solve the feature selection
problems using mutation operator with the gray wolf algo-
rithm. The findings demonstrate how the operator of the mu-
tation increases the functionality and feasibility of this ap-
proach to enhance the feature selection process. Moreover,
in [54] Wu implemented the Pareto optimization with ABC
algorithm to pick non-dominant features from big data. On the
other hand, Emary and Grosan [55] enhanced ALO perfor-
mance for FS with use of chaos. To show its efficacy in re-
ducing features of complex data, they adapted their approach
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to biology and medicine data. In addition, Wang et al. [56]
used data preprocessing with FS, using differential evolution
(DE), and Shahbeig et al. [57] used binary DE for determining
sponge iron consistency.

Mafarja et al. [36] implemented grasshopper optimization
algorithm as well as evolutionary population dynamics in
wrapper model the findings of which demonstrated the
EPD’s potential to greatly improve the GOA in terms of ac-
curacy and selection size.

Another mechanism in FS, which was developed by
Malakar et al. [58] implemented a GA-based hierarchical FS
method for Indian handwriting recognition, the findings of
which indicated a significant increase in accuracy of the letter
recognizing. In another work, Saidi et al. [59] developed a
hybrid solution that used the GA and the Pearson coefficient
of correlation to improve the FS procedure; and Emary et al.
[60] suggested a wrapper FS structure using a binary ant lion
approach and demonstrated that a fast convergence speed
along with high classification efficiency could be achieved
through their system.

Several approaches were hybridized to address the prob-
lems with FS. For example, in [61, 62] a hybridization was
introduced between the ACO and the GA. In addition,Mafarja
and Abdullah [63] employed SA to enhance the GA local
search. Also, Zorarpaci and Ozel [64] proposed a wrapper
model hybrid of ABC algorithm and DE. On the other hand,

Zhang et al. [65] performed the first analysis of a cost-
based function selection problem on multi-objective (PSOs)
by integrating the hybrid operator, the crowding distance, and
the Pareto dominance relationship. The researchers named
their method HMPSOFS. The proposed multi-objective algo-
rithm is matched on that HMPSOFS can more efficiently scan
the solution space as a multi-objective algorithm in order to
achieve multiple test data sets with three multi-objective FS
algorithms. The experimental findings demonstrated a set of
non-dominated solutions rather than a single one. Examining
the Pareto front obtained by the multi-objective algorithm will
help users select their favorite solutions to meet their own
needs. So, it is a highly efficient way of selecting features to
address cost-based selection problems.

Yong et al. [66] proposed a multi-objective selection algo-
rithm based on bare-bones particle swarm optimization. Their
approach relied on a fortified memory technique that was
intended to solve the particle depletion phenomenon. That
is, a hybrid mutant was used with aim of enhancing the search
capabilities of the proposed algorithm.

On the other hand, Mafarja and Mirjalili [67] proposed a
new hybrid integrating WOA and SA in Wrapper FS
(WOASAT) process. SA was used in their research in two
manners: during the first iteration, SA and WOA collaborated
with each other to pick features as one portion. The SA pro-
cess was used in the second step following the end of the
WOA. The findings revealed that the WOASAT approach

improved the FS mechanism compared with new state-of-
the-art methods in term of accuracy and selection size. In other
research, Abualigah et al. [38] employed PSO as an FS ap-
proach, where a subset of features was extracted by using a
clustering technique (k-means) to guarantee the clustering pre-
cision of the FS approach. This method strengthened the per-
formance of textual record clustering because it used text clus-
tering in k-means to identify further similar classes. The meth-
odology was applied to six clustering data sets of textual data,
and the findings were contrasted to the produced by certain
excellently-known previous FS strategies. The performance
evaluation showed that the new approach provided more reli-
able findings in terms of both classification accuracy and se-
lection size.

In addition, Mafarja et al. [68] implemented the GOA to
address FS problems with the use of two strategies based on
transfer functions and the location of the better solution which
keeps the current solution simple. The efficacy of the ap-
proaches introduced was contrasted with that of 11 existing
methods using 25 comparison datasets. The findings revealed
that the methods proposed improved the level of convergence
in finding the best solutions from the features chosen relative
to the methods before. Therefore, the mutation operators sig-
nificantly improved the GOA.

In a recent study, Faris et al. [69] developed a crossover
operator-driven scheme for solving FS problems that involved
using improved binary SSA-based optimization. The re-
searchers compared the performance of their proposed scheme
with that of prior FS methods on 22 well-known data sets. The
results showed that the proposed scheme had better detection
precision than other methods such as BGWO, BBA and
BPSO. Their approach also demonstrated the obvious domi-
nance that convergence approaches had about hybrid
methods.

Recently, Taradeh et al. [38] proposed a new approach
using evolutionary gravitational search with two classifiers,
KNN and DT, to solve FS problems. The results demonstrated
that the algorithm had the ability to achieve high affinity rates
through a balance between local and global search as com-
pared to previous methods. The suggested HGSA can effec-
tively outperform other wrapping approaches and demonstrate
benefits in terms of exploration and exploitation, tradeoffs in
search patterns and higher convergence speeds relative to oth-
er peers on multiple FS tasks.

Alweshah et al. [70] proposed two methods to enhance the
FS process. The first involved the use of the MBA in order to
automate the discovery step of the FS process. The second
involved hybridizing the MBA with simulated annealing
(MBA-SA) as a local search to enhance the MBA’s ability
to locate solutions in the exploitation phase. The performance
of the two suggested approaches (MBA and MBA-SA) was
evaluated on 18 benchmark data sets from the UCI repository,
and the detailed experimental findings indicated that MBA-
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SA obtained good results compared with other approaches in
the literature. Later, Alweshah et al. [46] proposed a wrapper
FS approach using the MBO. The experiments that were car-
ried out showed that the MBO achieved a high classification
accuracy rate and was able to dramatically reduce the number
of selected features.

