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Abstract
Multi-task learning (MTL) obtains a better classifier than single-task learning (STL) by sharing information between tasks
within the multi-task models. Most existing multi-task learning models only focus on the data of the target tasks during
training, and ignore the data of non-target tasks that may be contained in the target tasks. In this way, Universum data can
be added to classifier training as prior knowledge, and these data do not belong to any indicated categories. In this paper,
we address the problem of multi-task learning with Universum data, which improves utilization of non-target task data. We
introduce Universum learning to make non-target task data act as prior knowledge and propose a novel multi-task support
vector machine with Universum data (U-MTLSVM). Based on the characteristics of MTL, each task have corresponding
Universum data to provide prior knowledge. We then utilize the Lagrange method to solve the optimization problem so as
to obtain the multi-task classifiers. Then, conduct experiments to compare the performance of the proposed method with
several baslines on different data sets. The experimental results demonstrate the effectiveness of the proposed methods for
multi-task classification.
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1 Introduction

Traditional machine learning always focuses on learning a
model from one task, which can be called as single-task
learning [1–3]. However, we can meet the learning case
in which the data come from several domains, and each
domain data have similar distribution with each other. We
then need to build a model catering for the multi-task data,
in which each task can help other tasks to build its predictive
model. This is always called multi-task learning [4, 5].
Compared with single-task learning, multi-task learning can
make better use of the information contained in related
tasks to help build the model. To date, multi-task learning
has been successfully used in many applications, such as
in speech recognition [6], natural language processing [7],
images recognition [8]. For example, in images recognition,
the work in [9] uses a multitasking learning framework to
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build models that take advantage of various types of tag
information to represent clothing images in a more granular
way.

Over the years, quite a number of MTL methods
are proposed, and they can be broadly grouped into the
categories of SVM-based methods [10, 11], neural work-
based methods [12, 13], and Bayesian based methods
[14, 15]. For the SVM-based methods, each task shares
a common parameters for the classifier, and builds a
classifier similarly. For example, the work in [16], combines
�2,1norm-regularization and hinge loss function to deal with
feature selection problem. For the neural network-based
method, each task has shared hidden neurons, and features
in shared neurons are allowed to be used by other tasks
to promote joint learning. For example, in the work [17],
the authors use modular knowledge representation instead
of hidden neurons to promote neural network multi-task
learning. From the perspective of Bayesian-based methods,
authors apply Bayesian optimization to parameter tuning
to achieve better multitasking learning. A normal example
is [18], Pearce et al. combine Bayesian optimization with
Gaussian process to take advantage of covariance in task and
parameter space to obtain optimal parameters. Compared
with single-task learning methods, multi-task learning can
train multiple models at the same time, and these models
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influence each other to improve generalization performance.
Even if there is only one goal to solve the problem, the
auxiliary model in multi-task learning can still improve the
performance of the target task model. Although multi-task
learning is widely used, the training of the model requires a
lot of data, the computational complexity is high, and useful
information is easily lost in the training process.

In real life, the datasets of many problems are multiple
tags, most of them used for multitasking learning model
training contains only positive and negative labels. Those
that do not belong to any positive or negative label are
called Universum data [19, 20]. Though Universum data
does not belong to the indicated classes, they belong
to the same domain as the problem of interest and are
helpful for the target problem. Unlike semi-supervised
unlabeled data, Universum data does not belong to indicated
labels. As shown in Fig. 1, when the model do not use
Universum data, some samples are misclassified by the
dotted hyperplane. However, with the help of Universum
data, the classifier hyperplane is refined and can correctly
classify the misclassified samples [21]. The main advantage
of Universum learning is that Universum data is easy
to obtain, and the prior knowledge provided can better
improve the performance of the model, and has good
performance in some classification problems. For example,
in text classification [22], Liu et al. use confidence as an
aid to incorporate Universum data into the learning process
and design a Universum logistic regression method to solve
the problem of text classification. In graph classification,
Pan et al. [23] propose a mathematical programming
algorithm called ugBoost, which integrates discriminative
subgraph selection and margin maximization into a unified
framework to fully exploit the Universum data. Then,
Richhariya et al. [24] use Universum data generated based
on data information entropy to improve the effect of the
human face recognition model.

In this paper, we use SVM-based methods to reduce
the computational complexity of multi-task learning, and
use Universum learning to discover hidden information in

Fig. 1 Description of the influence of Universum on classification
tasks

the training set. Considering the characteristics of multi-
task learning, we assign a priori knowledge encoded by
Universum to each task to improve data utilization. In
addition, the existing methods combined with Universum
are oriented to single-task learning. Considering the wide
study and applications of multi-task learning, it is necessary
to study the problem of multi-task learning with Universum
data, and Universum learning can improve the data
utilization rate of multi-task learning. In all, the main
contribution of our work can be summarized as follows:

• In order to construct prior knowledge about data dis-
tribution in multi-task classification, we incorporate
Universum learning into multi-task learning and pro-
pose U-MTLSVM method. The proposed model uses
a hard parameter μ to associate each task together. In
order to make full use of Universum data, which is
applied to encode prior knowledge information of the
training set, each task has corresponding Universum
data. Then, we construct a hyperplane based on the orig-
inal data and Univerusm data, and make the Universum
data located near the hyperplane to obtain an accurate
classifier.

