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Abstract
Previously, many researchers have performed analysis of various techniques for the software fault prediction (SFP). Oddly,
the majority of such studies have shown the limited prediction capability and their performance for given software fault
datasets was not persistent. In contrast to this, recently, ensemble techniques based SFP models have shown promising and
improved results across different software fault datasets. However, many new as well as improved ensemble techniques
have been introduced, which are not explored for SFP. Motivated by this, the paper performs an investigation on ensemble
techniques for SFP. We empirically assess the performance of seven ensemble techniques namely, Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest, and Ensemble Selection. We believe that most of these ensemble
techniques are not used before for SFP. We conduct a series of experiments on the benchmark fault datasets and use three
distinct classification algorithms, namely, naive Bayes, logistic regression, and J48 (decision tree) as base learners to the
ensemble techniques. Experimental analysis revealed that rotation forest with J48 as the base learner achieved the highest
precision, recall, and G-mean 1 values of 0.995, 0.994, and 0.994, respectively and Decorate achieved the highest AUC
value of 0.986. Further, results of statistical tests showed used ensemble techniques demonstrated a statistically significant
difference in their performance among the used ones for SFP. Additionally, the cost-benefit analysis showed that SFP models
based on used ensemble techniques might be helpful in saving software testing cost and effort for twenty out of twenty-eight
used fault datasets.

Keywords Software fault prediction · Ensemble techniques · PROMISE data repository · Empirical analysis

1 Introduction

Current software systems are growing rapidly in complexity
and size, thus, ensuring their reliability and quality are
paramount important, which depends on software faults [1].
Software fault prediction (SFP) actively helps in the
detection of faults by highlighting potential faulty areas
of code in the software system [2]. This identification of
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areas of code liable to more faults can help the testing team
to allot software quality assurance resources optimally and
efficiently [3, 4]. SFP modeling has been examined widely
by several researchers due to its inherent advantages in
optimizing testing resources utilization and improving the
quality of software projects [5–7].

For the last two decades, various learning techniques
have been used greatly for SFP [8–12]. Naı̈ve Bayes,
regression techniques, k-nearest neighbors, decision trees,
multilayer perceptron, rule-based learners, etc. are the few
of them. However, analysis of these algorithms showed
that most of the algorithms achieved an average prediction
accuracy of 80%-85% with a higher misclassification
rate [4, 13, 14]. Moreover, the performance of algorithms
has not been consistent across different fault datasets [15–
18]. In the case of the software system, it is observed that
most of the faults are concentrated in the small area of code.
Therefore, the evaluation of a classification algorithm using
accuracy measures will not provide an accurate depiction of
the model performance [19, 20].
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Earlier research in the SFP domain revealed that
individual classification and learning techniques have
reached the verge of their performance threshold point and
the performance of these techniques may not be further
improved without applying external corrections in the fault
datasets or model building process [2, 21, 22]. Some
researchers have tried to break this performance ceiling
by adapting different performance-improving strategies
such as enriching the information content of the training
datasets [21], by customizing the prediction model to
the specific local business goals [2], or by combining
multiple sets of software metrics [23]. The results of
these performance-improving strategies showed positive
conclusions to break the performance bottleneck of SFP
models. Presently, ensemble techniques based SFP models
have gained popularity in the software engineering research
community [24–26]. Many research evidence showed that
ensemble techniques can help to overcome the performance
bottleneck of classification algorithms and can serve as
a tool to develop improved fault prediction models [23].
Few researchers have analyzed ensemble techniques such
as bagging, boosting, voting, and stacking for SFP [26–28].
However, these studies were limited to some fault datasets
and analyzed one or two ensemble techniques only. Further,
many new as well as improved ensemble techniques have
been reported by the researchers, but their evaluation for
the SFP has not been performed yet. This motivated us
to undertake a study of these ensemble techniques and to
establish their usefulness for the SFP.

This paper performs an extensive experimental study of
seven ensemble techniques including Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest,
and Ensemble Selection for the SFP. To the best of our
knowledge, most of the ensemble techniques used in this
study have not been investigated thoroughly before for
the SFP. For the ensemble techniques, three different
classification algorithms, namely, naive Bayes, logistic
regression, and J48 (decision tree) are chosen to serve
as base learners. The experimental study is performed
for twenty-eight public-domain software fault datasets
available in the PROMISE data repository [29]. Precision,
recall, AUC (area under the ROC curve), specificity, and G-
means (G-mean 1 and G-mean 2) measures are considered
to evaluate the performance of ensemble techniques. The
relative significance difference in the performance of seven
ensemble techniques is evaluated by using Friedman’ test
and Wilcoxon signed-rank test. Additionally, a cost-benefit
analysis is carried out to assess the cost-effectiveness of
used ensemble techniques in terms of saving software
testing cost and effort. Results and observations obtained
from this empirical study can help practitioners in building
effective SFP models.

1.1 Contributions

Since the last decade, various researchers have used
different ensemble techniques for software fault prediction.
However, recently many new as well as improved versions
of existing ensemble techniques have been introduced in the
machine learning domain, which are not explored for the
SFP. This raises the need for a comprehensive evaluation
of these techniques to benchmark their performance for
the SFP. This could be very beneficial to the research
community and the practitioners working in the SFP
domain.

The contributions of the presented work are discussed as
follow:

1. We provide a systematic literature review of the
ensemble techniques used for the software fault
prediction and reported the findings of the review.

2. We perform an extensive comparison of seven different
ensemble techniques for the SFP, which to the best of
our knowledge have not explored before.

3. We repeat experiments for the twenty-eight distinct
fault datasets of different domains to establish the
feasibility and usefulness of used ensemble techniques
for the SFP.

4. Further, we perform a cost-benefit analysis of the used
ensemble techniques to assess their economic viability
for the SFP.

Following research questions have been framed to
investigate in the presented experimental study:

RQ1: Which ensemble technique shows overall best
performance for software fault prediction?

RQ2: Is there any statistically significant performance
difference between the chosen ensemble tech-
niques?

RQ3: How do base learners affect the performance of
ensemble techniques?

RQ4: For a given software system, how economically
effective ensemble techniques are for software fault
prediction?

The structure of the paper is as follows. A discussion on
earlier presented similar works is provided in Section 2.
Section 3 provides a systematic review of the ensemble
techniques based SFP. Section 4 includes the details of the
software fault prediction process. Section 5 focuses on the
overview of ensemble techniques used for SFP. Section 6
provides details of the empirical study including description
of used software fault datasets, performance evaluation
measures, experimental procedure, etc. Section 7 presents
and discusses results of the study. The comparative study
of used ensemble techniques is presented in Section 8.
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Section 9 listed various threats to the validity to the
presented study followed by the conclusions and future
works in the final section.

2 Related work

Many works are available in the literature, which used
ensemble techniques/methods for SFP [23, 25, 30, 31].
Tosun et al. [32] built an ensemble based fault prediction
model that combines the learning of three different
classifiers, naive Bayes, neural network, and voting feature
intervals. Authors compared the performance of the
presented ensemble model with naive Bayes and found
that the presented model has achieved a considerably
improved performance. However, authors focused on only
one ensemble model and performed experiments for a few
NASA datasets. In a similar study, J. Zheng [33] presented
and evaluated three cost-sensitive boosting algorithms
for SFP. The author used one threshold-updating and
two weight-adjusting based algorithms and performed the
analysis for four NASA datasets. Results of the study
showed that the algorithm based on threshold-updating with
the boosted neural network performed the best among the
other techniques considered in the study for SFP. Wang
et al. [26] presented a study for software defect prediction
using some classifier ensembles. Authors assessed the
capabilities of seven ensemble techniques such as Bagging,
Boosting, Random trees, Random forest, Random subspace,
Stacking, and Voting and used naive Bayes as the base
learner among the ensemble techniques. Authors performed
a series of experiments for several NASA datasets and
found that voting and random forest performed better
compared to other methods. Overall, authors suggested
that ensemble methods produced better performance than a
single classifier. B. Twala [34] built an ensemble technique
based fault prediction model using three distinct techniques
for a large space software system. The author showed
that decision tree and apriori techniques based ensemble
techniques outperformed other used ensemble techniques
and yielded a better accuracy.

Aljamaan et al. [35] performed an investigation of
bagging and boosting ensemble techniques for software
defect prediction and compared their performance with
other commonly used fault prediction techniques. Results
found that ensemble based prediction models produced
better accuracy values in comparison to most of the
used fault prediction techniques. Recently, Siers and
Islam [36] presented two ensemble methods, namely,
CSForest and CSVoting using cost-sensitive analysis for
SFP. The examined ensemble methods initially created
a set of decision trees and later combined these trees
to minimize the classification cost. Authors showed that

presented ensemble methods were able to achieve superior
performance compared to other used six classification
algorithms.

In the presented work, we performed an extensive
analysis of seven ensemble techniques, Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest,
and Ensemble Selection for SFP. To the best of our
knowledge, most of these ensemble techniques have not
been explored and experimented for SFP till now. Further,
we use three different classification algorithms as base
learners to analyze the impact of base learners on the
performance of ensemble techniques. The study was
performed for twenty-eight software fault datasets, and a
total of 532 fault prediction models have been generated. We
believe that the analysis of ensemble techniques presented
in this paper will help the research community to build
more effective fault prediction models using ensemble
techniques.

3 Systematic review of ensemble techniques
based software fault prediction

To identify the papers related to the ensemble techniques
for the software fault prediction, we have searched in the
Google Scholar, IEEE Explorer, ScienceDirect, and Scopus
databases and extracted papers published between January
2010 and April 2020. We have selected this timeline for
article search, because most the works using ensemble
techniques for the software fault/defect prediction published
in last decade only. The query string used for the database
search is “(Software Fault OR Defect OR Bug Prediction)
AND (Ensemble techniques OR Bagging OR Boosting OR
Stacking)”. The initial query run resulted into a large
number of articles. We have applied the inclusion and
exclusion criteria to filter out the articles and to select only
the relevant articles/papers [37].
Inclusion Criteria

1. Paper must be written in the English language.
2. Full content of the paper must be available online.
3. Paper must be published between January 2010 and

April 2020.
4. The study reported in the paper used on the software

project datasets not the simulated one.
5. The paper applied at least one ensemble technique for

the software fault/defect prediction.
6. Paper must be reported new experiments only.
7. Paper must be reported results using standard perfor-

mance measures with sufficient details.

