Applied Intelligence (2021) 51:3615-3644
https://doi.org/10.1007/510489-020-01935-6

®

Check for
updates

An empirical study of ensemble techniques for software fault
prediction

Santosh S. Rathore’ - Sandeep Kumar?

Accepted: 9 September 2020 / Published online: 16 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Previously, many researchers have performed analysis of various techniques for the software fault prediction (SFP). Oddly,
the majority of such studies have shown the limited prediction capability and their performance for given software fault
datasets was not persistent. In contrast to this, recently, ensemble techniques based SFP models have shown promising and
improved results across different software fault datasets. However, many new as well as improved ensemble techniques
have been introduced, which are not explored for SFP. Motivated by this, the paper performs an investigation on ensemble
techniques for SFP. We empirically assess the performance of seven ensemble techniques namely, Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest, and Ensemble Selection. We believe that most of these ensemble
techniques are not used before for SFP. We conduct a series of experiments on the benchmark fault datasets and use three
distinct classification algorithms, namely, naive Bayes, logistic regression, and J48 (decision tree) as base learners to the
ensemble techniques. Experimental analysis revealed that rotation forest with J48 as the base learner achieved the highest
precision, recall, and G-mean 1 values of 0.995, 0.994, and 0.994, respectively and Decorate achieved the highest AUC
value of 0.986. Further, results of statistical tests showed used ensemble techniques demonstrated a statistically significant
difference in their performance among the used ones for SFP. Additionally, the cost-benefit analysis showed that SFP models
based on used ensemble techniques might be helpful in saving software testing cost and effort for twenty out of twenty-eight
used fault datasets.

Keywords Software fault prediction - Ensemble techniques - PROMISE data repository - Empirical analysis

1 Introduction areas of code liable to more faults can help the testing team

to allot software quality assurance resources optimally and

Current software systems are growing rapidly in complexity
and size, thus, ensuring their reliability and quality are
paramount important, which depends on software faults [1].
Software fault prediction (SFP) actively helps in the
detection of faults by highlighting potential faulty areas
of code in the software system [2]. This identification of

P4 Santosh S. Rathore
santosh.srathore @ gmail.com

Sandeep Kumar
sandeepkumargarg @ gmail.com

Department of Information Technology, ABV-Indian Institute
of Information Technology and Management, Gwalior, India

Department of Computer Science and Engineering, Indian
Institute of Technology Roorkee, Roorkee, India

efficiently [3, 4]. SFP modeling has been examined widely
by several researchers due to its inherent advantages in
optimizing testing resources utilization and improving the
quality of software projects [5-7].

For the last two decades, various learning techniques
have been used greatly for SFP [8-12]. Naive Bayes,
regression techniques, k-nearest neighbors, decision trees,
multilayer perceptron, rule-based learners, etc. are the few
of them. However, analysis of these algorithms showed
that most of the algorithms achieved an average prediction
accuracy of 80%-85% with a higher misclassification
rate [4, 13, 14]. Moreover, the performance of algorithms
has not been consistent across different fault datasets [15—
18]. In the case of the software system, it is observed that
most of the faults are concentrated in the small area of code.
Therefore, the evaluation of a classification algorithm using
accuracy measures will not provide an accurate depiction of
the model performance [19, 20].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01935-6&domain=pdf
mailto: santosh.srathore@gmail.com
mailto: sandeepkumargarg@gmail.com

3616

S.S.Rathore and S. Kumar

Earlier research in the SFP domain revealed that
individual classification and learning techniques have
reached the verge of their performance threshold point and
the performance of these techniques may not be further
improved without applying external corrections in the fault
datasets or model building process [2, 21, 22]. Some
researchers have tried to break this performance ceiling
by adapting different performance-improving strategies
such as enriching the information content of the training
datasets [21], by customizing the prediction model to
the specific local business goals [2], or by combining
multiple sets of software metrics [23]. The results of
these performance-improving strategies showed positive
conclusions to break the performance bottleneck of SFP
models. Presently, ensemble techniques based SFP models
have gained popularity in the software engineering research
community [24-26]. Many research evidence showed that
ensemble techniques can help to overcome the performance
bottleneck of classification algorithms and can serve as
a tool to develop improved fault prediction models [23].
Few researchers have analyzed ensemble techniques such
as bagging, boosting, voting, and stacking for SFP [26-28].
However, these studies were limited to some fault datasets
and analyzed one or two ensemble techniques only. Further,
many new as well as improved ensemble techniques have
been reported by the researchers, but their evaluation for
the SFP has not been performed yet. This motivated us
to undertake a study of these ensemble techniques and to
establish their usefulness for the SFP.

This paper performs an extensive experimental study of
seven ensemble techniques including Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest,
and Ensemble Selection for the SFP. To the best of our
knowledge, most of the ensemble techniques used in this
study have not been investigated thoroughly before for
the SFP. For the ensemble techniques, three different
classification algorithms, namely, naive Bayes, logistic
regression, and J48 (decision tree) are chosen to serve
as base learners. The experimental study is performed
for twenty-eight public-domain software fault datasets
available in the PROMISE data repository [29]. Precision,
recall, AUC (area under the ROC curve), specificity, and G-
means (G-mean 1 and G-mean 2) measures are considered
to evaluate the performance of ensemble techniques. The
relative significance difference in the performance of seven
ensemble techniques is evaluated by using Friedman’ test
and Wilcoxon signed-rank test. Additionally, a cost-benefit
analysis is carried out to assess the cost-effectiveness of
used ensemble techniques in terms of saving software
testing cost and effort. Results and observations obtained
from this empirical study can help practitioners in building
effective SFP models.

@ Springer

1.1 Contributions

Since the last decade, various researchers have used
different ensemble techniques for software fault prediction.
However, recently many new as well as improved versions
of existing ensemble techniques have been introduced in the
machine learning domain, which are not explored for the
SFP. This raises the need for a comprehensive evaluation
of these techniques to benchmark their performance for
the SFP. This could be very beneficial to the research
community and the practitioners working in the SFP
domain.

The contributions of the presented work are discussed as
follow:

1. We provide a systematic literature review of the
ensemble techniques used for the software fault
prediction and reported the findings of the review.

2. We perform an extensive comparison of seven different
ensemble techniques for the SFP, which to the best of
our knowledge have not explored before.

3. We repeat experiments for the twenty-eight distinct
fault datasets of different domains to establish the
feasibility and usefulness of used ensemble techniques
for the SFP.

4. Further, we perform a cost-benefit analysis of the used
ensemble techniques to assess their economic viability
for the SFP.

Following research questions have been framed to
investigate in the presented experimental study:

RQ1: Which ensemble technique shows overall best

performance for software fault prediction?

RQ2: Is there any statistically significant performance
difference between the chosen ensemble tech-
niques?

RQ3: How do base learners affect the performance of
ensemble techniques?

RQ4: For a given software system, how economically

effective ensemble techniques are for software fault
prediction?

The structure of the paper is as follows. A discussion on
earlier presented similar works is provided in Section 2.
Section 3 provides a systematic review of the ensemble
techniques based SFP. Section 4 includes the details of the
software fault prediction process. Section 5 focuses on the
overview of ensemble techniques used for SFP. Section 6
provides details of the empirical study including description
of used software fault datasets, performance evaluation
measures, experimental procedure, etc. Section 7 presents
and discusses results of the study. The comparative study
of used ensemble techniques is presented in Section 8.

An empirical study of ensemble techniques for software fault prediction

3617

Section 9 listed various threats to the validity to the
presented study followed by the conclusions and future
works in the final section.

2 Related work

Many works are available in the literature, which used
ensemble techniques/methods for SFP [23, 25, 30, 31].
Tosun et al. [32] built an ensemble based fault prediction
model that combines the learning of three different
classifiers, naive Bayes, neural network, and voting feature
intervals. Authors compared the performance of the
presented ensemble model with naive Bayes and found
that the presented model has achieved a considerably
improved performance. However, authors focused on only
one ensemble model and performed experiments for a few
NASA datasets. In a similar study, J. Zheng [33] presented
and evaluated three cost-sensitive boosting algorithms
for SFP. The author used one threshold-updating and
two weight-adjusting based algorithms and performed the
analysis for four NASA datasets. Results of the study
showed that the algorithm based on threshold-updating with
the boosted neural network performed the best among the
other techniques considered in the study for SFP. Wang
et al. [26] presented a study for software defect prediction
using some classifier ensembles. Authors assessed the
capabilities of seven ensemble techniques such as Bagging,
Boosting, Random trees, Random forest, Random subspace,
Stacking, and Voting and used naive Bayes as the base
learner among the ensemble techniques. Authors performed
a series of experiments for several NASA datasets and
found that voting and random forest performed better
compared to other methods. Overall, authors suggested
that ensemble methods produced better performance than a
single classifier. B. Twala [34] built an ensemble technique
based fault prediction model using three distinct techniques
for a large space software system. The author showed
that decision tree and apriori techniques based ensemble
techniques outperformed other used ensemble techniques
and yielded a better accuracy.

Aljamaan et al. [35] performed an investigation of
bagging and boosting ensemble techniques for software
defect prediction and compared their performance with
other commonly used fault prediction techniques. Results
found that ensemble based prediction models produced
better accuracy values in comparison to most of the
used fault prediction techniques. Recently, Siers and
Islam [36] presented two ensemble methods, namely,
CSForest and CSVoting using cost-sensitive analysis for
SFP. The examined ensemble methods initially created
a set of decision trees and later combined these trees
to minimize the classification cost. Authors showed that

presented ensemble methods were able to achieve superior
performance compared to other used six classification
algorithms.

In the presented work, we performed an extensive
analysis of seven ensemble techniques, Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest,
and Ensemble Selection for SFP. To the best of our
knowledge, most of these ensemble techniques have not
been explored and experimented for SFP till now. Further,
we use three different classification algorithms as base
learners to analyze the impact of base learners on the
performance of ensemble techniques. The study was
performed for twenty-eight software fault datasets, and a
total of 532 fault prediction models have been generated. We
believe that the analysis of ensemble techniques presented
in this paper will help the research community to build
more effective fault prediction models using ensemble
techniques.

3 Systematic review of ensemble techniques
based software fault prediction

To identify the papers related to the ensemble techniques
for the software fault prediction, we have searched in the
Google Scholar, IEEE Explorer, ScienceDirect, and Scopus
databases and extracted papers published between January
2010 and April 2020. We have selected this timeline for
article search, because most the works using ensemble
techniques for the software fault/defect prediction published
in last decade only. The query string used for the database
search is “(Software Fault OR Defect OR Bug Prediction)
AND (Ensemble techniques OR Bagging OR Boosting OR
Stacking)”. The initial query run resulted into a large
number of articles. We have applied the inclusion and
exclusion criteria to filter out the articles and to select only
the relevant articles/papers [37].

Inclusion Criteria

1. Paper must be written in the English language.

2. Full content of the paper must be available online.

3. Paper must be published between January 2010 and
April 2020.

4. The study reported in the paper used on the software
project datasets not the simulated one.

5. The paper applied at least one ensemble technique for
the software fault/defect prediction.

6. Paper must be reported new experiments only.

7. Paper must be reported results using standard perfor-
mance measures with sufficient details.

Table 1 listed the studies related to the ensemble
techniques based software fault /defect prediction (SFP).
The use of ensemble techniques for the SFP has expedited

@ Springer

S.S.Rathore and S. Kumar

3618

‘sjose)ep spoylow
pasn 9y} IOJ SPOYIOW J[QUIASUD joseyep 109foxd asdrjog SunoA 9[qQUIASUD SuISN S[OAQ] SOLIIOW SNO
pasn 1oyjo pauntojradino Sui3deg DV pue ‘Joire arenbs ueourjooy pue Aroyisoder YSYN woly (DY pue ‘Sunyoe)s ‘Junsooq ‘uiddeqg -1rea je uonorpaid jnej aremyyos [#+] ‘L
“sanbruyda) (INMYD)
Sunoa Ajofewr pajySrom pozr
*SIOIJISSE[O 9skq -wopuel Surpeose)) pue ‘(INMD)
PAIOPISUOD uey) 19339q pauriojrad Sunoa Auofew pajysrom Jurped
SO[QUIASUD PIS[) 'SOLIAW PAID jeowo], -se) ‘(INMY) Sunoa Auofew
-pISu0d Ioyjo pawrojradino sour oyoedy pue ‘Juy oyoedy ‘Iejowrf poySrom pozrwopuey ‘(JAA) sonbruyo9) sjquIosus
-jowr A3uBYD JBY) MOUS SINSAY DNV pue ‘amseaw-j ‘Aoemooy oyoedy uniy, (307 oyoedy SIJunoa Kyolew pay3opy Sursn uonorpaid jo9jop aremijos [¢] ‘9
"1500¢g 21SIS0T pue)$I0J
wopuey ‘SuidSeg “soogepy
oy 0} poredwoo sjesejep uornejuesaidar axnjesy doop senbruyo9) (14) Sururesy 9[q
pasn Jo jsow oy} Joj JIoNeq QINSLAW-J PUB ‘9AINd pue (s1opooud-ojne Juisiousp -wasug pue uonejuasaidar deog
pouoyred 1HAdT PowRsald [[Bo9Y-uosdld ‘ONV ‘DDIN sjoserep VSYN ¢ PYeIS) Sumuaes] o[quosuyg Suisn uonoipaid Sng jo sisAfeuy [g] S
*SpoyIewW I3Y30 uey) Y31y Apued
-guSts sem THLL JO SQI00S-T.
QUL "9p0od JO saul JO 9,07 AUO 102181504 SuruIea| o[quIdsud
pasn pue s§nq 9,()L IOAO PIISAOD amsesw-J,j pue ‘uropied ‘C[[IZOJ| PUB 99I) UOISIOdP Yim (THLL) uonorpaid joojep swm-ur-isnf oy
-SIp THIL ey} pamoys s)nsay pue SSOUQATIO9JJ0-1s0D) ‘LAf ‘equinjo) ‘e[zSng Surured] O[qWESUS I9Ae[-OM], JOJ SPOYIOW [QUIASUQ ZIPUGAH [[+] 8%
‘1soogepy
‘Juiddeg ‘so10 wopuey oY)
01 paredwoo oouewroyred TINL PUe “$Dd ‘€0d 2Od ‘1Dd uonorpaid 109Jop rem)jos oy} Ioj
ToySty ApueoyruSis - peonpord ‘TMIN ‘TOIW ‘TOIN ‘€D TOM (HSI1s9VAS) AS1 (AS1) olquiosud oSeis-om) pue
poylow JSISAVAS PAURSA] DDIN PUE DV ‘@mnseawl- ‘[‘TIND ‘S1oselep VSVN ¢l Uim Sunyoels pue Surtures] dooq Sururesy doop jo osn oyy axopdxg [ov] €
'sanfeA Dy paaodur
POASIYOE UOTIOO[AS PIEMIO) UM uon
pauIquod gJV pue sarnjedy zood INAS -BOIJISSE[D 109JOp 2IBMIJOS) 10]
oY) PIM UIAD A[JO21I00 PIULIOY sueow-o) pue pOd pPue ‘7Dd UM (FV) Q[quiesus Arjiqeqoid SuruIes] 9[quIasud pue UONOI[IS
-1od poyowr ggy pajuesald (DNV) QAIMD DOY Jopun BAIY IO ‘€D ‘9T [we) /] Juy oSeloAe pue UONOQ[OS plemio] oImed) Sumuiquiod Jo sisAreuy [g¢] é
“JOIJISSE[O 921} UOISIOOP SoLow pedisieq (8unoA D) Sunoa
pauojrodino spoyrowr ojquasud “‘AJsudg Axa[dwo) onewos) £10)150da1 YSYN WO 7D QANISUIS-)S00 pUB (3SAI0SD) Suipuey doue[RqUI SSB[D
pajuesard jey) pomoys synsay ‘[eoer pue uorsoaid pAySIOA pue ‘TDINEDd ‘1D ‘TDd ‘TOIN S99I) UOISIPp Jo o[quiesuy yim uonorpaid 109jop aremijos [8¢] T
Snsay samseaw douewroyrad pasn Sjosejep J[ney pasn) sanbruyo9) a[quIasua pasn) Apms oy jowrry 1odey ON 'S

Qnjexdyr] uonorpaxd Jnej aremijos paseq sonbruyoe) ojquuasud Jo SisAfeuy | d|qeL

pringer

A's

3619

An empirical study of ensemble techniques for software fault prediction

's9JeI AorInooe 1oy3Iy
PIAIYOR IDIJISSB[O 31} UOISIOAP
B [IM SO[qUIOSUQ pUB IJIJISSE[O