• In order to optimize the Universum multi-task classifier
with Universum data, we use the Lagrangian multipli-
cation to convert the source objective model into its dual
problem, and then optimize the model to obtain the clas-
sifier with help of the Universum data. U-MTLSVM
not only integrates the information in the original sam-
ple, but also integrates the information implicit in the
Universum sample into the model, which improves the
data utilization rate and the generalization ability of the
model. In this way, we can handle the multi-task classi-
fication problem when the Universum data is available
in practice.

• We conduct extensive experiments to evaluate the
performance of our proposed U-MTLSVM framework.
The experimental results show that our method is better
than the state-of-the-art MTL methods in terms of
performance and sensitivity to noise.

The rest of this paper will be arranged as follows:
Section 2 introduces related works of Universum learning
and MTL. The proposed algorithm will be discussed in
Section 3. The Section 4 is the experiment and result
analysis. The conclusion and future work are given in
Section 5.

2 Related work

In this section, we will introduce the related work of
Universum learning and multi-task learning.
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2.1 Universum learning

Universum data, containing multiple class labels, is first
proposed by Vapnik [19], which allows one to encode prior
knowledge by representing meaningful concepts in the same
domain as the problem at hand. They also design a new
algorithm called support vector machine with Universum
data to leverage Universum data by maximizing the number
of observed contradictions, which is an alternative capacity
concept to the large margin approach [20]. The first
Universum learning method is proposed by J.Weston et al.
[25]. In the training process of the binary classification
problem, they take a set of labeled samples and a set
of unlabeled samples that do not belong to any target
category as input information. Unlabeled samples are called
Univerusm samples, which should be collected to reflect
information about the domain of target problem. The
experiment proves that the Universum sample can improve
the performance of the model. The work in [26] illustrates
that Universum learning has a filtering effect in the model
training process. For < x, x∗ > in the dual equation,
the training sample x suppresses the features specified
by Universum sample x∗ under the action of Universum
learning.

At present, the most research on Universum data is the
traditional supervised learning based on SVM. On the basis
of USVM, Qi et al. [27] introduce a more flexible U-
NSVM to make better use of prior knowledge embedded
in Universum data. A new twin support vector machine
with Universum data (called U-TSVM) [21] is proposed.
This method uses two non-parallel hyperplanes to construct
the final classifier, and then the model assigns positive
or negative class labels to the two hyperplanes based
on their proximity to the samples. The Universum data
in U-TSVM is determined by two hinge loss functions,
located in non-parallel insensitive loss tubes. Afterwards,
based on U-TSVM, Uv − T SV M [28] and SUSVM
[29] are proposed. Besides, the researchers also study
the selection of Universum data to make the classifier
perform better. Chen et al. [30] use new methods to pick
useful Universum samples, which are defined as informative
examples named in-between Universum examples, and
apply them to semi-supervised learning. In the method
proposed by Dhar et al. [31], authors add cost-sensitive
learning to USVM and select suitable Universum data to
reduce the misclassification cost of the classifier. The safe
sample screening rule (SSSR) [32] is used in USVM to
reduce computational cost.

In addition to SVM-based methods, Universum data is
also used in other machine learning methods. In semi-
supervised learning, Zhu et al. [33] introduce Universum
learning to construct prior knowledge through the weights
of views and features. This prior knowledge construction

method makes full use of labeled and unlabeled sample.
For multi-view learning, Chen et al. [34] combine CCA
with Universum learning for multi-view learning and
propose a method named UCCA. Wang et al. [35] exploit
Universum data to gain a priori knowledge of the entire
data distribution, which can improve the performance of
MVL. In unsupervised learning, Deng et al. [36] design a
novel unsupervised domain adaptation model to improve
the performance of the systems evaluated in mismatched
training and test conditions in deep learning. In multi-class
learning, Songsiri et al. [37] present a method based on
one-versus-one strategy, which aims at choosing the useful
Universum data to build an effective binary classifier.

2.2 Multi-task learning

Since, the previous machine learning always focuses on
single-task learning, it is easy to overlook other information
that might help optimize the metrics. Specifically, the
information may come from the training signals of the
relevant tasks. By sharing the representations between
related tasks, the model can be made to better summarize
the original tasks. This method is called multi-task learning
(MTL) [38].

