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Abstract

Detecting small objects is a challenging job for the single-shot multibox detector (SSD) model due to the limited information
contained in features and complex background interference. Here, we increased the performance of the SSD for detecting
target objects with small size by enhancing detection features with contextual information and introducing a segmentation
mask to eliminate background regions. The proposed model is referred to as a “guided SSD” (Mask-SSD) and includes
two branches: a detection branch and a segmentation branch. We created a feature-fusion module to allow the detection
branch to exploit contextual information for feature maps with large resolution, with the segmentation branch primarily built
with atrous convolution to provide additional contextual information to the detection branch. The input of the segmentation
branch was also the output of the detection branch, and output segmentation features were fused with detection features in
order to classify and locate target objects. Additionally, segmentation features were applied to generate the mask, which
was utilized to guide the detection branch to find objects in potential foreground regions. Evaluation of Mask-SSD on
the Tsinghua-Tencent 100K and Caltech pedestrian datasets demonstrated its effectiveness at detecting small objects and
comparable performance relative to other state-of-the-art methods.

Keywords Deep learning - Neural network - Object detection - Atrous convolution - Feature fusion

1 Introduction

With the development of convolution neural networks
(CNNs), significant improvements in object detection have
been achieved in both research and application areas. Object
detection is a fundamental task in computer vision and is
widely used in disease diagnosis [1], intelligent security [2],
and autonomous driving [3]. CNN-based object-detection
models are usually divided into two sets: single-stage [4—
6] and two-stage methods [7-9]. These methods have
been trained and evaluated on several open-source datasets,
including PASCAL VOC [10] and COCO [11]; however,
objects in VOC and COCO are usually large. Considering
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the definition of small objects in COCO, the images
containing small objects only occupy 51.82% in COCO, the
small objects account for 41.43% of all objects, while the
large objects account for 24.24% [12]. Most of the objects
in VOC dataset occupy more than 20% of the entire image
[13]. When dealing with small objects, detection methods
trained on large-object datasets might not be suitable. To
better evaluate the performance of methods at detecting
small objects, the Tsinghua—Tencent 100K [14] and Caltech
pedestrian datasets [15] are usually employed. We introduce
these two small-object datasets in Section 5.

Detecting small objects in images is highly challenging.
Compared with large objects, small objects occupy much
fewer pixels in an image, which makes it full of
challenge for CNN models to capture adequate appearance
information [16]. Additionally, complex backgrounds are
another factor that impedes the small-object-detection
performance of CNN methods. As displayed in Fig. 1,
objective traffic signs in the Tsinghua-Tencent 100K dataset
and pedestrians in the Caltech pedestrian dataset are typical
small objects surrounded by a complex background, which
increases the difficulty of the detection process. To address
these challenges, studies have primarily focused on two
areas: (1) trying to enlarge the small regions occupied by
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small objects [17] and (2) attempting to acquire powerful
contextual information by deconvolution [18] or semantic
segmentation [19]. Exploiting contextual information is
preferred by two-stage methods for small-object detection.
Although this can result in a high level of accuracy, it also
scarifies detection speed. Inspired by this result, we present
a method that employs a single-shot multibox detector
(SSD) [5], which is a typical single-stage method with high
detection speed, to detect small objects with the purpose to
reach a suitable trade-off in accuracy and speed.

First, we used larger feature maps of one-fourth sized
of the input image to detect small objects, with the largest
output features of the SSD being one-eighth the size of
the input image. The disadvantage of using shallow (low-
level) feature maps with larger resolution was that they
lacked adequate semantic information. Therefore, we built
a feature-fusion module to transfer semantic information
from high-level layers with small resolution to low-level
layers with large resolution. Second, we explored the poten-
tial of semantic segmentation for small-object detection and
designed a semantic segmentation branch to work in par-
allel with the detection branch. The segmentation branch
influenced the detection process in two ways. The first was
by providing semantic segmentation features to complement
the detection features with additional contextual informa-
tion. The second was that the output mask of the segmenta-
tion branch was able to eliminate background areas, which
limited the search area of the detection branch to possible
foreground regions provided by the segmentation mask. The
proposed mask-guided SSD was named ‘“Mask-SSD”.