Table 1 listed the studies related to the ensemble
techniques based software fault /defect prediction (SFP).
The use of ensemble techniques for the SFP has expedited
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since 2010 [38–41]. The review of the ensemble techniques
showed that a large number of researchers have focused
on the use of bagging, boosting, and stacking based
ensemble techniques. Different studies have used different
classifiers as the base learners to these ensemble techniques
such as naı̈ve Bayes, decision tree, multilayer perceptron,
etc. Results of the analysis showed that these ensemble
techniques produced higher or at least equal performance
as compared to the base learners [23]. Some other
researchers have explored different variations of the
traditional ensemble techniques such as cost-sensitive
neural network, cost-sensitive boosting, bagging with the
oversampling, etc. Authors claimed that these variations
of the ensemble techniques resulted in an improved
performance as compared to the traditional ensemble
techniques [65, 74]. A few researchers have used hybrid
ensemble techniques such as ensemble techniques with the
feature selection, ensemble techniques sampling, etc. These
studies showed that the use of hybrid ensemble techniques
could be useful in building accurate fault prediction models
[55, 61]. However, over the last few years many new or
improved ensemble techniques have been presented by the
researchers. Although, a comprehensive evaluation of these
newly available ensemble techniques is missing. Thus, in
this work, we include the ensemble techniques, which are
not explored before for the SFP.

4 Software fault prediction process: An
overview

In this section, we have discussed a generic process used
for the prediction of software faults. There are many works
reported in the literature presenting various approaches for
the software fault prediction. The aim of this section is
to discuss the commonly used steps for the software fault
prediciton based on various available works [81, 84–87].
These steps are also useful in building the ensemble models
under study for software fault prediction discussed in the
upcoming sections.

The aim of software fault prediction (SFP) is to identify
the software modules having a higher probability of being
faulty. The SFP process is based on the use of some
underlying characteristics such as source code metrics,
change and revision history, structural properties, etc. of the
software project. The SFP model uses such software project
datasets augmented with corresponding fault information
for a known project as a training dataset, and subsequently
uses the trained SFP model to predict faults for unknown
projects. The working assumption of the SFP process is
that if a software project developed in an environment
that led to faults, then any subsequent software modules
developing in a similar environment with similar underlying

characteristics will end to be faulty [81, 82]. Let us say
that the software fault dataset is defined as D = {X, Y},
where X represents a set of software metrics (features or
attributes or independent variables) and it is a matrix of N
X M size. N is the number of rows (software modules) and
M is the number of features. Y represents fault information
(dependent variable) and it is a vector of N size. {xi , yi} is
the ith observation in the dataset. The dependent variable
is (DV) yi ε [1, 0], where “1” stands for a faulty software
module, and “0” stands for the non-faulty software module.
The prediction models are built on the dataset D and aim
to classify the unseen software modules in faulty or non-
fault labels, yielding classifier results yi = (xi). If we use
a classification algorithm to build the SFP model, then it
is often referred to as the classification model or binary
classification model given its binary outcome.

Figure 1 depicts an overview of the software fault
prediction process. The process shown in the figure and
depicted as below is a generic process used for the
prediction of software faults. The steps involve in the SFP
model building and assessment are described as follows
[83].

1. Extraction of fault information: Each software project
has source code and bug repositories such as SVN or
CVS. The extraction of fault information involves data
retrieval from the bug repository and linking it to its
source. Based on the log contents and status of the
bug, it is decided whether a commit is a bugfix or
not. All such reported bugs are collected from the bug
repository and mapped to their corresponding source
code modules.

2. Collecting software metrics (features or attributes)
and creating fault dataset: This step collects software
metrics information from the source code of the
software project or from the log contents of the
projects. First, it is decided that what type of properties
of the given software are required. Further, based
on that source code or log files are parsed and
corresponding software metrics are collected. Last,
extracted fault information and collected software
metrics are combined together to create the fault dataset
that is used to train the SFP model.

3. Building SFP models: Usually, some classification
algorithms or regression techniques such as decision
tree, support vector machine, naı̈ve Bayes, or linear
regression are used to build the SFP model using fault
set. Subsequently, the trained SFP model is then used to
predict the faults in the unseen software modules.

4. Evaluation: To assess the SFP model’s performance,
generally a separate testing dataset is used besides
the training dataset. This testing dataset is created by
partitioning the fault dataset into training and testing
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Fig. 1 Software fault prediction process

parts. The fault-proneness of software modules in the
testing dataset is predicted. Then, the performance of the
model is evaluated, by comparing the predicted value of
faults and the corresponding actual value of faults.

A number of researchers have explored/presented differ-
ent models for the software fault prediction. Most of these
works focused on the binary class classification of faults
(faulty or non-faulty) [84–87]. Some of the researchers
have built prediction models for the number of faults in
a software module prediction or the severity of the fault
prediction [88–90]. The results of these studies showed
that the average prediction accuracy of software fault pre-
diction models was 80%-85% (approx.) with 30%-40% of
the misclassification rate. Additionally, it has been found
that no single learning technique (classifiers or regression
techniques) always performed better than the other tech-
niques across different software projects [91]. However,
some learning techniques such as Naive Bayes, Logistic
Regression, and random forest achieved better performance
than techniques such as support vector machine (SVM)
and multiplayer perceptron (MLP). Athough, in some cases
SVM or MLP yielded better performance than other tech-
niques [4]. A few researchers have performed a comparative
analysis study or meta-analysis study of learning techniques
for the software fault prediction [82, 92]. Recently, Li et al.
[93] and Ning Li et al. [37] have reported benchmark stud-
ies for software fault prediction in the years 2019 and 2020,
respectively. In 2019, Li et al. [93] reported an updated
benchmark study, where authors evaluated various classi-
fiers using new fault datasets and new evaluation metrics.
The result analysis showed that techniques such as bagged
MLP, ANN/MLP, decision tree, and random forest yielded
better prediction performance as compared to the techniques
such as CART, Logistic regression, SVM, Naı̈ve Bayes,
etc. Further authors stated that there is no single best clas-
sifier found for the SFP. Moreover, the authors suggested
the use of simple classifiers over the complex ones for the

SFP due to the problem of hyper-parameter tuning of the
classifiers. In 2020, Ning et al. [37] reported a systematic
review and meta-analysis of unsupervised learning tech-
niques for software defect prediction. After, the thorough
screening of the works published between 2000 and 2018,
the authors included a total of 49 studies in their presented
meta-analysis. The results of the meta-analysis showed that
the performance of unsupervised learning techniques was
comparable with supervised learning techniques for both
within-project and cross-project prediction. Among the con-
sidered unsupervised learning techniques, Fuzzy CMeans
(FCM) and Fuzzy SOMs (FSOMs) yielded the best per-
formance. Further, the authors stated that factors such as
dataset characteristics did not show any significant impact
on the performance of unsupervised techniques.

5 Ensemble techniques for software fault
prediction

Ensemble technique refers to the technique that generates
several intermediate prediction models, which are integrated
together to make an overall prediction [94]. The primary
purpose of an ensemble technique is to overcome the per-
formance ceiling problem of the single learning algorithm
and to enhance the overall performance of prediction model.
Several techniques are available in the literature to generate
the intermediate prediction models for the ensemble tech-
niques [95]. Ensemble techniques make an effective use of
these intermediately generated prediction models to reduce
the variance in the prediction performance without increas-
ing any bias [96]. In this work, the SFP problem is defined as
a classification task, where the aim is to categorize the given
software modules into the faulty or non-faulty classes. The
technique used for the prediction takes the form of a func-
tion f, which uses a vector of size n+1 of n software metrics
(A1, A2, ..., An) and one dependent variable (D, fault infor-
mation) as input and outputs (Y) fault-proneness of the
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given software modules. Each vector of software metrics
and dependent variable describes a software module i.e., a
class in object-oriented software systems or a file in other
software systems. The calibration of f is done on the train-
ing dataset (TR) having several such vectors or examples.
The dependent variable is faulty and non-faulty information
of a software module.

Figure 2 shows the working of ensemble techniques
for the SFP. The process of building a prediction model
using ensemble technique is two-folded: (1) generation
of intermediate prediction models to be used for the
ensemble (ensemble generation), and (2) integration of
generated prediction models for the ensemble to obtain
the final prediction (ensemble integration) [95]. Ensemble
techniques utilize multiple models (known as “weak
learners”) that are trained and combined to get improved
results. The accurate working of ensemble techniques
depends on the correctly combined weak learners. In
ensemble theory, a weak learner is a model that does
not perform so well alone either because it has a high
bias or high variance. Ensemble techniques overcome this
high bias-variance problem by combining several weak
learners to reduce bias and variance of such weak learners.
Most of the ensemble techniques rely on the use of a
single base learning algorithm to generate multiple weak
learners. However, each instance of the weak learner is
trained differently. This setting is known as homogeneous
ensemble techniques. However, some ensemble techniques
use different learning algorithms to generate weak learners.
It is known as heterogeneous ensemble techniques. The next
step is the correct aggregation of weak learners. Different
ensemble techniques combine weak learners differently.
For example, in the bagging ensemble technique, weak
learners are combined by using a deterministic averaging

process. In boosting ensemble technique weak learners are
generated adaptively and combined using a deterministic
strategy. In the stacking ensemble technique, weak learners
are combined using a meta-model that learns on the outputs
of a weak learner and combined their outputs.

Despite the use of the type of ensemble techniques, every
ensemble technique takes one or some learning algorithms
as the input. Additionally, a training dataset is taken as
input by ensemble techniques. Depend on the number of
weak learners to be generated, the input training dataset
is partition into several subsamples. One weak learner
is trained on the one subsample of the training dataset.
The output of this training phase is the several trained
weak learners on the different subsamples. Next, based
on the used combination strategy, weights of each weak
learner are decided and their outputs are combined for
the final prediction. There are several techniques proposed
by researchers for the ensemble generation and ensemble
integration [95]. In the presented work, we focus on the
homogeneous ensemble generation techniques, where the
same algorithm is used to generate intermediate prediction
models. There are seven different homogeneous ensemble
techniques used in the study and the description of these
techniques is given as follows.

1. Dagging: In this ensemble technique, initially, several
disjoint stratified subsets of the given original fault
dataset is generated. Subsequently, the generated
subsets are fed to the classification algorithm (base
learner). The final prediction is made by using the
majority voting scheme to combine the outcomes of the
base learner for all the generated subsets [97]. It differs
from the bagging in the sense that here disjoint subsets
of given dataset are used to build the prediction models.

Fig. 2 Working of ensemble techniques for the SFP
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2. Decorate: This ensemble technique generates diverse
intermediate prediction models by using specially
constructed artificial training examples. It follows an
iterative ensemble generation process. In each iteration,
an intermediate prediction model is generated and
added to the current ensemble. The base learner
is trained in each iteration for the training dataset
augmented with some artificially generated data points.
The population of artificial training data points is drawn
from the original data distribution and it is specified as
a fraction of the training dataset size [98]. The class of
these artificial data points is maximally different from
the current ensemble’s predictions.

