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Abstract
SOS is a global optimization algorithm, based on nature, and is utilized to execute the various complex hard optimization problems. Be
that as it may, some basic highlights of SOS, for example, pitfall among neighborhood optima andweaker convergence zone should be
upgraded to discover better answers for progressively intricate, nonlinear, many optimum solution type problems. To diminish these
deficiencies, as of late, numerous analysts increase the exhibition of the SOS by designing up a few changed form of the SOS. This
paper suggests an improved form of the SOS to build up an increasingly steady balance between discovery and activity cores. This
technique uses three unique procedures called adjusted benefit factor, altered parasitism stage, and random weighted number-based
search. The technique is referred to as mISOS and tested in a popular series of twenty classic benchmarks. The dimension of these
problems is considered to be hundred to monitor the impact of the suggested technique on the versatility of the test problems. Also,
some real-life optimization problems are solved with the help of the proposed mISOS. The results investigated based on three different
way and theses are statisticalmeasures, convergence, and statistical analyses. The comparison of results of themISOSwith the standard
SOS, SOS variants, and certain other cutting-edge algorithms shows its improved search performance.

Keywords SOS . Continuous unconstrained functions . Adaptive benefit factor . Modifiedmethod

1 Introduction

No unaccompanied optimization techniques are accessible to
effectively solve every form of optimization problem [1, 2]. In
this way, within the optimization community, certain concerning
the most prominent challenges is after locate the appropriate
optimization methods for fixing non-linear complicated optimi-
zation problems. With many conventional deterministic ap-
proaches, optimization has begun. If there is a discontinuity in
the objective function problems, a gradient primarily-based algo-
rithm will not perform well. In its case, gradient uninterrupted
nature-based optimization algorithms are the superior alternative
to resolve its kinds concerning optimization problems. In this
case, gradient-free nature-based optimization algorithms are the
leading elective to solve these types of optimization problems.

Moreover, a few prevalent gradient-free nature-based optimi-
zation algorithms foundwithin the literature areGA [3]; PSO [4],
given the rule of scavenging behavior of the swarm of winged

creatures; DE [5], in view of the Darwinian hypothesis of ad-
vancement; BBO [6], based on the scientific models of biogeog-
raphy; HS [7], in view of themelodic procedure of looking for an
ideal condition of amicability; GSA [8], in view of the law of
gravity and mass intuitive;WCA [9], in view of the perception
of water cycle procedure and how waterways and streams
stream to the ocean in reality; BSA [10], given the three es-
sential and well-known administrators of EA that are selec-
tion, mutation and crossover; SOS [11], based on the interac-
tion relationship among the creature in the biological system,
etc. By these algorithms, a huge measure of certifiable appli-
cations can be found in the writing over practically all parts of
Humanities, Science, and Technology. Some different types
of optimization problems on networks found in the literature
can be seen in references [44–46]. The critical focal points in
these algorithms are the framework for information-exchange
instrument and collaborative quality that offer assistance to
locate see the look space more competently and dodge the
circumstance of skipping right solutions and getting to be
stuck in nearby optima.

Cheng and Prayogo proposed the Symbiotic Organisms
Search (SOS) [11] and it is a new robust and efficient
metaheuristic algorithm for numerical optimization and engi-
neering problems. SOSmimics the symbiotic interaction tech-
niques that species have developed to outlive and engender
within the environment [11].
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As of late, SOS has been applied to tackle different real-world
applications, Although, the utilization of SOS illustrates its ade-
quate capacity in terms of investigation and absorption, but still
in a few cases, it endures the issue of stagnation at nearby optima
and improper adjust between investigation and absorption. In this
manner, within the literature, a few endeavors have been per-
formed to move forward the look component of SOS. Some are:

Umam and Santosa [12] proposed SOS-VNS strategy and
in that paper talks about how to hybridize the SOS with var-
iable neighborhood search so be able to keep utilized in imi-
tation of solving the ATSP problem. The SOS-VNS is pro-
posed dependent on the blend of SOS and VNS to move
forward the convergence and computing time of SOS.

Ref. [13] proposes new chaos and a symbiotic search algo-
rithm (A-CSOS) focused on global competitive rankings. The
target of A-CSOS is to decrease the snare into nearby optima
and improve the convergence of SOS to discover better an-
swers for progressively unpredictable, nonlinear, and multi-
modular optimization problems, for example, ORPD [13].

Ref. [14] proposes an improved variant of SOS (ISOS) de-
pendent on the hypothesis of quasi oppositional based learning
and a productive option for the parasitism phase. To direct the
calculation perform a comprehensive look around the finest ar-
rangement in endeavoring to assist move forward the look dem-
onstrate of ISOS, a chaotic neighborhood look based on the
piecewise straight chaotic outline is coupled into the calculation
[14]. The objective of this strategy is to maintain a strategic
distance from the over investigation issue of a unique parasitism
phase that causes undesirable long time look within the second
rate look space as the arrangement is as of now refined [14].

To estimate parameters of smooth and non-smooth fuel
cost functions for improving the solution accuracy of econom-
ic dispatch problems, the improved symbiotic organisms
search (R-SOS) Algorithm is proposed [15].

Using the SOS algorithm’s multi-group coordination tech-
nique and quantum behavior, a new improved variant of the
SOS algorithm is suggested, called the MQSOS algorithm
[16].MQSOS has speed and convergence capability and plays
a strong role in multi-population on functional problems [16].

An improved variant of the metaheuristic optimization al-
gorithm called Opposition-based Symbiotic Organisms
Search (OSOS) is proposed to tackle the question of color
image segmentation [17]. OSOS is used to overcome the mul-
tilevel image thresholding technique for the segmentation of
color images. Opposition-based learning principles are used to
improve the execution of standard SOS [17].

An Enhanced Symbiotic Species Search (ESOS) algorithm
is suggested based on the Local Search Improvement
Strategies to solve unrelated parallel machine manufacturing
scheduling problem with setup times [18].

A new, complex-valued encoding symbiotic organism
search (CSOS) algorithm is proposed by introducing the con-
cept of high diploid coding [19].

A Modified SOS (MSOS) algorithm [20] is proposed to
improve its search (exploitation) accuracy effectiveness along
with exploration by adding an adaptive benefit factor and
modified parasitism vector.

However, only a few efforts have been made to deal with
the time-cost trade-off problem (TCTP) in the large-scale con-
struction projects, and the existing optimization methods are
slightly limited by the trouble of parameter tuning.

As time-cost trade-off problem (TCTP) [21] is known to be
an NP-hard problem, a new variant of Symbiotic Organisms
Search (SOS) algorithm is proposed that does not contain
control parameters, called DSOS (Discrete Symbiotic
Organisms Search) which generates the parasite organism
using a heuristic rule based on the network levels.

Through combining the techniques Quasi-Opposition-
Based Learning (QOBL) and Chaotic Local Search (CLS)
with SOS, QOCSOS has been proposed for a higher quality
solution and quicker convergence [22].

Nama et al. [23] proposed an Improved Symbiotic
Organisms Search (ISOS) algorithm to boost the original al-
gorithm’s efficiency and add a random weighted reflection
vector to enhance the SOS algorithm’s search capability.

Nama et al. [24] incorporated Simple Quadratic Interpolation
(SQI) into SOS to balance SQI exploration capability and SOS
extraction capacity as well as enhance algorithm robustness.

In [25], HSOS [24] is used to find the seismic bearing
potential of a shallow strip base under the pseudo-dynamic
condition that is formulated by the method of limit analysis.

By introducing adaptive benefit factors in the basic SOS
algorithm, three modified versions of the SOS algorithm are
proposed to improve its efficiency of the basic SOS algorithm.
This lay down a good balance between exploration and ex-
ploitation of the search space [26].