We are not the first to consider integrating semantic
segmentation into object-detection algorithms. Mask RCNN
[20] trains the detection branch and instance segmentation
branch in a multi-task style, demonstrating that the instance-
segmentation branch helps improve detection accuracy;
however, Mask RCNN requires segmentation annotation,
which is both cost and labor intensive. In the present study,
we required only box annotation to obtain segmentation
information. Mask-generation module (MGM) [21] builds a
mask based on fully convolution, with mask created to guide
the focus of input images on foreground areas in order to
speed the detection process and enhance detection accuracy.
The method described in the present study differed from
MG, in that our mask-generation architecture was based
on atrous convolution [22]. Another study [19] similar to our
method combined semantic features with detection features
only at the lowest layer of SSD output; however, the method
described in the present study added semantic segmentation
features to the detection features associated with multi-SSD
output layers. Moreover, unlike the segmentation loss in
the previous method [19] that considers class numbers, we
designed the segmentation branch to apply a binary mask
to all foreground areas. Specifically, for any input image,
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the obtained binary mask implied that some positions are
likely occupied by objects, regardless of their class. And
the generated binary mask, which worked as an attention
mechanism [23, 24], guided the model to focus on vital
regions (this will be shown in Fig. 9).

In this paper, the researching work mainly included:

1. We developed a small-object detection method (Mask-
SSD) that comprised a detection branch and a
segmentation branch. A feature-fusion module was
constructed for the detection branch to increase the
contextual information in detection feature maps with
large resolution.

2. We constructed a semantic segmentation branch based
on atrous convolution in order to provide additional
contextual information for the detection branch. Addi-
tionally, the segmentation mask obtained from the
segmentation branch was used to guide the detection
branch to focus on possible foreground areas.

3. Experiments on the Tsinghua-Tencent 100K and
Caltech pedestrian datasets demonstrated that Mask-
SSD was competitive with state-of-the-art methods in
small-object detection.

Specifically, the rest of the paper is arranged as follows.
We introduce related works briefly in Section 2. Section 3
introduces the background. Section 4 describes the proposed
Mask-SSD model. Section 5 mainly shows the performance
of our method, and the last section demonstrates the
conclusion.

2 Related works

In this section, we introduce works related to our proposed
method, including CNN models for genetic object detection
and small-object detection.

2.1 CNN-based genetic object-detection methods

CNN-based object-detection algorithms are usually divided
into two classes, including two-stage methods represented
by RCNN [7], Fast RCNN [8], and Faster RCNN [9].
In two-stage methods, the entire object-detection process
includes stages of “region proposal” that selects regions
possibly containing target objects in an input image and
“detection process” that determines target location and
category. The detection process is based on the proposed
regions; therefore, low speed is their limitation. In early
two-stage methods, region proposal and the detection
process were separate until Faster RCNN combined them
into the same network. The second class is single-stage
methods represented by SSD [5], YOLO [4], and RetinaNet
[6]. Single-stage methods do not include “region proposal”
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(b) Caltech pedestrian dataset

Fig.1 Sample images with small objects and complex backgrounds. a Tsinghua-Tencent 100K, b Caltech pedestrian dataset

and process an input image directly. The advantage of
single-stage methods is speed relative to two-stage methods.

Numerous studies have focused on enhancing the
detection accuracy of single-stage methods. Common
methods include attempting to increase the contribution
of samples that are difficult to classify to total loss as
compared with those that are easy to classify [6], building
deconvolution layers capable of improved exploitation of
information contained in CNN features [18], designing
dynamically generated anchors [25] and considering spatial
relationships among close object instances [26]. For two-
stage methods, previous studies focused on improving
Faster RCNN by using thin feature maps to speed
up the entire detection process [27], retaining position
information to improve localization accuracy [28], adding
a segmentation branch to enhance detection accuracy [20],
alleviating the impact of hard false positives [29], and
applying domain adaptation to address the problem of
samples with insufficient data [30].

2.2 CNN-based small-object-detection methods

Detecting small objects is difficult mainly due to their
occupying fewer pixels of input images. Previous CNN
models have already made effort to address the challenge of
small-object detection. Here, we divide CNN-based small-
object-detection methods into three types.