There have been many MTL models that have been
proposed, and their effects are much better than those
without MTL. Fawzi et al. [39] uses multi-task learning
to share transfer functions between models, reducing the
complexity of the model and simplifying the exploration
of the corpus. The work in [40], applies MTL to multiple
robot with the goal of finding specific hazardous targets in
an unknown area. Khosravan et al. [41] propose a multi-task
CNN to deal with false positive (FP) nodule reduction and
nodule segmentation. Wen et al. [42] use MTL to to train
two-way recurrent neural networks for DNN-based speech
synthesis. In the field of identity recognition, MTL also
plays a considerable role [43–45]. Zhi et al. [46] propose
lightweight volumetric multi-task learning model to reduce
computing costs to solve real-time 3D image recognition
problems.

The basic idea of the multi-task learning method is
to share data between various tasks through hard or soft
parameters. For example, the work in [47] applies multi-task
learning to predict network-wide traffic speed. The model
uses a set of hard parameters to share information between
various links, and employ Bayesian optimization to tune
the hard parameters of the MTL model. Huang et al. [48]
uses two hierarchical Bayesian models as soft parameters
to express the data correlation of each task, which improve
the learning ability of the model. In addition, Zhang et al.
[49] propose a multi-task multi-view clustering algorithm
based on Locally Linear Embedding (LLE) and Laplacian
Eigenmaps (LE). The model maps the information from
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multiple perspectives of each task to a common space, and
then transforms it into a different task space, and finally uses
k-means for clustering. A low-rank shared structure is used
to model the sharing information across tasks [50]. A multi-
stage multi-task feature Learning (MSMTFL) algorithm is
designed by Gong et al. [51], and it aims at solving the non-
convex optimization problem. Li et al. [52] design a new
strategy to measure the relatedness that jointly learns shared
parameters and shared feature representations. Yousefi et al.
[53] propose a multi-task learning model using Gaussian
processes, which can mine useful information in aggregated
data.

In summary, the existing multi-task learning methods
mostly optimize the multi-task learning problem by
optimizing the task relationship parameters or feature
sharing parameters. Under the premise that Universum data,
which can provide prior knowledge, has a good effect in
the field of machine learning. In this paper we target at
starting from the task relationship parameters and using the
Universum data to embed the prior knowledge to build a
new multi-task learning model.

3 U-MTLSVM

In this section, we first present the definition of MTL
with Universum data, and then propose our U-MTLSVM
method. At the end of this section, we make an analysis of
the proposed model.

3.1 Definition of MTL with universum data

For the multi-task problem, we have T training tasks, and
assume the set St = {(x1t , y1t ), ..., (xnt , ynt )}(t = 1, ..., T )
store the labeled samples for the t th task, and set S∗

t =
{x∗

1t , ..., x∗
mt } contain the Universum data for the t th task.

In St , xt comes from the total data set, yt ∈ {+1, −1}.
For the task i, we assume that the function ft = wt · φ(x)

is a hyperplane, where φ(·) means data x is mapped from
input space to a feature space. For this task, we expect
to build the classifier based on the labeled positive and
negative examples as well as the Universum data of this task.
However, there always exist relationship among the multi-
tasks, which means the multi-task data can help to train a
classifier for each individual task. In this kind, for every task
t ∈ {1, 2, ..., T }, we define:

wt = w0 + vt (1)

In which wt is the normal vector for the decision hyperplane
and consists of two parameters. The first parameter is the

common mean vector w0 shared by all tasks. And the second
parameter is the specific vector vt for a specific task.

3.2 Multi-task SVMwith universum data

In this section, we will detail the U-MTLSVM method.
Supposed that we have an MTL problem with Universum
data, we then introduce the Universum data into multi- task
learning as follow:

min :
ω0,vt ,ψut ,ψ

∗
ut ,ξit

1
2‖w0‖2 + 1

2μ
T∑

t=1
‖vt‖2 + C

m∑

i=1

T∑

t=1
ξit

+D
U∑

u=1

T∑

t=1
(ψut + ψ∗

ut )

s.t .
yit (w0 + vt ) · φ(xit ) ≥ 1 − ξit

(w0 + vt ) · φ(x∗
ut ) ≥ −ε − ψut

(w0 + vt ) · φ(x∗
ut ) ≤ ε + ψ∗

ut

ξit ≥ 0, ψut ≥ 0, ψ∗
ut ≥ 0.

(2)

• T represents the number of tasks, m represents the
amount of data in the t th task, and U represents the
amount of Universum data in the t th task. Parameter μ

is the non-negative trade-off parameter, which controls
preference of the tasks. Specially, If μ → 0, all tasks
will be learned as the same task. C and D are penalty
parameters for task data and Universum data. ξit is the
corresponding slack variable. ψut and ψ∗

ut denotes the
slack variable for Universum data.

• The second and third constrains means the Universum
data should be located in the insensitive region between
hyperplanes. Parameter ε is defined by user.