There are several other works which have employed MBO
in varying fields and areas. Including Feng et al. [71] applied
chaos theory and Gussian mutation worker to boost MBO ‘s
global search capabilities. Their suggested approach, called
CMBO, was used as a binary optimization problem to solve
three large-scale group instances of 0–1 knapsack problem.
The findings revealed that their approach was capable of
outperforming the simple MBO and eight other algorithms
in determining the best outcome to this type of problem.
Chakrabarty et al. [72] used MBO with images collected by
satellites to identify information in the captured images, such
as forest areas and different terrains. The findings revealed
that their approach obtained a high similarity between the
break and the initial images and therefore had a slightly im-
proved ability to segment very complicated images compared
to other methods of segmentation. In addition, In the mean-
while, The ABC algorithm and MBO algorithm were applied
by Ghanemet al [73] to optimize the solution to numerical
optimization problems by optimizing the equilibrium between
local search and global search phases in order to achieve ef-
fective results in terms of precision, convergence speed and
preventing local optimization. Their suggested hybrid ap-
proach, called ABC-MBO (HAM), was applied to 13 datasets
of benchmarks and the results were equated with nine
metaheuristic algorithms used to solve numerical optimization
problems. The findings showed that the ABC-MBO (HAM)
had the potential to obtain more reliable results and improve
the level of convergence relative to the other processes.

In another domain, Devikanniga and Raj [74] used the
MBO algorithm to refine the weights of an artificial neural
network classifier (ANN), MBO was used to create a model
to differentiate a stable person from an adult with osteoporo-
sis. Experimental findings revealed that the new model had a
high potential for interpretation of medical data compared to
other related models of ANN hybridization.

Another early MBO study was undertaken by Strumberger
et al. [75], who suggested anMBO-based hybrid strategy with
FA. The approach was tested on six sample datasets, and the
study proved that the new hybrid approach was more effective
in solving hard optimization problems than the five methods it
was compared to. Also, Faris et al. [76] employed MBO with
combat premature convergence more effectively. To this end,
they used a novel operator to extend the outcomes of the hunt
according to the precision and speed of the execution. In ad-
dition they used their approach to teach expectations of mul-
tilayers. They implemented their approach in 15 benchmark
datasets, and the results revealed an increase both in terms of

escaping local optima as well as a slightly faster convergence
rate and shorten execution times.

Most of the preceding works used metaheuristic algorithms
as a search approach for FS problems. Many of these works
used these algorithms without modification. However, others
modified them in several ways, and the most important of
which was hybridization to improve the balance between local
search and global search to prevent exposure to local optima.
The MBO algorithm has been shown to obtain good results in
terms of classification accuracy when it is usedmostly without
modification and this reflects the fact that there is a balance
between global and local search in this algorithm.
Nevertheless, in this paper, the global search attribute of the
MBO algorithm was modified in order to achieve more pre-
cise results and to improve its efficiency in finding the correct
points from the start and before turning to local search. This
proposed methodology therefore differs from other ap-
proaches in the literature because with this method, the re-
searcher aims to show the significance of global search in
solving FS problems.

2.1 Monarch butterfly optimization

As mentioned above, MBO, which developed by Wang et al.
[45], is one of the metaheuristic algorithms that mimics the
behavior of fauna in the natural world. Specifically, it simu-
lates the normal migration pattern of monarch butterflies that
live in North America. Like many other butterflies, the mon-
arch butterfly migrates twice a year. In the first migration,
which starts in Canada the butterflies head south to Mexico,
and in the second migration, the butterflies make the return
journey from Mexico north to Canada [77].

The migratory activity of these butterflies is replicated to
solve multiple optimization problems. However, certain rules
and fundamental concepts must be followed so that the best
solution to the problem can be found [78]. First, most of the
butterflies that represent the population are either located in
Land 1 (the pre-migration home) or in Land 2 (the post-
migration home). Second, every butterfly’s offspring is pro-
duced individually through the migration operator, regardless
of whether the siblings are present in Land 1 or Land 2. Note
also that the population does not change; it must remain stable.
Therefore, at each iteration, a fitness function is used to elim-
inate either the parent or the new child. Lastly, the 54 selected
butterflies based on the fitness feature are transferred towards
the next generation and are not changed by the migration
operator.

Around the beginning of April, butterflies start to migrate
when they leave Land 1 and go to Land 2, and then, in
September, the reverse migration process from Land 2 to
Land 1 begins. The cumulative number of monarch butterflies
in the two lands represents the entire population, which is
called NP.
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The individual butterflies interpret the data and communi-
cate with each other locally, spreading information within the
swarm, which results in the evolving capability of the system.
Examining mental systems in this way is important for under-
standing intelligence. In such systems. This general viewpoint
also makes one analyze swarms differently naturally inspired
rather than depending on a thorough knowledge of the micro-
level.

2.1.1 Migration operator

TheButterfly migrationmechanism is described as follows [79]:

X tþ1
i:k ¼ X t

r1:k ð1Þ

where X tþ1
i:k defines the Kth elements of Xi at generation t + 1,

describing the location of the butterfly IandX t
r1:k denotes Kth

elements from new generation place. In this, r is a random num-
ber which is defined by the given formulas:

R ¼ rand*peri ð2Þ

Where, peri is the time span for migration.
In another case, if r > p, and Kth elements of the location of

the new generation are then calculated by the equation:

X tþ1
i:k ¼ X t

r2:k ð3Þ

Where X t
r2:k defines Xr2Kth elements in t butterfly generation

r2. And P indicates the ratio of monarch to land butterflies 1.
An overview of a butterfly’s migration operator is given in
Algorithm 1.

2.1.2 Butterfly operator adjustment

Using this algorithm the equilibrium is achieved by evaluating
the P value ratio between the migration directions from land 1
to land 2. If the value of P is big, it indicates that the amount of
selected butterflies from Land 1 is higher than that from Land
2, and conversely.

The position of the butterflies is modified if the rand
produced is less than or equal to the P value. The fol-
lowing equation indicates the Butterfly location’s modi-
fied position:

X tþ1
j:k ¼ X t

best:k ð4Þ

where X tþ1
j:k represents the Kth elements of Xj at t + 1

generation,that explains butterfly position j, andX t
best:k define

the Kth elements of Xbest in both Land 1 and Land 2 at pres-
ent generation t. Thus, if rand > P, then the following formula
shifts it:

X tþ1
j:k ¼ X t

r3:k ð5Þ

Then, when the rand is greater than BAR, the following
equation will change the current location:

X tþ1
j:k ¼ X tþ1

j:k þ α* dxk−0:5ð Þ ð6Þ
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Where the BAR reflects the change factor for the butterfly
and the dx is the walking step for the j butterfly which is
determined by flying the Lévy as follows:

Dx ¼ Le0vy X t
j

� �
ð7Þ

Andα in Eq. (6) is a weighted variable measured with Eq. 8:

α ¼ Smax=t2 ð8Þ

Where Smax Represents the maximum walking butterfly
length in a single step, and t represents the current generation.
The butterfly-adjusting system definition remains set out in
Algorithm 2.