The first type uses shallow features and enriches them
with semantic information. Cao et al. [31] applied SSD-
based feature fusion by combining the conv4.3 layer
and conv5_3 layer through element-wise summation and
concatenation. Cui et al. [32] described MDSSD, which
forms a new fusion feature by building a skip connection
between high- and low-level features (the lower feature is 4-
fold smaller than the higher one). Hu et al. [33] concatenated
three different scaled CNN features together to form a new
one-dimensional feature, and Zheng et al. [34] showed that
adding context information by deconvolution to shallow
layers (38 x 38, 19 x 19, and 10 x 10) of the SSD model
enhanced its detection performance. Liu et al. [35] proved
that applying deconvolution to high-level features in Faster
RCNN was able to achieve additional context information
for small objects.

The second type enlarges the regions of small objects.
Hu et al. [17] used differently scaled templates designed
according to target size, where templates with 0.5-fold
resolution were used for large objects (> 140 pixels), and a
2-fold resolution template was used to detect small objects
(< 40 pixels). MTGAN [16] utilizes a generator to enlarge
small, blurred region-of-interest images into clear, fine-
scaled images, after which its discriminator provided the
results of classification and bounding-box regression. A
perceptual GAN [36] model focuses on representing small
objects in a way similar to large objects by allowing its

@ Springer



3314

C.Sunetal.

generator to obtain a super-resolved version of small objects
in order to limit the difference between small and large
objects .

The third type combines detection with segmentation.
To better exploit semantic information, Zhang et al.
[19] developed a segmentation branch based on atrous
convolution and designed a global activation module
based on SENet [37], where the input to the semantic
segmentation branch was only the lowest output layer of the
SSD. Wang et al. [21] described a cascade mask-generation
method using a core component (MGM) that eliminated the
background areas of an input image prior to subsequent
stages.

3 Background

3.1 Baseline SSD model

SSD is a typical single-stage CNN method, where
input images are transferred to networks for category
classification and regression of target objects directly. The
goal of the SSD model is uniform sampling at different
locations of an input image using default boxes. The
SSD model works at high speeds due to the single-stage
detection process and is faster and more accurate than
the representative two-stage method Faster R-CNN. SSD
design involves application of differently scaled feature
maps for target-object detection. Specifically, feature maps
of large resolution promote detection of small-sized objects,
whereas feature maps of small resolution promote detection
of large-sized objects. Additionally, the SSD allows
generation of default boxes with different scales and aspect
ratios for each cell of output feature maps. The detection
results of target objects are based on designed default boxes
in order to release the burden of the training process.

3.2 SSD limitations in small-object detection

A previous study [5] showed that SSD is a powerful object-
detection method according to results obtained using the
VOC and COCO datasets, where target objects frequently
have larger sizes. However, for detecting objects with
smaller sizes, SSD continues to show limitations for two
possible reasons. The first is that the features in the use
of locating small targets might lack detailed information
critical to accurately locating small targets. The SSD model
extracts multiple layers to detect target objects, with large-
sized features used to detect small objects. Within the SSD
backbone, subsampling and pooling operations are executed
that cause loss of detailed information. Therefore, even
large-sized feature maps associated with SSD output might
still contain limited detailed information.
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The second reason is that small-sized objects are hard
to detect, even when using the largest output features. The
largest output feature maps in SSD are scaled at one-eighth
the size of the input image. The Caltech pedestrian dataset
includes small-sized pedestrians (height: < 50 pixels). For a
target object sized at 8 x 16 pixels, using the largest output
feature maps results in the corresponding size of the small
object being only 1 x 2 pixels; thus, insufficient information
makes it difficult to classify and locate small targets.

4 The proposed method
4.1 Framework overview

Figure 2 shows the architecture of the proposed Mask-SSD
model. Mask-SSD contains two branches. The detection
branch is similar to that of the original SSD, with difference
resident in the feature-fusion module created for Mask-
SSD. The other branch is a semantic segmentation branch
built with atrous convolution, which regards output features
of the detection branch as input in order to obtain
segmentation features. The output segmentation features
are subsequently fused with the original detection features
and used to classify and locate target objects of an input
image. Compared with the original detection features in
SSD, those in Mask-SSD contain additional contextual
information generated by the feature-fusion module and
semantic segmentation branch to promote the detection of
small objects. Additionally, segmentation features can be
output as binary masks to allow identification of areas
possibly including target objects and alleviate interference
from complex backgrounds.