The prior knowledge constructed by Universum learning
is similar to Bayesian priors. Compared to prior distribution
defined by parameters, it is much easier to use Universum
learning to encode prior knowledge through a set of
examples. Although, the prior knowledge provided by
Universum learning is given by a series of data, they
do not affect the distribution of training data. Therefore,
we combine Universum learning with multi-task learning,
and build prior knowledge through Universum samples to
improve the generalization ability of the multi-task learning.

3.3 Optimization

Problem (2) is a quadratic programming problem. We
exploit the Lagrangian multiplication and KKT conditions
to optimize problem 2. We first construct Lagrange
equation, and each constraint should be connected with a
Lagrange multiplier. So we set αit , βit , γit , θit , �it , ηit as
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the Lagrange multipliers of (2). The Lagrange function can
be shown as follow:

L(ε) = 1
2‖ω0‖ + 1

2μ
T∑

t=1
‖vt‖

+C
m∑

i=1

T∑

t=1
ξit + D

U∑

u=1

T∑

t=1
(ψut + ψ∗

ut )

−
m∑

i=1

T∑

t=1
αit [yit (ω0 + vt ) · φ(xit ) − 1 + ξit ]

−
U∑

u=1

T∑

t=1
βut [(ω0 + vt ) · φ(x∗

ut ) + ε + ψut ]

+
U∑

u=1

T∑

t=1
γut [(ω0 + vt ) · φ(x∗

ut ) − ε − ψ∗
ut ]

−
m∑

i=1

T∑

t=1
θit ξit −

U∑

u=1

T∑

t=1
�utψut −

U∑

u=1

T∑

t=1
ηutψ

∗
ut

(3)

According to KKT conditions, we solve the Lagrange
equation by differentiating parameter ω0, vt , ξit , ψut , ψ∗

ut

and setting the differential equation into 0:

∂Ł

∂ω0
= ω0 −

m∑

i=1

T∑

t=1

αityitφ(xit ) −
U∑

u=1

T∑

t=1

βutφ(x∗
ut )

+
U∑

u=1

T∑

t=1

γitφ(x∗
ut ) = 0 (4)

∂Ł

∂vt

= μvt −
m∑

i=1

T∑

t=1

αityitφ(xit ) −
U∑

u=1

T∑

t=1

βutφ(x∗
ut )

+
U∑

u=1

T∑

t=1

γitφ(x∗
ut ) = 0 (5)

∂Ł

∂ξit

= C − αit − θit = 0 (6)

∂Ł

∂ψut

= D − βut − ηut = 0 (7)

∂Ł

∂ψ∗
ut

= D − γut − �ut = 0 (8)

Then we can get the polynomial about each parameter
and return them to the original Lagrangian equation. To
simplify the representation of the dual form, we set a
function Kst < x, y >= (δst + 1

μ
)x · y, where δst (s,t =

1,...,T) is the kronecker delta function. Finally, the dual form

is shown as follow:

max :
α,β,γ

− 1

2

m∑

i=1

T∑

s=1

m∑

j=1

T∑

t=1

αisyisαjtyjtKst <xis, xjt >

− 1

2

U∑

i=1

T∑

t=1

U∑

j=1

T∑

s=1

βitβjsKst < x∗
it , x

∗
js >

− 1

2

U∑

i=1

T∑

t=1

U∑

j=1

T∑

s=1

γitγjsKst < x∗
it , x

∗
js >

−
m∑

i=1

T∑

t=1

U∑

j=1

T∑

s=1

αityit γjsKst < xit , x
∗
js >

+
m∑

i=1

T∑

t=1

U∑

j=1

T∑

s=1

αityitβjsKst < xit , x
∗
js >

+
U∑

i=1

T∑

t=1

U∑

j=1

T∑

s=1

βitγjsKst < x∗
it , x

∗
js >

+
m∑

i=1

T∑

t=1

αit − ε

U∑

j=1

T∑

t=1

βjt − ε

U∑

j=1

T∑

t=1

γjt

s.t . 0 ≤ αit ≤ C, 0 ≤ βjt ≤ D, 0 ≤ γjt ≤ D (9)

In all, the U-MTLSVM algorithm is shown in Algorithm
1. The first step of the procedure is that we are given
multi-task data, and we set the target task and associated
tasks. Then, the Universum data is divided into the same
number of tasks, ensuring that each task has a corresponding
Universum data to provide prior knowledge. The next step
is to determine μ, C, D, and solve QP with dual form (5),
obtain αit , βjt , γjt to calculate w0 and vt . Meanwhile, the
label of a new sample x in the t th task can be determined by:

ft (x) = sgn[(w0 + vt ) · φ(x)] (10)

If ft (x) < 0, then the label of sample x is predicted to be
negative. If ft (x) > 0 , the label of sample x is predicted to
be positive.