The general behavior of the MBO algorithm is defined in
algorithm 3 after studying the behavior of the butterflies in
algorithms 1 and 2. [80].

Algorithm Three: The Pseudocode for the MBO algorithm

1- Step 2: While (G < Max Gen)
2- Sort the population depending of fitness.

3- Produce sub-population1 with NP1 better individuals and concept

4- sub-population2 on the remainders.

5- Generate the offspring solution for sub-population1.

6- Generate the offspring solution for sub-population2

7- Recombine the newly generated sub-populations into one population.

8- Find the current best individual.

9- End while.
10- Step 3: Find the global-best individual.
11- End.
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3 Proposed approaches

In this research, two methods proposed used the wrap-
per FS technique. First one is using an optimized cross
over operator (MBOICO) to strengthen the search capa-
bility of MBO. Second, the Lévy flight is using in
MBO search.

3.1 MBO with improved crossover operator (MBOICO)

In the previously studied MBO algorithm, all the but-
terflies generated will move automatically to the next
generation irrespective of their fitness value [81], that
the predicted outcomes will reduce if the fitness interest
is religious. In order to allow butterflies with better
fitness values to only cross the next stage, the MBO
Search was updated using a cross-operator by updating
the migration operator and updating the butterfly modi-
fication operator in this paper.

3.1.1 Updating migration operator

To ensure that only butterflies with better fitness values arrive
for optimum precision in the next generation, the first gener-
ation migration coefficient modification is used according to
the formula below. [82]:

X tþ1
i;new ¼ X tþ1

i; ; f X tþ1
i;

� �
< f X t

i;

� �
X t

i; ; otherwise

( )
ð10Þ

Where the X tþ1
i;new is the update of the first generation.

f X tþ1
i;

� �
and f X t

i;

� �
are the fitness values for butterflies

X tþ1
i; and X t

i; respectivly.

3.1.2 Updating butterfly adjusting operator

In the optimization process, the self-adaptive crossover oper-
ator with greedy strategy is used to gain the maximum value
of first-generation knowledge about the butterfly population.
In the butterfly adjusting process, a new, powerful form of
crossover operator developed. The updated version will for-
mulate as equation as follows:

X tþ1
j2 ¼ X tþ1

j1 X 1−Crð Þ þ X t
j X Cr ð11Þ

Where X tþ1
j2 is additional afresh-generated butterfly indi-

vidual using X tþ1
j1 and X t

j: And Cr represents the crossover

rate, and a self-adaptive process is used to change it as the
following equation:

Cr ¼ 0:8þ 0:2 X
f X t

j

� �
− f X bestð Þ

f X worstð Þ− f X bestð Þ ð12Þ

Where f X t
j

� �
is fitness function of butterfly j in Sub-

population 2, and Xbest and (Xworst Reflect the worst and best
individual butterfly in the entire butterfly population
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respectively. And as shown Cr ‘s scale value varies from 0.20
to 0.80.

Now you can show the new butterfly as in the following:

X tþ1
j;new ¼

X tþ1
j1 ; f X tþ1

j1

� �
< f X tþ1

j2

� �
X tþ1

j2 ; f X tþ1
j2

� �
< f X tþ1

j1

� �
8<
:

9=
;

ð13Þ

Where f X tþ1
j1

� �
and f X tþ1

j2

� �
represents the fitness

function of the butterfly X tþ1
j1 and X tþ1

j2 respectively.

Algorithm 5 shows the updating butterfly adjusting operator.

The wrapper FS algorithm proposed in this paper uses a
KNN classifier as an evaluator, while at the same time it uses
MBOICO as a search technique. The KNN classifier specifies
the precision limit for the features selected by MBOICO.
Fig. 1 illustrates the steps involved in the MBOICO technique
when using wrapper-based FS.

3.2 MBO with Lévy flight method (MBOLF)

In this study, another method was suggested to change the
MBO search by developing a levey-flight mutation operator
dependent mutation operator.

Animals and insects usually hunt for food randomly or
semi-randomly, and have many delights in achieving their
food target [83]. The next pathway in the hunt depends on
the animal’s current position and so on, and the path these

species may select depends on a mathematically designed
model [84].

Recent research by Reynolds and Frye [85] have shown
that many individuals explore nature on a sequence of normal
pathways punctuated by a sudden 90o turn, leading to a dis-
continuous scale-free search pattern in the Lévy flight model.
Only human conduct and light can be associated with flights
to Lévy [86, 87].

Lévy flight is one of the strategies employed to increase the
algorithm’s convergence process and keep away from collaps-
ing into local optima. This approach is first introduced by
Lévy and Borel in 1954 [88]. In this process, the randomwalk
‘s phase length is extracted from a power law distribution with
a long tail, so it is called Lévy distribution, and the new pop-
ulation is created near the current best solution, so it can speed
up local search and avoid falling into local optimum [89].
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Lévy flight reflects a random walk technique and its
phase duration is calculated by the distribution of Lévy,
which it considers to be a fast trailed distribution with a
long path. It makes it easy to use in complicated explo-
ration search cases and allows to escape from ideal local
regions [90].

The random number generation in Lévy flight consists of
two simple stages, the random choice of direction and the
generation of stages that follow the Lévy chosen [91].

For similar random variables, the Lévy distribution can be
described as the sum of variable numbers, and the Fourier
transformation is defined as the following equation:

F kð Þ ¼ exp −α kj jβ
h i

; 0 < β ≤2 ð14Þ

Where α is a scale parameter within [−1, 1] interval and β
is a Lévy index for random walk, and the step length S can be
calculated by Mantegna’s algorithm as:

S ¼ μ

vj j1b
ð15Þ

Where μ and v are drawn from normal distributions.Which
is μ ∼N(0, σμ2) and v ∼N(0, σv

2). And σμ can be determined
by the following equation:

σμ ¼ r 1þ bð Þsin πb
2

� �
r 1þ bð Þ=2½ �b2 b−1ð Þ=2

1=b( )
ð16Þ

After that, the step size is calculated by:

Stepsize ¼ 0:01 X S ð17Þ

Where the 0.01 reflects the element that comes from the
fact that L/100 would be the standard stage size of walks, and
L is the traditional duration scale; otherwise, the hunt for Lévy
flights may be too intense to allow new approaches outside the
quest domain.

