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Abstract
We present in this paper a computationally efficient and biologically plausible classifier WOLIF, using Grey Wolf Optimizer
(GWO) tuned error function obtained from Leaky-Integrate-and-Fire (LIF) spiking neuron. Unlike traditional artificial
neuron, spiking neuron is capable of intelligently classifying non-linear temporal patterns without hidden layer(s), which
makes a Spiking Neural Network (SNN) computationally efficient. There is no additional cost of adding hidden layer(s) in
SNN, it is also biologically plausible, and energy efficient. Since supervised learning rule for SNN is still in infancy stage,
we introducedWOLIF classifier and its supervised learning rule based on GWO algorithm. WOLIF uses a single LIF neuron
thereby use less network parameters, and homo-synaptic static long-term synaptic weights (both excitatory and inhibitory).
Note that, WOLIF also reduces the total simulation time which improves computational efficiency. It is benchmarked on
seven different datasets drawn from the UCI machine learning repository and found better results both in terms of accuracy
and computational cost than state-of-the-art methods.

Keywords LIF neuron · Hidden layer · GWO · Temporal pattern · Non-linear · Static long-term plasticity

1 Introduction

Sigmoidal neural network, referred to as the second
generation of Artificial Neural Network (ANN) [1], is
enjoying a great time in the field of computational
intelligence, especially in the domain of classification, due
to the capability of handling non-linear data and well known
learning algorithm back-propagation. Moreover, with the
flow of time, other algorithms based on metaheuristic
approach is developed in the field of ANN to improve
the optimisation capability of synaptic weights such as
training ANN using the optimisation method based on
Asexual Reproduction Optimization (ACO) [2] where ACO
is applied initially to accomplish global searching of
optimum synaptic weights and then back-propagation is
applied to reduce overall training error, training ANN using
the Butterfly Optimization Algorithm (BOA) [3] where
BOA is efficiently applied to speed up the convergence rate
and to minimise the risk of stagnating into local minimum.
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In addition, there are several other evolutionary algorithms
used to efficiently train ANN for classification problems
including some of neuroevolution based method for specific
robotic task, in [4], a review of various such algorithms are
discussed.

However, the traditional rate coding concept of sharing
information among neurons in ANN through synapses
is proven unlikely in neuroscience [5, 6] and because
of this reason ANN fails to correctly mimic its role
model i.e., the human brain. In addition, in order to
solve non-linear classification problem, sigmoidal neural
network uses hidden layer(s) to separate the hyperplane
which is a threat to the computational cost in case of
large datasets, because there is no generalized protocol
of selecting the optimal number of hidden layers as well
as the number of hidden neurons residing to the hidden
layers. Unlike ANN, Spiking Neural Network (SNN), the
third generation neural network [1] fundamentally works in
a different manner which focuses more on the biological
plausibility, energy efficiency and computational cost. SNN
works more similar manner as the human brain works
than that of its predecessor ANN. Spiking neurons in
SNN are computationally powerful (use precise temporal
information) [7], energy efficient and biologically plausible
[8]. Spiking neurons are powerful since only using a single
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neuron it is possible to separate the hyperplane for solving
non-linear classification problems.

Although neuroscience claims that the brain uses
temporal coding, it is not very clear about the precise
mechanism of coding [9, 10], but most popularly population
coding is used by the researchers to carry out experiments
with spiking neurons [11]. Biological plausibility of the
spiking neuron lies on the firing behaviour, synaptic
connections, and learning behaviour. Spiking neuron
focuses on the potential difference between internal and
external cell membrane akin to the biological neuron and
when this internal state or membrane potential crosses a
certain threshold the neuron fires a spike. The synapses
are fully connected between each and every pre-synaptic
(information sender) neuron and post-synaptic (information
receiver) neuron. The value of Post-Synaptic Potential
(PSP) of a post-synaptic neuron depends on the pre-
synaptic spike times, synaptic weights, and synaptic delays.
Although, there are several spiking neurons exist such as
Spike Response Model (SRM) [12, 13], Hodgkin-Huxley
[14], Leaky-Integrate-and-Fire (LIF) [15, 16] which is an
improvement over the Integrate-and-Fire neuron [17], is
computationally more simpler than others. Note that, LIF
neuron can also be converted to SRM neuron as stated in [8].