4.2 Detection branch

We used the SSD architecture for the detection branch. In
the SSD model, multiple layers are output, with shallow
features of large resolution applied to detect small objects
and vice versa. Default boxes are designed for each cell of
all outputted feature maps and critical during the detection
process to allow accurate target detection. In the present
study, we applied k-means clustering to select suitable
default boxes shapes, similar to previous studies [38, 39].
Figure 3 shows the clustering results associated with use of
the Tsinghua—Tencent 100K and Caltech pedestrian training
datasets and a k value of 4.

The largest output feature maps of the SSD model
(resolution: one-eighth that of the input image) might
contain insufficient information for detecting small-sized
objects. In order to address this, we outputted larger feature
maps at one-fourth the size of the input image. However, in
a CNN structure and compared with deeper feature maps,
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Fig.2 Framework of the
Mask-SSD model. BCE loss
represents the binary cross
entropy loss. Bilinear inter
represents bilinear interpolation
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feature maps at one-fourth the size of the input image can
retain more detailed information due to the larger resolution
but lack semantic information, which is beneficial for
classification. Therefore, inspired by a previous method
[31], we built a feature-fusion module to enrich feature
maps with larger resolution (one-fourth of the input image)
with additional semantic information (Fig. 4a). This module
included two structure identical feature-fusion blocks, each
of which fuses feature maps from two adjacent layers.

The feature-fusion blocks (Fig. 4b) apply deconvolution
with a kernel size equivalent to 2 to output features from
a deeper layer with smaller resolution. This is followed by
application of convolution (kernel size: 3 x 3), followed
by batch normalization (BN) and use of a rectified linear
unit (ReLu). For output features in a shallow layer with
larger resolution, atrous convolution (kernel size: 3 x 3;
and dilution: 2) is applied, followed by convolution (kernel
size: 3 x 3) and application of the BN and the Relu layers.
Outputs from the two Relu layers are fused by element-wise
summation.
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4.3 Segmentation branch

The segmentation branch in Mask-SSD is based on atrous
convolution [22], which is widely employed in semantic
segmentation to broaden field-of-view of filters [40]. The
advantage of atrous convolution is its ability to enrich
context information without increasing the number of
parameters. To this end, atrous convolution was selected
to provide additional contextual information for detection
features.

The architecture of the segmentation block is displayed
in Fig. 5. Atrous convolution is applied to the input detection
features three times (kernel size: 1 x 1; stride: 1; and
dilation: 2) followed by use of the obtained segmentation
features in two ways: 1) for a convolution operation
(kernel size: 1 x 1), followed by fusion with the original
detection features by element-wise summation to obtain
fused detection features; and 2) for another convolution
operation (kernel size: 1 x 1), followed by calculation of
binary cross entropy (BCE) loss.

Fig.3 Clustering results for

obtaining suitable default boxes 01301
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Fig.4 Illustration of the feature-fusion module. a Concept of the feature-fusion module, b structure of the feature-fusion block

BCE loss requires an annotated binary segmentation
ground-truth mask. Obtaining segmentation labels is time
and labor intensive; therefore, rather than obtain accurate
segmentation labels, we obtained weak segmentation-
mask labels by regarding the bounding box areas in the
ground-truth bounding-box labels as target objects. All
target objects are considered foreground regions for the
segmentation branch, regardless of the category of the target
object. Pixel regions occupied by an object are labeled as
foreground pixels in the binary mask, the size of which is
the same as that of the input image. Segmentation features
are up-sampled by bilinear interpolation to obtain BCE loss.

4.4 Multi-task loss function

Mask-SSD is trained in an end-to-end manner as a
multi-task detection framework that includes detection and
semantic segmentation branches. The loss of Mask-SSD is
represented by L yrqsk—ssD, as shown in (1):

Lyask—ssp = Lger + )\Lseg (D

where L, is the loss function of the detection branch and
adapted from that used in the original version of the SSD
model [5]. Lg.g is the loss function of the segmentation
branch and calculates BCE loss, with all objects regarded
as foreground, regardless of target-object category. The
symbol A represents a trade-off parameter between the
detection and segmentation branches and was set to 1 in this
study.