The velocity is modified using Lévy flight method to im-
prove the efficiency of MBO quest. Initially initialize the full
generation, the NP monarch butterfly populations randomly,
peri, p, BAR, and Smax, close to simpleMBO. Through using
Lévy flight method to upgrade the MBO rpm, each butterfly
takes a long leap toward improving butterfly diversity to im-
prove MBO ‘s global quest space exploration.In Lévy flight
method parameter takes major role in distribution. By apply-
ing different values for β, the random distribution is changed
differently. In this research, A constant value for β is chosen;
β = 1.5.

Through integrating the benefits of random walk into
the MBO, the butterfly positions in each iteration are
strengthened. Algorithm 6 below shows the MBOLF

Fig. 1 MBOICO with wrapper
FS technique

M. Alweshah4066



algorithm pseudocode while Fig. 2 shows the MBOLF
algorithm flowchart.

The suggested wrapper FS algorithm in this paper uses a
KNN classifier as an evaluator and, at the same time, it uses
the MBOLF as a search technique. The KNN classifier spec-
ifies the accuracy limit for the MBOLF chosen functions.
Fig. 2 illustrates the procedures associated in using a wrapper
FS strategy to implement the MBOLF.

Which is well known, the selection process is depends
on two variables, namely the degree of precision and the
numbers of selected features. To achieve a balance be-
tween these two variables, a fitness method for estimating
the output was created. Eq. (9) reflects criteria for fitness
function used in this paper:

Fitness ¼ αγR Dð Þ þ β
Rj j
Nj j ð9Þ

where D is the rate of error classification obtained through
KNN, R is the number of selected features, C is the num-
ber of features in the original data sets and β and α are
the two parameters that denote the position of subset
length and the classification quality, respectively, where
α [0, 1] and β = (1 – α) [67].

The level of complexity of the proposed method is
dependent on the crossover operators, their application,
the distribution of the individuals and the population,
and the fitness function. In view of the normal choices
(point mutation, point convergence, roulette wheel selec-
tion), the time complexity is O(g(nm + nm + n)), where
mg is the number of generations, n is the population size
and m is the individual size. So, the complexity is O
(gnm) [92, 93].
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The wrapper process, as stated earlier, embeds the classifier
into the assessment phase to identify the proper features that
need to be selected. This approach can produce results that are

more precise in terms of choosing the correct features to match
the purpose of the analysis, but, at the same time it increases
the amount of time taken to reach a solution. The wrapper

Fig. 2 The MBOLF Flowchart
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approach only tests O ((S + 1) N) candidate feature subsets to
eventually choose S features and in the worst case O(N2)
feature subsets [92].

4 Experiments

The wrapper FS model is integrated into the proposed
methods using the assessment phase KNN classifier, where
K = 5 is used to evaluate the accuracy of the selected features
that MBO generates during the generation cycle. 25 UCI data
warehouse comparison datasets were implemented to check
the reliability of the proposed approach [46, 67, 68, 70].
Table 1 Shows the number of functions and objects within
each of the data sets used.

Each dataset was split into a K-fold cross-validation
training and testing data set, where K-1 folds were used
for training and testing, and the remaining fold was
used for testing.

The folds are chosen in such a way that each fold
comprises approximately the same number of class marks.
Considering the number of folds and repeats, KNN pro-
duces train/test splits such that the models of the same
splits can be tested. The splits are provided as an ARFF
file with the row ID, fold number, repeat number and
class (TRAIN or TEST) as part of the job summary. The
uploaded predictions are labelled with the test instance
fold and repeat number, so that the effects can be correct-
ly measured and aggregated. Instead KNN stores the re-
sults per fold/repeat as well as the aggregated points.

In the experiments the input parameters were set due to the
results of some initial tests which allowed the proposed meth-
od to produce better performance. Table 2 displays the con-
figurations for input parameters (Fig. 3).

4.1 The results and discussions

Three outcomes were taken into account in order to calculate
the efficacy of the proposed methods: accuracy, number of
selected features (selection size), and convergence speed.
Table 3 displays the average accuracy and sample size perfor-
mance of the two approaches suggested after 30 runs on each
dataset.

MBOICO has obtained very good performance in terms of
accuracy and number of selected features, as seen in Table 3.
The average accuracy of this method in all datasets was 92%,
which in the field of solving FS problems is known to be a
very high rate, and the importance of such results is apparent
as compared with the findings of other approaches in the lit-
erature discussed in the next section. The quality of the
MBOICO’s collected results is due to the crossover technique
improved in MBO’s quest approach, which allows the system
to produce the best results possible while avoiding slipping
into local minima.

MBOICO outperformed theMBOLFmethod in 14 datasets:
CongressEW, Credit, Exactly2, Derm, IonosphereEW,
KrvskpEW, Lung, M-of-n, SpectEW, Tic-tac-toe, Vote, WQ,
WineEW and zoo. It produced the same results in terms of
classification accuracy in six data sets: Breastcancer, Exactly,
Derm2, Led, Mushroom and SonarEW.

Table 1 Dataset Details

Dataset No.of attributes No.of objects

1. Breastcancer 9 699

2. BreastEW 30 569

3. CongressEW 16 435

4. Credit 20 1000

5. Exactly 13 1000

6. Exactly2 13 1000

7. Derm 34 366

8. Derm2 34 358

9. HeartEW 13 270

10. IonosphereEW 34 351

11. KrvskpEW 36 3196

12. LED 24 2000

13. Lung 56 32

14. Lymphography 18 148

15. M-of-n 13 1000

16. Mushroom 22 8124

17. PenglungEW 325 73

18. SonarEW 60 208

19. SpectEW 22 267

20. Tic-tac-toe 9 958

21. Vote 16 300

22. WaveformEW 40 5000

23. WineEW 13 178

24 WQ 12 4898

25. Zoo 16 101

Table 2 Parameters
Setting Name of the Parameter The Value

UB (upper bound). 1

LB (lower bound). 0

d-max (the max distance). Le-2

Iterations number. 50

Size of the Population. 10

K (for KNN classifier). 5
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MBOLF also achieved high classification accuracy with an
average of 91% in all data sets. It outperformed the MBOICO
in five data sets: BreastEW, HeartEW, Lymphography,
PenglungEW and WaveformEW. These high results of
MBOLF obtained through using the mutation technique
which made by Lévy flight.