3. Grading: It is a meta-classification scheme, which uses
graded predictions on the meta-level classes to make
the final prediction [99]. For each base learner, a meta-
classifier is learned whose task is to predict when the
base learner will be incorrect. Graded prediction is a
prediction that has been marked as correct or incorrect.
The training dataset for meta-classifier is made up
using the graded predictions of the corresponding base
learners as new class labels for the original attributes.
The final prediction is derived from the predictions of
base learners that are predicted to be correct by the
meta-classification schemes [100].

4. MultiBoostAB: This ensemble technique extends the
working of AdaBoost ensemble technique. It combines
the capabilities of AdaBoost with wagging techniques
to reduce the prediction bias and variance in the final
model [101]. The advantage of MultiBoost technique
over AdaBoost is that in contrast to the AdaBoost,
in this technique, intermediate models can learn in
parallel, which speed up the training and model building
process.

5. RealAdaBoost: RealAdaBoost is a modified version
of AdaBoost ensemble technique that fits an additive
logistic regression and produces a non-linear version
of logistic regression [102]. It extends AdaBoost
techniques and removes the need for a coefficient as
the optimal coefficient is always 1. Additionally, it
generates fewer trees than AdaBoost to reach the final
prediction [103].

6. Rotation Forest: This ensemble technique makes use
of a PCA (Principal Component Analysis) algorithm
to choose features and instances of the training dataset
when building decision trees [104]. First, the features
of the training dataset are split into K non-overlapping
subsets of equal size. Then, 25% of the training data
examples are removed randomly by using a bootstrap
method and PCA is used for the rest of 75% of data
examples. These steps are repeated for each tree in

rotation forest and the final prediction is based on the
integrated outputs of each tree.

7. Ensemble Selection: Ensemble selection is a meta-
classification ensemble technique. It uses a set of
base learners to generate the final ensemble. Initially,
technique starts with an empty ensemble. Iteratively,
it adds a base learner to the ensemble library that
maximizes the ensemble’s performance. This process
is repeated for a fixed number of rounds and the
final ensemble based prediction model is the nested
set of base learners that maximizes the prediction
performance [105].

6 Empirical study

6.1 Experimental datasets

In this work, fault datasets were gathered from the
PROMISE data repository for building and evaluating pre-
diction models1 [29]. A total of twenty-eight benchmarked
software fault datasets have been gathered from the men-
tioned repository. Considered fault datasets include data
of several open-source software systems such as Apache
Camel, Apache Xerces, Apache Xalan, PROP, etc. The
details of considered datasets are given in Table 2. The used
datasets (described in Table 2) are same as ones used in our
one previous paper [16]. All the used fault datasets are hav-
ing 300 or more software modules. We have drooped all
the smaller size datasets below the given threshold limit of
300 modules. Each of the used dataset contained twenty-one
object-oriented software metrics and number of faults found
in each software module. Since, aim of the presented study
is to classify software modules into faulty or non-faulty
modules, therefore, we performed data transformation on
these datasets and categorized given number of faults infor-
mation into faulty and non-faulty classes. Software modules
with one or more faults have been marked as faulty, other
modules with zero faults have been marked as non-faulty.
We apply the same data transformation scheme on all
twenty-eight datasets. The considered dependent variable is
faulty and non-faulty labels of the software modules.

6.2 Experimental procedure

Figure 3 depict the procedure used for the experimental
study presented in the paper.

1https://sites.google.com/site/santoshiiitmdj/software-fault-datasets?
authuser=0

3627An empirical study of ensemble techniques for software fault prediction

https://sites.google.com/site/santoshiiitmdj/software-fault-datasets?authuser=0
https://sites.google.com/site/santoshiiitmdj/software-fault-datasets?authuser=0


The experimental procedure mainly consists of three
steps. In initial step, training and testing subsets are
generated from the original fault dataset by splitting it into
multiple partitions. A ten-folds cross-validation scheme is
used to build prediction model and evaluate the performance
of ensemble techniques. This scheme partitions the original
fault dataset into ten disjoint folds. For each iteration,
nine folds are served as training dataset used to train
the ensemble techniques and remaining one is served
as testing dataset used to evaluate the performance of
ensemble techniques. This process is repeated for ten
folds. The second step is the building of the ensemble
techniques. The selected training dataset is used to build the
prediction model. Three different classification algorithms
are used as base learners to the ensemble techniques.

Each time a different classification algorithm is fed to
the ensemble technique. This process is repeated for all
the base learners. The final step is the evaluation of built
ensemble based fault prediction models for the testing
dataset. Various performance measures are used to evaluate
the performance of built models. Further, Friedman’s test
and Wilcoxon signed rank test are used to evaluate the
statistically significant performance difference among the
chosen ensemble techniques. The experimental procedure is
described as follows.

6.3 Base Learners

Three different classification algorithms namely, naive
Bayes, logistic regression, and J48 (decision tree) have
been used as base learners. Previous research showed that
these algorithms produced better performance compared to
other classification algorithms for the SFP [4]. For this
reason, we have selected these algorithms as base learners to
feed into ensemble techniques. A brief description of these
algorithms is given as follow.

1. Naive Bayes (NB): Naive Bayes algorithm belongs to
the Bayesian classifier family. Its working is based on
the use of Bayes equation to categories the given testing
module into one of the classes [106]. Initially, naive
Bayes calculates the posterior probability of each class
using the attribute values (software metrics) of the given
module. Further, the testing module is classified with
the label the same as the class label of the highest
probability class. Parameter estimation process of naive
Bayes classifier involves a simple estimation of the
probability of attribute values within each class from
the training modules. A comprehensive description of
naive Bayes can be referred from [107].

2. Logistic Regression (LR): LR is a type of regression
technique used when response variable is of categorical
type. It calculates the probability of a binary response
variable using one or more independent variables
(software metrics) [108]. The simple logistic model
only predicts the probabilities of outcomes in terms
of input values. To use it as classifier, we need to
select a cutoff value (threshold), which classifies values
greater than cutoff into one class and values lower than
cutoff into another class.The more details of logistic
regression is given in [109].

3. J48 (decision tree): As the name implies, decision tree
form a tree type of structure to make the decisions.
Building the decision tree involves selection of tree
nodes and splitting criteria along with the knowing
when to stop [110]. Initially, it selects the most
promising node as the root node of the tree and
continues with the tree construction with intermediate
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Table 2 Details of considered software fault datasets [16]

“S. No. Dataset Release # non- commented
-LOC

Total number of modules Total number of
faulty modules

% of faulty modules

1. Ant Ant-1.7 208KLOC 746 166 22.25%

2. Camel Camel-1.0 33KLOC 340 13 3.82%

3. Camel-1.2 66KLOC 609 216 35.47%

4. Camel-1.4 98KLOC 873 145 16.61%

5. Camel-1.6 113KLOC 966 188 19.46%

6. Ivy Ivy-2.0 87KLOC 353 40 11.33%

7. Jedit Jedit-4.0 144KLOC 307 75 24.43%

8. Jedit-4.1 153KLOC 313 79 25.24%

9. Jedit-4.2 170KLOC 368 48 13.04%

10. Jedit-4.3 202KLOC 493 11 2.23%

11. Lucene Lucene-2.4 102KLOC 341 203 59.53%

12. Poi Poi-2.0 93KLOC 315 37 11.75%

13. Poi-2.5 119KLOC 386 248 64.25%

14. Poi-3.0 129KLOC 443 281 63.43%

15. Prop Prop-1 3816KLOC 18472 2738 14.82%

16. Prop-2 3748KLOC 23015 2431 10.56%

17. Prop-3 1604KLOC 10275 1180 11.48%

18. Prop-4 1508KLOC 8719 840 9.63%

19. Prop-5 1081KLOC 8517 1299 15.25%

20. Prop-6 97KLOC 661 66 9.98%

21. Tomcat - 300KLOC 859 77 8.96%

22. Xalan Xalan-2.4 225KLOC 724 111 15.33%

23. Xalan-2.5 304KLOC 804 387 48.13%

24. Xalan-2.6 411KLOC 886 411 46.39%

25. Xalan-2.7 428KLOC 910 898 98.68%

26. Xerces Xerces-1.2 159KLOC 441 71 16.10%

27. Xerces-1.3 167KLOC 454 69 15.20%

28. Xerces-1.4 141KLOC 589 437 74.19%”

promising nodes. Typically, information gain (Infogain)
or Gain Ratio is used as the splitting criteria [111]. We
used J48 algorithm is the present study, which is an
implementation of decision tree in the Weka machine
learning tool [112].

6.4 Implementation details

The implementation of all ensemble techniques has been
performed using Weka machine learning tool [113]. The
parameter values of different used ensemble techniques and

K-1 folds
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K-folds

Original fault dataset

(Software metrics and 

fault Information)

Naive Bayes

Logistic 

Regression

J48

Classification algorithms (Base 

learners)
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Testing data

Fault prediction 
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Software fault 
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Repeat this process for K iterations

Ensemble 

Techniques

Performance 
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Fig. 3 Overview of the experimental procedure
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base learners are given in Appendix. Each used ensemble
technique receives the training dataset having software
metrics and corresponding fault information as input. The
training dataset is used to train the SFP model based
on the internal working of the ensemble technique. After
the training, a separate testing dataset is fed as input to
the trained SFP model and a prediction is made for the
software modules of the testing dataset. Each ensemble
technique output the faulty or non-faulty labels of the
given software modules. We have used seven different
ensemble techniques and different classification algorithms
for software fault prediction. So, a total of nineteen fault
prediction models have created for a fault dataset. We
replicated the experiments for twenty-eight fault datasets.
Therefore, 532 total fault prediction models have been
created.

6.5 Performance evaluationmeasures

Five different performance measures namely, precision,
recall, AUC (area under ROC curve), specificity, and G-
means have been used to evaluate the performance of all
seven ensemble techniques [23, 114]. It was reported in
previous studies that accuracy measure does not provide
a complete evaluation of the model performance due to
the imbalance in the fault datasets. For this reason, we
have excluded it from the study. We have selected those
measures, which can provide complete model evaluation
despite the imbalance in the fault datasets [115]. An
explanation of these performance measures is as follows2.

(i) Precision: It is used to identify the portion of the
correctly predicted faulty modules out of all modules
predicted faulty. It is defined by Equation 1.

Precision = T P

T P + FP
(1)

(ii) Recall: It is used to identify how many correct faulty
modules are predicted. It is defined by Equation 2.

Recall = T P

T P + FN
(2)

(iii) AUC: It stands for area under the receiver operating
characteristic curve. It is a graphical plot that depicts
the diagnostic capabilities of a prediction model
under different threshold values. It plots the true
positive rate in the y-axis and false positive rate in the
x-axis. Area under the curve shows the probability
that a classifier will classify a randomly chosen
positive module higher than a randomly chosen
negative module.