Therefore, with the aid of updated benefit factor, parasitism
process, and random weight number search, the present re-
search aims to improve the search component of the conven-
tional SOS. The updated benefit factor is presented into the
SOS to diminish the trap into neighborhood optima and to
improve SOS convergence. The updated phase of parasitism
is implemented to improve both the exploration and exploita-
tion potential of the traditional SOS, consequently that an
acceptable balance can be formed between exploration and
exploitation. The random weight number is used to balance
the capacity of exploitation and to increase the convergence
rate. To the finest of our information, there’s no variation
comparable to what created in this paper. Within the proposed
calculation, the covetous choice approach is additionally uti-
lized inside the calculation to draw in the SOS toward the
promising look spaces of domains space. The proposed algo-
rithm is tested on twenty benchmark test problems with di-
mensions 100. The various success tests are also used to val-
idate the importance of enhanced outcomes. The comparisons
show that an expansion to a quicker meeting speed, the
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suggested design accomplished the worldwide best with
higher exactness. The effect of the suggested algorithm is also
explored in the paper in several problems about engineering
optimization. The findings on these issues also check the sug-
gested algorithm’s superior search performance compared
with the other comparative algorithms.

The remainder of this paper is composed as follows:
Section 2, presents the traditional rendition of SOS and its
inquiry component. In Section 3, the proposed mISOS is
portrayed in detail. The experimentation and approval of the
proposed calculation on benchmark test issues are acted in
Section 4. The presentation of the proposed calculation about
actual engineering problems is likewise talked about in
Section 5. At long last, the conclusion of the work is furnished
in Section 6 with some future research bearings.

2 Overview of basic SOS algorithm

Within nature, many species maintain an important relationship
between survival and development. Often such partnerships
may be helpful, or negative. In advantageous relationship spe-
cies live respectively for shared advantage and endurance,
which make it not quite the same as other normal connections.
Considering the normal collaboration between the living being
form for endurance in the biological system, Cheng and
Prayogo [11] presented a convincing and unassuming meta-
heuristic calculation called SOS which recreates the intelligent
conduct among living being found in nature. In an ecosystem, a
community of species is similar to the SOS algorithm popula-
tion. Each organism speaks to one individual comparing to the
optimization issue. That organism within the ecosystem has to
do with an explicit fitness value, i.e. an objective function value
that replicates the degree of adaptation to the defined goal. SOS
implements the quest space into seven main components: ini-
tialization, Mutualism phase, selection-I, Commensalism
phase, Selection-II, Parasitism phase, and selection-III.

Initialization The initial organism generates at random within
the uniform search space at the initial level. According to Eq.
(1), the initial organism is determined.

Oi;d ¼ Olb;d þ rand 0; 1ð Þ* Oub;d−Olb;d
� � ð1Þ

Here Olb, d and Oub, d are the lower and upper bound of the
ith organism respectively, d represents the dimension of the
problem.

Mutualism phase An organism, Oi interact with the randomly
selected organismOj from the ecosystem and all species com-
municate intending to extend shared survival capabilities
within the environment in a mutualistic relationship according
to Eqs. (2), (3), and (4).

Onew
i;d ¼ Oi;d þ rand 0; 1ð Þ* Obest−MV*BF1ð Þ ð2Þ

Onew
j;d ¼ Oj;d þ rand 0; 1ð Þ* Obest−MV*BF2ð Þ ð3Þ

MV ¼ 0:5* Oi;d þ Oj;d
� � ð4Þ

Here Obest is the best organism in the ecosystem. The ben-
efit factors (BF1 and BF2) are randomly calculated as either 1
or 2. Such variables reflect the degree of benefit for each
organism, i.e. whether the interaction benefits an organism
partially or entirely.

At the end of the mutualism phase, the selection-I operator
is led by looking at the objective function value of the new
aspirant organism with the corresponding old organism utiliz-
ing Eqs. (5) and (6)

Oi ¼ Onew
i if f Onew

i

� �
< f Oið Þ

Oi Otherwise

�
ð5Þ

Oj ¼ Oj
new if f Oj

new� �
< f O j

� �
Oj Otherwise

�
ð6Þ

Commensalism phase: Similar to mutualism phase, an
organism, Oi interact with the randomly selected organism
Ok from the ecosystem and onlyOi takes the beneficial advan-
tage within the environment in a commensalism relationship
according to Eq. (7),

Onew
i;d ¼ Oi;d þ rand −1; 1ð Þ* Obest −Ok;d

� � ð7Þ

At the end of the commensalism phase, the selection-II
operator is led by looking at the objective function value of
the new aspirant organism with the corresponding old organ-
ism utilizing Eq. (8).

Oi ¼ Oi
new if f Oi

newð Þ < f Oið Þ
Oi Otherwise

�
ð8Þ

Parasitism phase By duplicating organism,Oi, an artificial par-
asite calledOp, d is produced according to Eq. (9). At the end of
production of Op, j, using selection-III operator, Op, j led to

Op;d ¼ Olb;d þ rand 0; 1ð Þ* Oub−Olbð Þ if a < b
Oi;d Otherwise

; a; b∈ 0; 1ð Þ
�

ð9Þ
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kill randomly selected organism Oi, d utilizing Eq. (10).

Oi ¼ Op;d if f Op; j
� �

< f Oið Þ
Oi;d Otherwise

�
ð10Þ

The flowchart of the SOS algorithm is shown in Fig. 1.

3 The procedure of proposed mISOS
algorithm

The search proficiency of the conventional SOS is overhauled
in this segment by combining principles of the modified adap-
tive benefit factors, modification of parasitism phase, and ran-
dom weighed reflection vector. Such alterations are portrayed
and talked about in detail as underneath.

3.1 Modification of beneficial factor

In the fundamental SOS algorithm, the value of the benefit
factor is considered as 1 or 2. This speaks that the interaction
of the living being is halfway or completely benefited. Benefit
factors are, however, the main control element in the SOS
mutualism phase of the Mutual Vector. In the basic SOS al-
gorithm, the beneficial factors (BF1 and BF2) are stochasti-

cally measured by either one or two, which shows whether the
organism is enjoying the interaction partially or fully [20].
Such beneficial influences are heuristic in nature, because
one organism may benefit partially or fully than another
[11]. Such variables reflect the degree of the gain relationship,
i.e., total or fractional. The new organism Onew

i and Onew
j

enter the set of the organism, if the objective function value
of these organisms are better than their corresponding pre-

interaction organism Oold
i and Oold

j . This process is equivalent

to greedy selection.
On the other hand, the organism Oi and Oj can get halfway

and completely advantage from the mutual vector. It means
that the algorithm quest will be successful with a small step if
the value of the benefit factor is greater, but the convergence
of the algorithm will diminish [26]. Similarly, if the greater
value of the benefit factor is taken into account, the search
accelerates the nearby value that decreases the ability of the
algorithm to be used [26, 27]. Therefore, the benefit factor can
vary within the range of 1 and 2. This rouses us for changing
benefit factor (BF1 and BF2) adaptively which gives great
union, predominant inquiry capacity, and congruity among
investigation and misuse. Themodification form of the benefit
factors (aBF1, and aBF2) are shown in Algorithm 1.