As regards the number of features selected, the findings of
the two approaches suggested have been very close;

MBOICO was the best in this term with an average of 12.04
selected features in all datasets, followed by MBOLF with an
average of 12.40 in all datasets.

One of the goals of this work was to speed up opti-
mization by reducing randomization and the exploration
process by discovering the optimum solution in a
shorter amount of time. From Fig. 4, we can note the
MBOICO’s success in identifying optimal solutions for

Fig. 3 MBOLF with wrapper FS technique
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25 data sets within the context of accelerated
convergence.

Based on the results depicted in Fig. 4, the MBOLF
method was the fastest algorithm in terms of finding
better results within the search space. In all the datasets,
it needed fewer than six iterations to improve the solu-
tion, except for the zoo dataset for which it needed 15
iterations to find the best solution. This confirms that
the use of Lévy flight accelerates the convergence
speed.

As for MBOICO method, although it achieved the best
classification accuracy in most datasets, it could not improve
the convergence speed to the same extent as MBOLF.

The basic MBO produced the worst results in terms of
convergence speed, but this was expected because it was not
modified in order to address the issue of speed, unlike
MBOICO and MBOLF.

The above outcome is due to MBOICO and MBOLF
achieving a good balance between local and global search in
finding solutions, which prevents the search process from fall-
ing into local optima. The results also indicate that MBOICO
and MBOLF start from a good initial state. Table 4 shows the
number of iterations needed by each of the modified methods
to get a better solution than the other method in the run time in
all datasets.

Furthermore, the two methods, MBOICO and
MBOLF, were both subjected to a T-test to assess the
accuracy of all obtained data sets from each approach.
The interval of importance was set at 95% (α = 0.05).
This research was undertaken to determine whether
MBOICO’s result was substantially different from the
MBOLF ’s . Table 5 shows the f indings for the
MBOICO and the MBOLF, as well as the consistency
P-values of the T-test. From the table it can be seen that
the reliability of the MBOICO is very significant to
MBA, as all P-values are less than 0.03.

4.2 Comparison of MBOICO with methods in the
literature

MBOICO was used in this section for compatibility with
approaches in the literature. This is preferred because it
has the high accuracy of classification compared with the
MBOLF system. The findings of the proposed MBOICO
system were compared to the results of the FS methods,
namely MBO, MBA-SA, WOASAT, BGSA and HGSA
[46, 67, 68, 70] . All comparisons with the approaches in
the literature were made using the same datasets and pa-
rameters as in those strategies. The distinction between
the suggested MBOICO approach and the other methods
was based on the following three criteria: accuracy of
classification, FS size and fitness value. The MBOICO’s
classification accuracy and FS size were determined by
taking the average accuracy and the average number of
selected features, and measuring the mean, max and min
fitness values. The fitness function and the accuracy were
determined using Eq. (9).

The MBOICO method was initially compared with the
MBA-SA method as both methods were applied to the same
25 datasets during the experimental phase to measure their
efficiency. According to Table 6, MBOCIO surpassed
MBA-SA in 10 datasets: BreastEW, CongressEW, Credit,
Exactly, Derm2, KrvskpEW, SonarEW, Tic-tac-toe,
WaveformEW and WQ. Also, it produced the same results
in nine datasets : Breastcancer , Derm, HeartEW,
Lymphography, M-of-n, Mushroom, PenglungEW,
WineEW and zoo. On the other hand, MBA-SA outperformed
MBOICO in six datasets: Exactly2, IonosphereEW, Led,
Lung, SpectEW and Vote. Overall, the average accuracy of

Table 3 MBOICO and MBOLF average accuracy and selection size

NO Dataset Accuracy Features

MBOICO MBOLF MBOICO MBOLF

1 Breastcancer 0.97 00.97 04.86 04.60

2 BreastEW 0.97 00.98 11.70 11.52

3 CongressEW 0.98 00.96 04.73 05.10

4 Credit 0.77 0.76 7.58 9.52

5 Exactly 1.00 01.00 06.00 07.00

6 Exactly2 0.77 00.75 02.53 03.12

7 Derm 0.79 0.78 10 10.89

8 Derm2 0.90 0.90 11.4 11.17

9 HeartEW 0.86 00.87 06.56 05.84

10 IonosphereEW 0.95 00.94 10.76 10.30

11 KrvskpEW 0.98 00.96 15.00 15.70

12 LED 0.99 0.99 5.14 5.07

13 Lung 0.99 0.97 10.06 11.40

14 Lymphography 0.90 00.91 07.56 07.14

15 M-of-n 1.00 00.99 06.00 08.20

16 Mushroom 1.00 1.00 5.23 5.86

17 PenglungEW 00.95 00.96 84.13 83.42

18 SonarEW 00.97 00.97 24.80 23.80

19 SpectEW 00.87 00.86 07.93 08.45

20 Tic-tac-toe 00.80 00.78 06.00 06.24

21 Vote 00.97 00.96 04.30 06.87

22 WaveformEW 00.78 00.79 19.00 20.15

23 WQ 0.80 0.78 9.81 10.16

24 WineEW 00.99 0.98 06.53 06.72

25 Zoo 00.99 00.97 05.63 05.86

Average 0.92 0.91 12.01 12.40
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MBOICO was better than MBA-SA across all 25 datasets, at
92% versus 91%.

As for the size of the selected features, the superiority of the
MBOICO approach is evident. It was able to surpass the

MBA-SA in 18 datasets. It also had a better average size of
12.02 features across all 25 datasets as opposed to an average
of 15.97 for MBA-SA. The better overall performance of
MBOICO is related to the modification which was applied

Fig. 4 The convergence speed of all methods
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to the global search step to improve its ability to accurately
select the most relevant features before progressing to local
search.

Figure 5 shows the average of accuracy rate and the
selection size of MBOICO and MBA-SA in all datasets
used.