2TP = True positive, FP = False positive, FN = False negative, TN =
True negative, N = Negative

(iv) Specificity: It is used to identify the portion of
negative modules that are actually predicted correctly
by a model. Specificity therefore quantifies the
avoiding false positive. It is defined by Equation 3.

Specif icity = T N

N
(3)

A high value of specificity shows that the
prediction model has a low false positive rate and
thus helps in a significant reduction in the resource
consumption to the false alarm cases. However, a low
value of specificity signifies a higher false positive
rate and thus a high consumption of resources on the
false alarm cases.

(v) G-means: It stands for geometric means. Two
measures, G-mean 1 and G-mean 2 are generally
used together.

G-mean 1 is calculated as the square root of the
precision and recall. G-mean 2 is calculated as the
square root of the product of recall and specificity.
They are defined by (4) and (5), respectively.

G − mean1 = √
Precision ∗ Recall (4)

G − mean2 = √
Specif icity ∗ Recall (5)

(vi) Statistical tests: We perform Friedman’s test and
Wilcoxon signed rank sum test to identify the dif-
ference in performance of the used ensemble tech-
niques [116]. Both the used tests are nonparametric in
nature, so they do not make any assumptions related
to the normality of the data points. In this test, sig-
nificance level (α) is set to 0.05, which shows 95%
probability of not accepting the null hypothesis when
it is true. For these tests, the framed null hypothesis
(H0) and alternative hypothesis (Ha) are as follow:

H0: There is no significant performance difference
among the used ensemble techniques at the given
significance level.

Ha : There is a significant performance difference
among the used ensemble techniques at the given
significance level.

(vii) Cost-benefit Analysis: The cost-benefit analysis of
used ensemble techniques is performed to assess the
cost-effectiveness of SFP models. Wagner initially
proposed the concept of cost-benefit analysis in the
context of SFP [117]. This analysis estimates the
amount of testing efforts and cost that can be saved
by using the results of SFP models along with the
software testing process in the software development
life cycle. The analysis model considers fault removal
cost and the fault identification efficiency of different
testing phases derived from the case studies of
different software organization to estimate the fault
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removal cost of specific fault prediction model.
Kumar et al. [118] explored the use of cost-benefit
analysis in SFP. We have used that presented model
in our work for cost effectiveness analysis of built
SFP models. Certain assumptions have been made in
designing the cost-benefit model, as specified below:

(a) Each of the testing phase such as unit testing,
integration testing, system testing has different
fault removal cost.

(b) None of the software testing phase is able to
detect 100% of software faults.

(c) Unit testing of all software modules is not
practically feasible.

Equation (6) shows the estimated fault removal cost (Ecost)
that can occur when results of fault prediction are used along
with the software testing process. Equation (7) shows the
minimum fault removal cost (Tcost) that can occur without
the use of fault prediction results in the software testing
process. Equation 8 shows the normalized fault removal cost
and its interpretation.

Ecost = Cini + Cu ∗ (FP + T P )

+δi ∗ Ci ∗ (FN + (1 − δu) ∗ T P ))

+δs ∗ Cs ∗ (1 − δi) ∗ (FN + (1 − δu) ∗ T P

+(1 − δs) ∗ Cf ∗ ((1 − δu) ∗ FN

+(1 − δu) ∗ T P )) (6)

T cost = Mp ∗ Cu ∗ (T M) + δi ∗ Ci ∗ (1 − δu) ∗ FM

+δs ∗ Cs ∗ (1 − δi) ∗ (1 − δu) ∗ FM

+(1 − δs) ∗ Cf ∗ ((1 − δi) ∗ (1 − δu) ∗ FM (7)

Ncost = Ecost

T cost

{
< 1 Fault prediction is useful

=> 1 Unit testing is useful
(8)

The meanings of used notations are same as described in
one of the study by [118].

Where,

“Ecost: Estimated fault removal cost of the software with
the use of software fault prediction results

Tcost: Total fault removal cost of the software without the
use of software fault prediction results

Ncost: Normalized fault removal cost of the software
when software fault prediction is used

Cini : Initial setup cost for using software fault-prediction
model (Cini = 0)
Cu: Normalized fault removal cost in unit testing
Cs : Normalized fault removal cost in system testing
Cf : Normalized fault removal cost in field testing
Ci : Normalized fault removal cost in integration testing
Mp: Percentage of modules unit tested

FP: Number of false positives
FN: Number of false negatives
TP: Number of true positives
TM: Total modules
FM: Total number of faulty modules
δu: Fault identification efficiency of unit testing
δs : Fault identification efficiency of system testing
δi : Fault identification efficiency of integration testing”

The fault identification efficiency of different testing
phases is defined as staff hour per fault and is borrowed
from the study performed by Jones [119]. We have
considered median of the fault identification efficiency
values maintained by Jones in our study. The used values
are, δu = 0.25, δs= 0.5, and δi=0.45. The normalized fault
removal cost is defined as staff hour per fault and is
borrowed from the Wagner’s work [117]. Again, we have
considered median of these values. The used values are, Cf

=27, Cs=6.2, Cu=2.5, and Ci=4.55. Mp shows the fraction
of modules unit tested. Its value is taken from the study
performed by [120] and is Mp=0.5. A detailed description
of used cost-benefit analysis model is given in [118].

7 Results and analysis

This section reports the results of used ensemble techniques
for various performance measures. Further, an analysis
of results is performed to draw observations about
the ensemble techniques’ performance. The experimental
procedure discussed in Section 6 has been used to build and
evaluate prediction models. Later, this section discusses the
results of the used statistical tests.

7.1 Results for precision, recall, AUC, specificity, and
G-means

Tables 3, 4, 5, 6, 7 show the summarized results of
ensemble techniques for various used datasets. Each table
depicts the results of one performance measure. The table
contains min, max, and means values of each ensemble
technique calculated from all datasets. We have reported the
summarized results due to the space constraint. Following
observations are drawn from tables.

– With respect to the precision measure, Rotation Forest
with J48 as base learner achieved highest max value and
highest mean value. Whereas, MultiBoostAB with NB
as base learner yielded the lowest min value.

– With respect to the recall measure, again Rotation
Forest with J48 as base learner achieved highest max
value and highest mean value. Whereas, Rotation Forest
with NB as base learner yielded the lowest min value.
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Table 3 Summarized results of ensemble techniques for the used fault
datasets with respect to precision measure

Technique Base Leaner Precision

Min Max Mean±std

Dagging NB 0.589 0.976 0.806±0.085
LR 0.619 0.976 0.808±0.085
J48 0.601 0.976 0.82 ±0.087

Decorate NB 0.581 0.978 0.798±0.09
LR 0.609 0.986 0.816±0.082
J48 0.676 0.99 0.826±0.073

Grading NB 0.629 0.987 0.807±0.083
LR 0.651 0.987 0.816±0.079
J48 0.665 0.988 0.822±0.076

MultiBoostAB NB 0.583 0.986 0.80±0.089
LR 0.622 0.987 0.812±0.082
J48 0.673 0.993 0.823±0.077

RealAdaBoost NB 0.535 0.983 0.791±0.102
LR 0.623 0.988 0.813±0.083
J48 0.674 0.993 0.819±0.073

Rotation Forest NB 0.595 0.983 0.797±0.092
LR 0.622 0.987 0.816±0.081
J48 0.677 0.995 0.829±0.074

Ensemble Selection 0.594 0.983 0.804±0.086

Table 4 Summarized results of ensemble techniques for the used fault
datasets with respect to recall measure

Technique Base Leaner Recall

Min Max Mean±std

Dagging NB 0.575 0.988 0.811±0.093
LR 0.619 0.982 0.831±0.09
J48 0.639 0.988 0.845±0.087

Decorate NB 0.541 0.976 0.783±0.111
LR 0.608 0.981 0.838±0.084
J48 0.676 0.99 0.846±0.07

Grading NB 0.629 0.983 0.834±0.085
LR 0.646 0.985 0.838±0.082
J48 0.663 0.988 0.841±0.08

MultiBoostAB NB 0.567 0.943 0.784±0.099
LR 0.623 0.982 0.835±0.084
J48 0.679 0.993 0.839±0.079

RealAdaBoost NB 0.563 0.977 0.785±0.105
LR 0.623 0.986 0.835±0.084
J48 0.675 0.993 0.832±0.074

Rotation Forest NB 0.507 0.943 0.776±0.115
LR 0.621 0.983 0.838±0.085
J48 0.677 0.994 0.851±0.078

Ensemble Selection 0.575 0.951 0.797±0.095

Table 5 Summarized results of ensemble techniques for the used fault
datasets with respect to AUC measure

Technique Base Leaner AUC

Min Max Mean±std

Dagging NB 0.491 0.862 0.781±0.084
LR 0.617 0.912 0.748±0.062
J48 0.458 0.934 0.719±0.116

Decorate NB 0.568 0.986 0.708±0.086
LR 0.558 0.918 0.721±0.091
J48 0.641 0.965 0.769±0.081

Grading NB 0.496 0.851 0.608±0.096
LR 0.492 0.874 0.619±0.097
J48 0.494 0.885 0.629±0.099

MultiBoostAB NB 0.523 0.843 0.685±0.07
LR 0.586 0.921 0.701±0.072
J48 0.632 0.956 0.771±0.072

RealAdaBoost NB 0.572 0.87 0.719±0.084
LR 0.602 0.904 0.737±0.073
J48 0.532 0.947 0.752±0.078

Rotation Forest NB 0.561 0.847 0.717±0.077
LR 0.566 0.925 0.742±0.084
J48 0.417 0.953 0.752±0.117

Ensemble Selection 0.637 0.912 0.747±0.062

Table 6 Summarized results of ensemble techniques for the used fault
datasets with respect to specificity measure

Technique Base Leaner Specificity

Min Max Mean±std

Dagging NB 0.523 0.998 0.821±0.137
LR 0.578 0.977 0.831±0.101
J48 0.641 1 0.846±0.093

Decorate NB 0.076 0.984 0.772±0.218
LR 0.33 0.977 0.816±0.136
J48 0.6 0.977 0.84±0.093

Grading NB 0.375 0.977 0.815±0.129
LR 0.4 0.977 0.817 ±0.129
J48 0.5 0.977 0.827±0.116

MultiBoostAB NB 0.065 0.985 0.776±0.214
LR 0.352 0.977 0.815±0.133
J48 0.609 0.977 0.852±0.084

RealAdaBoost NB 0.222 0.984 0.773±0.208
LR 0.428 0.977 0.815±0.128
J48 0.669 0.977 0.850±0.083