K10y1sodax

poylouw A[qUIASUd Paseq
Sunoa Ajuofew e ‘ouryoewl 10J09A
yoddng ‘sokeq oAreu ‘moqu3rou

sura)sAs aoeds oFre|

soAeq QAIBN] 18U} PIMOYS SINSIY qerloug VYSVN woly [Dd Pue [JAf ‘TIND 1sa1eau-3] ‘0an uoisioo ‘uoudy oyl ur uonoipaid jnejy aremijos [zg] S1
-oouruIo}od uonoIp
-o1d pasearour sonbruyosy Jurd 7 1-9sdeudg ‘4 z-uerey uonorpaid 109Jop 2IeM1JOS I0]
-wes Ay) YIIM JUTUIRY[9[qUIASU Q100s-T] “9eowo], ‘0'z-10d ‘0°C-AAI ‘9T HALOIAS pue wistueyoow Suid3eq ejep podoue[eqWI UO SO[QUIASUD
SuIuIqUOd JeY) PIMOYS SINSY PUB [[BIY ‘UOISIRIJ ‘AORINOJY -[owe)) ‘L [-1UY ‘1D ‘€O ‘TINf UO paseq poylowr J[quasud Yy paseq Surdwes jo uoneneag [[6] b1
‘uonorpaid jnej arem
-1J0s 9y} J0J Qoueuriojrad 1s9q oY) K1on uon
popreif Jurpdwresar oy} ym Is9 -sodar YSYN wolj D4 pue ‘10d SIOUIBQ[9Seq § IIM Jsa10] -01paxd Jnej aremijos ayj Ioj spo
-10J UOIJRIOI JRY) PIMOYS SINSIY [[8o9Y pue AoeIdody ‘1D ‘TIND ‘€D ‘IMIN ‘TOIN uonejol pue ‘3unsooq ‘Suiddeqg -ylow d[quasud jo uostedwos v [06] €1
'SasBD
PaIopIsSuod 9y} [[e 10j sonbruyod)
Suiures] 9seq pasn IAY0 pue
3s00qepy ‘Sursseq pauniogradino Aronsodar eiep GSIINOYd SISJISSB[O JUAIYJIP SUISN POYIQW J[qUIdSUD SNOAUZ0I1AY
Spoyjowl Q[QUIASUD PAJUISALJ SUBIW-D) PUE ‘[[BOFY ‘UOISIOAI pue YSVN Woij sjosejep ynej [z yoeordde ojquesue puqAy Yy Suisn uonorpaid 109jop aremiyos [6¥] 71
“aouBll ¢0d Pue ‘¢Dd
-1oy1ad 10y31y ® poonpoid Juroue ‘€0d ‘7Dd ‘10d ‘ITMIN TOW sonbruys9) uon uonoipaid jnej arem
-[eq ©IEP PUB UOIDJ[AS QINIBIY Jom arenbs ‘IDN ‘€D ‘TOM ‘TINL ‘TIND -Onpal 9sION pue ‘GIOIAS ‘Uon -1Jos 9y} 10J SIomouwelj Jurured|
M yoeoxdde yg Ppojuosald UBSW JOOY ‘QINSBOW-J ‘AJBINOOY ‘QYV ‘CYV ‘PAV €AV ‘TYV -09[0s aInjesy ‘Surured] o[quiosuy] O[qUIasua d3e)s 9aIy} B Judsald [8¥] T1
*90UBULIOJ Sur uonorpaid
-1ad 1599 9y} pap[aIk sanbruyooy -JOA pue ‘adedsqns wiopuey ‘1S9 I[N} IBM)JOS A I0J JuruIed|
ALOINS Y} M)SAI0] wopuey DV Pue ‘amsedw-J ‘uoisoald [Dd Pue ‘2O ‘1D ‘TIAL ‘TIND -Ioj uopuey ‘Suiddeq ‘soogepy o[quasuo jo asn dyy atoidxg [Ly] 01
anbruyodl gvm 9 z-ue[eyx uon
pajuasaid ay) PIm SINSAI 19339q pue ‘Gz-ue[ey ‘lBOWO], ‘T 3unyoe)s pue (QVM) -99[0s AJsIoAlp Sursn uonorpaid
papiaold QNS pue sokeq dAIBN KNISIDAIP pue ‘DDA ‘uoistoard -Npal ‘[p-1pal ‘91 uy ‘G'1 wy ANSIOAIp AoeIndoe pajySIop\ 109JOp dIeMIJOS PIseq djquasug [9y] 6
9'1-A1100[9A pue ‘zueaqd “yorog SIOUIBQ[9sk(Se
‘SIQUIRI[dseq Y} qeznyz ‘4’ 1-s9010¥ ‘L7 ue[eX QOIANS pue ‘uondodIogpolop ‘Sif
SE [[oM SB SPOYJoUL J[qUUIISUD Pasn geowo], ‘cp-updl ‘g0-1sa104 ‘onsi3o] ‘sokeq oAIRN Ynm DHSul uonorpaid Jnej aremijos 10y
Yo pauuoypdino HIuryorls QINSeoW-J pue AJRINOJY ‘SUIUIRYT-0 ‘9 [-[WR) /' [-UY -YOBIS PUB J0A ‘[JAISOOQEPY SPOUIQW J[qUIASUD Jo uoneneaq [Gy] ‘8
synsoy sainseaw doueuLIofad pasn S1oseIRp J[NeJ pasn) sonbruyo9) a[quiasus pasn) Apms oyp Jjowry 1aded ON 'S
(ponunuos) | ajqeL

pringer

A's

S.S.Rathore and S. Kumar

3620

‘SaInseaw ueow-n (190) Sururea uonorpaid
douewiojiod pasn [[e 10J douBW 1Dd pue pue ‘QNV ‘WIe[e 9s[e] jo AN[IqQ Q[QUIdSUF-IUW(‘UONIIAS [q I[NEJ 2IeM)JOS Y} 10} soyoeoidde
-1o31od 3s9q oy paonpoid THO TAMIN ‘TIND ‘€O ‘TOM ‘CTOIN -eqoid ‘uonooiop jo Ajiqeqold -wesud pue SuidTeg-10AQ OJquesud Orweudp pue onels []9] v
(HIN'TAN) S[qUISSUF AU
'$1osEIRp Pasn 11242] 3uluIed] SWANXH 9[qRNUIIIP uonorpaid
oY) [e Ioj Ioneq AQIUSISISUOD K1oysodareiep Je UONOIPAI] ‘DOJA ‘JOIIO dATR[dI -UON pue (JINTH() °[quesuyg J[ne] oIem)jos I0J O[qUIdSUD
pourojrad spoyjowr pasodoid HSIINOWU WOI S1oselep Jnej gz 9FeIOAR ‘IOIIQ 9n[osqe 9FBIOAY QUIYOBR[N JuIUIBd] QwWnNXyg snoduddowoy Jeaul] jo 3sn [09] €T
ooueuIoyrad parordur paaaryoe
Supoue[eq ®BIEp puUB UONOIJ[IS uonoipaid Jyney
QIMedJ UM pouIquiod Sururesd| $0d PUe ‘€0d ‘TMIN SIoUIEQ[9seq Se J(J PUe §pf oIem)jos oy} JoJ Surures] peseq
J[quiasua Jey) pamoys SINSAY ‘IDIN ‘TOM TINL ‘PIV ‘TIV DNV Pue AoeINDOY UYim [INIsoogepy pue 3ui3eg o[quiasud jo Apnis aaneredwooy [gG6] T
‘A[9reIopow pauriojrad 15210
uonejor pue 3unsooq ‘Suiddeq Sunyoels sy09load asdipog
‘Spoyjowl J[qUIdSUd pasn IO 0°¢ osd1[oo-gy pue 10119 9ATJE[2I 938 pue Is210] uoneloy ‘eoedsqng oy ur uonorpaid mej oY) Ioj
pountojradino ooedsqns wopuey ‘1z 9sdI0aSVY ‘0z osdI[oo"Sy -IoAE pue IoIId Jnjosqe a3eroay wopuey ‘Sunsoog ‘Suiddeg spoyjowr o[quuasuo jo uoneioldxg [8¢] 12
*(1oddry pue ‘sokeq oAreu
‘G'$D 15210 WOPURI) SIDIJISSE]D K10y1s0dal YSYN
oseq IAjo Inoj pue ‘Sunsooq wol ¢Od pPue ‘$Dd ‘€0d ‘TOd uonorpaid
‘uiS3eq ‘Surures] 9ANISUIS-JSOD ‘I0d ‘TMIN TOIN ‘IDIN 4D SPOYIoW 9[qUIdSUD Paseq-3uIpod 109Jop dIeMIJos Y} J0J Surured|
pawiojrodino spoylow pAUASAIg Supyuey pue DNV ‘€O ‘7O ‘1D ‘TINL ‘TIND 221y ‘onbruyoe) ooue[equil SSe[) 9[QUIASUD Paseq-Suipod e Jo as)) [/G] 0T
‘d'TIN PUE ‘921 UoIsIoog
Al 9T NASAFT ueyl souew
-1ojrod uwonorpard paaoxdur JUSIDIJJO0D UOTIE[al (DSOINd) $309Jop
pasdmyoe yoeordde DSONJ -109 pue Joud arenbs uesw 100y syoesejep 1oofoxd [emnsnput 6 yoeoidde uonezijerouaS poyoelS X0qg-yor[q 2IBMIJOS JO UONDIPAld [96] ‘61
‘soyoroidde 1re-oy3-jo
-9)B]S PAIOPISUO0D JoY)0 paurtoyrad K011
-Jno OS[e JI pue S}Osejep ¢ pasn -soda1 ySYN woj ¢DJ pue ‘+Dd
Ife Joy symsar paroidwr paonp uwrere asyey jo Aypiqeqoid ‘vony ‘eDd ‘zDd ‘1Dd ‘TMIN ‘TON anbruyod) (TIIN) Sut uonoipaid 109Jop arem
-o1d onbruyoa) TN patuesalg -099p Jo Anpiqeqoid ‘emseow-J ‘TDIN ‘€D IO TINL ‘TIND -UIe9[d[quuesuo [ourey o[dnnjy -jos oyy Ioj Surures] ojquiesug [GG] 81
1599 oy pautogrod HIOWS
Y YIM pauIqUIOd poyIowW DNV pue ‘jer aanisod as[eq A1oysodar ySYN woij uonorpaid
Sui3Seq ey punoj s)NsAY ‘ojex aapisod onif, ‘AdeInody $Dd Pue ‘€Dd ‘1Dd ‘TMIN ‘TIND ALOINS pue ‘Fuiddeq 9soogepy 109J)ep aemijos jodloxd-ssor) [§6] LT
K1oysodar gSTNOYd
dadd jo WOIJ S90I0X PUB ‘UB[EY ‘JeowOo],
Qouewiogrod oyy pasoxdur doue Qoue[eqg ‘BlepwIdISAS ‘osdeudks ‘1031epoy
-[equuI SSB[O pue SUIUIED] JOJSULI} PUE ‘UBW-O) ‘WIee 3s[e) Jo ANIq ‘9-doid ‘104 ‘ouaon- ‘307 ‘ypal yoeoidde (dadp) uonoipaxd
Surtuiquiod Jey) pamoys s)nsay -eqoid ‘uonodjep jo Ajiqeqold ‘Surured[-o ‘powe) ‘OYV Uy 3unsooq QAT}ISUQS-)S0D V 109jop oaremyjos daford-ssor)y [¢6] ‘91
S)nsoy samseaw douewroyrod pas Sjose)ep J[ney pasn) sonbruyo9) o[quiasus pasn) Apmsoyp jowry 1odey ‘ON 'S
(ponunuoo) | 9jqer

pringer

A's

3621

An empirical study of ensemble techniques for software fault prediction

‘DS jo 3ururen 10§ syodax
3nq 00O‘Z 1589 e 2SN IS JuSu
-ugisse §nq jey) paysadsns syynsar

Auedwod uoneotu

SIXQ)JUOO [eLnsnpur ogIe] ay)

‘A[euonIppy 'SIQUIB] 9sBq -NWWO0J9[9) a31e[© pue Auedwoo SIQUIBQ[9seq QAIj uI juowudisse 3nq oy} Joj sonbru
powrojrodino ApuQlsisuod 0§ pajewone pue romod oSre] v AoeInooy Im (DS) UONBZI[BIGUAL) PAYOLIS -U09) J[quiasue Jo asnaypatofdxg [0L] €€
‘sonbruyody
Ay jo jusweoidwir QourULIO]
-1od oy ur djoy Surum 1ejowrered uon
oY YPIm Fursooq ATISUSS-1SOD oueed pue -orpaxd 109jop 300loid-sso1d oy
pue wyuode OUSLINSY-eIoW Kioysodareiep ‘suesw-n) ‘wiefe os[ej Jo AIIq SuUNsooq QANISUIS-1SO] pUB UON JOJ SPOYIOW J[QUIASUS PUB WYILI
Jo osn jey) pomoys sSInsey HASINOUJ woiy syesejep yney g1 -eqoid ‘uonoeyep jo Anqeqold -ezmundo paseq-yorees Auowlel -oS[e onsunay-ejow Jo siskfeuy [69] s
‘uonorpaxd
JIneJ 9Iemijos ay) Ioj SISLISSe[d
pasn [Joyjo pauuiojiedino uorn spoyrout uonorpaid J[nej a1emIjos)
-09[0S 2INJBRJ Y} YIIm Spoyjoul $Dd PUe ‘€Dd ‘2Od ‘10d olquosue SuiSSeq pue (QSd) J10J SPOYIOUW S[QUIASUS puB WYILI
Su13eq pue Q0S4 Jo uoneurquio) ‘T MIN ‘TOIN ‘€D ‘1D ‘1IND AIND DY 9y Jopun vary uoneziwndo uuems Jonied -oS[e ONSLINAY-elouw Jo SisAeuy [89] ‘1€
"$1aseIEp J[NBJ pAdue ueaw-n
-fequur oy} 10j NNdg pautiojrad pue ‘amseow- ‘Aoyroadg (NNdg) JIom)au [eInau elep douB[RqUI JOJ UON)
-JNO JS00qePY 1By} PUNOJ SHNSAY SOd PUB ‘pDd ‘€O ‘TIND ‘Teoey ‘uoisard ‘Aoenody uonededoid-yoeq pue jsoogepy -o1paid 109jop aremijos Surpueq [£9] 0€
"9ATIORYJO
-JS00 OS[e QIe S[pOW UONIIP SIQUIBQ[ASBQ QAL [IIM
-01d poseq 9[qUISSUd puE SINSAI JS9I0,] 991, UOISIO(o[quIesuyg uonorpaid jney
159q 2y} paonpoid d[quiasua Jur K10y1sodar ejep SIsA[eue IeQUITUON] ‘O[quIasuy Junop A aremjjos 2y} Joj yoeoidde oyq
-j0A Ajuofew 1ey) pamoys SNy FSINOU WOIJ S19seIep J[nej G -1S00 pue ‘ainseaul- ‘AovIndoy -Iofepy ‘O[quiosug Sulurel], 1sog -WIASUd pUB OLIJOUW 9p0d 0IN0S ¥ [99] ‘62
"goueUx
-10j1d poo3 paureiqo os[e 31 pue
S[epow pasn Yy} Suoure 2)el I01Id s10113] 2dK) (NNGSD) sy1omiau yoeoidde Sursooq 2AnISUIS-1S00
1S9MO] paAraIyde sAemie NNGSD 1Dd PUB ‘TIAD TOM ‘1D pue [2d£) ‘ojer uoneoyISSe[OSIl [eIndU SUns00q QADISUS-1S0) yim uondipaid 109jop arem)jos [S9] ‘8T
'Spo
-yjouw Q[quiasue IS00gHIOINS
pue 1S00gTLOINSIN Aq pamo[[of 1soogeIe(q 9S00 LOINSIN uonorpaid 109Jop areMm
Qouewrogrod 3s9q oy peonpoid L 1uy 9s00gdILOINS 9so0gSNY -1JOS Ul JuruIe9] [quIAsud Juisn
1S00gSNY JeY) pamoys S)Nsay pue ‘pl-powe) ‘0 [-osdeulg Qoueed pue ‘uedwWw-O ‘DY ‘TINISoogepy ‘INIsoogepy elep poduelequur Jo Surpueq [$9] ‘LT
‘sonbruyody
uonorpaxd 309Jop 190 pue
THO ONA Pposn uey) douew wwrefe asqey jo Aipiqeqord NASVQAV Pue ‘VOd
-1oyred 19119q POpIRIA S YINA Kionsodar pue ‘oouereg ‘DOY ‘vInseawl (S YINA) Teyissed YAddrd S19sBIEP peduB[RqUII
paiussarxd pamoys SINSY VSVYN WOl s1aseiep Inej G - ‘UOISIORAIJ ‘[[BO9Y ‘AOBINOOY U0 Paseq 1SOOGUNIA S[quissug oyl Joj uonorpaid jney aremiyjos [£9] '9C
-goueurIojrad
uonoipaid [[eroAo oY) poaoiduir 3urjoA 1j0s yim 3unyoe)s uonorpaid
QO SIOUIB] EIM JO UOLRU pue ‘Sunsooq JUSIpLIS ‘)SOI0J QIN[IE} QUIUO IOJ SI[qUIASU
-IQUOS Jey) PpaIsadsns symsoy (€dS) dX SMOPUIA s1o1oweled xjew uorsnjuo) wopuel ‘SuiSfeq ‘9an uoIsd snosudSorsley Jo sisAfeuy [9] ¥4
s)nsoy samseow doueuriofrod pasn sjoseyep jney pasn sonbruyo9) o[quiesud pasn) Apms oyy Jowry 1oded ON 'S
(ponunuod) | ajqer