Fig. 4 (continued)
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To confirm the reliability of the proposed method
MBOICO and its capacity to provide such a high level of
classification accuracy whilst at the same time effectively
reducing the number features, its performance was also
compared with that of four approaches in the literature,
namely, MBO, WOASAT, BGSA and HGSA across 18
datasets that were used to test these methods in the original
works. As seen in Table 7, and in contrast to WOASAT’s
test, MBOICO has demonstrated good success since it has
received stronger outcomes Moreover, in eight datasets it
had the same outcomes, including Breastcancer,
CongressEW, Exactly, KrvskpEW, M-of-n, SonarEW,
Ballot, and WineEW. There were only three datasets where
WOASAT reached MBOICO with an approximate very
slight gap of 1%. These datasets were BreastEW,
IonosphereEW and SpectEW. As regards the comparison
with the results of BGSA, MBOICO obtained better results
in nine datasets, namely, CongressEW, Exactly2,
IonosphereEW, KrvskpEW, Lymphography, M-of-n,
PenglungEW, SonarEW and Tic-tac-toe. However, in sev-
en datasets, including Breastcancer, BreastEW, Exactly,

HeartEW, Vote, WineEW and Zoo, MBOICO recorded
the same findings as BGSA. There were only two datasets
where BGSA surpassed MBOICO by an average very
s l i gh t gap o f 2 .5%; the s e we re Spec tEW and
WaveformEW. As for the contrast with HGSA tests,
MBOICO obtained stronger performance in eight datasets,

Table 4 The iteration number needed to achieve better solutions

NO DATASETS MBOICO MBOLF

1 Breastcancer 5 2

2 BreastEW 7 2

3 CongressEW 6 3

4 Credit 7 1

5 Exactly 3 2

6 Exactly2 3 1

7 Derm 20 5

8 Derm2 8 4

9 HeartEW 3 3

10 IonosphereEW 3 3

11 KrvskpEW 12 2

12 Led 6 1

13 Lung 7 5

14 Lymphography 3 3

15 M-of-n 4 2

16 Mushroom 7 5

17 PenglungEW 12 3

18 SonarEW 12 2

19 SpectEW 4 2

20 Tic-tac-toe 8 3

21 Vote 14 3

22 WaveformEW 2 3

23 WQ 6 5

24 WineEW 2 1

25 Zoo 22 15

Table 5 P-values of the T-test

Dataset Method Mean Std.
deviation

Mean std.
error

P
value

Breastcancer MBOICO
MBOLF

0.9756
0.9701

0.01699
0.02527

0.00421
0.00129

0.00

BreastEW MBOICO
MBOLF

0.9798
0.9802

0.02487
0.01890

0.00394
0.00301

0.01

CongressEW MBOICO
MBOLF

0.9860
0.9644

0.04500
0.01462

0.00788
0.00205

0.00

Credit MBOICO
MBOLF

0.77418
0.76037

0.04002
0.01997

0.00614
0.00351

0.00

Exactly MBOICO
MBOLF

1.0000
1.0000

0.03514
0.03789

0.00671
0.00688

0.00

Exactly2 MBOICO
MBOLF

0.7730
0.7565

0.04442
0.03039

0.00799
0.00495

0.00

Derm MBOICO
MBOLF

0.79539
0.78113

0.03510
0.02104

0.00724
0.00417

0.00

Derm2 MBOICO
MBOLF

0.90814
0.90007

0.05411
0.02900

0.00851
0.00600

0.00

HeartEW MBOICO
MBOLF

0.8687
0.8701

0.05518
0.02211

0.01197
0.02478

0.01

IonosphereEW MBOICO
MBOLF

0.9574
0.9404

0.02618
0.02301

0.00490
0.00512

0.00

KrvskpEW MBOICO
MBOLF

0.9897
0.9616

0.06276
0.02101

0.01109
0.00310

0.00

LED MBOICO
MBOLF

0.99441
0.99072

0.01721
0.01400

0.00229
0.00275

0.00

Lung MBOICO
MBOLF

0.99162
0.97490

0.01052
0.01173

0.00241
0.00270

0.00

Lymphography MBOICO
MBOLF

0.9089
0.9101

0.05248
0.02100

0.00799
0.00468

0.01

M-of-n MBOICO
MBOLF

1.0000
0.9924

0.05358
0.01650

0.00957
0.00199

0.00

Mushroom MBOICO
MBOLF

1.0000
1.0000

0.03227
0.03431

0.00552
0.00603

0.00

PenglungEW MBOICO
MBOLF

0.9589
0.9607

0.04092
0.00899

0.00940
0.00299

0.02

SonarEW MBOICO
MBOLF

0.9779
0.9727

0.03719
0.01794

0.00669
0.00288

0.00

SpectEW MBOICO
MBOLF

0.8788
0.8611

0.03509
0.02748

0.00617
0.00497

0.00

Tic-tac-toe MBOICO
MBOLF

0.8068
0.7809

0.04074
0.01923

0.00690
0.00297

0.00

Vote MBOICO
MBOLF

0.9745
0.9618

0.03120
0.02731

0.00539
0.00524

0.00

WaveformEW MBOICO
MBOLF

0.7892
0.7918

0.01812
0.04800

0.6170
0.7207

0.01

WQ MBOICO
MBOLF

0.80644
0.78270

0.04171
0.02006

0.00626
0.00294

0.00

WineEW MBOICO
MBOLF

0.9974
0.9827

0.03878
0.01217

0.00622
0.00174

0.00

Zoo MBOICO
MBOLF

0.9945
0.9938

0.03336
0.01536

0.00637
0.00306

0.00
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including CongressEW, HeartEW, IonosphereEW,
KrvskpEW, Lymphography, SonarEW, Tic-tac-toe and

Zoo. Moreover, MBOICO provided the same findings as
HGSA in eight datasets; namely, Breast cancer, BreastEW,
Accurately, Exactly2, M-of-n, PenglungEW, Test, and
WineEW. There were only two datasets where HGSA
exceeded MBOICO with an average discrepancy of 4%;
these were SpectEW and WaveformEW datasets.
Ultimately, MBOICO beat all the other approaches across
the 18 datasets, reaching an overall classification accuracy
of 93%.

Figure 6 below also illustrates the superiority of the pro-
posed approach MBOICO compared to the four methods in
the literature, based on the average classification accuracy
across all 18 datasets.