4.5 Inference process

In the Mask-SSD interference process, the segmentation
and detection features are fused by element-wise summation
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to output multi-layer-fused features that contain rich
contextual information that promote the detection of target
objects with small size. The output features from the
segmentation branch are used to generate a mask to
eliminate background areas of an input image. Specifically,
thresholding is applied to segmentation features to obtain
binary masks that indicate potential foreground areas. In
each layer of the segmentation feature maps with resolution

Detection branch
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v
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s=1, d=2

\ 4

Conv, s=1

\ 4
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Fig.5 Architecture of the segmentation block
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H x W x 1, the average value of each point value is regarded
as the threshold. Points with values higher than the threshold
are considered as belonging to a foreground area and
suggesting that target objects might be included, whereas
points with values lower than the threshold are considered
as belonging to a background area. Default boxes in the
detection branch will only be active in foreground regions
provided by segmentation masks. Algorithm 1 shows the
inference process of Mask-SSD.

Algorithm 1 Inference process for Mask-SSD model.

Input: Test image set X = {)cl-}fv:1
1: for the test image x; in X do

2: Extract multi-scale (k1) detection features F, ,f]” (xi)
and multi-scale (k2) segmentation features F,f;g(xl-),
ky=1,2,---,8k=1,2,3

3: Generate  multi-scale (k)  fusion
FL" () = FE (xi) + B (). k = ko

for v in k do

5: Generate
YL S R )

HxW
6: Obtain segmentation mask M, (x;) =

max (FJ," (xi). Ty,)
7: Generate active default boxes DB{jf””e
DBY 8™« My, (xi)
end for
: Generate active default boxes for the rest output
detection feature layers kK’ = k; —k, =4,5,6,7,8
10 for vy in k' do

features

threshold  value T, =

. tive _ origin
11: DB{}; ' = DBy,
12: end for
13: end for

Output: Detection results for all test images

5 Experiments and results
5.1 Datasets

We used the Tsinghua-Tencent 100K [14] and Caltech
pedestrian datasets [15]. Tsinghua—Tencent 100K includes
> 200 categories of traffic signs and 10,000 images
(resolution: 2048 x 2048). Some traffic sign categories did
not contain enough instances; therefore, according to [14],
we focused exclusively on traffic sign categories containing
> 100 instances, resulting in our using the identified 45
classes for the training and testing processes (training set:
5,289 images; and test set: 2,678 images). The Caltech
pedestrian dataset included 11 video sequences, the first six
of which were used for training methods and the other five

for testing. Following [41], the training set contained 4,250
images. The test set contained 4,024 images, which is the
standard test set. The annotation we applied was described
previously [41].

Figure 6 shows the statistical results for application
of both datasets. For the Tsinghua-Tencent 100K dataset
(Fig. 6a), the percentage of traffic signs sized < 5%
(considering the long side of the ground-truth bounding
box) was 93.5%, whereas that for pedestrians sized < 20%
from the Caltech pedestrian dataset was 76.5% (considering
the long side of the ground-truth bounding box) (Fig. 6b).
Statistical results indicated that most objects in both datasets
were small in size.

5.2 Experimental setup

We adopted VGG-16 [42] as the backbone and used the
Pytorch framework to implement the Mask-SSD model,
which was trained on an NVIDIA GeForce GTX 2080Ti
GPU. Seven layers were used to predict in the SSD model
and eight in the Mask-SSD model. One-eighth the size
of the input image was the size of the largest feature
map used for predicting in the SSD model and one-fourth
the size of the input image in the Mask-SSD model.
During training, stochastic gradient descent was performed
to optimize the network with a momentum of 0.9, and non-
maximum suppression was employed to process detected
bounding boxes in order to remove those overlapping with
low detection scores.