According to (9), despite the addition of Universum data,
the dual form of U-MTLSVM is still dominated by the
inner product of two feature matrices, so its time complexity
is O((s + m)3) (s is the number of training samples, m
is the number of Universum samples). From (1), (4) and
(5), the hyperplane coefficient is not only controlled by
the hard parameter μ. The item < xit , x

∗
js > makes the

Universum data refine the multi-task data. Constraints 2 and
3 limit the Universum data to fall near the hyperplane of the
corresponding task.
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4 Experiment

In this section, to assess the effectiveness of the proposed
method, four baselines and four different data sets are used
in the experiments. All the experiments are performed on a
computer with a 2.8 GHz processor and 8GB D-RAM under
the windows 10 system.

4.1 Baselines

In this section, we briefly introduce the baselines which are
used into experiment.

• IUTSVM [54]: On the basis of UTSVM, this method
makes the matrix in the optimization problem non-
singular by adding a regularization term.

• USVM [25]: This method adds Universum data that can
provide prior knowledge to the SVM and has achieved
better performance in pattern recognition.

• SUSVM [29]: The author formulates SUSVM as a pair
of linear programming problems instead of quadratic
programming problems (QPPs) to reduce computing
time.

• MTLSTWSVM [55]: This method combines multi-
task learning and least squares learning to solve pattern
recognition problem.

• HGPMT [56]: This method is a MTL model which
jointly learns the latent shared information among tasks,
and does not need to involve the cross covariance.

4.2 Data sets and settings

We used the following data set to compare the proposed
method with other methods.

• 20Newsgroups1 contains several top categories, such
as “comp”, “rec”, “sci”, etc. Under the main categories,
there are 20 sub-categories where each subcategory has
1,000 samples.

• Reuters-215782, is collected form Reuter news wire
articles, and is organized into five top categories:
“exchanges”, “orgs”, “people”, “place”, “topic”, and
each category includes variable sub-categories.

• Web-KB3 contains WWW-pages collected from com-
puter science departments of various universities, which
has 8,282 pages and are manually classified into 7
categories: “course”, “department”, “faculty”, “other”,
“project”, “staff”, “student”.

• Landmine4 consists of mine locations in 29 minefield
areas, where the mine location in each area is
represented by a 9-dimensional vector feature, and each
area corresponds to a task. The first 15 regions are
highly foliated, and the last 14 regions are bare earth or
deserted.

For data sets with hierarchies structure, we use the
following arrangements for data set process in order to
achieve better and more fair experimental results. We select
several subcategories from one top category as positive sub-
data set (such as A(1), A(2), A(3) as the three classes
from top category A) and the same number of positive
sub-data set subcategories from another top category as
negative sub-data set (such as B(1), B(2), B(3) as the three
classes from top category B). Therefore, the multi-tasks
are considered to be related since the positive classes and
the negative classed belong to the same top categories.
For example, in 20Newsgroups, to construct the data set
(denoted as dataset1), we select 3 subcategories (“graphics”,
“os.ms-windows”, “windows”) from top category “comp”
as positive sub-data set, and select 3 subcategories (“med”,
“crypt”, “space”) from “sci” as negative sub-data sets. We
then can have a three-task data set, the task one regards the
“graphics” and “med” for positive class and negative class,
respectively; task two regards the “os.ms-windows” and
“crypt” for positive class and negative class, respectively;
task three regards “windows” and “space” for positive class
and negative class. In addition, each data is represented as a
binary vector of the 200 most characteristic words extracted
by Alzaidy’s keyphrase extraction method [57].

Since, there is no hierarchy in the landmine data set,
according to [51], we make the following arrangements for
it. Since, negative labels in landmine are much more than
positive labels, so we first remove some negative samples to

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/webkb-data.gtar.gz
4http://people.ee.duke.edu/ lcarin/LandmineData.zip
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reduce the imbalance. As a result, the data from the same
type of region can be considered as related, and different
area types are irrelevant. We choose 4 areas from highly
foliated region as positive sub-data set, and choose 4 area
from bare earth or deserted region as negative sub-data set
to build experimental data sets.

The text data we use generally does not contain
Universum data, according to [25] and [21], we use Urest

Universum data construction method, with the appropriate
number of subcategories other than positive and negative
sub-data set as Universum data. For example, a data
set contains 20 categories, 5 categories are used as
classification tasks, 15 of the rest categories are used as
Universum data (denoted datau). For landmine data set,
according to [51], we use the rest areas data as Universum
data. In all, the dat sets are listed in Table 1.