Here, fi, fj, f worsteco and f besteco are the objective function
value of the ith, jth, worst, and best organisms respectively.
Thus, during the execution process, the value of benefit

factors can be conserved repeatedly. In the mutualism phase,
the term MV ∗ aBF offers a decent harmony among investi-
gation and taking advantage of the relationship trademark
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between the living being Oi and Oj contrasted to those of
starting BF1 and BF2, because of the adaptive benefits fac-
tors are implemented. So, the component of mutualism
phase (Obest −MV ∗ aBF)can prompt great assorted variety
with quicker convergence. Finally, the new organism Onew

i

and Onew
j tried to minimize (for minimization problem) the

fitness value of the optimization problem in the entire eco-
system. Accordingly, aBF drives the suggested method to
investigate the untracked area in domain space when an
organism (‘I’ or ‘j’) is left from the best organism and aids
in increment the convergence rate. It demonstrates that the
proposed method with aBF prompts the optimum solution
globally, with a decent harmony among investigation and
taking advantage of the proposed algorithm.

3.2 Modification of parasitism phase

A step of parasitism is necessary for the upgrade of the
SOS exploration capability. Be that as it may, it is addi-
tionally encountered that over investigation brings about
the higher computational expense. A significant number
of new candidate solutions get dismissal because of second
rate fitness value contrasted with the past one. In the par-
asitism period of essential SOS, the investigation rate is
underprivileged, since the parasite vector produces in
search space with a combination of structure variable with
an arbitrary produced variable [20]. This solitary outcome
progresses the existing outcome to increases this algo-
rithm’s exploitability. The primary purpose behind the
change is to expel the disadvantage of the low exploitabil-
ity of the parasitism stage. Numerous examinations show
that the exploitability of the parasitism stage in SOS is
impressively low when contrasted with the explorative

ability [20, 26, 27]. Expanding the quantity of FE prompts
an expansion in the convergence time as well. Moreover,
numerous look into a demonstration of the enhancement in
the proficiency of the design algorithm with the change in
the parasitism stage [20, 26–28]. Along these lines, this
stage is upgraded with the alteration of the parasitism
stage. Here it is attempted to progress exploitability of
parasitism stage with keeping up global optimum also in
domain space. In this manner, our thought process is to set
an ideal harmony among the investigation and exploitabil-
ity of the algorithm. Within the suggested algorithm, the
investigation is empowered utilizing the best solution and
one current solution. The procedure upgrades the assorted
variety of populace and solution too. The suggested meth-
odology permits the Algorithm to investigate various areas
of the inquiry space simultaneously, keep away from the
populace fixation in one district, and maintain a strategic
distance from untimely intermingling. Algorithm 2 speaks
to the alteration in the parasite vector.

In Algorithm 2, Obest
max;d and Obest

min;d are the maximum and

minimum dimensions of the best organism respectively. From
the algorithm, it is seen that, if a is less than b then the selected
dimension is modified by search boundary otherwise the di-
mension modified with the help of the best organism. In this
case, if the fitness value of the problem for the new calculated
parasitism vector gives inferior (for minimization issue) than
the past one, at that point the parasitism vector precedes the
new location whereas taking out past living being. All things
considered, the suggested algorithm can merge quicker while
keeping up great assorted variety. Due to previously mentioned
alteration in parasitism stage exploitability capacity increment
with high intermingling rate and solidness of ideal solution.

3.3 Weighted random number

Within the conventional SOS, the living being stage causes
the algorithm to continue by moving the mean of the living
being towards its worldwide optima. To get another

arrangement of improved living being an arbitrary random
weighted number is shaped and added to the current crea-
ture of the biological system. Also, in the mutualism stage,
the algorithm continues by arbitrary cooperation among
creatures to improve their relationship. To get another
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arrangement of improved living being a random weighted
number is shaped dependent on the mix of the random
weighted differential vector [29] and the random weighted
reflection vector [23]. This is found in algorithm 3.

This random weighted number is proposed to upgrade
the pursuit capacity of the design algorithm. Therefore, the
strength of the algorithm depends on the assessment of
standard deviation increments, and the calculation requests
fewer quantities of investigations to combine a worldwide
optimal solution. In the long run investigation capacity of
stages is increment because of usage of random weighted
number.

3.4 The framework of mISOS

In this subsection, the proposed mISOS architecture is in-
troduced. It was detected after the literature that, because
of the benefit factor in the mutualism process, the tradition-
al SOS getting caught at neighborhood optima, less assort-
ed variety, and slow convergence rate [20, 26].

Accordingly, the alteration of benefit factor is acquainted
in SOS with keeping the living being from stagnation at
nearby optima [26]. The parasitism process is used to dis-
cover and manipulate the domain space circa the finest
candidate solution while increasing the convergence veloc-
ity of the original algorithm [20]. The updated process of
parasitism is fundamentally centered around sparing com-
putational time yet at the same time keep up the worldwide
capacity of domain space. Integrating a random weighted
number has improved the organism’s exploration capacity,
and this will be productive whereas fathoming the optimi-
zation issues having a huge number of nearby optima
moreover [26].

The procedures which are connected within the mISOS can
be summarized as takes after:

Stopping 

criterion

Return optimal

Value
Stop

Commensalism phaseParasitism 

phase
Selection-IISelection-III

Start

Initialization

Mutualism phase Selection-I

YesNo

Fig. 1. Flowchart of the SOS
algorithm
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1. The modification of benefit factor is utilized within the
mISOS to hop out from neighborhood optima and to quicken
the look prepare.

2. The parasitism phase is presented to upgrade the inves-
tigation of look space amid the look prepare, moreover, when
the current organism is absent from the obscure optimal
organism.

3. The random weight number is utilized to travel the cur-
rent organism form to other more promising look space.

4. After each phase i.e. mutualism phases, commensalism
phases, and parasitism phases, the selection operator is used
between two continuous emphases of the algorithm maintains
a strategic distance from the living being to wander from
promising pursuit areas and controlled the progression of de-
cent variety inside the algorithm.

The investigation, exploitability, and the harmony between
them are fundamental segments of any nature-enlivened algo-
rithm. In the mISOS, these parts have attempted to improve

7887A modification of I-SOS: performance analysis to large scale functions



dependent on modified benefit factor, modified parasite fac-
tor, and random weighted number. The steps of the algorithm
are exhibited in Algorithm 4 and the flowchart is introduced in
Fig. 2.

4 Performance analysis on 20 test function
experiments and comparison of results

4.1 Benchmark set analysis of results and parameter
setting

The proposed mISOS is evaluated on a set of twenty notable
and traditional benchmark problems [30]. These functions are
scalable, and thus the scalability of the mISOS is also evalu-
ated on these metrics, taking into account the dimension one
hundred. Table 1 presents the names, mathematical form,
quest range, and optimum values (Fmin) of traditional bench-
mark test functions. On these test functions, every algorithm is
executed thirty times independently. The parameter settings of
all the algorithms are presented in Table 2. Tables 3, 4, 5, 6,
and 7 report the statistical parameters obtained, such as mean,
and standard deviation of benchmark problem values.

A comparison of the algorithms is important for selecting
the appropriate algorithm for an optimization problem from
several optimizers. This is as often as possible done by utiliz-
ing optimum results from exact examinations on benchmarks
[39] because the theorem of non-free lunch [2] infers that there
is no all-inclusive best calculation. The algorithms compared
based on the quality of the solution achieved for such bench-
mark function and the essential computational necessities. In
this work, the output findings are compared with some SOS
variant and these are SOS [11], I-SOS [23], SOS-ABF1 [27],
SOS-ABF2 [27] and SOS-ABF1&2 [27]. Also, some other
optimization algorithm BSA [10], ABSA [31], CLPSO [32],

CPSO-H [33], FDR-PSO [34], FI-PS [35], UPSO [36],
EPSDE [37], TSDE [38], CPI-DE [39], ACoS-PSO [40],
HBSA [30] and DSOS variants [47]. The reason behind the
chosen algorithm for comparison is that the algorithms are
widely used for solving the different complex problems from
a different branch of science and engineering. The common
control.