5.3 Detection performance
5.3.1 Comparison with baseline methods

We compared the performance of Mask-SSD with baseline
SSD according to a mean average precision (mAP) metric
(the version used after PASCAL VOC challenge 2010),
which is usually applied to object detection methods
to measure both precision and recall. Results on the
Tsinghua-Tencent 100K dataset demonstrated that Mask-
SSD outperformed the baseline SSD method by 1.5%
with same backbone and same input image size (Table 1).
For the Caltech pedestrian dataset, the results showed
that Mask-SSD increased the mAP from 87.99% to
92.10% for detecting reasonable scale pedestrians with
height > 50 pixels (Table 2). These results indicated
that Mask-SSD outperformed SSD on both datasets,
suggesting that inclusion of the feature-fusion module
and segmentation branch increased the effectiveness of
Mask-SSD at detecting small objects by focusing searches
for target objects in foreground areas provided by the
segmentation mask.
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Fig.6 Statistical results of
object size for Tsinghua-Tencent
100K and Caltech pedestrian
datasets. a Tsinghua-Tencent
100K, b Caltech pedestrian
dataset
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5.3.2 Comparison with state-of-the-art methods

We then compared Mask-SSD with other state-of-the-art
methods [43-50] using the Caltech pedestrian dataset,
according to log-average miss rate (MR), which is obtained
by computing the average of the miss rate for false positives
[evenly divided from 1072 to 1 false-positives-per-image
(FPPI)] [40], and precision-recall (PR) curve. We used a
reasonable instance scale according to a pedestrian height of
> 50 pixels and an all scale according to a pedestrian height
of > 20 pixels.

For the reasonable scale, the MR for Mask-SSD was
6.20% following pre-training on the Citypersons dataset
[51] (Fig. 7a), which was 1.27% lower than that for
SA-FastRCNN [44] and was 1.07% higher than that for
AR-Ped [48]. Figure 7b shows that the PR curves for
Mask-SSD outperformed those of other methods except
AR-Ped [48] (0.10% lower) and ShearFtrs [49] (0.08%
lower). For the all scale, Mask-SSD achieved the lowest
MR of 50.36%, which was 0.97% lower than that for
FasterRCNN + ATT [46] and was 4.88% lower than that
for AR-Ped [48] (Fig. 8a), and Fig. 8b shows that the PR
curves for Mask-SSD resulted in an average precision (AP)
value of 83.13%, which was obtained by using the 11-
point interpolated average precision metric (the version used
before PASCAL VOC challenge 2010). It was slightly lower
than that for FasterRCNN + ATT [46] (83.24%). But, it
was 5.54% and 6.18% higher than that for AR-Ped [48]
and ShearFtrs [49]. These results suggested that Mask-SSD
was competitive with other state-of-the-art deep-learning
methods. Moreover, direct comparison of Mask-SSD with

Table 1 The mAP (%) comparison of Mask-SSD with the baseline on
Tsinghua-Tencent 100K

o2
o

0.2 04 06 08 1.0
Range of pedestrian size

(b) Caltech pedestrian

0.15 0.20

baseline SSD revealed that Mask-SSD outperformed SSD at
detecting small objects, with MR values 5.00% and 6.57%
lower and AP values 0.10% and 3.23% higher using the
reasonable and all scales, respectively.

Table 3 shows the results of comparing computational
efficiency. An input image of 640 x 640 resulted in a Mask-
SSD run time of 0.13 s/frame (the waiting time for loading
the input image is included) on a computer supported by
a single NVIDIA 2080Ti GPU. This suggested that Mask-
SSD ran slower than the SSD [5] model at 0.10 s/frame (the
waiting time for loading the input image is included) due to
the inclusion of the segmentation branch and feature-fusion
module, and it ran slower than AR-Ped [48] at 0.09 s/frame.
However, Mask-SSD outperformed the SSD [5] model in
detection accuracy, and it outperformed AR-Ped [48] in
detecting pedestrians with small size. Compared with other
methods, Mask-SSD was both faster and more accurate at
detecting small objects.

Figure 9 displays segmentation features and detection
results of sample images from the Caltech pedestrian
dataset. Figure 9a shows that the segmentation features
captured by the segmentation branch contained rich
information beneficial for detecting small objects.