Table 6 Comparison of MBOICO and MBA-SA by accuracy and fea-
ture selection size

Dataset Accuracy Feature size

MBOICO MBA-
SA

MBOICO MBA-
SA

1 Breastcancer 0.97 0.97 04.86 4.20

2 BreastEW 0.97 0.95 11.70 12.8

3 CongressEW 0.98 0.96 04.73 8.46

4 Credit 0.77 0.75 7.58 8.00

5 Exactly 1.00 0.90 06.00 7.66

6 Exactly2 0.77 0.79 02.53 3.26

7 Derm 0.79 0.79 10 10

8 Derm2 0.90 0.88 11.4 12.2

9 HeartEW 0.86 0.86 06.56 6.20

10 IonosphereEW 0.95 0.96 10.76 14.46

11 KrvskpEW 0.98 0.96 15.00 17.20

12 LED 0.99 1.00 5.14 6.1

13 Lung 0.99 1.00 10.06 11.4

14 Lymphography 0.90 0.90 07.56 8.30

15 M-of-n 1.00 1.00 06.00 7.70

16 Mushroom 1.00 1.00 5.23 4.1

17 PenglungEW 00.95 0.95 84.13 147.06

18 SonarEW 00.97 0.89 24.80 26.60

19 SpectEW 00.87 0.90 07.93 8.70

20 Tic-tac-toe 00.80 0.79 06.00 5.3

21 Vote 00.97 0.98 04.30 5.8

22 WaveformEW 00.78 0.77 19.00 20.10

23 WQ 0.80 0.78 9.81 12

24 WineEW 00.99 0.99 06.53 3.06

25 Zoo 00.99 0.99 05.63 2.86

Average 0.92 0.91 12.01 15.97

Table 7 Comparison of Accuracy of MBOICO and Methods in the
Literature

NO. Dataset MBOICO MBO WOASAT BGSA HGSA

1 Breastcancer 00.97 00.96 00.97 00.97 00.97

2 BreastEW 00.97 00.95 00.98 00.97 00.97

3 CongressEW 00.98 00.94 00.98 00.96 00.96

4 Exactly 01.00 00.94 01.00 1.00 1.00

5 Exactly2 00.77 00.71 00.75 00.76 00.77

6 HeartEW 00.86 00.82 00.85 00.86 00.85

7 IonosphereEW 00.95 00.89 00.96 00.90 00.93

8 KrvskpEW 00.98 00.92 00.98 00.97 00.97

9 Lymphography 00.90 00.90 00.89 00.88 00.89

10 M-of-n 01.00 00.97 01.00 00.98 1.00

11 PenglungEW 00.95 00.84 00.94 00.93 00.95

12 SonarEW 00.97 00.94 00.97 00.89 00.96

13 SpectEW 00.87 00.83 00.88 00.89 00.92

14 Tic-tac-toe 00.80 00.77 00.79 00.79 00.79

15 Vote 00.97 00.93 00.97 00.97 00.97

16 WaveformEW 00.78 00.75 00.76 00.81 00.81

17 WineEW 00.99 00.94 00.99 00.99 00.99

18 Zoo 00.99 00.97 00.97 00.99 00.93

Average 00.93 00.88 00.92 00.91 00.92

Fig. 5 Average accuracy and
average feature selection size of
MBOICO and MBA-SA
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Table 8 demonstrate the simple dominance of
MBOICO in terms of reducing the number of features
as comparing with the other algorithms. It surpassed the
MBO in 11 datasets, and also exceeded WOASAT in
12 datasets. As well as MBOICO outperformed BGSA
in 13 datasets and HGSA in eight datasets, and in a
further eight datasets recorded the same findings as
HGSA.It can be noted, the experiments on the 18
datasets showed that the MBOICO achieved a higher
selection size rate than all the other methods expect
HGSA, and it was 13 features in average.

Figure 5 also demonstrates the superiority of the pro-
posed approach over all previous methods except for
HGSA.

This work also examined the results during the run cycle of
the proposed algorithm to determine the best, bad and average
fitness values for all the data sets evaluated. Table 9 displays
the best fitness values collected for each sample during 30
MBOICO tests, and contrasts the results with those of the
literature’s four processes. MBOICO and WOASAT have
the highest fitness with a mean value of 0.03, as can be seen
from the table. The lowest fitness metrics for both strategies
are displayed in Table 10. This can be shown that for all
datasets MBA-SA obtained the worst overall performance,
followed respectively by the MBO, MBOICO and
WOASAT. As for the average fitness values, Table 11 reveals
that of all the approaches, MBOICO and HGSA had the
highest average fitness (Fig. 7).

From the above analyses, the MBOICO achieved a
high level of performance in terms of accurately
selecting the best features and in selecting a relatively
small number of features (selection size) as compared to
the other tested algorithms. The balance that it achieved
between global and local search was clearly demonstrat-
ed by the fast convergence speed. This shows that the
proposed method has great potential for use in finding
integrated and ideal solutions for applications that de-
pend on a fast search process. In this paper, the global
search was updated to improve its productivity by find-
ing the right points from the start and before going on
to local search. Thus this methodological approach dif-
fers from other approaches in the literature because it

Table 8 Selection Size Rate by All Methods

NO. Dataset MBOICO MBO WOASAT BGSA HGSA

1 Breastcancer 04.86 05.00 04.20 4.1 4.0

2 BreastEW 11.70 11.20 11.60 16.2 13.8

3 CongressEW 04.73 04.00 06.40 5.4 3.9

4 Exactly 06.00 07.40 06.00 6.0 6.0

5 Exactly2 02.53 03.52 02.80 3.5 4.7

6 HeartEW 06.56 06.30 05.40 6.4 6.7

7 IonosphereEW 10.76 12.00 12.80 10.9 8.2

8 KrvskpEW 15.00 14.23 18.40 17.0 15.7

9 Lymphography 07.56 8.00 07.20 7.4 7.0

10 M-of-n 06.00 09.54 06.00 7.0 6.0

11 PenglungEW 84.13 81.78 127.40 150.1 43.0

12 SonarEW 24.80 26.20 26.40 26.0 25.4

13 SpectEW 07.93 08.13 09.40 11.6 8.0

14 Tic-tac-toe 06.00 05.64 06.00 8.9 8.7

15 Vote 04.30 07.00 05.20 9.0 3.1

16 WaveformEW 19.00 22.98 20.60 20.0 19.5

17 WineEW 06.53 07.48 06.40 6.2 5.0

18 Zoo 05.63 05.69 05.60 7.8 5.6

Average 13.00 13.67 15.98 18.5 11.1

Fig. 6 Classification accuracy of all methods
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Table 9 Best Fitness Values Produced by All Methods