pringer

A s

S.S.Rathore and S. Kumar

3622

"SUIILIOS[e IO AU} uey])
I9)9q I0 se poo3 se pauriojrad

anseaw AJLIR[IWIS UBNRYUBIN anbruyoqy, wA)SAS 2IeM1JOS)
PIm OSd eyl pomoys sinsoy 7O Pue ‘TIND ‘10 AoeIndoy SumdIsn[) QquIesuy WBMS UI J09Jop Jo Ioqunu 3unompald [89] W
KI1031
‘soyoeoidde uorssaiar -soder ySYN wolj ¢OJ Pue ‘4Dd uonorpaid Jnejy
ueyy 10139q paunojd poyow ‘eDd ‘zDd ‘1Dd ‘TMIN TOW 109lo1d-sso10 oy 103 soyorordde
pajuosard Jey) pamoys SINsAY ‘IDIN ‘€D ‘1D ‘TINf ‘TIND AIND DY Y} Jopun eIy UOISSIFAI JO Q[qUIASUF UOISSAIFAI Jjo lquasug [8/] BEZ
‘SIOYUEI [[8
10 AuBW JO SO[QUIASUD UBY) dIoM
SIMUBI M3} JO SO[QUIdSUD ‘IdY) QAIND wyu
-Ing "Spoyjouwl pasn IAYJ0 PAULIO} [[eoa1 pue uoisioald 1opun eary -o3[e soAeg oAlEN pue Sunjoels uonorpaid J[nej a1eMmIJos Ay}
-Iadino poyjowr QquIesud Ien A10)1s0da1 YSYN pue ‘sueowl-) ‘DNV ‘onjer A1 JuIsn 9[qUIASud IIdy) pue sonbru J0J u0109[ds 21medy yim sanbru
-onred ou Jey) pamoys sINsSay pue asdI[og wol) s)eseIepIne; 9] -[Iqeqoid ‘onel-ppQ ‘dInseawl-J -1[52) SUDJURI JINJBIJ JUAIAYIP /] -Ud9) 9[quiasud Jo uostedwod v [1/] {117
-ons130TdHA0D PAwLIoy K1oysodax
-1odjno pue oouewrojrad 1s9q elep HSINO¥d WOl ueRexX SSQUOAIIIRJJ SIouIed| (dadd)
) Pap[AIA g4 M uonesai3de pue Jeowo], ‘doid ‘o4 ‘QuadonT 1500 pue ‘uorsioaid oFeroAe uBQN 9seq G pue (onsISoIdHAOD) uonoipaid 3o9yep 109fo1d-ssord
densjoog ey pomoys synsoy ‘(307 pol ‘AA] ‘owre) Uy [[BO9Y ‘UOISINIJ ‘QInSseouwl- WYILIOS[B UONBOIJISSE[O BIOJN JOJ IQIJISSB[O paulquiod jo s [9/] '6€
‘Toure9[oseq Sururroyrad 3soq IVIA pue ‘eddey] ‘ONVy (Sunpoess pue ‘Sunsooq ‘3ur3deq)
) sem InoqQuIIoU ISAIBIAU-I] pue $Od PUB ‘€Dd ‘7Od ‘ITMIN ‘QInseawi- ‘[[BO9y ‘UOISIOAIJ SPOYIoW J[quAsud pue (JHV) uonoipaid 309jop arem
SI[NSaI 152q Ay SAAIS 1s00gepy ‘TOIN ‘PO ‘€O TINL ‘TIND "IN “UNL “Add “YdL Aoemooy ssevord Aydrersr onkfeuy -jjos oy 1o yovordde puady v [g] 8¢
“douBW Joueeqg
-1oy10d gqdD peosoxdurr oyy ur K10y1sodar ejep pue ‘ueow-n) ‘uLrele asey Jo Aq (3soogSDL) yoeoidde (dadD) uonorpaxd
paynsa1 1soogSDL pasodord oyl FSIINOQY WOIJ s1oseiep Jnej G| -eqold ‘uondalep jo Ajiqeqold Sunsooq QAT)ISUQS-1S0D V 109)0p arem)os 109foxd-sso1r) [{/] ‘LE
‘sanbruyoa) ooueRqUIL SSB[O
Sunsrxe oY) pue enbruyd2l JaAdO 204 tiree (NAS-9DA)
Sumnsixo uey) oueuwrtojrod uondIp pue PV ‘€IV ‘TOIN ‘TMIN 9S[BJ JO AN[IqeqOId pUB UOID)P QumyoewWl 10309A 1ioddns pue (dadD) uonorpaxd
-o1d 1oty popraoid WAS-GDA ‘TIND ‘€0 COM ‘IOM ‘10d Jo AN[iqeqoid ‘amseduwl-H DV Sunsooq oAnIuSoo-on[eA 199Jop aremyjos jooford-ssord [¢/] 9¢
“wyods 3unoa
JO uoneuIquIod Y} YIM UOISIO douefeq pue S109Jop 2IeM1JOS
-o1d pasearour pue Jd Ppadnpal ‘(@d) uonodep jo Aiqeqold S[EAIQIUI AINJB) SUNOA FUBIO[O] SPOYIdW I[qUIASUD
poypowr d[quasud pasodoid ‘(4d) were os[ey jo ANIqeqold pue ‘sokeq QATRU YIOM)AU [RINON Jo Apnms osedo [ewysnpul uy [g/] ‘G¢
sonbruyoe) (SHY) uowaoe(dar
mim ofdureSHY pue (VOSINH)
‘spoyow JuowuSI[Y UONB[ALIO)) [UIdY]
quIjaseq A} URY) I9)19q PAULIOS S91103150daT 9IBM)JOS SNOLIBA Qouefeq pue ‘amsedw-J [dnm o[quesug ‘(‘THSL) uonorpaid
-1od THSL 18y} POmoys S)[Nsoy WOIJ SIOseIep J[nej AIeMos Of [[eody ‘uoIsIoRId ‘ONV Surured] o|quiasuyg 93e)S-0M], 109JOp QIBm}Jos snoduaSordeH 1] e
S)nsoy saseow doueuriofrod pasn sjosejep jnej pasn sonbruyo9) o[quiesud pasn) Apmys oy Jowry 1oded ON 'S
(panunuod) | ajqeL

pringer

A's

3623

An empirical study of ensemble techniques for software fault prediction

‘uonaIp
-a1d j[ney oY) 10 159q AY) PAULIO]

K1oyisodar asdipog

ssoudo[dwod Jo aIseaw pue ‘|

d1pue
ATN 4L ‘SIouIed] aseq Iy}

uon

-1od (4gD pue 4LQ) peseq o[wolj ¢ pue A10)sodor eIEp [OAJ[JB UOHOIPAIJ IOIID 2ANB[I M (YO pue LA ‘LAYT -o1paid jnej a1emijos oyl 10j Spo
Jeaul[-uou Jeyl pamoys sInsdy HSIINOUd WOolj s1oserep Jnej G| 95BIOAY ‘IOLID 9IN[0sqe AFeIAY ‘LANH) SPOYIOUW S[qUIASUD N0 -YIoW J[qUIdsUd snodudSordey [¢7] ‘LY
“10139q pawrojrad Junsooq
sown Ioylo pue 19)32q pauriojrod
Sui33eq ‘sownowos ‘sonbru
-(99) 9[qUIdSUD SUOWE ‘SBAIIYA
*SIOIJISSE[D [SUIS PIsn [[B POULIOJ 1d pue ‘INAS
-1adino spoyjour JIqUIdSU ‘AN ‘Ngd A9d dTIA ‘spoyiowx QIBM1JOS PAJUALIO-103[qO
pasn ey pajedIpur symsar Y], Aroysodar viep YSYN woij (DY AoeInooy o[quiasud Junsoog pue Juiddeqg Ul sIsse[o Ajnej Jo uoneoynuopl [s¢] 9%
A1oysodar VSYN
'JSQ10J WOpUeI Aq PAMO[[0} WOl ¢Od Pue ‘¢Dd ‘€0d ‘TOd Sunop pue ‘Sunyoeis ‘ooedsqns
Qouewnrograd 1s9q oY) pap[AIA Sur ‘1Dd ‘TAMIN ‘TOIN ‘IDIN ‘vOM wopuey ‘)seI0j wopuey ‘sedr) uonoipaid 109jop arem
-10A Ajuofew Jey) pamoys sinsay ‘€D ‘7O ‘1D ‘TINL ‘TIND 9AIND DOY Y Jopun Ba1y wopuey ‘Sunsoog ‘Surddeg -1Jos paseq d[quiasus Iaiyissel) [97] Sp
'SOL
-~IBU33S IND-dddO Pue ddH Woq
oy} Ul 9ANO9YJe ST HLHSH eyl DD pue ‘amseawt (HLASD) S1quudsua 19§
Pamoys synsal [eyuswradxe ayJ, s1oseiep 109fo1d aremijos gz -O DV ‘UONOAIP Jo AN[Iqeqold -suen) Suippaquuio [endads [oury] uonopaid 109jop snosuadordo [08] i
‘Jurures|
J[quIOSUS pue JUIUIEI] [OUIY
oidnnuwr uey) soueuriojrad 19139q (VOSINA) WawuIIy uone|
paonpoid YOMNA Paudsald s1aseIep 199[01d aremijos (¢ 9AIND DY AU} JopuUN BATY -d1I0)) [ouIdy] d[dnnjA sjquiesug uonoipaid 1095op snosuadordle [6L] K97
synsoy sainseaw ddoueuLIofad pasn sjoseIep J[neyJ pasn sonbruyo9) ajquiasua pasn) Apms oy Jjowry 1oded ON S
(ponunuod) | 3|qey

pringer

A's

3624

S.S.Rathore and S. Kumar

since 2010 [38—41]. The review of the ensemble techniques
showed that a large number of researchers have focused
on the use of bagging, boosting, and stacking based
ensemble techniques. Different studies have used different
classifiers as the base learners to these ensemble techniques
such as naive Bayes, decision tree, multilayer perceptron,
etc. Results of the analysis showed that these ensemble
techniques produced higher or at least equal performance
as compared to the base learners [23]. Some other
researchers have explored different variations of the
traditional ensemble techniques such as cost-sensitive
neural network, cost-sensitive boosting, bagging with the
oversampling, etc. Authors claimed that these variations
of the ensemble techniques resulted in an improved
performance as compared to the traditional ensemble
techniques [65, 74]. A few researchers have used hybrid
ensemble techniques such as ensemble techniques with the
feature selection, ensemble techniques sampling, etc. These
studies showed that the use of hybrid ensemble techniques
could be useful in building accurate fault prediction models
[55, 61]. However, over the last few years many new or
improved ensemble techniques have been presented by the
researchers. Although, a comprehensive evaluation of these
newly available ensemble techniques is missing. Thus, in
this work, we include the ensemble techniques, which are
not explored before for the SFP.

4 Software fault prediction process: An
overview

In this section, we have discussed a generic process used
for the prediction of software faults. There are many works
reported in the literature presenting various approaches for
the software fault prediction. The aim of this section is
to discuss the commonly used steps for the software fault
prediciton based on various available works [81, 84—87].
These steps are also useful in building the ensemble models
under study for software fault prediction discussed in the
upcoming sections.

The aim of software fault prediction (SFP) is to identify
the software modules having a higher probability of being
faulty. The SFP process is based on the use of some
underlying characteristics such as source code metrics,
change and revision history, structural properties, etc. of the
software project. The SFP model uses such software project
datasets augmented with corresponding fault information
for a known project as a training dataset, and subsequently
uses the trained SFP model to predict faults for unknown
projects. The working assumption of the SFP process is
that if a software project developed in an environment
that led to faults, then any subsequent software modules
developing in a similar environment with similar underlying

@ Springer

characteristics will end to be faulty [81, 82]. Let us say
that the software fault dataset is defined as D = {X, Y},
where X represents a set of software metrics (features or
attributes or independent variables) and it is a matrix of N
X M size. N is the number of rows (software modules) and
M is the number of features. Y represents fault information
(dependent variable) and it is a vector of N size. {x;, y;} is
the i’" observation in the dataset. The dependent variable
is (DV) y; € [1, 0], where “1” stands for a faulty software
module, and “0” stands for the non-faulty software module.
The prediction models are built on the dataset D and aim
to classify the unseen software modules in faulty or non-
fault labels, yielding classifier results y; = (x;). If we use
a classification algorithm to build the SFP model, then it
is often referred to as the classification model or binary
classification model given its binary outcome.

Figure 1 depicts an overview of the software fault
prediction process. The process shown in the figure and
depicted as below is a generic process used for the
prediction of software faults. The steps involve in the SFP
model building and assessment are described as follows
[83].

1. Extraction of fault information: Each software project
has source code and bug repositories such as SVN or
CVS. The extraction of fault information involves data
retrieval from the bug repository and linking it to its
source. Based on the log contents and status of the
bug, it is decided whether a commit is a bugfix or
not. All such reported bugs are collected from the bug
repository and mapped to their corresponding source
code modules.

2. Collecting software metrics (features or attributes)
and creating fault dataset: This step collects software
metrics information from the source code of the
software project or from the log contents of the
projects. First, it is decided that what type of properties
of the given software are required. Further, based
on that source code or log files are parsed and
corresponding software metrics are collected. Last,
extracted fault information and collected software
metrics are combined together to create the fault dataset
that is used to train the SFP model.

3. Building SFP models: Usually, some -classification
algorithms or regression techniques such as decision
tree, support vector machine, naive Bayes, or linear
regression are used to build the SFP model using fault
set. Subsequently, the trained SFP model is then used to
predict the faults in the unseen software modules.

4. Evaluation: To assess the SFP model’s performance,
generally a separate testing dataset is used besides
the training dataset. This testing dataset is created by
partitioning the fault dataset into training and testing

An empirical study of ensemble techniques for software fault prediction

3625

Software fault
dataset

Lol xol oo O]

Software fault
dataset extraction

-

Software fault
dataset Repository

N

Software modules with metrics
and fault information

Fig.1 Software fault prediction process

parts. The fault-proneness of software modules in the
testing dataset is predicted. Then, the performance of the
model is evaluated, by comparing the predicted value of
faults and the corresponding actual value of faults.

A number of researchers have explored/presented differ-
ent models for the software fault prediction. Most of these
works focused on the binary class classification of faults
(faulty or non-faulty) [84-87]. Some of the researchers
have built prediction models for the number of faults in
a software module prediction or the severity of the fault
prediction [88-90]. The results of these studies showed
that the average prediction accuracy of software fault pre-
diction models was 80%-85% (approx.) with 30%-40% of
the misclassification rate. Additionally, it has been found
that no single learning technique (classifiers or regression
techniques) always performed better than the other tech-
niques across different software projects [91]. However,
some learning techniques such as Naive Bayes, Logistic
Regression, and random forest achieved better performance
than techniques such as support vector machine (SVM)
and multiplayer perceptron (MLP). Athough, in some cases
SVM or MLP yielded better performance than other tech-
niques [4]. A few researchers have performed a comparative
analysis study or meta-analysis study of learning techniques
for the software fault prediction [82, 92]. Recently, Li et al.
[93] and Ning Li et al. [37] have reported benchmark stud-
ies for software fault prediction in the years 2019 and 2020,
respectively. In 2019, Li et al. [93] reported an updated
benchmark study, where authors evaluated various classi-
fiers using new fault datasets and new evaluation metrics.
The result analysis showed that techniques such as bagged
MLP, ANN/MLP, decision tree, and random forest yielded
better prediction performance as compared to the techniques
such as CART, Logistic regression, SVM, Naive Bayes,
etc. Further authors stated that there is no single best clas-
sifier found for the SFP. Moreover, the authors suggested
the use of simple classifiers over the complex ones for the

Preprocessing of
the data

Building SFP model (fault
prediction technique)

Training dataset

unseen software module

o vl o T7]
Built SFP
model

Classify faulty
/non-faulty

SFP due to the problem of hyper-parameter tuning of the
classifiers. In 2020, Ning et al. [37] reported a systematic
review and meta-analysis of unsupervised learning tech-
niques for software defect prediction. After, the thorough
screening of the works published between 2000 and 2018,
the authors included a total of 49 studies in their presented
meta-analysis. The results of the meta-analysis showed that
the performance of unsupervised learning techniques was
comparable with supervised learning techniques for both
within-project and cross-project prediction. Among the con-
sidered unsupervised learning techniques, Fuzzy CMeans
(FCM) and Fuzzy SOMs (FSOMs) yielded the best per-
formance. Further, the authors stated that factors such as
dataset characteristics did not show any significant impact
on the performance of unsupervised techniques.

5 Ensemble techniques for software fault
prediction

Ensemble technique refers to the technique that generates
several intermediate prediction models, which are integrated
together to make an overall prediction [94]. The primary
purpose of an ensemble technique is to overcome the per-
formance ceiling problem of the single learning algorithm
and to enhance the overall performance of prediction model.
Several techniques are available in the literature to generate
the intermediate prediction models for the ensemble tech-
niques [95]. Ensemble techniques make an effective use of
these intermediately generated prediction models to reduce
the variance in the prediction performance without increas-
ing any bias [96]. In this work, the SFP problem is defined as
a classification task, where the aim is to categorize the given
software modules into the faulty or non-faulty classes. The
technique used for the prediction takes the form of a func-
tion f, which uses a vector of size n+1 of n software metrics
(A1, Aa, ..., Ay) and one dependent variable (D, fault infor-
mation) as input and outputs (Y) fault-proneness of the

@ Springer

3626

S.S.Rathore and S. Kumar

given software modules. Each vector of software metrics
and dependent variable describes a software module i.e., a
class in object-oriented software systems or a file in other
software systems. The calibration of f is done on the train-
ing dataset (TR) having several such vectors or examples.
The dependent variable is faulty and non-faulty information
of a software module.

Figure 2 shows the working of ensemble techniques
for the SFP. The process of building a prediction model
using ensemble technique is two-folded: (1) generation
of intermediate prediction models to be used for the
ensemble (ensemble generation), and (2) integration of
generated prediction models for the ensemble to obtain
the final prediction (ensemble integration) [95]. Ensemble
techniques utilize multiple models (known as “weak
learners™) that are trained and combined to get improved
results. The accurate working of ensemble techniques
depends on the correctly combined weak learners. In
ensemble theory, a weak learner is a model that does
not perform so well alone either because it has a high
bias or high variance. Ensemble techniques overcome this
high bias-variance problem by combining several weak
learners to reduce bias and variance of such weak learners.
Most of the ensemble techniques rely on the use of a
single base learning algorithm to generate multiple weak
learners. However, each instance of the weak learner is
trained differently. This setting is known as homogeneous
ensemble techniques. However, some ensemble techniques
use different learning algorithms to generate weak learners.
It is known as heterogeneous ensemble techniques. The next
step is the correct aggregation of weak learners. Different
ensemble techniques combine weak learners differently.
For example, in the bagging ensemble technique, weak
learners are combined by using a deterministic averaging

Subsample 1 lassifier 1 © g
P —»| Dataset | [t o —

Generate different

@ subsamples
N

Training
dataset

Subsample 2

Subsample N

Fig.2 Working of ensemble techniques for the SFP

@ Springer

D-Dataset 2 classifier 2 > é;i:(:)§

_p-_yDatasetN classifier N S:E(‘?F —_

process. In boosting ensemble technique weak learners are
generated adaptively and combined using a deterministic
strategy. In the stacking ensemble technique, weak learners
are combined using a meta-model that learns on the outputs
of a weak learner and combined their outputs.