Rotation Forest NB 0.048 0.982 0.769±0.225
LR 0.375 0.977 0.815±0.131
J48 0.666 1 0.851±0.089

Ensemble Selection 0.068 0.985 0.78±0.208
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Table 7 Summarized results of ensemble techniques for the used fault
datasets with respect to G-mean 1 and G-mean 2 measures

Technique Base Leaner G-mean 1 G-mean 2

Min Max Mean±std Min Max Mean±std

Dagging NB 0.581 0.981 0.808±0.089 0.56 0.99 0.815±0.111

LR 0.619 0.978 0.819±0.087 0.00 0.975 0.801±0.18

J48 0.62 0.981 0.832±0.086 0.64 0.99 0.846±0.090

Decorate NB 0.572 0.976 0.790±0.21 0.572 0.976 0.790±0.098

LR 0.608 0.983 0.827±0.083 0.571 0.972 0.824±0.100

J48 0.676 0.99 0.836±0.07 0.680 0.977 0.842±0.075

Grading NB 0.629 0.984 0.820±0.083 0.607 0.976 0.821±0.096

LR 0.648 0.985 0.827±0.080 0.627 0.972 0.825±0.095

J48 0.663 0.988 0.831±0.078 0.634 0.973 0.831±0.090

MultiBoostAB NB 0.574 0.954 0.791±0.091 0.237 0.963 0.771±0.167

LR 0.625 0.984 0.823±0.082 0.588 0.969 0.822±0.098

J48 0.677 0.993 0.831±0.070 0.643 0.976 0.845±0.078

RealAdaBoost NB 0.568 0.977 0.788±0.102 0.453 0.960 0.773±0.152

LR 0.623 0.986 0.824±0.083 0.621 0.966 0.822±0.096

J48 0.675 0.993 0.825±0.073 0.679 0.972 0.840±0.074

Rotation Forest NB 0.583 0.953 0.786±0.100 0.202 0.962 0.763±0.182

LR 0.621 0.984 0.827± 0.082 0.607 0.971 0.824±0.098

J48 0.677 0.994 0.840±0.075 0.682 0.966 0.851±0.083

Ensemble Selection 0.584 0.958 0.801±0.088 0.239 0.967 0.779±0.161

– With respect to the AUC measure, Decorate with NB as
base learner produced highest max value and Dagging
with NB as base learner produced highest mean value.
RealAdaBoost with J48 as base learner produced the
lowest min value.

– With respect to the specificity measure, MultiBoostAB
with J48 as base learner produced highest mean value
and Rotation Forest with J48 and Dagging with J48
as base learner produced highest max value. Rotation
Forest with NB produced the lowest min value.

– With respect to the G-mean measures, Rotation Forest
with J48 as base learner produced highest max value
and highest mean value for G-mean 1, and Dagging
with NB as base learner produced highest max value
and Dagging with J48 as base learner produced highest
mean value for G-mean 2. RealAdaBoost with NB as
base learner produced the lowest min value for G-mean
1 and Dagging with LR produced lowest min value for
G-mean 2.

– Overall, it is found that Rotation Forest outperformed
other used ensemble techniques and yielded better
performance. In case of base learners, J48 achieved
better performance among the used base learners.

– From tables, it can be observed that for all the
considered performance measures, used ensemble
techniques produced mean values greater than 0.7,
except for the grading ensemble technique in terms
of AUC measure. The standard deviation values (std)
of all ensemble techniques are below 0.10 for most
of the cases for all performance measures, except for
the specificity measure. For specificity measure, all
ensemble techniques produced std values above 0.10
with the highest value of 0.223. This high variation in
the model’s performance signifies a low true negative
rate and thus it shows that prediction models missed
some true negative cases and classified them as
false positives. This will increase the consumption of
software testing to test false positive cases. However,
in their work, Bohem et al. [121] argued that the
verification/testing efforts saved by a fault prediction
model of correct identification of one fault are higher
than the cost of misclassification of a hundred fault-free
modules as fault-prone. Therefore, the high std values
of specificity measure would result in the marginal
increase in the testing cost but overall software testing
cost would be saved.
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Figure 4 shows box-plots for comparing the degree of
dispersion, inter-quartile range, outliers and skewness in
term of precision, recall, AUC, specificity, and G-means
values for all ensemble techniques across all fault datasets.
Each box-plot is corresponding to one ensemble technique
and for one performance measure. The middle line in
box-plots shows midpoints of the data (median values).
Following observations have been obtained from the figure.

– It is depicted in the figure that for the AUC measure,
all ensemble techniques performed relatively poor as
compared to other used performance measures.

– Additionally, it is observed that the inter-quartile range
(the difference between the first quartile and third
quartile) for AUC measure is more than other used
performance measures.

– The box-plots of specificity measure are relatively
wider than other box-plots and hence it shows the
variation in the specificity values across dataset. The
upper and lower whiskers of box-plots corresponding to
specificity measure in the figure show that many values
are deviated largely from the median value.

– For other performance measures such as precision,
recall, and G-means, it is observed that there are

(a) Dagging (NB) (b) Dagging (LR) (c) Dagging (J48)                                    (d) Decorate (NB)

(e) Decorate (LR) (f) Decorate (J48) (g) Grading (NB)                                         (h) Grading (LR)

(i) Grading (J48)                       (j) MultiBoostAB (NB) (k) MultiBoostAB (LR) (l) MultiBoostAB (J48)

(m) RealAdaBoost (NB) (n) RealAdaBoost(LR) (o) RealAdaBoost (J48)                            (p) RotatioForest (NB)

(q) Rotation Forest (LR) (r) RotationForest (J48) (s) Ensemble Selection 
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Fig. 4 Boxplot diagrams showing the degree of dispersion, interquartile range, outliers and skewness for all the used performance measures
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Table 8 Results of statistical comparisons of Friedman’s tests among the used ensemble techniques for all five performance measures

Friedman’s Test for Precision Friedman’s Test for Recall

H-stat 78.62 H-stat 286.7949

DF 18 DF 18

P-value 1.49E-09 P-value 2.48E-50

Alpha 0.05 Alpha 0.05

Significant Yes Significant Yes

Friedman’s Test for AUC Friedman’s Test for Specificity

H-stat 242.15 H-stat 56.19

DF 18 DF 18

P-value 3.2E-41 P-value 8.29E-06

Alpha 0.05 Alpha 0.05

Significant Yes Significant Yes

Friedman’s Test for G-mean 1 Friedman’s Test for G-mean 2

H-stat 240.64 H-stat 206.5365

DF 18 DF 18

P-value 6.49E-41 P-value 4.92E-34

Alpha 0.05 Alpha 0.05

Significant Yes Significant Yes

not many variations in the values. For these three
performance measures, all the ensemble techniques
achieved relatively better performance.

7.2 Results of statistical tests

Table 8 shows results of the Friedman’s tests of all used
ensemble techniques for all five performance measures. It
is observed from the table that a statistically significant
difference in the performance of at least one pair
of ensemble techniques has been found for all used
performance evaluation measures. P-values are lower than
the considered significant values (α=0.05) for all cases.
These results showed that different ensemble techniques
performed differently for at least one pair of techniques for
the given software fault datasets. Further, Wilcoxon signed
rank sum test is performed to calculate the within pair
difference among the used ensemble techniques.

Table 9 shows results of the Wilcoxon signed rank test
for all five performance measures of all used ensemble
techniques. Each sub-table is for one performance measure.
Due to the space constraint, we used the abbreviated ID’s for
technique names. The full name of each ID is provided in
the table caption. A black filled circle shows the significant
performance difference in the pair of ensemble techniques
at α = 0.05 and thus rejecting the null hypothesis. A hollow
circle shows no significant performance difference at α =
0.05 and thus accepting the null hypothesis. There are a total
of 171 pair-wise comparisons of seven ensemble techniques
is reported in Table 9 for each performance measure. The

summarized results of Wilcoxon signed rank sum test are
given below.

– For the precision measure, a total of 106 pairs have
shown a statistical significant difference in performance
and other 65 pairs have not shown any statistical
significant difference in performance.

– In case of recall performance measure, a total of 138
pairs have shown a statistical significant difference in
performance and other 33 pairs have not shown any
statistical significant difference in performance.

– For the AUC measure, a total of 133 pairs have shown
a statistical significant difference in performance and
other 38 pairs have not shown any statistical significant
difference in performance.

– In case of specificity measure, a total of 128 pairs have
shown a statistical significant difference in performance
and other 43 pairs have not shown any statistical
significant difference in performance.

– For the G-mean 1 measure, a total of 54 pairs have
shown a statistical significant difference in performance
and other 117 pairs have not shown any statistical
significant difference in performance.

– For the G-mean 2 measure, a total of 128 pairs have
shown a statistical significant difference in performance
and other 43 pairs have not shown any statistical
significant difference in performance.

These results showed that performance of ensemble
techniques differs statistically significantly from one to
other. Except the G-mean 1 performance measure, for all
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other used performance measures, cases where statistically
significant performance difference have been found are
more than the cases where no statistically significant
performance different have been found.

7.3 Results of cost-benefit analysis

Table 10 shows normalized cost values (Ncost) of each
ensemble techniques for all the used software fault datasets.
For each dataset, Ncost value is reported in the table and
values less than 1.0 show the cost-effectiveness of the
ensemble techniques. It implies that if the results of SFP
are used with software testing than overall testing cost and
effort can be saved. On the other hand, values higher than
1.0 show that SFP is not helpful in saving testing cost and
effort and it is suggested not to use SFP models in those
cases. From the table, it can be seen that for datasets such as
Lucene-2.4, Poi-2.5, Poi-3.0, Xalan-2.5, Xalan-2.6, Xalan-
2.7, Xerces-1.3, and Xerces-1.4, Ncost values are higher
than the threshold value (1.0) for all the used ensemble
techniques. Therefore, as estimated from this study, it may
not be beneficial to use software fault prediction based on
used ensemble techniques along with the software testing
for these fault datasets. For all other 20 datasets, Ncost
values are lower than the threshold value and thus it is
beneficial to use software fault prediction based on used
ensemble techniques.

7.4 Answer to the research questions

Based on the results reported in Tables 3–9, the answers of
research questions are discussed as follow:

RQ1: Which ensemble technique shows overall best
performance for software fault prediction?

Results reported in Table 3–7 showed that for most
of the cases Rotation Forest yielded better perfor-
mance compared to other used ensemble techniques.
MultiBoostAB, Decorate, and Dagging produced better
performance in some cases. Other ensemble techniques
performed relatively poor.

RQ2: Is there any statistically significant performance
difference between the chosen ensemble techniques?