The parameter value of all the algorithms is thirty indepen-
dent trials, fifty organisms, and D*100 function evaluations.
Also, the parameter values of all algorithm-specific common
control are taken the same as given in their original manu-
script. For every algorithm, the maximum number of function
evaluation is considered as the stopping criteria and every
algorithm run in Matlab R2010a with Lenovo Intel(R)
Core(TM) i5-8250 U, 8th generation CPU @1.60GHz
1.80GHz, 8GB RAM Windows 10 home and an ×64-based
processor.

The outcomes are listed in the “Mean ± STD” format.
Mean “and “STD “reflect the benchmark problems values
average and standard deviation respectively. Boldface repre-
sents the best outcome among the algorithms compared in this
study. F: Function, S: Search space.

In the table, the signs ─/ + / ≈will be used to show that the
output of the corresponding competitor in terms of numerical
results is worse than, better than, and identical to that of
mISOS.

4.2 Comparison with conventional SOS and some
improved SOS variant

The proposed mISOS are compared in this section to the con-
ventional SOS and some modified SOS variant on twenty test
problems. Table 3 provides a comparison of the tests for di-
mension 100. In these tables, the test problem values in terms
of mean and standard deviation are specified. The output

Modified Parasitism Phase

Initialization

Mutualism Phase with 
modified random weight 
reflection coefficient and 
aBF

Commensalism Phase with 
modified random weight 
reflection coefficient 

Start Define algorithm 

Is the termination 
criterion meet?

Optimal 
Solution

End

Yes

No

Fig. 2. Flowchart of mISOS
Algorithm
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findings are compared with SOS[11], I-SOS[23], SOS-
ABF1[27], SOS-ABF2[27] and SOS-ABF1&2[27] at dimen-
sion (D) 100, respectively, after achieving D*100 FES of 20
test functions over 30 test runs with a population size of 50.

Only one optimum known as global optima is present in these
problems which are for F6. As shown in Table 3, on fifteen,
thirteen, thirteen, and nineteen test functions, mISOS per-
forms better than SOS, I-SOS, SOS-ABF1, SOS-ABF1, and

Table 1 Benchmark function applied for the validation of the proposed method (Fmin = 0, S=Search space)

Functions Formulation S

F1.Sphere
f xð Þ ¼ ∑

D

i¼1
xi2

[−100, 100]

F2.Schwefel2.22
f xð Þ ¼ ∑

D

i¼1
xij j þ ∏

D

i¼1
xij j [−10, 10]

F3.Schwefel1.2
f xð Þ ¼ ∑

D

i¼1
∑
i

j¼1
xi2

[−100, 100]

F4.Schwefel2.21 f(x) = max {|xi|, 1 ≤ i ≤D} [−100,
100]

F5.Rosenbrock
f xð Þ ¼ ∑

D

i¼1
100 xiþ1−xi2ð Þ2 þ xi−1ð Þ2
h i [−30, 30]

F6.Step
f xð Þ ¼ ∑

D

i¼1
xi þ 0:5ð Þ2 [−100, 100]

F7.Quartic
f xð Þ ¼ ∑

D

i¼1
ixi4 þ random 0; 1ð Þ [−1.28, 1.28]

F8.Schwefel f xð Þ ¼ 418 : 9829n−∑xisin
ffiffiffiffiffiffi
xij jp� �

[−500, 500]
F9.Rastrigin

f xð Þ ¼ 10Dþ ∑
D

i¼1
xi2−10cos 2πxið Þ½ � [−5.12, 5.12]

F10.Ackley
f xð Þ ¼ 20þ e−20e

1
D

ffiffiffiffiffiffiffiffiffiffiffi
1
D ∑

D

i¼1
xi2

q� �
−e1

D ∑cos 2πxið Þð Þ
[−32, 32]

F11.Griewank
f xð Þ ¼ ∑

D

i¼1

xi2

4000− ∏
D

i¼1
cos xiffi

i
p
� �

−1
[−600, 600]

F12.Penalized1

f xð Þ ¼ π

D
10sin2 πyið Þ þ ∑

D−1

i¼1
yi−1ð Þ2½1þ 10sin2 3πyiþ1

� �
þ yD−1ð Þ2�

8<
:

9=
;

þ ∑
D

i¼1
u xi; 10; 100; 4ð Þ

Where yi ¼ 1þ 1
4 xi þ 1ð Þ, u xi; a; k;mð Þ ¼

k xi−að Þm
0

k −xi−að Þm
xi > a

−a < xi < a
xi < a

8<
:

[−50, 50]

F13.Penalized2

f xð Þ ¼ 0:1
10sin2 πxið Þ þ ∑

D−1

i¼1
xi−1ð Þ2½1þ 10sin2 3πxiþ1ð Þ

þ xD−1ð Þ2 1þ sin2 2πxDð Þ� 	�
8<
:

9=
;

þ ∑
D

i¼1
u xi; 5; 100; 4ð Þ

[−50, 50]

F14.Salomon
f xð Þ ¼ 1−cos 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
∑
D

i¼1
xi2

s !
þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffi
∑
D

i¼1
xi2

s
[−100, 100]

F15.Zakharov
f xð Þ ¼ ∑

D

i¼1
xi2 þ ∑

D

i¼1

ixi
2


 �2

þ ∑
D

i¼1

ixi
2


 �2 [−5.12, 5.12]

F16.Axis parallel hyper ellipsoid
f xð Þ ¼ ∑

D

i¼1
ixi2

[−5.12, 5.12]

F17.Ellipsoidal
f xð Þ ¼ ∑

D

i¼1
xi−ið Þ2 [−100, 100]

F18.Cigar
f xð Þ ¼ x12 þ 100000 ∑

D

i¼2
xi2

[−10, 10]

F19.Exponential
f xð Þ ¼ 1−exp −0:5 ∑

D

i¼1
xi2


 �
[−1, 1]

F20.Cosine mixture
f xð Þ ¼ 00:1Dþ ∑

D

i¼1
xi2−0:1 ∑

D

i¼1
cos 5πxið Þ [−1, 1]

7889A modification of I-SOS: performance analysis to large scale functions



SOS-ABF1&2 respectively. In the charts, the bold font shows
better results. Overall, as shown in Table 3, except for the F5,
F 8, F9, F13, and F17 functions, mISOS obtained better re-
sults than other algorithms compared.

4.3 Comparison with other optimizers

The execution of the suggested mISOS is contrasted in this
paragraph with other optimizers in terms of the numerical
value of the test functions which are used in the previous
section. These recent optimizers are BSA [10], ABSA [31],
CLPSO [32], CPSO-H [33], FDR-PSO [34], FI-PS [35],
UPSO [36], EPSDE [37], TSDE [38], CPI-DE [39], ACoS-
PSO [40] and HBSA [30], and used to evaluate the mISOS
performance. We held the same population size for a reason-
able comparison, and a similar introductory population is
picked for every algorithm for a specific run. Algorithm pa-
rameter settings are equivalent to utilize in their main papers.
The examination is acted in Tables 4 and 5 which demonstra-
tions the mISOS ‘search effectiveness and solution accuracy.
In a large portion of the test issues, either the proposed mISOS
has accomplished the optima, beat, or serious versus different
calculations.