Despite the use of the type of ensemble techniques, every
ensemble technique takes one or some learning algorithms
as the input. Additionally, a training dataset is taken as
input by ensemble techniques. Depend on the number of
weak learners to be generated, the input training dataset
is partition into several subsamples. One weak learner
is trained on the one subsample of the training dataset.
The output of this training phase is the several trained
weak learners on the different subsamples. Next, based
on the used combination strategy, weights of each weak
learner are decided and their outputs are combined for
the final prediction. There are several techniques proposed
by researchers for the ensemble generation and ensemble
integration [95]. In the presented work, we focus on the
homogeneous ensemble generation techniques, where the
same algorithm is used to generate intermediate prediction
models. There are seven different homogeneous ensemble
techniques used in the study and the description of these
techniques is given as follows.

1. Dagging: In this ensemble technique, initially, several
disjoint stratified subsets of the given original fault
dataset is generated. Subsequently, the generated
subsets are fed to the classification algorithm (base
learner). The final prediction is made by using the
majority voting scheme to combine the outcomes of the
base learner for all the generated subsets [97]. It differs
from the bagging in the sense that here disjoint subsets
of given dataset are used to build the prediction models.

Training 5 ’:V‘ Weight 1

Classifier 1
Training ;;’{ Weight 2
> u‘f—b

Classifier 2

Combining
classifiers

Training j\J VE, Weight N

Classifier N

An empirical study of ensemble techniques for software fault prediction

3627

2. Decorate: This ensemble technique generates diverse
intermediate prediction models by using specially
constructed artificial training examples. It follows an
iterative ensemble generation process. In each iteration,
an intermediate prediction model is generated and
added to the current ensemble. The base learner
is trained in each iteration for the training dataset
augmented with some artificially generated data points.
The population of artificial training data points is drawn
from the original data distribution and it is specified as
a fraction of the training dataset size [98]. The class of
these artificial data points is maximally different from
the current ensemble’s predictions.

3. Grading: It is a meta-classification scheme, which uses
graded predictions on the meta-level classes to make
the final prediction [99]. For each base learner, a meta-
classifier is learned whose task is to predict when the
base learner will be incorrect. Graded prediction is a
prediction that has been marked as correct or incorrect.
The training dataset for meta-classifier is made up
using the graded predictions of the corresponding base
learners as new class labels for the original attributes.
The final prediction is derived from the predictions of
base learners that are predicted to be correct by the
meta-classification schemes [100].

4. MultiBoostAB: This ensemble technique extends the
working of AdaBoost ensemble technique. It combines
the capabilities of AdaBoost with wagging techniques
to reduce the prediction bias and variance in the final
model [101]. The advantage of MultiBoost technique
over AdaBoost is that in contrast to the AdaBoost,
in this technique, intermediate models can learn in
parallel, which speed up the training and model building
process.

5. RealAdaBoost: RealAdaBoost is a modified version
of AdaBoost ensemble technique that fits an additive
logistic regression and produces a non-linear version
of logistic regression [102]. It extends AdaBoost
techniques and removes the need for a coefficient as
the optimal coefficient is always 1. Additionally, it
generates fewer trees than AdaBoost to reach the final
prediction [103].

6. Rotation Forest: This ensemble technique makes use
of a PCA (Principal Component Analysis) algorithm
to choose features and instances of the training dataset
when building decision trees [104]. First, the features
of the training dataset are split into K non-overlapping
subsets of equal size. Then, 25% of the training data
examples are removed randomly by using a bootstrap
method and PCA is used for the rest of 75% of data
examples. These steps are repeated for each tree in

rotation forest and the final prediction is based on the
integrated outputs of each tree.

7. Ensemble Selection: Ensemble selection is a meta-
classification ensemble technique. It uses a set of
base learners to generate the final ensemble. Initially,
technique starts with an empty ensemble. Iteratively,
it adds a base learner to the ensemble library that
maximizes the ensemble’s performance. This process
is repeated for a fixed number of rounds and the
final ensemble based prediction model is the nested
set of base learners that maximizes the prediction
performance [105].

6 Empirical study
6.1 Experimental datasets

In this work, fault datasets were gathered from the
PROMISE data repository for building and evaluating pre-
diction models' [29]. A total of twenty-eight benchmarked
software fault datasets have been gathered from the men-
tioned repository. Considered fault datasets include data
of several open-source software systems such as Apache
Camel, Apache Xerces, Apache Xalan, PROP, etc. The
details of considered datasets are given in Table 2. The used
datasets (described in Table 2) are same as ones used in our
one previous paper [16]. All the used fault datasets are hav-
ing 300 or more software modules. We have drooped all
the smaller size datasets below the given threshold limit of
300 modules. Each of the used dataset contained twenty-one
object-oriented software metrics and number of faults found
in each software module. Since, aim of the presented study
is to classify software modules into faulty or non-faulty
modules, therefore, we performed data transformation on
these datasets and categorized given number of faults infor-
mation into faulty and non-faulty classes. Software modules
with one or more faults have been marked as faulty, other
modules with zero faults have been marked as non-faulty.
We apply the same data transformation scheme on all
twenty-eight datasets. The considered dependent variable is
faulty and non-faulty labels of the software modules.

6.2 Experimental procedure

Figure 3 depict the procedure used for the experimental
study presented in the paper.

Uhttps://sites.google.com/site/santoshiiitmdj/software-fault-datasets?
authuser=0

@ Springer

https://sites.google.com/site/santoshiiitmdj/software-fault-datasets?authuser=0
https://sites.google.com/site/santoshiiitmdj/software-fault-datasets?authuser=0

3628

S.S.Rathore and S. Kumar

Experimental Procedure:

Input: S: A set of twenty-eight software fault datasets having object-
oriented software metrics and fault information
L: A set of seven ensemble techniques,
L = {Dagging, Decoarte, Grading, MultiBoostAB,
RealAdaBoost, Rotation Forest, and Ensemble Selection}
B: A set of three base learners, B={Naive Bayes, Logistic
Regression, and J48}
Output: Performance of used ensemble techniques for precision, recall,
AUC, specificity, and G- means measures
Results of used statistical tests
Preprocessing: Transform the number of faults value information into
faulty and non-faulty classes by labeling examples with one
or more faults as faulty and modules with zero fault as non-

faulty

Begin:

1. for each software fault dataset se S

2. for each ensemble technique /e L

3. for each base learner be B

4. build model with the ensemble technique / and
base learner b over s and by doing a 10-fold cross-

5. validation calculate the value of confusion matrix
parameter (TP, FP, TN,and FN) // where TP:True
/l positive, FP : False positive, // FN : False
negative, TN = // True negative

6. end for

7. end for

8. end for // Performance values of all used ensemble // techniques in
terms of TP, FP, FN, and TN will be //populated after this step

9. calculate values of performance measures, precision, recall, AUC,
specificity, and G-means

10. perform the statistical tests for each pair of ensemble techniques
and calculate results

End

The experimental procedure mainly consists of three
steps. In initial step, training and testing subsets are
generated from the original fault dataset by splitting it into
multiple partitions. A ten-folds cross-validation scheme is
used to build prediction model and evaluate the performance
of ensemble techniques. This scheme partitions the original
fault dataset into ten disjoint folds. For each iteration,
nine folds are served as training dataset used to train
the ensemble techniques and remaining one is served
as testing dataset used to evaluate the performance of
ensemble techniques. This process is repeated for ten
folds. The second step is the building of the ensemble
techniques. The selected training dataset is used to build the
prediction model. Three different classification algorithms
are used as base learners to the ensemble techniques.

@ Springer

Each time a different classification algorithm is fed to
the ensemble technique. This process is repeated for all
the base learners. The final step is the evaluation of built
ensemble based fault prediction models for the testing
dataset. Various performance measures are used to evaluate
the performance of built models. Further, Friedman’s test
and Wilcoxon signed rank test are used to evaluate the
statistically significant performance difference among the
chosen ensemble techniques. The experimental procedure is
described as follows.

6.3 Base Learners

Three different classification algorithms namely, naive
Bayes, logistic regression, and J48 (decision tree) have
been used as base learners. Previous research showed that
these algorithms produced better performance compared to
other classification algorithms for the SFP [4]. For this
reason, we have selected these algorithms as base learners to
feed into ensemble techniques. A brief description of these
algorithms is given as follow.

1. Naive Bayes (NB): Naive Bayes algorithm belongs to
the Bayesian classifier family. Its working is based on
the use of Bayes equation to categories the given testing
module into one of the classes [106]. Initially, naive
Bayes calculates the posterior probability of each class
using the attribute values (software metrics) of the given
module. Further, the testing module is classified with
the label the same as the class label of the highest
probability class. Parameter estimation process of naive
Bayes classifier involves a simple estimation of the
probability of attribute values within each class from
the training modules. A comprehensive description of
naive Bayes can be referred from [107].

2. Logistic Regression (LR): LR is a type of regression
technique used when response variable is of categorical
type. It calculates the probability of a binary response
variable using one or more independent variables
(software metrics) [108]. The simple logistic model
only predicts the probabilities of outcomes in terms
of input values. To use it as classifier, we need to
select a cutoff value (threshold), which classifies values
greater than cutoff into one class and values lower than
cutoff into another class.The more details of logistic
regression is given in [109].

3. J48 (decision tree): As the name implies, decision tree
form a tree type of structure to make the decisions.
Building the decision tree involves selection of tree
nodes and splitting criteria along with the knowing
when to stop [110]. Initially, it selects the most
promising node as the root node of the tree and
continues with the tree construction with intermediate

An empirical study of ensemble techniques for software fault prediction 3629

Table 2 Details of considered software fault datasets [16]

“S. No. Dataset Release # non- commented Total number of modules Total number of % of faulty modules
-LOC faulty modules
1. Ant Ant-1.7 208KLOC 746 166 22.25%
2. Camel Camel-1.0 33KLOC 340 13 3.82%
3. Camel-1.2 66KLOC 609 216 35.47%
4. Camel-1.4 98KLOC 873 145 16.61%
5. Camel-1.6 113KLOC 966 188 19.46%
6. Ivy Ivy-2.0 87KLOC 353 40 11.33%
7. Jedit Jedit-4.0 144KLOC 307 75 24.43%
8. Jedit-4.1 153KLOC 313 79 25.24%
9. Jedit-4.2 170KLOC 368 48 13.04%
10. Jedit-4.3 202KLOC 493 11 2.23%
11. Lucene Lucene-2.4 102KLOC 341 203 59.53%
12. Poi Poi-2.0 93KLOC 315 37 11.75%
13. Poi-2.5 119KLOC 386 248 64.25%
14. Poi-3.0 129KLOC 443 281 63.43%
15. Prop Prop-1 3816KLOC 18472 2738 14.82%
16. Prop-2 3748KLOC 23015 2431 10.56%
17. Prop-3 1604KLOC 10275 1180 11.48%
18. Prop-4 1508KLOC 8719 840 9.63%
19. Prop-5 1081KLOC 8517 1299 15.25%
20. Prop-6 97KLOC 661 66 9.98%
21. Tomcat - 300KLOC 859 77 8.96%
22. Xalan Xalan-2.4 225KLOC 724 111 15.33%
23. Xalan-2.5 304KLOC 804 387 48.13%
24. Xalan-2.6 411KLOC 886 411 46.39%
25. Xalan-2.7 428KLOC 910 898 98.68%
26. Xerces Xerces-1.2 159KLOC 441 71 16.10%
217. Xerces-1.3 167KLOC 454 69 15.20%
28. Xerces-1.4 141KLOC 589 437 74.19%”

promising nodes. Typically, information gain (Infogain) 6.4 Implementation details

or Gain Ratio is used as the splitting criteria [111]. We

used J48 algorithm is the present study, which is an =~ The implementation of all ensemble techniques has been
implementation of decision tree in the Weka machine performed using Weka machine learning tool [113]. The
learning tool [112]. parameter values of different used ensemble techniques and

Training data Ensemble
K-1 folds | Techniques

Partition dataset into

i
‘ :

| i

! !

‘ :

| |

K-folds : i ; |

i : (Naive Bayes) : !

i . e .B?YCS Fault prediction Software fault i

i Testing data 3 model Prediction i

Original fault dataset | Regression N i
(Software metrics and i J48 _ : T Performance |
fault Information) ! e evaluation i

| Classification algorithms (Base II }

i learners) !

: :

Repeat this process for K iterations

Fig.3 Overview of the experimental procedure

@ Springer

3630

S.S.Rathore and S. Kumar

base learners are given in Appendix. Each used ensemble
technique receives the training dataset having software
metrics and corresponding fault information as input. The
training dataset is used to train the SFP model based
on the internal working of the ensemble technique. After
the training, a separate testing dataset is fed as input to
the trained SFP model and a prediction is made for the
software modules of the testing dataset. Each ensemble
technique output the faulty or non-faulty labels of the
given software modules. We have used seven different
ensemble techniques and different classification algorithms
for software fault prediction. So, a total of nineteen fault
prediction models have created for a fault dataset. We
replicated the experiments for twenty-eight fault datasets.
Therefore, 532 total fault prediction models have been
created.

6.5 Performance evaluation measures

Five different performance measures namely, precision,
recall, AUC (area under ROC curve), specificity, and G-
means have been used to evaluate the performance of all
seven ensemble techniques [23, 114]. It was reported in
previous studies that accuracy measure does not provide
a complete evaluation of the model performance due to
the imbalance in the fault datasets. For this reason, we
have excluded it from the study. We have selected those
measures, which can provide complete model evaluation
despite the imbalance in the fault datasets [115]. An
explanation of these performance measures is as follows?.

(i) Precision: It is used to identify the portion of the
correctly predicted faulty modules out of all modules
predicted faulty. It is defined by Equation 1.

. TP
Precision = ——— (1)
TP+ FP

(ii) Recall: It is used to identify how many correct faulty
modules are predicted. It is defined by Equation 2.

TP
Recall = ———— (2)
TP+ FN

(ili) AUC: It stands for area under the receiver operating
characteristic curve. It is a graphical plot that depicts
the diagnostic capabilities of a prediction model
under different threshold values. It plots the true
positive rate in the y-axis and false positive rate in the
x-axis. Area under the curve shows the probability
that a classifier will classify a randomly chosen
positive module higher than a randomly chosen
negative module.

2TP = True positive, FP = False positive, FN = False negative, TN =
True negative, N = Negative

@ Springer

(iv) Specificity: It is used to identify the portion of
negative modules that are actually predicted correctly
by a model. Specificity therefore quantifies the
avoiding false positive. It is defined by Equation 3.

TN
Specificity = N 3)

A high value of specificity shows that the
prediction model has a low false positive rate and
thus helps in a significant reduction in the resource
consumption to the false alarm cases. However, a low
value of specificity signifies a higher false positive
rate and thus a high consumption of resources on the
false alarm cases.

(v) G-means: It stands for geometric means. Two
measures, G-mean 1 and G-mean 2 are generally
used together.

G-mean 1 is calculated as the square root of the
precision and recall. G-mean 2 is calculated as the
square root of the product of recall and specificity.
They are defined by (4) and (5), respectively.

G — meanl = ~/ Precision x Recall @

G — mean2 = \/Specificity * Recall (&)

(vi) Statistical tests: We perform Friedman’s test and
Wilcoxon signed rank sum test to identify the dif-
ference in performance of the used ensemble tech-
niques [116]. Both the used tests are nonparametric in
nature, so they do not make any assumptions related
to the normality of the data points. In this test, sig-
nificance level («) is set to 0.05, which shows 95%
probability of not accepting the null hypothesis when
it is true. For these tests, the framed null hypothesis
(Hp) and alternative hypothesis (H,) are as follow:

Hy: There is no significant performance difference
among the used ensemble techniques at the given
significance level.

H,: There is a significant performance difference
among the used ensemble techniques at the given
significance level.

(vii) Cost-benefit Analysis: The cost-benefit analysis of
used ensemble techniques is performed to assess the
cost-effectiveness of SFP models. Wagner initially
proposed the concept of cost-benefit analysis in the
context of SFP [117]. This analysis estimates the
amount of testing efforts and cost that can be saved
by using the results of SFP models along with the
software testing process in the software development
life cycle. The analysis model considers fault removal
cost and the fault identification efficiency of different
testing phases derived from the case studies of
different software organization to estimate the fault

An empirical study of ensemble techniques for software fault prediction

3631

removal cost of specific fault prediction model.
Kumar et al. [118] explored the use of cost-benefit
analysis in SFP. We have used that presented model
in our work for cost effectiveness analysis of built
SFP models. Certain assumptions have been made in
designing the cost-benefit model, as specified below:

(a) Each of the testing phase such as unit testing,
integration testing, system testing has different
fault removal cost.

(b) None of the software testing phase is able to
detect 100% of software faults.

(¢) Unit testing of all software modules is not
practically feasible.