4.3 Experiment settings

The experimental algorithms basic configuration will be
arranged as follows. For the SVM-based methods, we use
the linear kernel functon k(xi, xj ) = xi ·xj , which performs
well in text classification [58]. Since the data sets in this
experiment are all text classification data sets, most of these

classification problems are linearly separable. In addition,
there are many features in these data sets, and there is no
need to use other kernels to map the text features to a more
higher-dimensional space. In addition, the processing speed
of using linear kernels in text classification problems is
faster. In our U-MTLSVM method, parameter μ is chosen
from 10−3 to 103. The parameter which controls the tradeoff
between Universum data in Universum-based methods
is chosen from 10−3 to 103. The other regularization
parameters in SVM-based methods are chosen from 10−3 to
103. In HGPMT, Squared Exponential kernel is used in this
experiment.

For the data set, we use five-folder cross-validation to
avoid sampling bias in the experiments, where four folds are
selected as the training set, and the other one is considered
as the testing set at each round.

4.4 Performance comparison

In this section, we compare the performance of U-
MTLSVM and all the baseline methods. Table 2 shows
the average accuracies, standard deviations and p-value on
the 15 sub-data sets. P-value is calculated by performing
a paired T-test of all other classifiers with U-MTLSVM

Table 1 Description of data sets

Sub-dataset Data set Task number Positive sub-dataset Negative sub-dataset Universum

dataset1 20Newgroups 3 comp.{graphics,
os.ms-
windows,windows}

rec.{med,crypt,
space}

20Newgroups(1)u

dataset2 20Newgroups 3 rec.{autos,
motorcy-
cles,baseball}

sci.{crypt,electronics,
med}

20Newgroups(2)u

dataset3 20Newgroups 3 talk.{politics.gun,
poli-
tics.mideast,politics.misc}

comp.{pc.hardware,
mac.hardware,graphics}

20Newgroups(3)u

dataset4 Web-KB 2 course(1) department(1) Web − KB(1)u

dataset5 Web-KB 2 faculty(1) project(1) Web − KB(2)u

dataset6 Web-KB 2 staff(1) student(1) Web − KB(3)u

dataset7 Landmine 4 landmine.f(1) landmine.b(1) Landmine(1)u

dataset8 Landmine 4 landmine.f(2) landmine.b(2) Landmine(2)u

dataset9 Landmine 4 landmine.b(3) landmine.f(3) Landmine(3)u

dataset10 Landmine 4 landmine.b(4) landmine.f(4) Landmine(4)u

dataset11 Reuters-21578 5 exchanges.{amex,klce,mise,
ipe,ose}

orgs(1).{aibd,bis,eib, ilo,imf} Reuters(1)u

dataset12 Reuters-21578 5 topics.{carcass,fishmeal,gold,
jobs,rice}

places.{angola,benin,chile,
fiji,laos}

Reuters(2)u

dataset13 Reuters-21578 5 people.{amato,blix,eser,
grosz,vancsa}

topics.{money-fx,lei,cpu,
oilseed,sugar}

Reuters(3)u

dataset14 Reuters-21578 5 places.{sumita,zak,walsh,
ozal,keating}

exchanges.{fox,mnse,cboe,
ase,mose}

Reuters(4)u

dataset15 Reuters-21578 5 topices.{ship,silk,trade,
lead,lumber}

orgs.{escap,icco,itc,
un,worldbank}

Reuters(5)u
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Table 2 Accuracy obtained by USVM, IUTSVM, SUSVM, MTLSTWSVM, HGPMT and U-MTLSVM