The suggested mISOS either reached the optima,
outflanked, or exceptionally competitive with other algo-
rithms. In Table 6, the signs ─ + ≈ are utilized to speak
to that the execution of the comparing competitor in terms
of numerical results is worse than, better than, and

comparable to that of mISOS. As shown in Table 6,
mISOS performs better than BSA, ABSA, CLPSO, CPSO-
H, FDR-PSO, FI-PS, UPSO, EPSDE, TSDE, CPI-DE,
ACoS-PSO and HBSA on 18/20, 19/20, 19/20, 19/20, 18/
20, 18/20, 18/20, 18/20, 18/20, 19/20, 18/20, and 18/20 test
functions, respectively.

4.4 Comparison with some recent algorithms

Table 7 the execution of the suggested mISOS with some
recent optimizers in terms of the numerical value of the test
functions which are used in the previous section. These recent
optimizers are SOS and its variants called DSOS [47]. We
held the same population size for a reasonable comparison,
and a similar introductory population is picked for every al-
gorithm for a specific run. Algorithm parameter settings are
equivalent to utilize in their main papers [47]. The examina-
tion presented in Table 7, demonstrates the mISOS ‘search
effectiveness and solution accuracy. The suggested mISOS
either reached the optima, outflanked, or exceptionally com-
petitive with other algorithms. In Table 7, the signs─ + ≈ are
utilized to speak to that the execution of the comparing com-
petitor in terms of numerical results is worse than, better than,
and comparable to that of mISOS. As shown in Table 7,
mISOS performs better than SOS, DOS1, DOS2, DSOS3,
DSOS4, DSOS5 and DSOS6 on 11/5/1, 11/5/1, 12/7/0, 12/
7/0, 12/7/0, 12/7/0, 12/7/0 test functions, respectively.

Table 2 Parameter values of all
the algorithm specific control
parameters

Algorithm Parameter values

SOS BF1 = round(1 + rand); BF2 = round(1 + rand);

I-SOS BF1 = round(1 + rand); BF2 = round(1 + rand);

SOS-ABF1 BF2 = round(1 + rand);

SOS-ABF2 BF1 = round(1 + rand);

SOS-ABF1&2 –

DSOS w = 0.5, BF1 = round(1 + rand); BF2 = round(1 + rand);

mISOS –

BSA F = 3*rndn, where, rndn ∈N(0, 1); mix rate(M) = 1,

ABSA k1 = 0.9, k2 = 0.9, k3 = 1.0, and k4 = 1.0,

CLPSO w0 = 0.9, w1 = 0.4, c = 1.49445, m = 7, Pc = 0.05 to 0.5,

CPSO-H wmax = 0.9, wmin = 0.5, c1=1.49, c2= 1.49,

FDR-PSO wmax = 0.9, wmin = 0.5, c1=1, c2= 1, c3= 2,

FI-PS wmax = 0.9, wmin = 0.5, c1 = 2, c2= 2,

UPSO c1=1.49445, c2= 1.49445; w = 0.729; u = 0.1; μ=0; σ=0.01;

EPSDE F = [0.4; 0.5; 0.6; 0.7; 0.8; 0.9]; CR = [0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9];

TSDE The parameter candidate pool: [F = 1, CR = 0.1], [F = 1, CR = 0.9], and [F = 0.8, CR = 0.2].

CPI-DE F = 0.9; CR = 0.5; δg = 1,

ACoS-PSO c1=1.4962; c2=1.4962; w = 0.7298; = 0:05,

HBSA F = 0.9; DIM_RATE = 1;

DE F = 0.5; CR = 0.9;
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4.5 Statistical analysis

In addition, simultaneously the multiple-problem Wilcoxon
test [41] and Friedman’s test were executed using SPSS soft-
ware to evaluate the substantial outperformance of the mISOS
on the test functions. In this case, the Bonferroni-Dunn tech-
nique [42] was chosen as the post-hoc technique for
Friedman’s test. With regard to the 100D test functions, the
average objective function values over 30 runs, the results of
the Wilcoxon multi-problem test, and Friedman tests are con-
densed in Tables 8, 9, 10, 11, 12 and 13 separately.

In Tables 8, 10, and 12, all R+ values are greater than R-
values, showing that mISOS efficiency is higher than other
competitors ‘efficiency. Also, mISOS accomplish the first
rank in the Friedman’s test shown in Tables 9, 11, and 13.
Consequently, the test results show that mISOS is
outperforming the competitors with 30D and 100D on the
classical test functions.

On the basis of the statistical analysis, we can observe that
the rank of mISOS is one, while the other approaches are the
following techniques, separately. In this way, the suggested
mISOS can be viewed as a superior analyzer than different
algorithms beneath thought for contrast to find the result of the
optimization problem with high precision of the solution.

4.6 Convergence rate comparison

The convergence curves are illustrated in Figs. 3. were plotted
using the objective function values of the respective functions.
Those curves were plotted by setting dimensional size 100.
The convergence curves are plotted for the test function are
F1.Sphere; F3.Schwefel1.2; F4.Schwefel2.21; F6.Step;
F11.Griewank; F14.Salomon; F15.Zakharov; F16.Axis paral-
lel hyper ellipsoid; F18.Cigar; F19.Exponential; F20.Cosine
mixture. It very well may be effectively seen from the figures
that the mISOS converges rapidly towards the worldwide op-
tima and accomplishes high exactness contrasted with other
enhancement algorithms. On the other hand, the other ad-
vancement algorithms effectively fall into neighborhood opti-
ma, and along these lines, the convergence speed is moderate
when different peers continue to switch worldwide optima.
The global optima for the F14 and F15 functions lie in a
narrow valley, and converging to that result is tough for opti-
mization algorithms. Nonetheless, the suggested mISOS ac-
complishes this global optimum of up to one hundred and

propositions a result similar to global optima for the dimen-
sion superior to one hundred. Therefore, the suggested mISOS
reveal its high precision and higher convergence rate associ-
ated with other methods of optimization.

Consequently, the general investigation of the outcomes on
the test functions shows the substantial improvement in the
pursuit technique of the mISOSwhen contrasted with the SOS
variations and other comparative algorithms far as
accomplishing the better convergence rate, upgrading, and
adjusting the investigation and exploitability quality of the
algorithm. Thus, the suggested mISOS can be viewed as a
superior optimizer than others to solve the test problems with
a large number of variables and high solution accuracy.

5 Applications of mISOS on engineering
benchmark problems

In this subsection, the suggested modified version of SOS is
executed on five well-known engineering test problems [43],
namely, frequency modulation sounds parameter identifica-
tion problem, Lennard-jones potential problem, tersoff poten-
tial function minimization problem, and speed reducer design.
These problems are taken from ref. [43]. A summary of the
numerical research engineering test problems is as follows:

5.1 Frequency modulation sounds parameter
identification problem [42]

Frequency-Modulated (FM) sound wave is a global optimiza-
tion problem and it has a significant role in several modern
music systems. FM amalgamation is a proficient, however not
in every case effectively controlled procedure for producing
intriguing sounds. A minor number of parameters can be
playing an important role to deliver a wide scope of sound
tones. This can consequently produce sounds that are analo-
gous to the target sounds. Utilizing mISOS in FM synthesis to
find the optimized parameter values in which the FM
matching synthesis technique is presented. Initially, a set of
parameters value is determined using mISOS and the FM
synthesizer generates the corresponding sounds. In this prob-
lem, the distances of features between the target sound and
synthesized sounds are considered as the fitness value (or
objective function value). This engineering benchmark prob-
lem is a highly complex multimodal problem. The dimension

Table 6 Performance of the corresponding competitor is worse than, better than, and similar to that of mISOS

BSA ABSA CLPSO CPSO-H FDR-PSO FI-PS UPSO EPSDE TSDE CPI-DE ACoS-PSO HBSA

─ 18/20 19/20 19/20 19/20 18/20 18/20 18/20 18/20 18/20 19/20 18/20 18/20

+ 1/20 1/20 1/20 1/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20

≈ 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20
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of this problem is six of the sound wave. The objective func-
tion is defined as follows:

Minimize f yð Þ ¼ ∑100
t¼0 y tð Þ−y0 tð Þð Þ2 ð19Þ

Where the primary sound wave and target sound is given
by Eqs. (20) and (21).

y tð Þ ¼ a1sin ω1tθþ a2sin ω2tθþ a3sin ω3tθð Þð Þð Þ ð20Þ
y0 tð Þ ¼ 1:0*sin 5:0*tθþ 1:5*sin 4:8*tθþ 2:0*sin 4:9*tθð Þð Þð Þ ð21Þ

Six variables are y = {a1, ω1, a2, ω2, a3, ω3} and the domain
of these variables is [─6.4, 6.35]. Here θ = 2π/100.