Equation (6) shows the estimated fault removal cost (Ecost)
that can occur when results of fault prediction are used along
with the software testing process. Equation (7) shows the
minimum fault removal cost (Tcost) that can occur without
the use of fault prediction results in the software testing
process. Equation 8 shows the normalized fault removal cost
and its interpretation.
Ecost = Cipi +C, % (FP +TP)

+8; * C; x (FN + (1 — 8,) * T P))

4385 x Cs % (1 =8;))« (FN+ (1 —=38,)«TP

+(1 =8)*xCyp*((1 —8,) % FN

+(1 —38,) * TP)) (6)

Tcost = MpxCyx(TM)+6; xCix(1—6,)« FM
48k Cyx (1 —68;)« (1 —6,) « FM
+A=8)*Crx((1—=6)« (1 —=8,)* FM (7)

Ecost | < 1 Fault prediction is useful

Ncost

®)

Tcost |=>1 Unit testing is useful

The meanings of used notations are same as described in
one of the study by [118].
Where,

“Ecost: Estimated fault removal cost of the software with
the use of software fault prediction results

Tcost: Total fault removal cost of the software without the
use of software fault prediction results

Ncost: Normalized fault removal cost of the software
when software fault prediction is used

Ciyi: Initial setup cost for using software fault-prediction
model (C;,; =0)

C,: Normalized fault removal cost in unit testing

Cy: Normalized fault removal cost in system testing

C : Normalized fault removal cost in field testing

C;: Normalized fault removal cost in integration testing
M ,: Percentage of modules unit tested

FP: Number of false positives

FN: Number of false negatives

TP: Number of true positives

TM: Total modules

FM: Total number of faulty modules

8,: Fault identification efficiency of unit testing

8s: Fault identification efficiency of system testing

§;: Fault identification efficiency of integration testing”

The fault identification efficiency of different testing
phases is defined as staff hour per fault and is borrowed
from the study performed by Jones [119]. We have
considered median of the fault identification efficiency
values maintained by Jones in our study. The used values
are, &, = 0.25, 6,= 0.5, and §;=0.45. The normalized fault
removal cost is defined as staff hour per fault and is
borrowed from the Wagner’s work [117]. Again, we have
considered median of these values. The used values are, C
=27, C;=6.2, C,=2.5, and C;=4.55. M, shows the fraction
of modules unit tested. Its value is taken from the study
performed by [120] and is M,=0.5. A detailed description
of used cost-benefit analysis model is given in [118].

7 Results and analysis

This section reports the results of used ensemble techniques
for various performance measures. Further, an analysis
of results is performed to draw observations about
the ensemble techniques’ performance. The experimental
procedure discussed in Section 6 has been used to build and
evaluate prediction models. Later, this section discusses the
results of the used statistical tests.

7.1 Results for precision, recall, AUC, specificity, and
G-means

Tables 3, 4, 5, 6, 7 show the summarized results of
ensemble techniques for various used datasets. Each table
depicts the results of one performance measure. The table
contains min, max, and means values of each ensemble
technique calculated from all datasets. We have reported the
summarized results due to the space constraint. Following
observations are drawn from tables.

— With respect to the precision measure, Rotation Forest
with J48 as base learner achieved highest max value and
highest mean value. Whereas, MultiBoostAB with NB
as base learner yielded the lowest min value.

— With respect to the recall measure, again Rotation
Forest with J48 as base learner achieved highest max
value and highest mean value. Whereas, Rotation Forest
with NB as base learner yielded the lowest min value.

@ Springer

3632

S.S.Rathore and S. Kumar

Table 3 Summarized results of ensemble techniques for the used fault
datasets with respect to precision measure

Table 5 Summarized results of ensemble techniques for the used fault
datasets with respect to AUC measure

Technique Base Leaner Precision

Min Max Mean=std

Technique Base Leaner AUC

Min Max Mean=std

Dagging NB 0.589 0.976 0.806+0.085
LR 0.619 0976 0.808+0.085
148 0.601 0976 0.82 £0.087
Decorate NB 0.581 0978 0.798+0.09
LR 0.609 0986 0.816+0.082
J48 0.676 0.99 0.82640.073
Grading NB 0.629 0.987 0.807+0.083
LR 0.651 0.987 0.816+0.079
148 0.665 0.988 0.822+0.076
MultiBoostAB NB 0.583 0986 0.80+0.089
LR 0.622 0987 0.812+0.082
J48 0.673 0993 0.823+0.077
RealAdaBoost NB 0.535 0983 0.791£0.102
LR 0.623 0988 0.813+0.083
J48 0.674 0.993 0.819+0.073
Rotation Forest NB 0.595 0.983 0.797+0.092
LR 0.622 0987 0.816£0.081
J438 0.677 0995 0.829+0.074
Ensemble Selection 0.594 0983 0.804%+0.086

Table 4 Summarized results of ensemble techniques for the used fault
datasets with respect to recall measure

Technique Base Leaner Recall

Min Max Mean=std

Dagging NB 0.575 0.988 0.811+0.093
LR 0.619 0.982 0.831+0.09
J438 0.639 0.988 0.845+0.087
Decorate NB 0.541 0976 0.783+0.111
LR 0.608 0.981 0.838+0.084
J48 0.676 0.99 0.846+0.07
Grading NB 0.629 0.983 0.834+0.085
LR 0.646 0.985 0.838+0.082
J438 0.663 0.988 0.841+0.08
MultiBoostAB NB 0.567 0943 0.784+0.099
LR 0.623 0.982 0.835+0.084
J48 0.679 0.993 0.839+0.079
RealAdaBoost NB 0.563 0.977 0.785+0.105
LR 0.623 0.986 0.835+0.084
J48 0.675 0.993 0.832+0.074
Rotation Forest NB 0.507 0943 0.776+0.115
LR 0.621 0.983 0.838+0.085
J48 0.677 0.994 0.851+0.078
Ensemble Selection 0.575 0951 0.797+0.095

Dagging NB 0491 0.862 0.78140.084
LR 0.617 0912 0.748+0.062
J48 0.458 0934 0.71940.116
Decorate NB 0.568 0.986 0.708+0.086
LR 0.558 0918 0.72140.091
J48 0.641 0965 0.76940.081
Grading NB 0.496 0.851 0.608+0.096
LR 0.492 0.874 0.61940.097
J48 0.494 0.885 0.62940.099
MultiBoostAB NB 0.523 0.843 0.685+0.07
LR 0.586 0921 0.701£0.072
J48 0.632 0956 0.771£0.072
RealAdaBoost NB 0.572 0.87 0.719+0.084
LR 0.602 0.904 0.73740.073
J48 0.532 0947 0.75240.078
Rotation Forest NB 0.561 0.847 0.7174+0.077
LR 0.566 0.925 0.74240.084
J48 0417 0953 0.7524+0.117
Ensemble Selection 0.637 0912 0.74740.062

Table 6 Summarized results of ensemble techniques for the used fault
datasets with respect to specificity measure

Technique Base Leaner Specificity

Min Max Mean=std

Dagging NB 0.523 0998 0.821+£0.137
LR 0.578 0977 0.831£0.101
J48 0.641 1 0.846+0.093
Decorate NB 0.076 0984 0.772+0.218
LR 0.33 0.977 0.816+0.136
J48 0.6 0.977 0.84+0.093
Grading NB 0.375 0.977 0.815+0.129
LR 0.4 0.977 0.817 £0.129
J48 0.5 0.977 0.827+0.116
MultiBoostAB NB 0.065 0.985 0.776+0.214
LR 0.352 0977 0.815+0.133
J48 0.609 0.977 0.8524+0.084
RealAdaBoost NB 0.222 0984 0.77340.208
LR 0428 0977 0.815+0.128
J48 0.669 0.977 0.85040.083
Rotation Forest NB 0.048 0.982 0.769+0.225
LR 0.375 0977 0.815+0.131
J48 0.666 1 0.85140.089
Ensemble Selection 0.068 0985 0.78+0.208

@ Springer

An empirical study of ensemble techniques for software fault prediction 3633
Table 7 Summarized results of ensemble techniques for the used fault
datasets with respect to G-mean 1 and G-mean 2 measures
Technique Base Leaner G-mean 1 G-mean 2
Min Max Meanz=+std Min Max Mean=+tstd
Dagging NB 0.581 0.981 0.808+0.089 0.56 0.99 0.815+0.111
LR 0.619 0.978 0.819+£0.087 0.00 0.975 0.801£0.18
J48 0.62 0.981 0.832+0.086 0.64 0.99 0.84610.090
Decorate NB 0.572 0.976 0.790+0.21 0.572 0.976 0.790£0.098
LR 0.608 0.983 0.827+0.083 0.571 0.972 0.82440.100
J48 0.676 0.99 0.836£0.07 0.680 0.977 0.842£0.075
Grading NB 0.629 0.984 0.820+0.083 0.607 0.976 0.821£0.096
LR 0.648 0.985 0.827+0.080 0.627 0.972 0.825+0.095
J48 0.663 0.988 0.831£0.078 0.634 0.973 0.831£0.090
MultiBoostAB NB 0.574 0.954 0.791+£0.091 0.237 0.963 0.771£0.167
LR 0.625 0.984 0.823+0.082 0.588 0.969 0.822+0.098
148 0.677 0.993 0.831+0.070 0.643 0.976 0.845+0.078
RealAdaBoost NB 0.568 0.977 0.788+0.102 0.453 0.960 0.773£0.152
LR 0.623 0.986 0.824+0.083 0.621 0.966 0.822+0.096
J48 0.675 0.993 0.825+0.073 0.679 0.972 0.840+£0.074
Rotation Forest NB 0.583 0.953 0.786+0.100 0.202 0.962 0.763+0.182
LR 0.621 0.984 0.827+ 0.082 0.607 0.971 0.824+£0.098
J48 0.677 0.994 0.840+£0.075 0.682 0.966 0.851£0.083
Ensemble Selection 0.584 0.958 0.801+0.088 0.239 0.967 0.779+0.161

— With respect to the AUC measure, Decorate with NB as
base learner produced highest max value and Dagging
with NB as base learner produced highest mean value.
RealAdaBoost with J48 as base learner produced the
lowest min value.

— With respect to the specificity measure, MultiBoostAB
with J48 as base learner produced highest mean value
and Rotation Forest with J48 and Dagging with J48
as base learner produced highest max value. Rotation
Forest with NB produced the lowest min value.

— With respect to the G-mean measures, Rotation Forest
with J48 as base learner produced highest max value
and highest mean value for G-mean 1, and Dagging
with NB as base learner produced highest max value
and Dagging with J48 as base learner produced highest
mean value for G-mean 2. RealAdaBoost with NB as
base learner produced the lowest min value for G-mean
1 and Dagging with LR produced lowest min value for
G-mean 2.

— Overall, it is found that Rotation Forest outperformed
other used ensemble techniques and yielded better
performance. In case of base learners, J48 achieved
better performance among the used base learners.

From tables, it can be observed that for all the
considered performance measures, used ensemble
techniques produced mean values greater than 0.7,
except for the grading ensemble technique in terms
of AUC measure. The standard deviation values (std)
of all ensemble techniques are below 0.10 for most
of the cases for all performance measures, except for
the specificity measure. For specificity measure, all
ensemble techniques produced std values above 0.10
with the highest value of 0.223. This high variation in
the model’s performance signifies a low true negative
rate and thus it shows that prediction models missed
some true negative cases and classified them as
false positives. This will increase the consumption of
software testing to test false positive cases. However,
in their work, Bohem et al. [121] argued that the
verification/testing efforts saved by a fault prediction
model of correct identification of one fault are higher
than the cost of misclassification of a hundred fault-free
modules as fault-prone. Therefore, the high std values
of specificity measure would result in the marginal
increase in the testing cost but overall software testing
cost would be saved.

@ Springer

3634

S.S.Rathore and S. Kumar

Figure 4 shows box-plots for comparing the degree of
dispersion, inter-quartile range, outliers and skewness in
term of precision, recall, AUC, specificity, and G-means
values for all ensemble techniques across all fault datasets.
Each box-plot is corresponding to one ensemble technique
and for one performance measure. The middle line in
box-plots shows midpoints of the data (median values).
Following observations have been obtained from the figure.

It is depicted in the figure that for the AUC measure,
all ensemble techniques performed relatively poor as
compared to other used performance measures.

Additionally, it is observed that the inter-quartile range
(the difference between the first quartile and third
quartile) for AUC measure is more than other used
performance measures.

The box-plots of specificity measure are relatively
wider than other box-plots and hence it shows the
variation in the specificity values across dataset. The
upper and lower whiskers of box-plots corresponding to
specificity measure in the figure show that many values
are deviated largely from the median value.

For other performance measures such as precision,
recall, and G-means, it is observed that there are

1
1 1 . .
0.8 l -L T = l J‘ 0.8 l €L I = 'L = 0.8 L = l -JL L + 0.8 l L [[| l N
0.6 J J J J J J 0.6 l l 1 J J 0.6 J J J J J 0.6 J J 1 J
0.4 0.4 04 04
02 0.2 02 02
0 0 0 0
& N F S & & > Vv R R e > . & N ¢ e N o
& & w &¥ P S 5 3 &9 & > 5 3 & & & & > O & S S
& ¥ TS & ¥ TS & ¥ T &S & TS
(a) Dagging (NB) (b) Dagging (LR) (c) Dagging (J48) (d) Decorate (NB)
1 1 1 1
I I L I L L s [& & & 1 L I I I I L = L I
08 L os | T T T 7 0.8 08 |
[l [] | I] U] T T o | I 1
0.6 1 0.6 0.6 . 0.6 ’
0.4 0.4 0.4 0.4
02 0.2 0.2 0.2
0 0 0 0
& & \é,\d N NG & & ~ & & NG O N O N NG & & ¢ ,@d o NG
Q&Q\e & B %Q@ 0@ 0&@ Q@@% < v %Q&s & 0,\&“’ Q‘w"’ RC %ng‘ G@% G@% & ¥ T %QQ& G\@ G&@
(e) Decorate (LR) (f) Decorate (J48) (g) Grading (NB) (h) Grading (LR)
1 1 1 1
Lo+ B L = 1 1 e I L L &£ T B L L I &] = - =
0.8 0.8 |] L 0.8 0.8
I LT [1 1 I | = I I IT'e | T]
0.6 T 0.6 1 0.6 L 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0
&\Qo Qg‘db\\ Ry \«}d éy\ &%@ é}é\cv Q-é}}\ ?90 &é,\d 339\ (50“% é}é\cv Q-é}}\ ?90 v&bd 339\ (50“% ‘&‘00 ng}}\ @C _&g}d (37“\ @Q’»
€ %Qé« & & € %Qé & & € %Qéf & & € %Qéz & &
(i) Grading (J48) (j) MultiBoostAB (NB) (k) MultiBoostAB (LR) (1) MultiBoostAB (J48)
1 1 1 1
0.8 l L ; Bt E 0.8 l = il N J'] 0.8 i l l T l = 0.8 l = N L B
. - . .
Lol 1 [
0.6 J | l J 06 | 1 I L J Il 0.6 | 0o | 1 J 1 1
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0
& @ @ & S & & & @ @ & A S & &
< & &S < & &] & & < & &
(m) RealAdaBoost (NB) (n) RealAdaBoost(LR) (0) RealAdaBoost (J48) (p) RotatioForest (NB)
1 1 1
L L I R I & o om [= & & I 1 = I L
0.8 0.8 l l l l 0.8 L
[l [1 17 |
0.6 1 0.6 J 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
é,é’\c‘\ q—“@\ V‘QC \‘bd zf"o\ @‘& d;"‘\ev Q-éj}\ V’QQ '&“;“\d @§\ @Qf“’& 64;"\00 qf‘@\ V}}C \“é\d @‘}’Q\ @‘&
€ %Qéf & & <& %Qéd & <€ %Qé« 1% &

(q) Rotation Forest (LR) (r) RotationForest (J48)

(s) Ensemble Selection

Fig.4 Boxplot diagrams showing the degree of dispersion, interquartile range, outliers and skewness for all the used performance measures

a

Springer

An empirical study of ensemble techniques for software fault prediction

3635

Table 8 Results of statistical comparisons of Friedman'’s tests among the used ensemble techniques for all five performance measures

Friedman’s Test for Precision

H-stat 78.62
DF 18
P-value 1.49E-09
Alpha 0.05
Significant Yes
Friedman’s Test for AUC
H-stat 242.15
DF 18
P-value 3.2E-41
Alpha 0.05
Significant Yes
Friedman’s Test for G-mean 1
H-stat 240.64
DF 18
P-value 6.49E-41
Alpha 0.05
Significant Yes

Friedman’s Test for Recall

H-stat 286.7949
DF 18
P-value 2.48E-50
Alpha 0.05
Significant Yes
Friedman’s Test for Specificity
H-stat 56.19
DF 18
P-value 8.29E-06
Alpha 0.05
Significant Yes
Friedman’s Test for G-mean 2
H-stat 206.5365
DF 18
P-value 4.92E-34
Alpha 0.05
Significant Yes

not many variations in the values. For these three
performance measures, all the ensemble techniques
achieved relatively better performance.

7.2 Results of statistical tests

Table 8 shows results of the Friedman’s tests of all used
ensemble techniques for all five performance measures. It
is observed from the table that a statistically significant
difference in the performance of at least one pair
of ensemble techniques has been found for all used
performance evaluation measures. P-values are lower than
the considered significant values («¢=0.05) for all cases.
These results showed that different ensemble techniques
performed differently for at least one pair of techniques for
the given software fault datasets. Further, Wilcoxon signed
rank sum test is performed to calculate the within pair
difference among the used ensemble techniques.

Table 9 shows results of the Wilcoxon signed rank test
for all five performance measures of all used ensemble
techniques. Each sub-table is for one performance measure.
Due to the space constraint, we used the abbreviated ID’s for
technique names. The full name of each ID is provided in
the table caption. A black filled circle shows the significant
performance difference in the pair of ensemble techniques
at o = 0.05 and thus rejecting the null hypothesis. A hollow
circle shows no significant performance difference at o =
0.05 and thus accepting the null hypothesis. There are a total
of 171 pair-wise comparisons of seven ensemble techniques
is reported in Table 9 for each performance measure. The

summarized results of Wilcoxon signed rank sum test are
given below.