Sub-dataset USVM IUTSVM p-value SUSVM p-value MTLSTWSVM HGPMT U-MTLSVM

p-value p-value p-value p-value p-value

dataset1 70.4±1.2 74.2±1.6 72.1±2.1 75.4±1.7 77.9±1.8 78.3±0.9

0.032 0.025 0.014 0.029 0.018

dataset2 71.2±1.5 73.0±1.2 72.5±1.8 75.9±1.3 78.2±1.2 77.8±1.4

0.015 0.038 0.026 0.041 0.024

dataset3 72.8±1.9 76.5±2.1 75.1±2.0 78.4±1.8 79.6±1.5 80.5±1.7

<0.001 0.028 <0.001 0.019 0.037

dataset4 72.5±1.1 77.5±1.5 76.3±1.7 80.1±1.2 79.9±1.4 79.0±0.9

0.041 0.021 0.029 0.039 0.018

dataset5 77.5±1.6 81.9±1.3 80.8±2.0 81.7±1.8 83.1±1.6 84.1±1.5

0.009 0.014 0.019 0.027 0.031

dataset6 76.3±1.2 79.7±2.0 78.1±1.6 81.2±1.3 83.0±1.1 83.8±1.4

0.022 0.39 0.028 0.004 0.017

dataset7 79.4±1.4 82.4±1.3 80.9±1.4 84.3±1.5 85.3±1.2 85.9±1.6

0.018 0.043 <0.001 0.020 0.036

dataset8 78.4±2.0 82.5±0.8 81.6±1.0 83.1±1.4 86.0±1.3 86.6±0.7

0.018 <0.001 0.021 0.042 0.028

dataset9 79.5±1.6 83.7±1.6 82.2±1.2 86.8±1.7 87.5±1.4 86.1±1.3

0.037 0.0032 0.026 0.042 0.039

dataset10 78.6±1.2 82.4±0.6 80.7±2.0 83.1±1.1 86.2±1.5 87.8±1.2

0.014 0.027 0.035 0.013 0.026

dataset11 79.4±1.7 82.9±1.2 81.6±0.9 84.7±0.7 85.3±1.6 86.7±1.9

0.015 0.041 0.040 0.024 0.018

dataset12 78.3±2.1 81.8±1.4 82.3±1.8 84.4±1.3 86.9±1.7 86.3±1.5

0.021 0.015 0.028 0.031 <0.001

dataset13 80.0±2.3 82.5±0.8 81.4±1.5 85.1±1.6 87.4±1.2 87.2±1.1

0.016 0.030 0.021 0.006 0.013

dataset14 79.4±1.4 82.9±1.3 82.0±0.8 83.2±1.8 85.3±1.4 86.5±1.4

0.009 0.025 0.037 0.035 0.043

dataset15 82.5±1.7 84.1±1.2 85.0±1.2 87.3±1.4 88.6±0.7 87.0±1.7

0.033 0.046 <0.001 0.029 0.010

under the assumption that there is no difference between all
classifications.

From Table 2, we can observe that U-MTLSVM always
performs better than baselines. For example, on dataset1, the
accuracy of USVM, IUTSVM, SUSVM, MTLSTWSVM,
HGPMT are “70.4”, “74.2”, “72.1”, “75.4”, “77.9”,
respectively. However, the proposed U-MTLSVM method
can achieve the accuracy at “78.3”, which performs better
than other baselines. This occurs because U-MTLSVM adds
Universum data to the process of model learning, helping
to modify the classification decision boundaries. On the
other hand, as the number of tasks increases, the multi-task
approach is better than the single-task approach. In addition,
the single-task with Universum data method USVM obtains
less performance than the proposed MTLSVM method.
Moreover, because of the nature of multi-task learning, the

combination of data with Universum data can make full use
of training data. Therefore, U-MTLSVM performs better
than other multi-task baselines.

The standard deviation in this experiment is to describe
the accuracy drift of the model in different data sets. As
can be seen from Table 2, U-MTLSVM has a smaller
standard deviation than most other baselines in most data
sets, indicating that U-MTLSVM can deliver more stable
performance.

In addition, in order to demonstrate the difference
between our proposed method and other baselines, we use
the p-value calculated by t-test to reflect this difference. The
t-test uses the t-distribution theory to infer the probability
of a difference occurring, thereby comparing whether the
difference between the two means is significant. If the p-
value is below the confidence interval of 0.05, there is
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a significant difference between U-MTLSVM and other
baselines. Otherwise there is no obvious difference between
them. As can be seen from Table 2, we can observe the
p-value of the proposed U-MTLSVM method over each
baselines is almost less than the confidence level 0.05. For
example, in dataset15, the p-values of the five baselines are
all below 0.05. This shows that the U-MTLSVM method
using Universum data can provide better performance than
other baselines.

4.4.1 Performance on different noise levels

We investigate the sensitivity of USVM, IUTSVM,
SUSVM, MTLSTWSVM, HGPMT and U-MTLSVM to
data noise. Similar with the operation [59], we add the noise
into the input data as follows. We randomly select data from
the third major category as noise and add it to each classi-
fication task data in a certain proportion. Take dataset1 as
a example: we choose noise data from top category “sci”,
then add them to the positive and negative sub-data sets in
dataset1 according to a certain ratio. Take dataset1, dataset5,
dataset8, dataset14 as examples, we add the noise and per-
form the methods on them. Figure 2 illustrates the variation

of accuracy when the percentage of noises increases from
0% to 40% on 4 sub-data set. The x-axis stands for the
percentage of noises added to the training data. The y-axis
represents the average accuracy. It is easily discover that
under the influence of noise, the accuracy of all models
decreases at the same time. This occurs because as more
noise is added into input data, the difference between the
target category and the non-target category is less due to the
influence of noise. But overall the accuracy of U-MTLSVM
is still higher than other methods in all. This means that
U-MTLSVM is less affected by noise compared with other
methods.