NO. Dataset MBOICO MBO MBA-SA WOASAT BGSA HGSA

1 Breastcancer 00.02 00.02 0.01 00.03 – –

2 BreastEW 00.01 00.02 0.02 00.02 – –

3 CongressEW 00.00 00.01 0.02 00. 02 – –

4 Exactly 00.00 00.00 0.05 00.01 – –

5 Exactly2 00.10 00.20 0.18 00.02 – –

6 HeartEW 00.10 00.12 0.09 00.13 – –

7 IonosphereEW 00.02 00.03 0.02 00.03 – –

8 KrvskpEW 00.02 00.02 0.02 00.02 – –

9 Lymphography 00.04 00.05 0.06 00.09 – –

10 M-of-n 0.00 0.00 0.00 0.01 – –

11 PenglungEW 00.02 00.02 0.01 00.03 – –

12 SonarEW 00.00 00.01 0.08 00.01 – –

13 SpectEW 00.10 00.10 0.06 00.11 – –

14 Tic-tac-toe 00.10 00.17 0.15 00.20 – –

15 Vote 00.00 00.00 0.01 00.02 – –

16 WaveformEW 00.10 00.20 0.18 00.23 – –

17 WineEW 00.00 00.00 0.00 00.00 – –

18 Zoo 00.00 00.00 0.00 00.00 – –

Average 00.03 00.05 0.05 00.05 – –

Table 10 Worst Fitness Values Produced by All Methods

NO. Dataset MBOICO MBO MBA-SA WOASAT BGSA HGSA

1 Breastcancer 00.04 00.05 0.04 00.04 – –

2 BreastEW 00.05 00.04 0.07 00.04 – –

3 CongressEW 00.02 00.03 0.07 00.05 – –

4 Exactly 00.00 00.00 0.16 00.01 – –

5 Exactly2 00.21 00.27 0.23 00.27 – –

6 HeartEW 00.12 00.16 0.19 00.18 – –

7 IonosphereEW 00.08 00.08 0.09 00.05 – –

8 KrvskpEW 00.01 00.02 0.08 00.02 – –

9 Lymphography 00.10 00.15 0.17 00.14 – –

10 M-of-n 00.02 00.00 0.09 00.01 – –

11 PenglungEW 00.13 00.16 0.14 00.11 – –

12 SonarEW 00.10 00.09 0.15 0.05 – –

13 SpectEW 00.23 00.20 0.15 00.15 – –

14 Tic-tac-toe 00.27 00.22 0.25 00.23 – –

15 Vote 00.03 00.05 0.5 00.04 – –

16 WaveformEW 00.18 00.25 0.25 00.26 – –

17 WineEW 00.02 00.03 0.03 00.03 – –

18 Zoo 00.09 00.09 0.05 00.10 – –

Average 00.09 00.10 0.15 00.09 – –
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reveals the significance of global search in solving FS
problems.

5 Conclusion

Feature selection is a complicated task in the fields of data
mining and machine learning. Researchers have been
struggling for some years to find the best way to identify
the lowest total number of features so that the initial
dataset can be represented as precisely and as easily as

possible. Recent studies have focused on using
metaheuristic algorithms to select the required features.
One of these algorithms is the MBO algorithm, which
was subjected to two modifications in this study: 1) the
addition of an improved crossover operator (MBOICO)
and 2) the incorporation of Lévy flight (MBOLF). These
two modified methods were then applied with a wrapper
FS system and KNN classifier to 25 benchmark data sets.
In the development and evaluation phases, the two ap-
proaches used the KNN classifier. The two modified
methods suggested were also tested on 18 other data sets
in order to compare their results with those of four models
in the literature (BGSA, HGSA WOASAT, MBO) and
MBA-SA. The findings demonstrated the MBOICO’s
dominance in terms of accuracy and number of selected
features, where it achieved an overall accuracy rate of
93% across 25 datasets, which can be regarded as a quite
clear victory in this field of study. However, there is still
room for further improvement. Therefore, in future works,
researchers may wish to employ an SVM instead of KNN,
and they may also wish to hybridize the MBO algorithm
with other metaheuristic algorithms as well as another
classifier. Furthermore, the modified MBO has the poten-
tial to be applied as an FS search technique in other fields
such as the internet of things, image segmentation and
sentiment analysis among others.

Table 11 Average Fitness Values Produced by All Methods

NO. Dataset MBOICO MBO MBA-SA WOASAT BGSA HGSA

1 Breastcancer 00.03 – 0.03 00.04 0.03 0.03

2 BreastEW 00.03 – 0.05 00.03 0.03 0.03

3 CongressEW 00.02 – 0.04 00.03 0.03 0.03

4 Exactly 00.00 – 0.10 00.01 0.005 0.00

5 Exactly2 00.23 – 0.21 00.25 0.23 0.23

6 HeartEW 00.14 – 0.14 00.16 0.13 0.014

7 IonosphereEW 00.05 – 0.04 00.04 0.09 0.06

8 KrvskpEW 00.02 – 0.04 00.02 0.03 0.02

9 Lymphography 00.10 – 0.10 00.11 0.11 0.11

10 M-of-n 00.00 – 0.00 00.01 0.02 0.00

11 PenglungEW 00.05 – 0.05 00.06 0.06 0.04

12 SonarEW 00.03 – 0.11 00.03 0.11 0.04

13 SpectEW 00.13 – 0.10 00.13 0.11 0.08

14 Tic-tac-toe 00.20 – 0.21 00.21 0.21 0.22

15 Vote 00.03 – 0.02 00.04 0.03 0.02

16 WaveformEW 00.22 – 0.22 00.25 0.18 0.18

17 WineEW 00.01 – 0.01 00.01 0.01 0.01

18 Zoo 00.01 – 0.01 00.04 0.00 0.07

Average 00.07 – 0.08 00.08 0.08 0.07

Fig. 7 Number of selected features by all methods
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