Results of Friedman’s tests and Wilcoxon signed rank
tests reported in Tables 8 and 9 showed that for majority
of the cases pairs of ensemble techniques showed statis-
tically significant performance difference. This pattern
has been found for all the used performance measures
except G-means measure.

RQ3: How do base learners affect the performance of
ensemble techniques?

The evidence obtained from the experimental results
discussed in Section 7 showed that the performance
of ensemble techniques varies with the use of the base
learner. Overall, J48 as a base learner helped in achieving
improved prediction performance. NB as a base learner
generally resulted in the inferior performance of the
ensemble techniques.

RQ4: For a given software system, how economically
effective ensemble techniques are for software fault
prediction?

The evidence obtained from Table 10 shows that for twenty
out of twenty-eight fault datasets, SFP models based on the
used ensemble techniques helped in saving software testing
cost and effort. For only eight fault datasets, used ensemble
techniques have not been helped in saving software testing
cost and effort. From the results, it can be recommended to
use SFP models based on the used ensemble techniques to
reduce the software testing cost.

In this paper, we have explored the use of seven different
ensemble techniques for the software fault prediction. Three
different classification algorithms have bene used as base
learners in the used ensemble techniques. The observations
drawn from the experimental results and main advantages
of the presented work are summarized as follow.

– The analysis of used ensemble techniques showed that
no single ensemble technique always provides the best
performance across all the fault datasets, and the use of
a particular ensemble technique for SFP depends on the
properties of the fault dataset in-hands.

– However, among the used ensemble techniques, Rota-
tion Forest yielded better prediction performance than
others. J48 as a base learner outperformed other used
base learners. Thus, from this study, it may be recom-
mended to use Rotation Forest and J48 to build the SFP
models for better prediction performance.

– The cost-benefit analysis showed that the SFP models
based on the ensemble techniques under consideration
can help in reducing the software testing cost and can
help in optimizing the testing resources.

8 Comparison analysis

There few efforts have been reported earlier regarding the
evaluation of ensemble techniques based on fault prediction
models. A comparison of reported study with these works
on various attributes has tabulated in Table 11. A majority
of previous works listed in Table 11 included the contextual
information of the fault prediction model, model building
information, used software fault datasets, and prediction
modeling techniques with the experimental findings in
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Table 9 Results of the statistical comparison of Wilcoxon signed rank test among the used ensemble techniques for all five performance measures.
A filled circle shows the significance difference and a hollow circle shows no significance difference. (ID1: Dagging(NB), ID2: Dagging(LR),
ID3: Dagging(J48), ID4: Decorate(NB), ID5: Decorate(LR), ID6: Decorate(J48), ID7: Grading(NB), ID8: Grading(LR), ID9: Grading(J48),
ID10: MultiBoostAB(NB), ID11: MultiBoostAB(LR), ID12: Multi-BoostAB(J48), ID13: RealAdaBoost(NB), ID14: RealAdaBoost(LR), ID15:
RealAdaBoost(J48), ID16: RotationForest(NB), ID17: RotationForest(LR), ID18: RotationForest(J48), ID19: Ensemble Selection)

(a) For Precision measure (b) For Recall measure

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

ID2 - ● ● ● ● ○ ● ● ● ● ○ ● ○ ○ ● ● ● ●

ID3 - ● ● ○ ● ● ○ ● ● ● ● ● ● ● ● ● ●

ID4 - ● ● ● ● ● ○ ● ● ○ ● ● ○ ● ● ●

ID5 - ○ ● ● ○ ● ● ● ● ● ● ● ○ ● ●

ID6 - ● ● ● ● ● ● ● ● ● ● ○ ○ ●

ID7 - ● ● ● ○ ○ ● ○ ○ ● ● ● ●

ID8 - ● ● ● ○ ● ● ○ ● ○ ● ●

ID9 - ● ● ○ ● ○ ● ● ○ ● ●

ID10 - ● ● ○ ● ● ○ ● ● ●

ID11 - ○ ● ○ ○ ● ● ● ●

ID12 - ● ○ ● ● ○ ● ●

ID13 - ● ● ○ ● ● ●

ID14 - ○ ● ● ● ●

ID15 - ● ● ● ●

ID16 - ● ● ●

ID17 - ● ●

ID18 - ●

ID19 -

(c) For AUC measure (d) For Specificity measure

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ○ ○ ● ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○ ● ○ ○ ●

ID2 - ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○ ○ ● ○ ● ○ ○

ID3 - ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○ ○ ○

ID4 - ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○ ○ ●

ID5 - ● ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○ ○ ○

ID6 - ● ● ● ○ ● ● ○ ● ● ○ ● ○ ○

ID7 - ○ ● ○ ○ ● ● ○ ○ ● ○ ○ ●

ID8 - ● ○ ○ ● ○ ○ ● ○ ○ ○ ○

ID9 - ○ ● ● ○ ● ● ○ ● ○ ○

ID10 - ○ ● ○ ○ ● ○ ○ ○ ○

ID11 - ● ○ ○ ● ○ ○ ○ ○

ID12 - ● ● ○ ● ● ● ●

ID13 - ○ ● ○ ○ ○ ○

ID14 - ● ○ ○ ○ ○

ID15 - ● ● ● ●

ID16 - ○ ○ ○

ID17 - ○ ○

ID18 - ○

ID19 -

(e) For G-mean 1 measure (f) For G-mean 2 measure

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ○ ● ○ ● ● ○ ● ● ○ ○ ● ○ ● ● ○ ● ● ○

ID2 - ● ○ ● ● ○ ● ● ○ ● ● ○ ○ ● ○ ● ● ○

ID3 - ● ○ ○ ● ○ ○ ● ○ ○ ● ○ ○ ● ○ ● ●

ID4 - ● ● ○ ● ● ○ ● ● ○ ● ● ○ ● ● ●

ID5 - ○ ● ○ ○ ● ○ ○ ● ○ ○ ● ○ ● ●

ID6 - ● ● ● ● ● ○ ● ● ● ● ○ ○ ●

ID7 - ● ● ○ ○ ● ○ ○ ● ○ ● ● ○

ID8 - ● ● ● ○ ● ○ ○ ● ○ ● ●

ID9 - ● ● ○ ● ○ ○ ● ○ ● ●

ID10 - ● ● ○ ● ● ○ ● ● ●

ID11 - ● ● ○ ○ ● ● ● ○

ID12 - ● ○ ○ ● ○ ● ●

ID13 - ● ● ○ ● ● ●

ID14 - ○ ● ○ ● ●

ID15 - ● ○ ● ●

ID16 - ● ● ●

ID17 - ● ●

ID18 - ●

ID19 -

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ● ○ ● ○ ● ● ● ● ● ● ● ○ ● ● ● ● ● ●

ID2 - ○ ● ● ● ● ● ● ● ● ● ● ○ ○ ● ○ ● ○

ID3 - ● ○ ● ● ● ● ● ● ● ○ ○ ● ● ○ ● ○

ID4 - ● ● ● ● ● ● ○ ● ○ ● ● ○ ● ● ●

ID5 - ● ● ● ● ● ● ● ○ ● ● ○ ● ● ●

ID6 - ● ● ● ● ● ○ ● ● ○ ● ○ ○ ○

ID7 - ● ● ● ● ● ● ● ● ● ● ● ●

ID8 - ● ● ● ● ● ● ● ● ● ● ●

ID9 - ● ● ● ● ● ● ● ● ● ●

ID10 - ○ ● ● ● ● ● ● ● ●

ID11 - ● ○ ● ● ○ ● ● ●

ID12 - ● ● ● ● ● ○ ●

ID13 - ● ● ○ ● ● ●

ID14 - ○ ● ○ ○ ○

ID15 - ● ○ ○ ○

ID16 - ● ● ●

ID17 - ○ ○

ID18 - ○

ID19 -

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ○

ID2 - ● ● ● ● ○ ● ● ● ● ● ● ○ ○ ● ● ● ●

ID3 - ● ○ ○ ● ○ ○ ● ● ○ ● ● ○ ● ○ ● ●

ID4 - ● ● ● ● ● ○ ● ● ○ ● ● ○ ● ● ●

ID5 - ○ ● ○ ○ ● ○ ○ ● ○ ○ ● ○ ● ●

ID6 - ● ● ● ● ● ○ ● ● ● ● ● ○ ●

ID7 - ● ● ● ○ ● ● ○ ○ ● ● ● ●

ID8 - ● ● ● ○ ● ○ ○ ● ○ ● ●

ID9 - ● ● ○ ● ● ● ● ○ ● ●

ID10 - ● ● ○ ● ● ○ ● ● ●

ID11 - ○ ● ○ ○ ● ● ● ●

ID12 - ● ○ ● ● ○ ● ●

ID13 - ● ● ○ ● ● ●

ID14 - ○ ● ● ● ●

ID15 - ● ○ ● ●

ID16 - ● ● ●

ID17 - ● ●

ID18 - ●

ID19 -

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

ID1 - ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

ID2 - ● ● ○ ● ○ ● ● ● ○ ● ● ○ ○ ● ○ ● ●

ID3 - ● ○ ○ ● ● ○ ● ● ○ ● ● ○ ● ● ○ ●

ID4 - ● ● ● ● ● ○ ● ● ○ ● ● ● ● ● ●

ID5 - ● ○ ○ ○ ● ○ ○ ● ○ ○ ● ○ ● ●

ID6 - ● ● ● ● ● ○ ● ● ● ● ● ○ ●

ID7 - ● ● ● ○ ● ● ○ ● ● ○ ● ●

ID8 - ● ● ● ● ● ○ ○ ● ○ ● ●

ID9 - ● ● ○ ● ● ○ ● ○ ● ●

ID10 - ● ● ○ ● ● ○ ● ● ●

ID11 - ● ● ○ ○ ● ○ ● ●

ID12 - ● ● ● ● ● ○ ●

ID13 - ● ● ○ ● ● ●

ID14 - ○ ● ○ ● ●

ID15 - ● ○ ● ●

ID16 - ● ● ●

ID17 - ● ●

ID18 - ●

ID19 -

their studies. It can also be observed from the table that
generally available works focused on the use of a limited
set of prediction modeling techniques in their studies. In
comparison to this, the reported work examined seven
ensemble techniques, which have not been explored earlier.
Moreover, most of the earlier works used only a few
datasets to perform the experiments. In the reported study,
a total of 28 different fault datasets have been considered
to generalize the findings of the work. Further, we have

performed a cost-benefit analysis to assess the economic
viability of the used ensemble techniques for the SFP, which
has not been done in previous studies. When comparing
the results of the presented empirical study with the results
reported by [31] for SFP, it has been found that ensemble
techniques used in this study performed better. The highest
AUC value achieved is 0.986 by Decorate with NB as a base
learner in comparison to 0.96 value achieved by stacking
in the Wang et al.’s study. In the presented study, the mean
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Table 10 Results of the cost-benefit analysis (Ncost) of ensemble techniques for all used software fault datasets [ID1: Dagging(NB),
ID2: Dagging(LR), ID3: Dagging(J48), ID4: Decorate(NB), ID5: Decorate(LR), ID6: Decorate(J48), ID7: Grading(NB), ID8: Grading(LR),
ID9: Grading(J48), ID10: MultiBoostAB(NB), ID11: MultiBoostAB(LR), ID12: Multi-BoostAB(J48), ID13: RealAdaBoost(NB), ID14:
RealAdaBoost(LR), ID15: RealAdaBoost(J48), ID16: RotationForest(NB), ID17: RotationForest(LR), ID18: RotationForest(J48), ID19:
Ensemble Selection]