— For the precision measure, a total of 106 pairs have
shown a statistical significant difference in performance
and other 65 pairs have not shown any statistical
significant difference in performance.

— In case of recall performance measure, a total of 138
pairs have shown a statistical significant difference in
performance and other 33 pairs have not shown any
statistical significant difference in performance.

— For the AUC measure, a total of 133 pairs have shown
a statistical significant difference in performance and
other 38 pairs have not shown any statistical significant
difference in performance.

— In case of specificity measure, a total of 128 pairs have
shown a statistical significant difference in performance
and other 43 pairs have not shown any statistical
significant difference in performance.

— For the G-mean 1 measure, a total of 54 pairs have
shown a statistical significant difference in performance
and other 117 pairs have not shown any statistical
significant difference in performance.

— For the G-mean 2 measure, a total of 128 pairs have
shown a statistical significant difference in performance
and other 43 pairs have not shown any statistical
significant difference in performance.

These results showed that performance of ensemble
techniques differs statistically significantly from one to
other. Except the G-mean 1 performance measure, for all

@ Springer

3636

S.S.Rathore and S. Kumar

other used performance measures, cases where statistically
significant performance difference have been found are
more than the cases where no statistically significant
performance different have been found.

7.3 Results of cost-benefit analysis

Table 10 shows normalized cost values (Ncost) of each
ensemble techniques for all the used software fault datasets.
For each dataset, Ncost value is reported in the table and
values less than 1.0 show the cost-effectiveness of the
ensemble techniques. It implies that if the results of SFP
are used with software testing than overall testing cost and
effort can be saved. On the other hand, values higher than
1.0 show that SFP is not helpful in saving testing cost and
effort and it is suggested not to use SFP models in those
cases. From the table, it can be seen that for datasets such as
Lucene-2.4, Poi-2.5, Poi-3.0, Xalan-2.5, Xalan-2.6, Xalan-
2.7, Xerces-1.3, and Xerces-1.4, Ncost values are higher
than the threshold value (1.0) for all the used ensemble
techniques. Therefore, as estimated from this study, it may
not be beneficial to use software fault prediction based on
used ensemble techniques along with the software testing
for these fault datasets. For all other 20 datasets, Ncost
values are lower than the threshold value and thus it is
beneficial to use software fault prediction based on used
ensemble techniques.

7.4 Answer to the research questions

Based on the results reported in Tables 3-9, the answers of
research questions are discussed as follow:

RQ1: Which ensemble technique shows overall best
performance for software fault prediction?

Results reported in Table 3—7 showed that for most
of the cases Rotation Forest yielded better perfor-
mance compared to other used ensemble techniques.
MultiBoostAB, Decorate, and Dagging produced better
performance in some cases. Other ensemble techniques
performed relatively poor.

RQ2: Is there any statistically significant performance
difference between the chosen ensemble techniques?
Results of Friedman’s tests and Wilcoxon signed rank
tests reported in Tables 8 and 9 showed that for majority
of the cases pairs of ensemble techniques showed statis-
tically significant performance difference. This pattern
has been found for all the used performance measures
except G-means measure.

RQ3: How do base learners affect the performance of
ensemble techniques?

@ Springer

The evidence obtained from the experimental results
discussed in Section 7 showed that the performance
of ensemble techniques varies with the use of the base
learner. Overall, J48 as a base learner helped in achieving
improved prediction performance. NB as a base learner
generally resulted in the inferior performance of the
ensemble techniques.

RQ4: For a given software system, how economically
effective ensemble techniques are for software fault
prediction?

The evidence obtained from Table 10 shows that for twenty
out of twenty-eight fault datasets, SFP models based on the
used ensemble techniques helped in saving software testing
cost and effort. For only eight fault datasets, used ensemble
techniques have not been helped in saving software testing
cost and effort. From the results, it can be recommended to
use SFP models based on the used ensemble techniques to
reduce the software testing cost.

In this paper, we have explored the use of seven different
ensemble techniques for the software fault prediction. Three
different classification algorithms have bene used as base
learners in the used ensemble techniques. The observations
drawn from the experimental results and main advantages
of the presented work are summarized as follow.

— The analysis of used ensemble techniques showed that
no single ensemble technique always provides the best
performance across all the fault datasets, and the use of
a particular ensemble technique for SFP depends on the
properties of the fault dataset in-hands.

— However, among the used ensemble techniques, Rota-
tion Forest yielded better prediction performance than
others. J48 as a base learner outperformed other used
base learners. Thus, from this study, it may be recom-
mended to use Rotation Forest and J48 to build the SFP
models for better prediction performance.

— The cost-benefit analysis showed that the SFP models
based on the ensemble techniques under consideration
can help in reducing the software testing cost and can
help in optimizing the testing resources.

8 Comparison analysis

There few efforts have been reported earlier regarding the
evaluation of ensemble techniques based on fault prediction
models. A comparison of reported study with these works
on various attributes has tabulated in Table 11. A majority
of previous works listed in Table 11 included the contextual
information of the fault prediction model, model building
information, used software fault datasets, and prediction
modeling techniques with the experimental findings in

An empirical study of ensemble techniques for software fault prediction

3637

Table9 Results of the statistical comparison of Wilcoxon signed rank test among the used ensemble techniques for all five performance measures.
A filled circle shows the significance difference and a hollow circle shows no significance difference. (ID1: Dagging(NB), ID2: Dagging(LR),
ID3: Dagging(J48), ID4: Decorate(NB), ID5: Decorate(LR), ID6: Decorate(J48), ID7: Grading(NB), ID8: Grading(LR), ID9: Grading(J48),
ID10: MultiBoostAB(NB), ID11: MultiBoostAB(LR), ID12: Multi-BoostAB(J48), ID13: RealAdaBoost(NB), ID14: RealAdaBoost(LR), ID15:
RealAdaBoost(J48), ID16: RotationForest(NB), ID17: RotationForest(LR), ID18: RotationForest(J48), ID19: Ensemble Selection)

(a) For Precision measure

(b) For Recall measure

ID1{ID2 |ID3 |ID4 | ID5 | ID6 | ID7 | ID§ | ID9 | ID10 | ID11 {1D12 | ID13 | ID14 | ID15 | ID16 | ID17 | D18 [ID19) ID1{ID2{ ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 |ID10{ID11{IDI2|ID13{ID14|IDI5|ID16|ID17| IDI§ [ID19
DI -|o e o|e e |0 | e . o o . o L [o . . o DI e ° ° . . o . o ° N ° ° * . ° . * °
D2 - . o|e e |0 | e . o . . o o [o [. o D2 N ° ° Py Py o Py Py ° Py o ° ° ° Py Py Py Py
D3 “lelololelolo[e oo e olole]olel e D3 e Te oo ool e o o o o o oo o o
D4 “|elefolelelofe e ole]elolele]e D4 T T e Te o o oo oo oo oo o s
D3 “Jolelololelololelolole]olele D5 T o Te o T o oo ol o oo oo o
D6 ~elele e ool e eleelolo]e D6 T e e oo oo oo oo o o
D7 “lelelo o e oo e ole]ls o D7 e e oo o e oo e s o s
D8 el el oo e ololeloe]e DS e e oo oo oo o o
D9 " el elolelololeloe]e D9 e e o Ts To s o5 = s
D10 “ e[elole]e oo e]e D10 e T T o s oo o o
IDI1 “ el elololelele]o DIl o T To o Te s o
D12 “ e lololefolele D12 oo Te e o o
D13 ~[elelofele]e D13 o T e o e o
D14 o lelole]e D14 o e e o s
IDI5 “ el o e e D15 e e o
D16 “ e e [DI6 o T e T
D17 T e e D17 T T
IDIg e DIS — T
D19 - D19 _
(c) For AUC measure (d) For Specificity measure
ID1|ID2 |ID3 |ID4 DS |ID6 | ID7 |IDS [ID9 | ID10 | ID11 |ID12 |IDI3 |ID14 |ID15 |ID16 D17 |IDI8 |ID19 IDI|ID2| ID3 | ID4 | IDS | ID6 | ID7 | IDS | ID9 [ID10[IDI1 [ID12{ID13|ID14|ID15|ID16|ID17| IDIS [ID19
IDI|-|e|o e |0 e e |e e e . . o IDI |-|Jo]| o . o o [} o o . o o . o o . o o .
D2 -lofle e e e e |0 . . . ° o o . o . o D2 - o o o [o o o o o . o o . o . o o
ID3 -lelo|e|e e e . . . o o ° . o . o D3 - o o o o o o o o . o o . o o o o
D4 -|e e e e e | @ o . o . . o . o [o D4 olo|lofJo]J]of|o]o|e|]o|o]|e]|]o]o o .
D5 -|e|e e e . . . o . . o . . . DS - . o o [} o o . o o . o o o o
D6 - e |e]e | e . o . . o . o o [o D6 - e | e | e o |e|e|o|e|e|o0|ce o o
D7 -le e | e o | o D7 - ol e o|lo| e | e|o|o]| e]o o .
DS el el oo e]e e e e]e]e ID§ “[elololelofolelolo] o [o
D9 - | e o o | o D9 - o | e[e | o |e | e |0 e o o
D10 - o o | o D10 - ol e|olo|e]o]o o o
IDI1 - . o . . o . o | o D11 - | el oo e]o]o o o
D12 - o | e D12 - NN . o
D13 - . . o . o | o D13 - o| e oo o o
D14 - o . o o [o D14 -l elo]o 3 o
IDIS ~ e lo oo D15 e le] o [
D16 T e e | D16 “ ol o |o
D17 D D17 “ [o [o
IDI8 D IDI8 ~ 1o
D19 - D19 g
(e) For G-mean | measure (f) For G-mean 2 measure
ID1{ID2 |ID3 |ID4 | IDS | ID6 | ID7 | IDS | ID9 | ID10 | ID11 {1D12 | ID13 | ID14 | ID15 | ID16 | ID17 | D18 [ID19) ID1 | ID2 | ID3 | ID4 | IDS | ID6 | ID7 | ID8 | 1D9 | ID10 | ID11 | IDI2|IDI3 | ID14|ID15 | ID16 [ID17 [IDIS | ID19
DI|-[efefelefoe]ofeje]|o o e e [e]e e e [0] [[D[Jo o Jo (¢ o (o [0 (o [0 o o Jo Jo Jo fo [0 [0 o
1D s Jelejejejojele] o | e e e oo e e e]) — e o Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo Jo e
ID3 s Jelojojejojole e o fe]e|o e |0 e || [~ o o Jo fo Jo Jo fo o fo Jo o Jo TJo Jo o e
D4 s |ejelejefejo e e o]e e o e]]| [ID4 ~Jo fo Jo Jo fo Jo Jo o Jo Jo Jo Jo Jo [o e
DS s Jojejojole oo le oo e]o]e]le]| [ID5 “Je o Jo Jofo Jo fo Jo Jo Jo Jo Jo Jo e
1D6 s ejejej e e jofeje e e e o el [Df —fo o JoJo o o Jo o fo Jo o Jo o
D7 jejel e} 0O L °cl 0 LA LA D7 - o Jo Je Jo Je Je Jo e e o e e
D8 S| ej e e O e °c 10 LI * e D8 - e o o e Je Jo Jo Je Jo e e
D9 il B ol e L LI) * e D9 - e e o e e o e fo [e e
D10 - A LI) L ol e L D10 - o [0 o fo fo o fe fe e
D11 - o e lojoleje e]e IDI1 - o Jo o o e Jo fo e
D12 - | ejofejelole el DN B O C OO DO OO G
ID13 - Jefejolele el b B N O O DO O
D14 - | ojejelelel /D B R OO O DO O
ID15 - | elolelel D5 o o [e e
ID16 - | e e || [Di6 e s e
D17 -l ele]l D7 B OED
ID1$ - le| |18 e
ID19 - D19 B

their studies. It can also be observed from the table that
generally available works focused on the use of a limited
set of prediction modeling techniques in their studies. In
comparison to this, the reported work examined seven
ensemble techniques, which have not been explored earlier.
Moreover, most of the earlier works used only a few
datasets to perform the experiments. In the reported study,
a total of 28 different fault datasets have been considered
to generalize the findings of the work. Further, we have

performed a cost-benefit analysis to assess the economic
viability of the used ensemble techniques for the SFP, which
has not been done in previous studies. When comparing
the results of the presented empirical study with the results
reported by [31] for SFP, it has been found that ensemble
techniques used in this study performed better. The highest
AUC value achieved is 0.986 by Decorate with NB as a base
learner in comparison to 0.96 value achieved by stacking
in the Wang et al.’s study. In the presented study, the mean

@ Springer

3638

S.S.Rathore and S. Kumar

Table 10 Results of the cost-benefit analysis (Ncost) of ensemble techniques for all used software fault datasets [ID1: Dagging(NB),
ID2: Dagging(LR), ID3: Dagging(J48), ID4: Decorate(NB), ID5: Decorate(LR), ID6: Decorate(J48), ID7: Grading(NB), ID8: Grading(LR),
ID9: Grading(J48), ID10: MultiBoostAB(NB), ID11: MultiBoostAB(LR), ID12: Multi-BoostAB(J48), ID13: RealAdaBoost(NB), ID14:
RealAdaBoost(LR), ID15: RealAdaBoost(J48), ID16: RotationForest(NB), ID17: RotationForest(LR), ID18: RotationForest(J48), ID19:

Ensemble Selection]

Techniques | Ant Camel Ivy Jedit Lucene Poi Prop Tomcat Xalan Xerces
Ant-1.7 Camel- Camel- Camel- Camel- Ivy-2.0 Jedit- Jedit- Jedit- Jedit-4.3 Lucene Poi-2.0 Poi-2.5 Poi-3.0 Prop-1 Prop-2 Prop-3 Prop-4 Prop-5 Prop-6 Tomcat Xalan- Xalan- Xalan- Xalan- Xerces- Xerces- Xerces-1.4
1.0 12 14 1.6 4.0 4.1 42 224 24 25 26 27 12 13

DI 0.8621 0.0766 0.9768 0.7549 0.7552 0.5582 0.8938 0.8993 0.7007 0.0447 1.1013 0.4156 1.1022 1.0942 0.6973 0.6138 0.6082 0.5344 0.6039 0.6452 0.9891 0.7375 1.0654 1.0200 1.1301 0.6130 0.735 11177
D2 0.797 01010 0.9890 0.6397 0.6819 0.4766 0.8756 0.8488 0.5626 0.0789 1.1158 0.5221 1.0990 1.1048 0.4268 0.2645 0.2808 0.3078 0.3852 04180 04120 0.6451 1.0912 1.0433 11307 0.6481 0.6796 1.1023
D3 0.7751 00766 0.9234 0.4504 0.5280 0.4150 0.8125 0.8377 0.5144 0.0447 1.1078 03474 1.1058 1.0986 04227 0.2547 02352 02703 03439 0.2 02839 04703 1.0821 1.0391 11301 03620 05424 1.0959
D4 0.8439 04268 0.9439 0.7457 0.7171 0.6992 0.8404 0.8328 0.6750 0.4147 1.1025 0.6152 11214 1.1320 0.6941 0.6092 0.5633 0.5225 0.6001 0.7864 0.6552 0.7426 1.0597 1.0054 1.1314 07270 0.7425 1.1346
D5 07972 0.1838 09112 0.5446 0.5925 04979 0.8197 0.8495 0.5518 0.1269 1.1036 0.4834 1.1075 1.0952 0.4254 0.2591 0.2829 0.2936 03782 03045 04151 0.5430 1.0834 1.0374 1.1304 04357 0.6539 1.1037
D6 0.8004 0.1010 0.9830 0.5987 0.7306 0.4516 0.8618 0.8173 0.6063 0.0447 1.1014 0.4750 1.0875 1.0938 0.5517 0.3822 0.2994 0.3068 0.3825 0.4396 04080 0.5663 1.0759 1.0315 1.1294 0.6734 0.5882 1.0964
D7 0.8201 0.1408 0.9464 0.5439 0.6370 0.4979 0.7853 0.8099 0.5679 0.0620 1.1059 0.4773 1.1035 1.0994 0.5030 0.4302 0.2773 0.2970 0.4768 03717 03197 05157 1.0900 1.0405 1.1302 05025 0.6538 1.1023
D8 0.7946 0.1898 09211 0.5420 0.6252 0.5469 0.8281 0.8246 0.5186 0.1269 1.0998 0.4554 1.1044 1.0950 0.4771 04229 0.2924 03153 03907 03904 03946 0.5693 1.0667 1.0255 1.1300 05232 0.6290 1.0997
D9 0.7995 0.1688 0.9353 0.5841 0.6893 0.5368 0.8172 0.8345 0.5830 0.1113 1.0998 0.4609 1.0984 1.0913 0.5258 0.3638 0.2934 0.3123 03926 03904 03751 0.5843 1.0683 1.0235 1.1297 0.6208 0.6786 1.0974
D10 0.8553 03920 0.9326 0.7095 0.7259 0.7050 0.8486 0.8532 0.6912 03586 1.1063 0.6247 1.1060 1.1245 0.6922 0.6092 0.5999 0.5225 0.6028 0.7855 0.6537 0.7574 1.0607 1.0054 1.1464 0.7060 0.7262 1.1339
D11 0.7560 02610 0.9547 0.5369 0.6145 0.4886 0.8725 0.8478 0.5639 0.1714 1.1074 05170 1.1052 1.1022 0.4305 0.2645 0.2781 0.3077 0.3879 03322 04023 0.5736 1.0855 1.0387 1.1303 0.5145 0.6509 1.1019
D12 0.8213 0.1688 0.9872 0.6599 0.7613 0.5664 0.8668 0.8586 0.6084 0.0620 1.1123 0.5214 1.920 1.0957 0.6329 0.4853 0.4240 0.4101 0.5873 0.5273 04080 0.6373 1.0738 1.0462 1.1290 0.6293 0.7058 1.0979
D13 0.8535 04315 0.9407 0.7282 0.7234 0.6992 0.8352 0.8294 0.6683 03875 1.1025 0.6247 1.1438 1.1256 0.6922 0.6092 0.5999 0.5221 0.6028 0.7829 0.6426 0.7340 1.0628 1.0063 1.1311 0.7060 0.7165 1.1339
D14 0.7603 03389 0.9344 0.5441 0.5726 04979 0.8317 0.8495 0.5713 02127 1.1028 0.4642 1.1081 1.1052 0.4524 0.2862 0.2898 0.3183 03923 03352 04115 0.5671 10826 1.0329 1.1299 05243 0.6597 1.1072
D15 0.8228 0.2484 1.0039 0.6958 0.7989 0.5525 0.8509 0.8868 0.5899 0.1269 1.0958 0.5919 1.0983 1.0966 0.7082 0.5954 0.4457 04984 0.6402 0.6519 04318 0.6590 1.0764 1.0512 1.1290 0.7128 0.6821 1.1009
D16 0.8495 03960 0.9473 0.7314 0.7365 0.7176 0.8369 0.8378 0.6784 03419 1.1014 0.6432 1.1463 1.1448 0.6851 0.5996 0.5503 0.5236 0.5579 0.7382 0.6463 0.7509 1.0558 1.0126 1.1483 0.6886 0.7412 1.1352
D17 0.7521 0.1838 0.9300 0.5125 0.5621 0.4594 0.8211 0.8329 0.5712 0.1421 1.1041 0.4554 1.1056 1.1006 0.4268 0.2568 0.2750 0.2941 03787 0.3108 03650 0.5267 1.0835 1.0328 1.1302 0.4795 0.6351 1.1024
DI | 0.7569 0.1010 0.8656 0.4847 0.5432 0.3926 0.7920 0.8442 0.5349 0.0447 1.1039 03155 1.0961 1.0923 0.4461 03080 0.2470 02562 0.3468 02651 02749 04150 1.0764 1.0307 1.1289 0.5959 0.5818 1.0958
D19 0.8426 03960 0.9445 0.7005 0.7191 0.6441 0.8316 0.8244 0.6508 03173 1.0937 0.5852 1.1032 1.1163 0.6562 0.5528 0.5529 0.4908 0.5628 0.7250 0.6311 0.7194 1.0586 1.0089 1.1408 0.6919 0.7206 1.1251