The spike firing behaviour of the spiking neuron model
used in this paper is described by the simple LIF neuron.
In addition, synapse model uses double decaying kernel
function where there is one-to-one mapping between pre-
synaptic and post-synaptic neurons. The spike time yields
from the time-to-first-spike [11] encoding scheme, is used
as the spike times for input neurons. From the last couple of
decays while SNN becomes popular, researchers put more
attention towards the development of an efficient supervised
learning algorithm.

In [11], Bohte et al. proposed an algorithm based
on gradient approach called SpikeProp quite similar to
the back-propagation algorithm. It uses hidden layers to
separate non-linear classification problems followed by
multilayer feed forward network topology. The limitations
of SpikeProp include incapability of utilizing a mixture
of inhibitory and excitatory neurons providing better
convergence rate, which is a barrier mimicking the
biological neuron. In addition, it stagnates at the local
minimum and posses slow convergence rate. SpikeProp uses
time-to-first-spike [11] encoding method and SRM [12, 13]
neuron model. Tempotron proposed in [18], makes spiking
neuron learn based on spike-time decisions. However, rather
than precise training of the output neuron, it acts as a
decider (neuron fires or not). In this algorithm, there is
a lack of good balance between biological plausibility
and computational cost. SWAT proposed in [19], trained
spiking neurons to classify non-linear patterns precisely to
their respective classes. The interesting fact about SWAT

is that it uses dynamic synapse model [20] which work
in terms of long-term plasticity. Although SWAT posses
a good dimension towards the biological plausibility, it
lacks behind in terms of computational cost. There are
huge number of network parameters to be adjusted in
SWAT which makes the algorithm incapable to work
with a moderate computational power. In [21], a remote
supervision based ReSuMe algorithm is proposed and
well investigated for supervised learning which uses the
Hebbian learning. Many other algorithms such as SPAN
[22], Chronotron [23], a temporal coding based supervised
learning [24], SRESN [25], and OSNN [26] is proposed
to train SNN in an efficient manner. However, from the
literature review we can infer that the main advantage of
SNN which makes it more special than that of sigmoidal
neural network, is the ability to work with a single spiking
neuron and in case of non-linear data efficiently is not
highlighted. In addition, there is an improper trade-off
between biological plausibility and computational cost in all
the aforementioned algorithms. Note that, in SEFRON [27]
algorithm, the use of a single spiking neuron is explored.
But, the number of encoding neurons and synapses can
be reduced further to half without hampering the accuracy
of the system. In this paper, a single LIF neuron and
less network parameters than that of SEFRON is used
and experimentally proven better with computational cost,
classification accuracy, and stability.

The popularity of a classification algorithm lies basi-
cally on the learning principle, but the development of
an efficient learning algorithm is a challenging task. Due
to the advantages of metaheuristic approach such as sim-
plicity, flexibility, avoiding local optimum, and derivative
free mechanism, a nature inspired leadership based meta-
heuristic called Grey Wolf Optimizer (GWO) [28] is used
to optimise the randomly initialised synaptic weights in
this research. It is observed from the literature that various
supervised learning algorithms do not have a well balanced
trade off between computational cost and biological plau-
sibility. Moreover, the use of too much network parameters
did not improve the accuracy drastically. Note that, spiking
neurons can be properly used without any hidden layers as
well as hidden neurons for solving non-linear classification
problems, but it is less explored due to the lack of proper
mechanism to optimise synaptic weights resulting less
error. Therefore, we focus on the use of single LIF neu-
ron and its learning rule by introducing GWO tuned error
function obtained from LIF neuron i.e., WOLIF classifier,
which outperforms state-of-the-art methods.

Major contributions of this research paper are:

1. Proposed WOLIF classifier which uses the GWO
algorithm to finely tune the error function derived from
the output of LIF neuron.
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2. The use of less network parameters achieved by
removing hidden layer(s) and by working with less
number of encoding neurons.