Techniques Ant Camel Ivy Jedit Lucene Poi Prop Tomcat Xalan Xerces

Ant-1.7 Camel-

1.0

Camel-

1.2

Camel-

1.4

Camel-

1.6

Ivy-2.0 Jedit-

4.0

Jedit-

4.1

Jedit-

4.2

Jedit-4.3 Lucene

-2.4

Poi-2.0 Poi-2.5 Poi-3.0 Prop-1 Prop-2 Prop-3 Prop-4 Prop-5 Prop-6 Tomcat Xalan-

2.4

Xalan-

2.5

Xalan-

2.6

Xalan-

2.7

Xerces-

1.2

Xerces-

1.3

Xerces-1.4

ID1 0.8621 0.0766 0.9768 0.7549 0.7552 0.5582 0.8938 0.8993 0.7007 0.0447 1.1013 0.4156 1.1022 1.0942 0.6973 0.6138 0.6082 0.5344 0.6039 0.6452 0.9891 0.7375 1.0654 1.0200 1.1301 0.6130 0.735 1.1177

ID2 0.797 0.1010 0.9890 0.6397 0.6819 0.4766 0.8756 0.8488 0.5626 0.0789 1.1158 0.5221 1.0990 1.1048 0.4268 0.2645 0.2808 0.3078 0.3852 0.4180 0.4120 0.6451 1.0912 1.0433 1.1307 0.6481 0.6796 1.1023

ID3 0.7751 0.0766 0.9234 0.4504 0.5280 0.4150 0.8125 0.8377 0.5144 0.0447 1.1078 0.3474 1.1058 1.0986 0.4227 0.2547 0.2352 0.2703 0.3439 0.2 0.2839 0.4703 1.0821 1.0391 1.1301 0.3620 0.5424 1.0959

ID4 0.8439 0.4268 0.9439 0.7457 0.7171 0.6992 0.8404 0.8328 0.6750 0.4147 1.1025 0.6152 1.1214 1.1320 0.6941 0.6092 0.5633 0.5225 0.6001 0.7864 0.6552 0.7426 1.0597 1.0054 1.1314 0.7270 0.7425 1.1346

ID5 0.7972 0.1838 0.9112 0.5446 0.5925 0.4979 0.8197 0.8495 0.5518 0.1269 1.1036 0.4834 1.1075 1.0952 0.4254 0.2591 0.2829 0.2936 0.3782 0.3045 0.4151 0.5430 1.0834 1.0374 1.1304 0.4357 0.6539 1.1037

ID6 0.8004 0.1010 0.9830 0.5987 0.7306 0.4516 0.8618 0.8173 0.6063 0.0447 1.1014 0.4750 1.0875 1.0938 0.5517 0.3822 0.2994 0.3068 0.3825 0.4396 0.4080 0.5663 1.0759 1.0315 1.1294 0.6734 0.5882 1.0964

ID7 0.8201 0.1408 0.9464 0.5439 0.6370 0.4979 0.7853 0.8099 0.5679 0.0620 1.1059 0.4773 1.1035 1.0994 0.5030 0.4302 0.2773 0.2970 0.4768 0.3717 0.3197 0.5157 1.0900 1.0405 1.1302 0.5025 0.6538 1.1023

ID8 0.7946 0.1898 0.9211 0.5420 0.6252 0.5469 0.8281 0.8246 0.5186 0.1269 1.0998 0.4554 1.1044 1.0950 0.4771 0.4229 0.2924 0.3153 0.3907 0.3904 0.3946 0.5693 1.0667 1.0255 1.1300 0.5232 0.6290 1.0997

ID9 0.7995 0.1688 0.9353 0.5841 0.6893 0.5368 0.8172 0.8345 0.5830 0.1113 1.0998 0.4609 1.0984 1.0913 0.5258 0.3638 0.2934 0.3123 0.3926 0.3904 0.3751 0.5843 1.0683 1.0235 1.1297 0.6208 0.6786 1.0974

ID10 0.8553 0.3920 0.9326 0.7095 0.7259 0.7050 0.8486 0.8532 0.6912 0.3586 1.1063 0.6247 1.1060 1.1245 0.6922 0.6092 0.5999 0.5225 0.6028 0.7855 0.6537 0.7574 1.0607 1.0054 1.1464 0.7060 0.7262 1.1339

ID11 0.7560 0.2610 0.9547 0.5369 0.6145 0.4886 0.8725 0.8478 0.5639 0.1714 1.1074 0.5170 1.1052 1.1022 0.4305 0.2645 0.2781 0.3077 0.3879 0.3322 0.4023 0.5736 1.0855 1.0387 1.1303 0.5145 0.6509 1.1019

ID12 0.8213 0.1688 0.9872 0.6599 0.7613 0.5664 0.8668 0.8586 0.6084 0.0620 1.1123 0.5214 1.920 1.0957 0.6329 0.4853 0.4240 0.4101 0.5873 0.5273 0.4080 0.6373 1.0738 1.0462 1.1290 0.6293 0.7058 1.0979

ID13 0.8535 0.4315 0.9407 0.7282 0.7234 0.6992 0.8352 0.8294 0.6683 0.3875 1.1025 0.6247 1.1438 1.1256 0.6922 0.6092 0.5999 0.5221 0.6028 0.7829 0.6426 0.7340 1.0628 1.0063 1.1311 0.7060 0.7165 1.1339

ID14 0.7603 0.3389 0.9344 0.5441 0.5726 0.4979 0.8317 0.8495 0.5713 0.2127 1.1028 0.4642 1.1081 1.1052 0.4524 0.2862 0.2898 0.3183 0.3923 0.3352 0.4115 0.5671 1.0826 1.0329 1.1299 0.5243 0.6597 1.1072

ID15 0.8228 0.2484 1.0039 0.6958 0.7989 0.5525 0.8509 0.8868 0.5899 0.1269 1.0958 0.5919 1.0983 1.0966 0.7082 0.5954 0.4457 0.4984 0.6402 0.6519 0.4318 0.6590 1.0764 1.0512 1.1290 0.7128 0.6821 1.1009

ID16 0.8495 0.3960 0.9473 0.7314 0.7365 0.7176 0.8369 0.8378 0.6784 0.3419 1.1014 0.6432 1.1463 1.1448 0.6851 0.5996 0.5503 0.5236 0.5579 0.7382 0.6463 0.7509 1.0558 1.0126 1.1483 0.6886 0.7412 1.1352

ID17 0.7521 0.1838 0.9300 0.5125 0.5621 0.4594 0.8211 0.8329 0.5712 0.1421 1.1041 0.4554 1.1056 1.1006 0.4268 0.2568 0.2750 0.2941 0.3787 0.3108 0.3650 0.5267 1.0835 1.0328 1.1302 0.4795 0.6351 1.1024

ID18 0.7569 0.1010 0.8656 0.4847 0.5432 0.3926 0.7920 0.8442 0.5349 0.0447 1.1039 0.3155 1.0961 1.0923 0.4461 0.3080 0.2470 0.2562 0.3468 0.2651 0.2749 0.4150 1.0764 1.0307 1.1289 0.5959 0.5818 1.0958

ID19 0.8426 0.3960 0.9445 0.7005 0.7191 0.6441 0.8316 0.8244 0.6508 0.3173 1.0937 0.5852 1.1032 1.1163 0.6562 0.5528 0.5529 0.4908 0.5628 0.7250 0.6311 0.7194 1.0586 1.0089 1.1408 0.6919 0.7206 1.1251

AUC value is 0.781, and minimum AUC value is 0.532,
which is comparable with the values reported by Wang
et al.’s work.

9 Threats to the validity

The empirical analysis reported in this paper can be suffered
by some threats to the validity, which are discussed as
follow.

Construct Validity This validity threat concerns with the
accuracy of the used software fault datasets. We gathered
and used fault datasets reported in the PROMISE data
repository, which is available in the public domain. The
fault datasets in this repository are corresponding to
various contributors. It is the primary repository used for
building and evaluating software fault prediction model.
This made us believe that fault datasets used in the study
are accurate, consistent, and free from any inconsistency.

Internal Validity This validity threat concerns with the
selection of base learners. The presented study included

three different classification algorithms as base learners.
The rationale behind the selection of these three
algorithms is that previous research found that these
algorithms performed better in comparison to other ones
for software fault prediction. However, the selection of
base learners is orthogonal to the intended contribution.
We have used faulty or non-faulty information for a
given software module as dependent variable due to
the nature of the designed experimental study. Other
dependent variables such as the quantity of faults in a
software module, severity of a fault, etc. could also be
used.

External Validity This validity threat is related to the
used statistical tests. We have used Friedman’s test
and Wilcoxon signed rank sum test to evaluate the
performance difference of the considered ensemble
techniques. These tests are the non-parametric tests,
which do not specify any conditions about the drawn
population sample of the data. Selection of these tests
were made according to the data sample available in hand
in the presented study. However, any other statistical
test can be used based on the given data. We have used

3638 S. S. Rathore and S. Kumar



Ta
bl
e
11

Su
m

m
ar

y
of

co
m

pa
ra

tiv
e

an
al

ys
is

A
ut

ho
r(

s)
A

im
of

th
e

st
ud

y
C

on
te

xt
ua

l
in

fo
rm

at
io

n
re

po
rt

ed

M
od

el
bu

ild
-

in
g

in
fo

rm
at

io
n

re
po

rt
ed

So
ft

w
ar

e
fa

ul
t

da
ta

se
ts

us
ed

R
ep

or
te

d
fa

ul
t

pr
ed

ic
-

tio
n

te
ch

ni
qu

es
/m

od
el

s
R

es
ul

ts

M
ıs

ır
lı

et
al

.[
32

]
D

ef
ec

tp
re

di
ct

io
n

m
od

el
ba

se
d

on
an

en
se

m
bl

e
of

C
la

ss
if

ie
rs

fo
r

lo
ca

tin
g

so
ft

w
ar

e
de

fe
ct

s

Y
es

Y
es

C
M

1,
PC

1,
PC

3
an

d
PC

4
fr

om
N

A
SA

da
ta

re
po

si
to

ry
an

d
4

fa
ul

t
da

ta
se

ts
fr

om
in

du
st

ry

A
en

se
m

bl
e

cl
as

si
fi

er
(E

ns
2)

th
at

us
ed

th
re

e
cl

as
si

fi
er

s
as

ba
se

le
ar

n-
er

s

Fo
r

in
du

st
ri

al
da

ta
se

ts
PD

=
0.