AUC value is 0.781, and minimum AUC value is 0.532,
which is comparable with the values reported by Wang
et al.’s work.

9 Threats to the validity

The empirical analysis reported in this paper can be suffered
by some threats to the validity, which are discussed as
follow.

Construct Validity This validity threat concerns with the
accuracy of the used software fault datasets. We gathered
and used fault datasets reported in the PROMISE data
repository, which is available in the public domain. The
fault datasets in this repository are corresponding to
various contributors. It is the primary repository used for
building and evaluating software fault prediction model.
This made us believe that fault datasets used in the study
are accurate, consistent, and free from any inconsistency.

Internal Validity This validity threat concerns with the
selection of base learners. The presented study included

@ Springer

three different classification algorithms as base learners.
The rationale behind the selection of these three
algorithms is that previous research found that these
algorithms performed better in comparison to other ones
for software fault prediction. However, the selection of
base learners is orthogonal to the intended contribution.
We have used faulty or non-faulty information for a
given software module as dependent variable due to
the nature of the designed experimental study. Other
dependent variables such as the quantity of faults in a
software module, severity of a fault, etc. could also be
used.

External Validity This validity threat is related to the

used statistical tests. We have used Friedman’s test
and Wilcoxon signed rank sum test to evaluate the
performance difference of the considered ensemble
techniques. These tests are the non-parametric tests,
which do not specify any conditions about the drawn
population sample of the data. Selection of these tests
were made according to the data sample available in hand
in the presented study. However, any other statistical
test can be used based on the given data. We have used

3639

An empirical study of ensemble techniques for software fault prediction

"J10}J2 pue
1500 3Uns) 2IBM}JOS)
Suraes ur padjoy sonbiu
-Jo9) Q[qUIASUd Paseq
sfopow uonorpaid Jney
QIeM1JOS ‘Sjosejep Inej
pasn g Jo o (g Ioj
sIsA[eue J1JouUaq-1s0))
((Buidseq@) 660 =¢
uedw-n (382104 uon
-B10Y) ¥66'0 =1 UBIW-D
(1sa104 uonEBIOY Ppue
3ui3seq) 1 =Aoyoadg
(a1v1099() 986'0 =DNV
(152104 UOTILIOY) 66°0
=[[eo9y (Is2I04 uon
-B10Y) $66°(0 =UOISINI]

xoxdde 9,61 Jo
9JeI1 J0119)s9q padonpoid
NN3[PuB 2913 UOISIOdp
goude jo o[quosug

(8unoA §O+S2104SD)
SLE0=ITe>Y
(13unoa+iog

-sAS)G8° 0= UOISIORIg

Sjosejep pasn [[e Juowre
1s9ySIy punoj anfea
UBOW JY) MOYS SI[NSA,
(Supyoe)s pue 9j0A 10j)
%96 DNV (310A 10J)
%8188 :AoeINdoY

sanbruyo9)

pasn oy} Suowre)saq Y}
powtoyrod sem swyLx
-03[e ZTNM-NNESD
sonjeA

JSe10A® QIR SINSAT [V
SL'0=Ted €9 (0=uoIsIo
=314 ‘S1°0=4d ¥8'0=Ad
s)eselep YSVN Jog
¥L 0= Ted ‘TL'Q =UOISIO
=14 “L1°0=4d ‘69°0 =Ad
S)osejep [eLISnpul I0q

SIQUIE]
oseq Sse SIOIISSE]d
JUIOMJIP 921y} (IIm
sonbruyoe) o[quIAsud
JUQIFITP UAAQS

poyoul 9[qUIASUd
peseq Sunoa Ajuolen

Sur
-)JOA SO onbruyo9) Junoa
JAIJISUQS-JSOO B PUER 1S9
-104SD 2nbruyo9) uoneos
-1JISS[O QAT)ISUDS-1S00

JJOA pue ‘soheg

QAN ‘Sunpyoeis ‘ooeds
-qQng Wopuey ‘921], Wwop
-uey sa104 WopuRy
[INIsoogepy ‘Suidieg
(INI-NNFSO pue
TOM-NNESD 1NM
-NNESD) swyiode
Sunsooq JI0Mmou [eInou
JAIISUQS-)S0D QaIyg,

S19
-UIBJ[SBq SE SIAIJISSL]d

Qo1y) pesn eyl (gsug)
IOJISSL[D Q[QUIASUR Y

K1oy1sodax
vjep HSTINOUd
ay woij sjaseiep
jnej AIBM1JOS 8T

K10)RI0QR]

uotsndoid 39 S.YSVN
WIOI} J19SeIep [pue AIoj
-sodar ejep YSYN Wolj
1Dd Pue ‘TINf ‘TIND

Aroyisodar erep YSYN
woly zdd Pue ‘DN
‘€2d ‘1DM ‘10d “TONW

K10}

-1sodar elep YSYN Ul
woly sjasejep Jnej 4|

K1oy1sodax

Blep VSVN woly 19d
pue ‘TIND ‘7O ‘1O

Ansnpur woij syosejep
jnej 4 pue Aloysodox
elep VSVN wWoly +Dd
pue ¢dd ‘I1Dd ‘TIND

S9X

Sox

Sox

SOx

S9X

SO

SOX

SOX

Sox

SOx

SOX

SO

uonorpaid jjney a1emijos
10} sonbruyo9) 9[quIasud
jo Apmis peoundwyg

sanbruyo9)
Jlquiaesua Suisn Swo)sAS
oeds o3re[ur sjnej
dIeM1JOs JO UONdIpald

wa[qod aoueequI SSB[O
9y} 10J SUNIOA PUE ISAIOF
UOISIOAP QAISUSS IS0D Y

uonorpaid

109JOp 2IeM}JOS I0J SPO
-joul J[qUIASUD SNOLIBA
Jo Apmjs aAneredwod y
uonoipaid 109)op
QIEM]JOS JOJ SYIomIou
[eIndU 1S00Q UO Ppaseq
swyjLose 3unsooq
QATJISUAS JSOD Q2IYJ,

$109Jop IBMIJOS
Suneoso| 10J SIALISSE[D
JO 9[qUIASUD UB UO paseq
[epouwt uonoipaid 109J9Q

pringer

A's

JIom QO

[vel eremr g

[9¢]
We[S] pue SIAIS

[92] "Te 10 Suem

[eg] Buauz 't

[z€] Te 10 1usIN

SISy

s[opowy/sanbruyo9) uon
-opaid jnej ponodey

pasn
Ssjosejep J[nej QIemijos

payodar
uoneulojur Jur

-PIInq [SPOIN

paytodax
uonRULIOJUT
[emIxa1u0))

Apmis oy Jo wiry

(s)zoyny

sisATeue aaneredwod jo Arewwing || d|qeL

3640

S.S.Rathore and S. Kumar

datasets corresponding to different software projects to
generalize the conclusions drawn in the presented study.

10 Conclusions and future work

In this work, an extensive experimental analysis of ensemble
techniques for the SFP has been carried out. The study
presented an evaluation of seven ensemble techniques
by using three different classification algorithms as base
learners on twenty-eight software fault datasets. In total 532
prediction models have been built and evaluated for fault
prediction in the presented study. Overall, we found that
ensemble techniques are useful modeling techniques and
thus can be considered to build effective fault prediction
models. Out of the used ensemble techniques, rotation
forest yielded better prediction performance compared
to the other ensemble techniques and J48 as the base
learner has worked most effectively. Further, we found
that used ensemble techniques have shown a statistically
significant performance difference for the used performance
measures. The work reported in this paper can be helpful
to the research community in the modeling of accurate
fault prediction models by selecting appropriate ensemble
technique.

In the future, we aim to develop a hybrid ensemble
technique based fault prediction model based on the
findings of the reported study. Additionally, future work
includes the assessment of ensemble techniques for the fault
datasets drawn from other software systems and having
different software metrics to generalize the findings of the
work.

Acknowledgments We are thankful to the editor and the anonymous
reviewers for their valuable comments that helped in improvement of
the paper.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Informed Consent This article does not contain any studies with
human participants.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Appendix

In this study, we have used Weka implementation of
used ensemble techniques and base learners. Following
parameter values have been set for these three base learning
algorithms amd seven ensemble techniques.

@ Springer

Techniques

Parameter values

Dagging

Decorate

Grading

MultiBoostAB

RealAdaBoost

RotationForest

Ensemble Selection

Naive Bayes

Logistic Regression

J48

batchSize= 100, debug= False,
doNotCheckCapabilities=
False,verbose= False, numFolds= 10,
numDecimalPlaces= 2, seed= 1

seed = 1, desiredSize= 15, numDeci-
malPlaces= 2, batchSize= 100, numlIter-
ations= 50, artificialSize= 1.0, debug=
False, doNotCheckCapabilities= Fasle
Seed= 1, numFolds= 10, numExecution-
Slots= 1, numDecimalPlaces= 2, batch-
Size= 100

Seed= 1, weightThreshold= 100, num-
SubCmtys= 3, numDecimalPlaces= 2,
batchSize= 100, numlterations= 10,
debug= False, doNotCheckCapabilities=
False

Seed= 1, weightThreshold= 100,
numDecimalPlaces= 2, batchSize=
100, numlterations=10, debug= False,
doNotCheckCapabilities= False,
useResampling= False, shrinkage= 1.0

Seed= 1, numExecutionSlots= 1,
numDecimalPlaces= 2, batchSize=
100, minGroup= 3, numberOfGroups=
False, numlIterations= 10, debug= False,
removedPercentage= 50, maxGroup= 3,
minGroup= 3, doNotCheckCapabilities=
False, projectionFilter= PCA

Seed= 1, sortlnitializationRatio= 1.0,
modelRatio= 0.5, replacement= True,
numFolds= 10, numDecimalPlaces= 2,
hillclimbMetric= Optimize with RME,
batchSize= 100, verboseOutput= False,
algorithm= Forward selection, debug=
False, numModelBags= 10, validation-
Ratio= 0.25, doNotCheckCapabilities=
False, greedySortInitialization= True,
hillclimblterations= 100

useKernelEstimator= False, numDeci-
malPlaces= 2, batchSize= 100, debug=
False, displayModellnOldFormat= False,
useSupervisedDiscretization= False

numDecimalPlaces= 4, batchSize= 100,
debug= False, ridge= 1.0E-08, useConju-
gateGradientDescent= False, maxlts= -1,
doNotCheckCapabilities= False

Seed= 1, unpruned= False, confi-
denceFactor= 0.25, numFolds= 10,
numDecimalPlaces= 2, batchSize=
100, reducedErrorPruning= False,
useLaplace= False, doNotMakeSplit-
PointActualValue= False, debug= False,
subtreeRaising= true, savelnstanceData=
False, binarySplits= False, doNotCheck-
Capabilities= False, minNumObj= 2,
useMDLcorrection= True, collapseTree=
True

An empirical study of ensemble techniques for software fault prediction

3641

References

10.

11.

12.

14.

15.

16.

19.

20.

21.

. Chen C, Alfayez R, Srisopha K, Boehm B, Shi L (2017) Why is it

important to measure maintainability, and what are the best ways
to do it? In: Proceedings of the 39th International conference on
software engineering companion. IEEE Press, pp 377-378

. Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener

A (2010) Defect prediction from static code features: Current
results, limitations, new approaches. Automated Software
Engineering Journal 17(4):375-407

. Fenton NE, Neil M (1999) A critique of software defect

prediction models. IEEE Trans Softw Eng 25(5):675-689

. Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A

systematic literature review on fault prediction performance in
software engineering. IEEE Trans Softw Eng 38(6):1276-1304

. Kamei Y, Shihab E (2016) Defect prediction: Accomplishments

and future challenges. In: 2016 IEEE 23rd international
conference on software analysis, evolution, and reengineering
(SANER), vol 5. IEEE, pp 33-45

. Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault

prediction models. Empir Softw Eng 13(5):561-595

. Menzies T, Greenwald J, Frank A (2007) Data mining static

code attributes to learn defect predictors. IEEE Trans Softw Eng
33(1):2-13

. Tosun A, Bener AB, Akbarinasaji S (2017) A systematic

literature review on the applications of bayesian networks to
predict software quality. Softw Qual J 25(1):273-305

. Hall T, Bowes D (2012) The state of machine learning

methodology in software fault prediction. In: Proceedings of
the 11th International conference on machine learning and
applications, vol 2, pp 308-313

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Bench-
marking classification models for software defect prediction: A
proposed framework and novel findings. IEEE Trans Softw Eng
34(4):485-496

Challagulla VUB, Bastani FB, Ling I, Paul RA (2005) Empirical
assessment of machine learning based software defect prediction
techniques. Int J Artif Intell Tools 17(02):389—400

Chatterjee S, Nigam S, Singh JB, Upadhyaya LN (2012)
Software fault prediction using nonlinear autoregressive with
exogenous inputs (narx) network. Appl Intell 37(1):121-129

. Rathore SS, Kumar S (2017) A study on software fault prediction

techniques. Artif Intell Rev 1-73

Chatterjee S, Maji B (2018) A bayesian belief network based
model for predicting software faults in early phase of software
development process. Appl Intell 48(8):2214-2228

Madeyski L, Jureczko M (2015) Which process metrics can
significantly improve defect prediction models? an empirical
study. Softw Qual J 23(3):393-422

Rathore SS, Kumar S (2016) An empirical study of some
software fault prediction techniques for the number of faults
prediction. Soft Comput 1-18

. Mendes-Moreira J, Jorge A, Soares C, de Sousa JF (2009)

Ensemble learning: A study on different variants of the dynamic
selection approach, pp 191-205

. Bowes D, Hall T, Petri¢ J (2017) Software defect prediction: do

different classifiers find the same defects? Softw Qual J, 1-28
Huizinga D, Kolawa A (2007) Automated defect prevention: best
practices in software management. Wiley, Hoboken

Zhu X, Cao C, Zhang J (2017) Vulnerability severity prediction
and risk metric modeling for software. Appl Intell 47(3):828-836
Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y
(2008) Implications of ceiling effects in defect predictors. In:
Proceedings of the 4th international workshop on Predictor
models in software engineering, pp 47-54

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zhang H, Nelson A, Menzies T (2010) On the value of learning
from defect dense components for software defect prediction.
In: Proceedings of the 6th International conference on predictive
models in software engineering. ACM, p 14

Rathore SS, Kumar S (2017) Linear and non-linear heteroge-
neous ensemble methods to predict the number of faults in
software systems. Knowl.-Based Syst 119:232-256

Yohannese CW, Li T, Bashir K (2018) A three-stage based
ensemble learning for improved software fault prediction:
An empirical comparative study. Int J Comput Intell Sys
11(1):1229-1247

Bal PR, Kumar S (2018) Cross project software defect prediction
using extreme learning machine: An ensemble based study
Wang T, Li W, Shi H, Liu Z (2011) Software defect prediction
based on classifiers ensemble. J Info Comput Sci 8(16):4241—
4254

Laradji IH, Alshayeb M, Ghouti L (2015) Software defect
prediction using ensemble learning on selected features. Inf
Softw Technol 58:388-402

Aljamaan H, Elish MO et al (2009) An empirical study of
bagging and boosting ensembles for identifying faulty classes in
object-oriented software. In: Proceedings of the symposium on
computational intelligence and data mining, pp 187-194