5.2 Lennard-Jones potential problem [42]

Lennard-jones (LJ) potential problem is the minimization of
molecular potential energy associated with pure LJ cluster.
The lattice structure of the LJ cluster has an icosahedral core
and a combination of surface lattice points. The algorithm
mISOS is executed over this capacity for its ability to accom-
modate molecular structure, where the atoms are composed so
that the particle has the least energy. This is a potential energy
minimization problem of multimodal optimization comprising
an infinite number of local minima. In LJ-problem, the cluster
configuration of ‘N’ atoms is given by the Cartesian coordinates

pi
!¼ xi!; yi

!; zi!
n o

; i ¼ 1; 2; 3; :…;N ð22Þ

The mathematical formation of Lennard-Jones pair poten-
tial for ‘N’ atoms is given as follows:

VN pð Þ ¼ ∑
N−1

i¼1
∑
N

j¼iþ1
ri; j

‐12‐2:ri; j
‐6

� � ð23Þ

Where

ri; j ¼ pj
!−pi

!
��� ���

2
ð24Þ

And the gradient is

∇ jVN pð Þ ¼ −12 ∑
N−1

i¼1;i≠ j
ri; j

‐14‐2:ri; j
‐8

� �
: pj
!−pi

!� �
; j

¼ 1; 2; 3;…;N ð25Þ

In this case, 10 atom problems have been considered, and
then the total number of variables is 30. Any permutation and
translation of the ordering of {pj} results in an equivalent

Table 10 Results of the multiple-problem based Wilcoxon’s test for
mISOS and some selected algorithms variants on 20 test functions with
100D from (α = 0.05)

mISOS vs. Algorithm p Value R+ R- Winner

BSA 0.004 183 27 mISOS

ABSA 0.000 200 10 mISOS

CLPSO 0.001 197 13 mISOS

CPSO-H 0.008 176 34 mISOS

FDR-PSO 0.009 175 35 mISOS

FI-PS 0.002 186 24 mISOS

UPSO 0.005 181 29 mISOS

EPSDE 0.005 180 30 mISOS

TSDE 0.004 183 27 mISOS

CPIDE 0.000 190 0 mISOS

ACoS-PSO 0.004 183 27 mISOS

HBSA 0.014 171 39 mISOS

Table 11 Ranking of
mISOS and some
selected others algorithm
variants by the
Friedman’s test on 20
test functions with 100D

Algorithm Mean Rank Final Rank

mISOS 2.11 1

BSA 7.61 8

ABSA 11.50 12

CLPSO 9.53 10

CPSOH 4.76 5

FDR-PSO 2.84 2

FI-PS 10.74 11

UPSO 6.47 6

EPSDE 4.29 4

TSDE 7.74 9

CPIDE 13.00 13

ACoS-PSO 6.89 7

HBSA 3.53 3

Table 8 Results of the multiple-problem based Wilcoxon’s test for
mISOS and some selected SOS variants on 20 test functions with 100D
from (α = 0.05)

mISOS vs. Algorithm p Value R+ R- Winner

SOS 0.212 126 64 mISOS

I-SOS 0.968 96 94 mISOS

SOS-ABF1 0.936 97 93 mISOS

SOS-ABF2 0.968 96 94 mISOS

SOS-ABF1&2 0.003 184 26 mISOS

Table 9 Ranking of
mISOS and some
selected SOS variants by
the Friedman’s test on 20
test functions with 100D

Algorithm Mean Rank Final rank

SOS 3.00 3

ISOS 3.70 5

SOSABF1 3.62 4

SOSABF2 2.85 2

SOSABF12 5.38 6

mISOS 2.45 1
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function value since VN(p) depends only on the pair distances.
The domain of first three variables are [0, 4], [0, 4], [0, π] and
for other variables are: −4− 1

4
i−4
3


 �
; 4þ 1

4
i−4
3


 �� 	
. Where ⌊r⌋is

the nearest least integer w.r.t. r.

5.3 Tersoff potential function minimization problem
for model Si (B)

The total Tersoff potential energy function of the system is the
sum of individual potentials of atoms and defined as

f X 1
�!

; X 2
�!

; X 3
�!

;…::; XN
�!� �

¼ E1 X 1
�!

; X 2
�!

; X 3
�!

;…::; XN
�!� �

þ…þ EN X 1
�!

; X 2
�!

; X 3
�!

;…::; XN
�!� �
ð26Þ

The Tersoff potential [11] of individual atoms can be for-
mally defined as follows:

Ei ¼ 1

2
∑
i≠ j

f c ri; j
� �

VR ri; j
� �

−Bi; jVA ri; j
� �� �

; ∀i ð27Þ

Here ri, j is the distance between atoms i and j, VR is a
repulsive term, VA is an attractive term, fc(ri, j) is a switching
function, Bi, j is a many-body term that depends on the posi-
tions of atoms i and j and the neighbors of atom i. The term Bi,

j is given by

Bi; j ¼ 1þ γn1ξn1i; j
� �−1=2n1 ð28Þ

In Eq. (28), n1 and γ are known fitted parameters and the
term ξi, j for atoms, i and j (i.e., for bond ij) are given by:

ξi; j ¼ ∑
k≠i

f c ri; j
� �

g θijk
� �

exp λ3
3− rij−rik
� �3� �

ð29Þ

In Eq. (29), the term θijk is the bond angle between bonds ij
and ik, and the function g is given by:

g θijk
� � ¼ 1þ c2=d2−c2= d2 þ h−cos θijk

� �� �2� �
ð30Þ

The quantities λ3, and c, d, h which appear in Eqs. (29) and
(30) are also known as fitted parameters. The terms VR(ri, j),
VA(ri, j) and the switching function fc(ri, j) which appears in Eq.
(27) are given by:

VR ri; j
� � ¼ Ae−λ1rij ð31Þ

VA ri; j
� � ¼ Be−λ2rij ð32Þ

f c ri; j
� � ¼

1 ; ri; j≤R−D
1

2
−
1

2
sin

π ri; j−R
� �
D


 �
; R−D < ri; j < Rþ D

0 ; ri; j≥Rþ D

8>><
>>:

ð33Þ

Where A, B, λ1 R, D and λ2 are given fitted parameters.
Thus the cost function now can be redefined as:

f xð Þ ¼ E1 xð Þ þ E2 xð Þ þ…þ EN xð Þ; x∈Ω ð34Þ

In general, for the system of N atoms, the no. of unknown
variables is n = 3×N − 6. Now the cluster X of N atoms can be
redefined as

x ¼ x1; x2; x3;…xnf g; x∈IR3N−6 ð35Þ

The search region for Si (B) model of Tersoff potential is

Ω ¼ f x1; x2; x3;…xnf g : −4:25≤x1; xi≤4:25;

i ¼ 4; 5;…; n; 0≤x2≤4; 0≤x3≤πg
ð36Þ

In this case, the number of atoms is considered as 10 so that
the total no of variables is 30. The detailed description of this
problem can be seen in ref. [43].