69
,P

F=
0.

17
,P

re
-

ci
si

on
=

0.
72

,
B

al
=

0.
74

Fo
r

N
A

SA
da

ta
se

ts
PD

=
0.

84
,P

F=
0.

15
,P

re
-

ci
si

on
=

0.
63

,B
al

=
0.

75
*A

ll
re

su
lts

ar
e

av
er

ag
e

va
lu

es
J.

Z
he

ng
[3

3]
T

hr
ee

co
st

se
ns

iti
ve

bo
os

tin
g

al
go

ri
th

m
s

ba
se

d
on

bo
os

t
ne

ur
al

ne
tw

or
ks

fo
r

so
ft

w
ar

e
de

fe
ct

pr
ed

ic
tio

n

Y
es

Y
es

K
C

1,
K

C
2,

C
M

1,
an

d
PC

1
fr

om
N

A
SA

da
ta

re
po

si
to

ry

T
hr

ee
co

st
-s

en
si

tiv
e

ne
ur

al
ne

tw
or

k
bo

os
tin

g
al

go
ri

th
m

s
(C

SB
N

N
-

W
U

1
C

SB
N

N
-W

U
2,

an
d

C
SB

N
N

-T
M

)

C
SB

N
N

-W
U

2
al

go
-

ri
th

m
s

w
as

pe
rf

or
m

ed
th

e
be

st
am

on
g

th
e

us
ed

te
ch

ni
qu

es

W
an

g
et

al
.[

26
]

A
co

m
pa

ra
tiv

e
st

ud
y

of
va

ri
ou

s
en

se
m

bl
e

m
et

h-
od

s
fo

r
so

ft
w

ar
e

de
fe

ct
pr

ed
ic

tio
n

Y
es

Y
es

14
fa

ul
t

da
ta

se
ts

fr
om

th
e

N
A

SA
da

ta
re

po
si

-
to

ry

B
ag

gi
ng

,
A

da
B

oo
st

M
1

R
an

do
m

Fo
re

st
,

R
an

-
do

m
T

re
e,

R
an

do
m

Su
b-

sp
ac

e,
St

ac
ki

ng
,

N
ai

ve
B

ay
es

,a
nd

V
ot

e

A
cc

ur
ac

y:
88

.4
8%

(f
or

vo
te

)
A

U
C

:
96

%
(f

or
vo

te
an

d
st

ac
ki

ng
)

*r
es

ul
ts

sh
ow

th
e

m
ea

n
va

lu
e

fo
un

d
hi

gh
es

t
am

on
g

al
lu

se
d

da
ta

se
ts

Si
er

s
an

d
Is

la
m

[3
6]

A
co

st
se

ns
iti

ve
de

ci
si

on
fo

re
st

an
d

vo
tin

g
fo

r
th

e
cl

as
s

im
ba

la
nc

e
pr

ob
le

m

Y
es

Y
es

M
C

2,
PC

1,
K

C
1,

PC
3,

M
C

1,
an

d
PC

2
fr

om
N

A
SA

da
ta

re
po

si
to

ry

A
co

st
-s

en
si

tiv
e

cl
as

si
fi

-
ca

tio
n

te
ch

ni
qu

e
C

SF
or

-
es

t
an

d
a

co
st

-s
en

si
tiv

e
vo

tin
g

te
ch

ni
qu

e
C

SV
ot

-
in

g

Pr
ec

is
io

n
=

0.
85

(S
ys

-
Fo

r+
vo

tin
g1

)
R

ec
al

l=
0.

37
5

(C
SF

or
es

t+
C

SV
ot

in
g)

B
Tw

al
a

[3
4]

Pr
ed

ic
tio

n
of

so
ft

w
ar

e
fa

ul
ts

in
la

rg
e

sp
ac

e
sy

st
em

s
us

in
g

en
se

m
bl

e
te

ch
ni

qu
es

Y
es

Y
es

C
M

1,
JM

1,
an

d
PC

1
fr

om
N

A
SA

da
ta

re
po

s-
ito

ry
an

d
1

da
ta

se
t

fr
om

N
A

SA
’s

Je
t

Pr
op

ul
si

on
L

ab
or

at
or

y

M
aj

or
ity

vo
tin

g
ba

se
d

en
se

m
bl

e
m

et
ho

d
E

ns
em

bl
e

of
ap

ri
or

,
de

ci
si

on
tr

ee
an

d
K

N
N

pr
od

uc
ed

be
st

er
ro

r
ra

te
of

19
.0

%
ap

pr
ox

.

O
ur

w
or

k
E

m
pi

ri
ca

l
st

ud
y

of
en

se
m

bl
e

te
ch

ni
qu

es
fo

r
so

ft
w

ar
e

fa
ul

tp
re

di
ct

io
n

Y
es

Y
es

28
so

ft
w

ar
e

fa
ul

t
da

ta
se

ts
fr

om
th

e
PR

O
M

IS
E

da
ta

re
po

si
to

ry

Se
ve

n
di

ff
er

en
t

en
se

m
bl

e
te

ch
ni

qu
es

w
ith

th
re

e
di

ff
er

en
t

cl
as

si
fi

er
s

as
ba

se
le

ar
ne

rs

Pr
ec

is
io

n=
0.

99
5

(R
ot

a-
tio

n
Fo

re
st

)
R

ec
al

l=
0.

99
4

(R
ot

at
io

n
Fo

re
st

)
A

U
C

=
0.

98
6

(D
ec

or
at

e)
Sp

ec
if

ic
ity

=
1

(D
ag

gi
ng

an
d

R
ot

at
io

n
Fo

re
st

)
G

-m
ea

n
1=

0.
99

4
(R

ot
a-

tio
n

Fo
re

st
)

G
-m

ea
n

2=
0.

99
(D

ag
gi

ng
))

C
os

t-
be

ne
fi

t
an

al
ys

is
:

fo
r

20
ou

t
of

28
us

ed
fa

ul
t

da
ta

se
ts

,
so

ft
w

ar
e

fa
ul

t
pr

ed
ic

tio
n

m
od

el
s

ba
se

d
en

se
m

bl
e

te
ch

-
ni

qu
es

he
lp

ed
in

sa
vi

ng
th

e
so

ft
w

ar
e

te
st

in
g

co
st

an
d

ef
fo

rt
.

3639An empirical study of ensemble techniques for software fault prediction



datasets corresponding to different software projects to
generalize the conclusions drawn in the presented study.

10 Conclusions and future work

In this work, an extensive experimental analysis of ensemble
techniques for the SFP has been carried out. The study
presented an evaluation of seven ensemble techniques
by using three different classification algorithms as base
learners on twenty-eight software fault datasets. In total 532
prediction models have been built and evaluated for fault
prediction in the presented study. Overall, we found that
ensemble techniques are useful modeling techniques and
thus can be considered to build effective fault prediction
models. Out of the used ensemble techniques, rotation
forest yielded better prediction performance compared
to the other ensemble techniques and J48 as the base
learner has worked most effectively. Further, we found
that used ensemble techniques have shown a statistically
significant performance difference for the used performance
measures. The work reported in this paper can be helpful
to the research community in the modeling of accurate
fault prediction models by selecting appropriate ensemble
technique.

In the future, we aim to develop a hybrid ensemble
technique based fault prediction model based on the
findings of the reported study. Additionally, future work
includes the assessment of ensemble techniques for the fault
datasets drawn from other software systems and having
different software metrics to generalize the findings of the
work.
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Appendix

In this study, we have used Weka implementation of
used ensemble techniques and base learners. Following
parameter values have been set for these three base learning
algorithms amd seven ensemble techniques.

Techniques Parameter values

Dagging batchSize= 100, debug= False,
doNotCheckCapabilities=
False,verbose= False, numFolds= 10,
numDecimalPlaces= 2, seed= 1

Decorate seed = 1, desiredSize= 15, numDeci-
malPlaces= 2, batchSize= 100, numIter-
ations= 50, artificialSize= 1.0, debug=
False, doNotCheckCapabilities= Fasle

Grading Seed= 1, numFolds= 10, numExecution-
Slots= 1, numDecimalPlaces= 2, batch-
Size= 100

MultiBoostAB Seed= 1, weightThreshold= 100, num-
SubCmtys= 3, numDecimalPlaces= 2,
batchSize= 100, numIterations= 10,
debug= False, doNotCheckCapabilities=
False

RealAdaBoost Seed= 1, weightThreshold= 100,
numDecimalPlaces= 2, batchSize=
100, numIterations=10, debug= False,
doNotCheckCapabilities= False,
useResampling= False, shrinkage= 1.0

RotationForest Seed= 1, numExecutionSlots= 1,
numDecimalPlaces= 2, batchSize=
100, minGroup= 3, numberOfGroups=
False, numIterations= 10, debug= False,
removedPercentage= 50, maxGroup= 3,
minGroup= 3, doNotCheckCapabilities=
False, projectionFilter= PCA

Ensemble Selection Seed= 1, sortInitializationRatio= 1.0,
modelRatio= 0.5, replacement= True,
numFolds= 10, numDecimalPlaces= 2,
hillclimbMetric= Optimize with RME,
batchSize= 100, verboseOutput= False,
algorithm= Forward selection, debug=
False, numModelBags= 10, validation-
Ratio= 0.25, doNotCheckCapabilities=
False, greedySortInitialization= True,
hillclimbIterations= 100

Naive Bayes useKernelEstimator= False, numDeci-
malPlaces= 2, batchSize= 100, debug=
False, displayModelInOldFormat= False,
useSupervisedDiscretization= False

Logistic Regression numDecimalPlaces= 4, batchSize= 100,
debug= False, ridge= 1.0E-08, useConju-
gateGradientDescent= False, maxIts= -1,
doNotCheckCapabilities= False

J48 Seed= 1, unpruned= False, confi-
denceFactor= 0.25, numFolds= 10,
numDecimalPlaces= 2, batchSize=
100, reducedErrorPruning= False,
useLaplace= False, doNotMakeSplit-
PointActualValue= False, debug= False,
subtreeRaising= true, saveInstanceData=
False, binarySplits= False, doNotCheck-
Capabilities= False, minNumObj= 2,
useMDLcorrection= True, collapseTree=
True
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