(2015) The PROMISE repository of empirical software engineer-
ing data, http://openscience.us/repo

Rathore SS, Kumar S (2017) Towards an ensemble based system
for predicting the number of software faults. Expert Syst Appl
82:357-382

Wang S, Yao X (2013) Using class imbalance learning for
software defect prediction. IEEE Trans Reliab 62(2):434-443
Misirli AT, Bener A, Turhan B (2011) An industrial case study
of classifier ensembles for locating software defects. Softw Qual
J19(3):515-536

Zheng J (2010) Cost-sensitive boosting neural networks for
software defect prediction. Expert Syst Appl 37(6):4537-4543
Twala B (2011) Predicting software faults in large space systems
using machine learning techniques. Def Sci J 61(4):306-316
Aljamaan HI, Elish MO (2009) An empirical study of bagging
and boosting ensembles for identifying faulty classes in object-
oriented software. In: 2009 IEEE Symposium on computational
intelligence and data mining. IEEE, pp 187-194

Siers MJ, Md ZI (2014) Cost sensitive decision forest and
voting for software defect prediction. In: Pacific rim international
conference on artificial intelligence. Springer, pp 929-936

Li N, Shepperd M, Guo Y (2020) A systematic review of
unsupervised learning techniques for software defect prediction.
Information and Software Technology, p 106287

Siers MJ, Md ZI (2015) Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to
the class imbalance problem. Inf Syst 51:62-71

Laradji IH, Alshayeb M, Ghouti L (2015) Software defect
prediction using ensemble learning on selected features. Inf
Softw Technol 58:388-402

Tong H, Liu B, Wang S (2018) Software defect prediction
using stacked denoising autoencoders and two-stage ensemble
learning. Inf Softw Technol 96:94-111

Yang X, Lo D, Xia X, Sun J (2017) Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction. Inf Softw
Technol 87:206-220

Pandey SK, Mishra RB, Tripathi AK (2020) Bpdet: An effective
software bug prediction model using deep representation and
ensemble learning techniques. Expert Syst Appl 144:113085
Moustafa S, ElNainay MY, El Makky N, Abougabal MS
(2018) Software bug prediction using weighted majority voting
techniques. Alexandria Eng J 57(4):2763-2774

@ Springer

http://openscience.us/repo

3642

S.S.Rathore and S. Kumar

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Shanthini A (2014) Effect of ensemble methods for software
fault prediction at various metrics level

Hussain S, Keung J, Khan AA, Bennin KE (2015) Performance
evaluation of ensemble methods for software fault prediction:
An experiment. In: Proceedings of the ASWEC 2015 24th
Australasian software engineering conference, pp 91-95

Petri¢ J, Bowes D, Hall T, Christianson B, Baddoo N (2016)
Building an ensemble for software defect prediction based on
diversity selection. In: Proceedings of the 10th ACM/IEEE
International symposium on empirical software engineering and
measurement, pp 1-10

Li R, Zhou L, Zhang S, Liu H, Huang X, Sun Z (2019) Software
defect prediction based on ensemble learning. In: Proceedings
of the 2019 2nd International conference on data science and
information technology, pp 1-6

Yohannese CW, Li T, Bashir K (2018) A three-stage based
ensemble learning for improved software fault prediction:
an empirical comparative study. Int J Comput Intell Sys
11(1):1229-1247

Alsawalqah H, Hijazi N, Eshtay M, Faris H, Radaideh AA,
Aljarah I, Alshamaileh Y (2020) Software defect prediction
using heterogeneous ensemble classification based on segmented
patterns. Appl Sci 10(5):1745

Abdou AS, Darwish NR (2018) Early prediction of software
defect using ensemble learning: A comparative study. Int J
Comput Appl 179(46)

Khuat TT, Le MH (2020) Evaluation of sampling-based
ensembles of classifiers on imbalanced data for software defect
prediction problems. SN Computer Science 1:1-16

Twala B (2011) Predicting software faults in large space systems
using machine learning techniques

Ryu D, Jang Jong-In, Baik J (2017) A transfer cost-sensitive
boosting approach for cross-project defect prediction. Softw
Qual J 25(1):235-272

Saifudin A, Hendric SWHL, Soewito B, Gaol FL, Abdurachman
E, Heryadi Y (2019) Tackling imbalanced class on cross-
project defect prediction using ensemble smote. In: IOP
conference series: Materials science and engineering, vol 662.
IOP Publishing

Wang T, Zhang Z, Jing X, Zhang L (2016) Multiple kernel
ensemble learning for software defect prediction. Autom Softw
Eng 23(4):569-590

Li N, Li Z, Nie Y, Sun X, Li X (2011) Predicting software
black-box defects using stacked generalization. In: 2011 Sixth
International conference on digital information management.
IEEE, pp 294-299

Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble
learning to improve software defect prediction. IEEE Trans Sys
Man Cybern Part C (Applications and Reviews) 42(6):1806—
1817

Rathore SS, Kumar S (2016) Ensemble methods for the
prediction of number of faults A study on eclipse project.
In: 2016 11th International Conference on Industrial and
Information Systems (ICIIS). IEEE, pp 540-545

Yohannese CW, Li T, Simfukwe M, Khurshid F (2017)
Ensembles based combined learning for improved software fault
prediction: A comparative study. In 2017 12th International
conference on intelligent systems and knowledge engineering
(ISKE). IEEE, pp 1-6

Bal PR, Kumar S (2018) Extreme learning machine based
linear homogeneous ensemble for software fault prediction. In:
ICSOFT, pp 103-112

Mousavi R, Eftekhari M, Rahdari F (2018) Omni-ensemble
learning (oel): Utilizing over-bagging, static and dynamic

@ Springer

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

ensemble selection approaches for software defect prediction. Int
J Artif Intell Tools 27(06):1850024

Campos JR, Costa E, Vieira M (2019) Improving failure
prediction by ensembling the decisions of machine learning
models: A case study. IEEE Access 7:177661-177674

He H, Zhang X, Wang Q, Ren J, Liu J, Zhao X, Cheng Y (2019)
Ensemble multiboost based on ripper classifier for prediction
of imbalanced software defect data. IEEE Access 7:110333—
110343

Malhotra R, Jain J (2020) Handling imbalanced data using
ensemble learning in software defect prediction. In: 2020 10th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence). IEEE, pp 300-304

Zheng J (2010) Cost-sensitive boosting neural networks for
software defect prediction. Expert Syst Appl 37(6):4537-4543
Kumar L, Rath S, Sureka A (2017) Using source code
metrics and ensemble methods for fault proneness prediction.
arXiv:1704.04383

Gao Y, Yang C (2016) Software defect prediction based on
adaboost algorithm under imbalance distribution. In: 2016
4th International Conference on Sensors, Mechatronics and
Automation (ICSMA 2016). Atlantis Press

Coelho RA, dos RN Guimaraes F, Esmin AAA (2014) Applying
swarm ensemble clustering technique for fault prediction using
software metrics. In: 2014 13th International conference on
machine learning and applications. IEEE, pp 356-361

Ryu D, Baik J (2018) Effective harmony search-based optimiza-
tion of cost-sensitive boosting for improving the performance
of cross-project defect prediction. KIPS Trans Softw Data Eng
7(3):77-90

Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson
P (2016) Automated bug assignment: Ensemble-based machine
learning in large scale industrial contexts. Empir Softw Eng
21(4):1533-1578

Li Z, Jing X-Y, Zhu X, Zhang H, Xu B, Ying S (2019)
Heterogeneous defect prediction with two-stage ensemble
learning. Autom Softw Eng 26(3):599-651

Misirli AT, Bener A, Turhan B (2011) An industrial case study
of classifier ensembles for locating software defects. Softw Qual
J19(3):515-536

Ryu D, Choi O, Baik J (2016) Value-cognitive boosting with a
support vector machine for cross-project defect prediction. Empir
Softw Eng 21(1):43-71

Ryu D, Jang J-1, Baik J (2017) A transfer cost-sensitive boosting
approach for cross-project defect prediction. Softw Qual J
25(1):235-272

Yi P, Kou G, Wang G, Wu W, Shi Y (2011) Ensemble of
software defect predictors: an ahp-based evaluation method.
International Journal of Information Technology & Decision
Making 10(01):187-206

Zhang Y, Lo D, Xia X, Sun J (2018) Combined classifier for
cross-project defect prediction: an extended empirical study.
Frontiers of Computer Science 12(2):280-296

Wang H, Khoshgoftaar TM, Napolitano A (2010) A comparative
study of ensemble feature selection techniques for software
defect prediction. In: 2010 Ninth international conference on
machine learning and applications. IEEE, pp 135-140

Uchigaki S, Uchida S, Toda K, Monden A (2012) An ensemble
approach of simple regression models to cross-project fault
prediction. In: 2012 13th ACIS International conference on
software engineering, artificial intelligence, networking and
parallel/distributed computing. IEEE, pp 476481

Li Z, Jing Xiao-Yuan, Zhu X, Zhang H (2017) Heterogeneous
defect prediction through multiple kernel learning and ensemble

http://arxiv.org/abs/1704.04383

An empirical study of ensemble techniques for software fault prediction

3643

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.
. Melville P, Mooney RJ (2003) Constructing diverse classifier

99.

100.

learning. In: 2017 IEEE International Conference on Software
Maintenance and Evolution JICSME). IEEE, pp 91-102

Tong H, Liu B, Wang S (2019) Kernel spectral embedding
transfer ensemble for heterogeneous defect prediction. IEEE
Transactions on Software Engineering

Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault
prediction models. Empir Softw Eng 13(5):561-595

Catal C, Diri B (2009) A systematic review of software
fault prediction studies. Expert Systems with Applications
36(4):7346-7354

Kim S, Whitehead Jr JE, Zhang Y (2008) Classifying software
changes clean or buggy? IEEE Trans Softw Eng 34(2):181-196
Chatterjee S, Nigam S, Singh JB, Upadhyaya LN (2012)
Software fault prediction using nonlinear autoregressive with
exogenous inputs (narx) network. Appl Intell 37(1):121-129
Malhotra R (2014) Comparative analysis of statistical and
machine learning methods for predicting faulty modules. Appl
Soft Comput 21(1):286-297

Bishnu PS, Bhattacherjee V (2011) Software fault prediction
using quad tree-based k-means clustering algorithm. IEEE Trans
Knowl Data Eng 24(6):1146-1150

Caglayan B, Misirli AT, Bener AB, Miranskyy A (2015)
Predicting defective modules in different test phases. Softw Qual
123(2):205-227

Rathore SS, Kumar S (2017) An empirical study of some
software fault prediction techniques for the number of faults
prediction. Soft Comput 21(24):7417-7434

Yang C-Z, Hou C-C, Kao W-C, Chen X (2012) An empirical
study on improving severity prediction of defect reports
using feature selection. In: 2012 19th Asia-Pacific software
engineering conference, vol 1. IEEE, pp 240-249

Yang X, Ke T, Yao X (2014) A learning-to-rank approach to
software defect prediction. IEEE Trans Reliab 64(1):234-246
Rathore SS, Kumar S (2019) A study on software fault prediction
techniques. Artif Intell Rev 51(2):255-327

Tantithamthavorn C, Hassan AE (2018) An experience report
on defect modelling in practice: Pitfalls and challenges. In:
Proceedings of the 40th International conference on software
engineering: Software engineering in practice, pp 286-295

Li L, Lessmann S, Baesens B (2019) Evaluating software
defect prediction performance: an updated benchmarking study.
arXiv:1901.01726

Dietterich TG (2000) Ensemble methods in machine learning. In:
Proceedings of the International workshop on multiple classifier
systems, pp 1-15

Mendes-Moreira J, Soares C, Jorge A, Sousa JFD (2012)
Ensemble approaches for regression: A survey. ACM Computing
Surveys 45(1):1-40

Ho TK (2002) Multiple classifier combination: Lessons and next
steps. Series in Machine Perception and Artificial Intelligence
47:171-198

Ting KM, Witten IH (1997) Stacking bagged and dagged models

ensembles using artificial training examples. In: IJCAI, vol 3,
pp 505-510

Seewald AK, Fiirnkranz J (2001) An evaluation of grading
classifiers. In: International symposium on intelligent data
analysis. Springer, pp 115-124

Seewald AK (2003) Towards a theoretical framework for
ensemble classification. In: IJCAI, vol 3. Citeseer, pp 14431444

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Webb GI (2000) Multiboosting: A technique for combining
boosting and wagging. Machine Learning 40(2):159-196
Friedman J, Hastie T, Tibshirani R et al (2000) Additive logistic
regression: a statistical view of boosting (with discussion and a
rejoinder by the authors). Annals Stat 28(2):337—407

Lin W-C, Oakes M, Tait J (2008) Real adaboost for large
vocabulary image classification. In: 2008 International workshop
on content-based multimedia indexing. IEEE, pp 192-199
Mausa G, Bogunovi¢ N, Grbac TG, Basi¢ BD (2015) Rotation
forest in software defect prediction. In: Proceedings of the 4th
Workshop on software quality analysis, monitoring, improve-
ment, and applications, pp 35-44

Aldave R, Dussault J-P (2014) Systematic ensemble learning for
regression. arXiv:1403.7267

Zhang H (2004) The optimality of naive bayes. AA 1(2):3
Turhan B, Bener A (2009) Analysis of naive bayes’ assumptions
on software fault data: An empirical study. Data & Knowledge
Engineering 68(2):278-290

Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M (2002)
Logistic regression. Springer, Berlin

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Trans Softw Eng 31(10):897-910

Quinlan JR (1986) Induction of decision trees. Machine Learning
1(1):81-106

Quinlan JR (1987) Simplifying decision trees. International
Journal of Man-Machine Studies 27(3):221-234

Rathore SS, Kumar S (2016) A decision tree logic based
recommendation system to select software fault prediction
techniques. Computing 1-31

Witten IH, Frank E (2005) Data practical machine learning tools
and techniques. Morgan Kaufmann, Burlington

Jiang Y, Cuki B, Menzies T, Bartlow N (2008) Comparing
design and code metrics for software quality prediction. In:
Proceedings of the 4th international workshop on Predictor
models in software engineering. ACM, pp 11-18

Arisholm E, Briand LC, Johannessen EB (2010) A systematic
and comprehensive investigation of methods to build and
evaluate fault prediction models. J Syst Softw 83(1):2—17
Cohen P, West SG, Aiken LS (2014) Applied multiple
regression/correlation analysis for the behavioral sciences.
Psychology Press

Wagner S (2006) A literature survey of the quality economics
of defect-detection techniques. In: Proceedings of the 2006
ACM/IEEE international symposium on empirical software
engineering. ACM, pp 194-203

Kumar L, Misra S, Rath SK (2017) An empirical analysis of
the effectiveness of software metrics and fault prediction model
for identifying faulty classes. Computer Standards & Interfaces
53:1-32

Jones C, Bonsignour O (2011) The economics of software
quality. Addison-Wesley Professional

Wilde N, Huitt R (1991) Maintenance support for object oriented
programs. In: Proceedings. Conference on Software Maintenance
1991. IEEE, pp 162-170

Boehm B, Papaccio PN (1988) Understanding and controlling
software costs. IEEE Trans Softw Eng 14(10):1462-1477

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1901.01726
http://arxiv.org/abs/1403.7267

3644

S.S.Rathore and S. Kumar

Santosh Singh Rathore has
obtained his PhD degree from
Indian Institute of Technology
(IIT) Roorkee-India. Cur-
rently, he is working as an
Assistant Professor with the
Department of Information
Technology, Indian Institute of
Information Technology and
Management Gwalior (ABV-
IIITM Gwalior), Gwalior,
India. He has supervised 9
Master’s dissertations, about
20 Undergraduate projects,
and is currently supervising
6 Master’s students. He has
published more than 15 research papers in international/national
journals and conferences and has also authored/co-authored two
books with Springer. His research interests are Software Fault Predic-
tion, Software Quality Assurance, Empirical Software Engineering,
Object-Oriented Software Development, and ObjectOriented Metrics.
Dr. Rathore was the recipient of the SIGSE travel award 2012, Jenesys
award 2012, and others.

@ Springer

Sandeep Kumar (SMIEEE’
17) is currently working as
an Associate Professor in
the Department of Computer
Science and Engineering,
Indian Institute of Technology
(IIT) Roorkee, India. He has
supervised four PhD thesis,
sixty five master dissertations,
about fifteen undergraduate
projects, and is currently
supervising four PhD students.
He has published more than
seventy five research papers in
international/national journals
and conferences and has also
authored/co-authored three books with Springer. He has also filed
two patents for his work done along with his students. Dr. Sandeep
is the member of board of examiners and board of studies of various
universities and institutions. He has collaborations in industry and
academia. He is currently handling multiple national and interna-
tional research/consultancy projects. He has received Young Faculty
Research Fellowship award from MeitY, Govt. of India, NSF/TCPP
early adopter award-2014, 2015, ITS Travel Award 2011 and 2013
and others. He is member of ACM and senior member of IEEE. His
name has also been enlisted in major directories such as Marquis
Whos Who, IBC and others. His areas of interest include Semantic
Web, Web Services, Software Engineering, and Machine Learning.

	An empirical study of ensemble techniques for software fault prediction
	Abstract
	Introduction
	Contributions

	Related work
	Systematic review of ensemble techniques based software fault prediction
	Software fault prediction process: An overview
	Ensemble techniques for software fault prediction
	Empirical study
	Experimental datasets
	Experimental procedure
	Base Learners
	Implementation details
	Performance evaluation measures

	Results and analysis
	Results for precision, recall, AUC, specificity, and G-means
	Results of statistical tests
	Results of cost-benefit analysis
	Answer to the research questions

	Comparison analysis
	Threats to the validity
	Conclusions and future work
	Appendix 1
	References