5.4 Spread spectrum radar polyphase code design
problem [43]

Spread spectrum radar polyphase code design problem is one
of the most popular engineering design optimization problems
for the application of global optimization algorithms. When
designing a radar system that uses pulse compression, great

Table 12 Results of the multiple-problem based Wilcoxon’s test for
mISOS and recent SOS variants on 17 test functions with 30D from
(α = 0.05)

mISOS vs. Algorithm p Value R+ R- Winner

SOS 0.535 80 56 mISOS

DSOS1 0.569 79 57 mISOS

DSOS2 0.407 94 59 mISOS

DSOS3 0.407 94 59 mISOS

DSOS4 0.435 93 60 mISOS

DSOS5 0.435 93 60 mISOS

DSOS6 0.463 92 61 mISOS

Table 13 Ranking of
mISOS and some recent
algorithm variants by the
Friedman’s test on 17
test functions with 30D

Algorithm Mean rank Final rank

SOS 5.29 7

DSOS1 3.26 2

DOSO2 5.50 8

DSOS3 5.41 5

DSOS4 4.38 3

DSOS5 4.50 6

DSOS6 4.47 4

mISOS 3.18 1
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attention must be given to the choice of the appropriate wave-
form. Many methods of radar pulse modulation that make
pulse compression possible are known. Polyphase codes are
attractive as they offer lower side-lobes in the compressed
signal and easier implementation of digital processing tech-
niques. This polyphase pulse compression code synthesis is
based on the properties of the aperiodic autocorrelation func-
tion and the assumption of coherent radar pulse processing in
the receiver. The problem has continuous variables and with
numerous local optimizations as a min-max non-linear non-
convex optimization problem. The mathematical formation of
this problem is as follows:

Minimizef Xð Þ ¼ max φ1 Xð Þ;φ2 Xð Þ;………φ2m Xð Þf g ð37Þ

Where X = {(x1, x2, x3, .………xD) ∈ RD| 0 ≤ xj ≤ 2π, j = 1,
2, 3, .……,D} and m = 2D-1, with

ϕ2i−1 Xð Þ ¼ ∑
D

j¼i
cos ∑

j

k¼ 2i− j−1j jþ1
X k

 !
; i ¼ 1; 2; 3; ::…D ð38Þ

ϕ2i Xð Þ ¼ 0:5þ ∑
D

j¼iþ1
cos ∑

j

k¼ 2i− jj jþ1
X k

 !
; i ¼ 1; 2; 3; :……D−1 ð39Þ

ϕmþi Xð Þ ¼ −ϕi Xð Þ; i ¼ 1; 2; 3; :……;m ð40Þ

Here the goal is to optimized (minimize) the module of the
greatest among the autocorrelation function that is associated
with the compressed radar pulse at the optimal receiver output
whereas the variables represent symmetrized phase
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Fig. 3 Convergence curve of
eleven test functions (F1, F3, F4,
F6, F11, F14, F15, F16, F18, F19
and F20) with D = 100 and
10,000 FEs over objective
function value vs. fitness
evaluation (FES)
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differences. It is an NP-hard optimization problem. The prob-
lem can be categorized as a class of continuous min-max
global optimization problems because of the objective func-
tion is piecewise smooth. The problem has twenty variables
and the domain of the variable is [0, 2π].

5.5 Result and discussion

The mISOS solved the above problems and the optimum so-
lution is described in Tables 14, 15, 16, and 17. The function
evaluations are 1000 function evaluations with eco-size 50
and 25 runs used to solve the problem.

For Parameter estimation for frequency modulated (FM)
sound waves problem, the obtained results are compared with
ISOS, SOS, ASOS_BF1, ASOS_BF2, ASOS_BF1&2, BSA,
ABSA, and DE. The performance results of this problem are
presented in Table 14, which includes the Best, Median,
Worst, Mean, and S.D. It is seen from Table 14 that the best
solution is obtained by ASOS_BF2, Worst solution obtained
by ABSA but Medians and Mean results are obtained by the
mISOS algorithm. So from the results presented in Table 14,
one can easily summarize that the performance of the mISOS
algorithm on this optimization problem is the best minimized
compared to other algorithms.

For Lennard-Jones Potential Problem, the obtained results
are also comparedwith ISOS, SOS, ASOS_BF1, ASOS_BF2,

ASOS_BF1&2, BSA, ABSA, and DE. The performance re-
sults of this problem are presented in Table 15, which includes
the Best, Median, Worst, Mean, and S.D. It is seen from
Table 15 that the best, medians and mean results are obtained
by mISOS. So from the results presented in Table 15, one can
easily summarize that the performance of the mISOS algo-
rithm on this optimization problem is the best minimized com-
pared to other algorithms.

For Tersoff potential for model Si(B), the obtained results
are compared with various other algorithms such as ISOS,
SOS, ASOS_BF1, ASOS_BF2, ASOS_BF1&2, BSA,
ABSA, and DE. The performance results of this problem are
presented in Table 16, which includes the Best, Median,
Worst, Mean, and S.D. It is seen from Table 16 that the best
solution is obtained by BSA, the worst solution is obtained by
ISOS but medians and mean results are obtained by mISOS.
From the reported results, we observe that analyzed the
mISOS variant has shown a better solution compared to
SOS and other algorithms.

For the spread spectrum radar poly phase problem, the
obtained results are compared with ISOS, SOS, ASOS_BF1,
ASOS_BF2, ASOS_BF1&2, BSA, ABSA, and DE. It is seen
from Table 17 that the best solution is obtained by BSA, the
worst solution is obtained by SOS but medians and mean
results are obtained by mISOS. So from the observation of
Table 17, one can easily show that the mISOS algorithm

Table 14 Parameter Estimation
for Frequency-Modulated (FM)
Sound Waves

Algorithm Best Medians Worst Mean SD

mISOS 1.97e+001 2.60e+001 2.90e+001 2.58e+001 2.06e+000

ISOS 2.41e+001 2.72e+001 2.92e+001 2.71e+001 1.28e+000

SOS 2.44e+001 2.62e+001 2.79e+001 2.64e+001 9.89e-001

ASOS_BF1 2.39e+001 2.64e+001 2.78e+001 2.63e+001 1.11e+000

ASOS_BF2 1.95e+001 2.64e+001 2.82e+001 2.61e+001 1.93e+000

ASOS_BF1&2 2.15e+001 2.61e+001 2.85e+001 2.61e+001 1.41e+000

BSA 2.37e+001 2.82e+001 2.99e+001 2.79e+001 1.45e+000

ABSA 2.56e+001 2.83e+001 3.05e+001 2.82e+001 1.42e+000

DE 2.54e+001 2.65e+001 2.87e+001 2.65e+001 8.92e-001

Table 15 Lennard-Jones
Potential Problem Algorithm Best Medians Worst Mean SD

mISOS -6.04e+000 −4.23e+000 -2.93e+000 -4.37e+000 7.76e-001

ISOS −6.28e+000 −3.40e+000 −2.11e+000 −3.48e+000 9.39e-001

SOS −6.42e+000 −4.03e+000 −2.47e+000 −4.12e+000 8.74e-001

ASOS_BF1 −4.41e+000 −3.29e+000 −2.43e+000 −3.29e+000 5.40e-001

ASOS_BF2 −5.42e+000 −3.31e+000 −2.30e+000 −3.42e+000 7.56e-001

ASOS_BF1&2 −3.46e+000 −2.56e+000 −2.04e+000 −2.59e+000 3.53e-001

BSA −4.37e+000 −2.51e+000 −2.03e+000 −2.71e+000 5.81e-001

ABSA −4.37e+000 −2.51e+000 −2.03e+000 −2.71e+000 5.81e-001

DE −3.91e+000 −2.78e+000 −2.14e+000 −2.84e+000 4.28e-001
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performs better compared to other algorithms. This indicates
the superiority of mISOS in solving this problem in approxi-
mating the global. Thus the above discussion concludes that
the performance of the SaISOS algorithm in solving this prob-
lem is acceptable.