5.3.3 Ablation study

In Mask-SSD, we combined segmentation features with
detection features to enrich detection features with more
contextual information. Choosing which and how many
segmentation layers to combine is an issue worth studying.
As noted, the SSD model uses shallow layers with large

Table2 The mAP (%) comparison of Mask-SSD with the baseline on
Caltech pedestrian dataset

Methods Backbone Input size mAP Methods Backbone Input size mAP
Baseline (SSD) VGG16 640 x 640 81.40 Baseline (SSD) VGG16 640 x 640 87.99
Mask-SSD VGG16 640 x 640 82.90 Mask-SSD VGG16 640 x 640 92.10
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Fig.8 Comparisons of method performance on the Caltech pedestrian dataset (All scale: person height > 20 pixels). a MR, b PR
Table 3 The computational
efficiency comparison of Methods Input size Miss rate Miss rate Runtime
Mask-SSD with other methods (reasonable) (all)
on Caltech pedestrian dataset
ADM [45] 480 x 640 13.53 54.64 0.58s
SSD [5] 640 x 640 11.20 56.93 0.10s
MS-CNN [43] 720 x 960 9.54 55.69 0.40s
SA-FastRCNN [44] 720 x 960 7.47 57.02 0.59s
AR-Ped [48] 720 x 720 5.13 55.24 0.09s
Mask-SSD 640 x 640 6.20 50.36 0.13s
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(a) Segmentation masks

(b) detection results

Fig.9 Visualization of segmentation masks and corresponding detection results in Caltech pedestrian dataset. a Segmentation masks, b detection

results

resolution to detect small objects; therefore, we started
the combination at the shallowest output feature layer in
Mask-SSD and tested combinations of different numbers
of segmentation and detection layers. Table 4 shows the
results of application of Mask-SSD-3, Mask-SSD-4, and
Mask-SSD-5 (separate combinations of three, four, and five
segmentation and detection layers) on input images (size:
640 x 640). For Mask-SSD-3, three layers of output features
(resolutions: 160 x 160, 80 x 80, and 40 x 40) were
utilized for the combination, which integrated segmentation
features with detection features of the same size according
to element-wise summation. For Mask-SSD-4 and Mask-
SSD-5, based on Mask-SSD-3, additional feature layers
with resolutions of 20 x 20, 20 x 20 and 10 x 10 were
also utilized, respectively. The results shown in Table 4
demonstrated that Mask-SSD-3 achieved the lowest MR of
7.50%, indicating that using three layers was optimal. We

Table 4 The comparison results of combing different layers in Mask-
SSD on Caltech pedestrian dataset

believe that the reason is that the shallow layers of the output
features promoted the detection of small-sized objects in
our model. Here, we did not use pre-trained weights on the
Citypersons dataset to initialize Mask-SSD.

Table 5 shows the results of comparing the improvements
brought by the segmentation branch and the feature-fusion
module. With the segmentation branch, the MR of the
SSD model was improved by 4.40% (reasonable scale) and
5.45% (all scale). With the feature-fusion module, the MR
of the SSD model was improved by 3.58% (reasonable
scale) and 4.19% (all scale). With the segmentation branch
and the feature-fusion module (Mask-SSD), the MR of
the SSD model was improved by 5.00% (reasonable
scale) and 6.57% (all scale). These results suggested that
the segmentation branch plus the feature-fusion module
achieved better performance than the segmentation branch
or the feature-fusion module only.

Table 5 The comparison results of the segmentation branch and the
feature-fusion module on Caltech pedestrian dataset

Methods Backbone Input size Miss rate SSD  The segmentation  The feature- Miss rate Miss rate
(reasonable) branch fusion module (reasonable) (all)
Mask-SSD-3 VGG16 640 x 640 7.50 V4 11.20 56.93
(Mask-SSD) V4 J 6.80 51.48
Mask-SSD-4 VGG16 640 x 640 8.60 V4 i 7.62 52.74
Mask-SSD-5 VGG16 640 x 640 9.07 V4 J Vv 6.20 50.36
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6 Conclusions

In summary, we developed a small-object detection method
(Mask-SSD). This version includes a detection branch and
a segmentation branch, as well as a novel feature-fusion
module built for the detection branch to enhance the seman-
tic information used for feature maps with large resolu-
tion. A mask is provided by the segmentation branch to
identify foreground regions of an input image in order
to aid the detection branch in locating target objects in
these regions. Additionally, features from the segmentation
branch are fused with features from the detection branch
to enrich contextual information. Experiments on two
datasets and comparison with current deep-learning meth-
ods suggested that Mask-SSD was capable of effectively
detecting small objects in the forms of both traffic signs and
pedestrians. In the future, we plan to connect our proposed
Mask-SSD model with current infrastructures [52-54] to
embed our method into a larger system.
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