4.4.2 Sensitivity of parameterμ

We test various values of the task-related parameter μ used
in the proposed method to examine its effects. The test
value we set for μ is 0.01, 0.1, 1, 2, 10, 1000. According
to (2), when μ → 0, U-MTLSVM will be similar to
USVM. We assume that all data come from the same task
to correspond to the situation of μ → 0, let all tasks use
one USVM for experiment. We set up individual USVM for
each test task as a reference group for experiments. In this

Fig. 2 Sensitivity to labeling noise of different data set
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experiment, the training sets used in the experiment are all
selected from Table 1, the number of tasks is 5. Dataset12
is chosen as the high similarity training set, and we select 5
data subsets from Reuters-21578 as low similarity training
set. The penalty parameter C is set to 0.1, parameter D is
set to 1, the number of Universum data is set to 200. The
experiment results are shown in Fig. 3. The x-axis stands
for the log(μ) of U-MTLSVM. The y-axis stands for the
average accuracy. Figure 3 illustrates the importance of
choosing μ correctly. If we choose the improper μ, which
will make the model perform worse than solving 5 USVMs.
For example, in Fig. 3a, when the task similarity is high,
choosing a relatively large μ will seriously affect the model
performance.

4.4.3 Universum data volume impact analysis

Through the above experiments, it can be seen that U-
MTLSVM has a good performance in the field of multi-task
learning. Next we will discuss the effect of the size of
the Universum data on the accuracy of the classifier. In
this part of the experiment, we chose dataset1, dataset2,
dataset11, dataset12 as the experimental training set. All
training samples were fixed at 100, and the Universum
samples started from 200 and increased to 1400. The
models participating in the experiment are USVM and
U-MTLSVM, and the experimental results are shown in
Fig. 4. According to Fig. 4, we can clearly see that the
Universum data range from 200 to 800, and the accuracy of
U-MTLSVM and USVM increase significantly. However,
after 800 Universum data, the increase in accuracy slows
down, and after the number reaches 1000, the accuracy
changes tend to be stable. This shows Universum data
can increase the performance as the number of them
increase.

4.5 Running time analysis

In this part, we investigate the running time of U-MTLSVM
and baselines on the data sets, and shown in Fig. 5.
The shortest training time in the figure is IUTSVM,
which is an improved method based on UTSVM, and
the calculation speed of this model is faster than USVM.
Although SUSVM and USVM are single-task learning
methods, their calculation time are not much faster than
MTLSTWSVM. This is because the USVM and SUSVM
have added Universum data, and their processing time
are correspondingly lengthened. Similarly, U-MTLSVM is
also longer than SUSVM and MTLSTWSVM. The longest
training time is HGPMT. The reason for the HGPMT
training time is that the algorithm complexity is high. As
the data set for training becomes larger, the training time
required is longer.

4.6 Impact of different universum samples on the
model

According to [25], we know that different Universum data
has a certain influence on the model, and inappropriate
Universum data will reduce the accuracy of the model.
Therefore, we also perform experiments on different
Universum data types, including Umean, Ugener , Unoise,
which are introduced as follows.

• Umean:Select a word vector from each of the positive
and negative classes of the target tasks, and then
construct the mean of these two vectors as the new word
vector.

• Ugener :Artificial text data is created by generating
new word vectors based on the discrete empirical
distribution of each word vector on the training set.

Fig. 3 Sensitivity of parameter μ
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Fig. 4 The impact of the number of Universum data on the experimental results

Fig. 5 Training time of USVM, IUTSVM, SUSVM, MTLSTWSVM, HGPMT, U-MTLSVM
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Fig. 6 Influence of different Universum data strategies on experimental performance

• Unoise:Universum data composed of randomly gener-
ated text noise data.

We add MTLSVM [60] and Universum data constructed
by the Urest method as the control groups to the experiments
to show the impact of different types of Universum data
on the model. In this experiment, we choose dataset2,
dataset5, dataset9 and dataset13 for the experiment, and all
Universum samples are fixed at 600, and the Universum
samples started from 200 and increased to 600. In
MTLSVM, parameters λ1 and λ2 are chosen from 10−4

to 104 and make sure the ratio λ1
λ2

is less than 100 to
prevent models from being the same. The experimental
results are given in Fig. 6. The Universum data constructed
by the Unoise method has almost no effect on improving the
accuracy of the model. The Univerusm data constructed by
Umean and Ugener both have a good help on the accuracy of
the model, while the univerusm data constructed by Urest

has the greatest improvement on the accuracy of the model.
The possible reason that Unoise is not useful is that the prior
knowledge provided by noise data has nothing to do with
the target tasks, which causes the model to ignore this part
of the data during training.

5 Conclusion

Most existing multitasking learning methods focus only
on task-related data and build links between tasks with
a few parameters. However, the use of data in this way
will result in a lot of information loss. In this paper
we proposed a novel method to solve multi-task learning
problem with Universum data. First we use a parameter
to share the information associated between each task and
the target task. Then, the classifier is constructed on the
premise that each task has corresponding Universum data,
and the classifier is optimized and solved by iteration.
Extensive experiments on the data sets have been conducted
to investigate the performance of our proposed approach.
The statistical results show that U-MTLSVM has a good
performance on multi-task learning problems in the case
of Universum data providing prior knowledge, and is
superior to the classical multi-instance learning methods.
In the future, we plan to study the multi-task learning with
Universum data in the data stream environment.
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