From the above discussion, results, and evaluations, it is
clear that mISOS has improved quality, efficiency, and robust-
ness to solve real-life problems. Also, mISOS may be
reflected as an additional optimizer for real-life problems.

6 Conclusions and future directions

Amodified version of SOS called modification based I-SOS
(called mISOS) algorithm is established to astounded the
weaknesses of the SOS algorithm. The three altered search
approaches called adjusted benefit factor, altered parasitism
phase, and a random weighted number-based search are
engaged in the suggested mISOS algorithm. An altered par-
asite vector is suggested here for advancement in the ex-
ploitability of the parasitism stage in the fundamental SOS
algorithm. To improve the effectiveness of complex struc-
tures of basic SOS, an adaptive benefit factor is introduced.
The random weight number is used to travel the current

form of the organism into other more promising space for
the search. The suggested mISOS have been executed on
twenty test functions. The strength of the mISOS has been
tested by considering dimension 100. The results obtained
by mISOS algorithm is compared with a various existing
algorithm such as SOS, I-SOS, SOS-ABF1, SOS-ABF2,
SOS-ABF1&2 BSA, ABSA, CLPSO, CPSO-H, FDR-
PSO, FI-PS, UPSO, EPSDE, TSDE, CPI-DE, ACoS-PSO
and HBSA. The examination of the outcomes through nu-
merically, statistically and convergence behavior guaran-
tees the prevalent exhibition of the mISOS on a large num-
ber of variable test problems when contrasted with basic
SOS, some improve version of SOS, and some other opti-
mizer. The execution comparison on a few designing engi-
neering test problems illustrates the appropriateness of the
mISOS to real-world engineering applications.

The analysis of the results through convergence behav-
ior and statistical validation ensures the superior perfor-
mance of the mISOS on high-dimensional optimization
problems as compared to conventional SOS, variants of
SOS, and some other recent optimization algorithms. The
performance comparison on several engineering optimiza-
tion test cases demonstrates the applicability of the mISOS
on real-world problems.

Table 16 Tersoff Potential
Function Minimization Problem Algorithm Best Medians Worst Mean SD

mISOS −1.93e+001 −1.36e+001 −1.02e+001 −1.40e+001 2.22e+000

ISOS −1.59e+001 −1.21e+001 −8.77e+000 −1.28e+001 1.70e+000

SOS −1.48e+001 −1.19e+001 −8.56e+000 −1.18e+001 1.69e+000

ASOS_BF1 −1.77e+001 −1.16e+001 −4.66e+000 −1.15e+001 2.48e+000

ASOS_BF2 −1.71e+001 −1.12e+001 −8.39e+000 −1.15e+001 1.92e+000

ASOS_BF1&2 −1.60e+001 −1.11e+001 −8.35e+000 −1.14e+001 1.89e+000

BSA −2.03e+001 −1.32e+001 −1.01e+001 −1.33e+001 2.09e+000

ABSA −1.85e+001 −1.35e+001 −1.10e+001 −1.37e+001 1.73e+000

DE

Table 17 Spread spectrum radar polyphase problem

Algorithm Best Medians Worst Mean SD

mISOS 1.76e+000 2.24e+000 2.59e+000 2.25e+000 2.27e-001

ISOS 2.17e+000 2.39e+000 2.59e+000 2.39e+000 1.19e-001

SOS 2.07e+000 2.36e+000 2.65e+000 2.36e+000 1.63e-001

ASOS_BF1 2.04e+000 2.33e+000 2.59e+000 2.31e+000 1.44e-001

ASOS_BF2 2.02e+000 2.34e+000 2.54e+000 2.32e+000 1.49e-001

ASOS_BF1&2 1.90e+000 2.33e+000 2.66e+000 2.35e+000 1.70e-001

BSA 1.81e+000 2.33e+000 2.58e+000 2.27e+000 2.16e-001

ABSA 1.90e+000 2.32e+000 2.60e+000 2.30e+000 1.64e-001

DE 2.01e+000 2.33e+000 2.59e+000 2.31e+000 1.63e-001
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As the suggested mISOS illustrate its productivity and un-
wavering quality in solving the problem with large number of
variable, it can subsequently be utilized within the future to
execute complex non-linear problem. Later on, the mISOS
can likewise be extended by some fundamental alterations to
solve the discrete, constrain, and multi-objective test problem.
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Nomenclature SOS, Symbiotic Organisms Search; mISOS,
Modification Based Improved Symbiotic Organisms Search; GA,
Genetic Algorithm; PSO, Particle Swarm Optimization; DE,
Differential Evolution; BBO, Biogeography-Based Optimization; HS,
Harmony Search; GSA, Gravitational Search Algorithm; WCA, Water
Cycle Algorithm; BSA, Backtracking Search Optimization Algorithm;
EA, Evolutionary Algorithm; SOS-VNS, Hybrid Symbiotic Organisms
Search Algorithm With Variable Neighbourhood Search; ATSP,
Asymmetric Traveling Salesman Problem; VNS, Variable
Neighbourhood Search; A-CSOS, Competitive Ranking-Based
Symbiotic Organisms Search Algorithm; ORPD, Optimal Reactive
Power Dispatch; ISOS, Improved Symbiotic Organisms Search
Algorithm; SASOS, Simulated Annealing Based Symbiotic Organism
Search; DOCR, Directional Overcurrent Relay (DOCR) Problems;
MQSOS, Symbiotic Organism Search Algorithm With Multi-Group
Quantum-Behavior Communication Scheme; OSOS, Oppositional
Symbiotic Organisms Search Optimization; ESOS, Enhanced
Symbiotic Organisms Search Algorithm; CSOS, Complex-Valued
Encoding Symbiotic Organisms Search Algorithm; MSOS, Modified
Symbiotic Organisms Search; QOBL, Quasi-Opposition-Based
Learning; CLS, Chaotic Local Search; QOCSOS, Quasi-Oppositional-
Chaotic Symbiotic Organisms Search Algorithm; SQI, Simple
Quadratic Interpolation; HSOS, Hybrid Symbiosis Organisms Search;
BF1 and BF2, Benefit Factors; SOS-ABF1,2,1&2, Adaptive Symbiotic
Organisms Search; I-SOS, Improved Symbiotic Organisms Search
Algorithm; ABSA, Adaptive Backtracking Search Algorithm; CLPSO,
Comprehensive Learning Particle Swarm Optimizer; CPSO-H,
Cooperative Approach To Particle Swarm Optimization; FDR-PSO,
Fitness-Distance-Ratio Based Particle Swarm Optimization; FI-PS,
Fully Informed Particle Swarm; UPSO, A Unified Particle Swarm
Optimization Scheme; EPSDE, Differential Evolution Algorithm with
Ensemble Of Parameters And Mutation Strategies; TSDE, Differential
Evolution with A Two-Stage Optimization Mechanism; CPI-DE,
Cumulative Population Distribution Information In Differential
Evolution; ACoS-PSO, An Adaptive Framework To Tune The
Coordinate Systems In Particle Swarm Optimization Algorithms;
HBSA, Hybrid Backtracking Search Optimization Algorithm
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