3. Utilization of static long-term synaptic weights (com-
bination of both inhibitory and excitatory) to add a
dimension towards the biological plausibility.

4. The optimised use of total simulation time to improve
computational cost.

This paper is divided into sections followed by various
subsection. The mapping of real valued features into
temporal spikes, structure of the classifier, and spike firing
behaviour of the neuron are discussed in Section 2. The
optimisation mechanism of the synaptic weights through
which the neuron learns from data followed by the
description of the benchmarked datasets are discussed
in Sections 3 and 4 respectively. Experimental results
and interpretation of results are presented in Section 5.
Finally, the conclusion drawn from this research is briefly
summarized in Section 6.

2 Organisation and architecture of WOLIF

There are few things to focus on while utilizing spiking
neurons in a classifier such as mapping real valued features
into temporal spikes, selection of the synapse model,
selection of the neuron model, and techniques to adjust the
connection strength between neurons to an optimum level
so that the neuron can learn from data properly. In this
section, we discuss the mapping procedure of real valued
features into temporal spikes followed by the architecture
of the proposed model and spike firing capability of the
neuron.

2.1 Mapping real features into temporal spikes

The real valued features xf where f ∈ [1, F ] (F is the
total number of real valued features) are converted into a
set of pre-synaptic spike times using population encoding
scheme [11] with η number of encoding neurons. Each
neuron is allowed to fire a spike only once. Thus the values
of xf are converted into spike times tm ∈ [0, Tref ] (where,
m = F × η, and Tref is the maximum value of encoding
time i.e., set to 1 ms). Note that, Tref − 0 is the encoding
time interval denoted by �T and the value of �T is also
1 ms. Each receptive field neuron q (q ∈ [1, η]) has a
firing strength Gq

f , for the input data xf which is computed
using (1).

Gq
f = exp

(
− (xf − μq)2

2σ 2

)
(1)

where, μq is the mean of the individual q Gaussian
functions calculated from (2), and σ is the standard
deviation represented by the (3).

μq =
(
2q − 3

2

)
×

(
1

η − 2

)
(2)

σ = 1

β
×

(
1

η − 2

)
(3)

where, β is the adjustment factor which controls the
overlapping of Gaussian curves. Finally, xf is converted to a
set of pre-synaptic spike times tm using (4) and the response
values computed from the (1).

tm = Tref ×
(
1 − Gq

f

)
(4)

Fig. 1 a Illustration of yielding Gaussian response values from three
encoding neurons represented by Curve 1, Curve 2, and Curve 3 upon
supplying real valued features. Here, for a real valued feature 1.4, three
response values 0.04 (Curve 1), 0.61 (Curve 2), and 0.88 (Curve 3) are

obtained. These response values are converted into spike times of 1.0
ms, 0.4 ms, and 0.1 ms within interval [0, 1] using (4) and rounded to
the next time step i.e., 0.1 ms. b Raster plot of pre-synaptic neurons
for iris dataset with their respective spike times
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Fig. 2 Architecture of the
WOLIF classifier. Pre-synaptic
spikes t0, t1, t2, ..., tm (t0 is the
spike time of bias neuron i.e., 0
ms) have an interval
ti ∈ [0, Tref ] ms ∀i and these
spike times transmits through
double decaying synapse model
after being multiplied with
synaptic weights
w0, w1, w2, ..., wm towards the
only LIF neuron. At t̂ ms,
membrane potential crosses
threshold i.e., 1 mV. Now,
according to the spike time 1
ms, 2 ms, 3 ms, and 4 ms t̂ tells
the class for a particular
temporal pattern

Figure 1a shows the generation of response values from
Gaussian receptive fields for the iris dataset which is
used for benchmarking. In Fig. 1b, each pre-synaptic

neurons with its corresponding spike times are shown for
one temporal pattern drawn from the encoded iris spike
times.

Fig. 3 a Excitatory synapse
model. b Inhibitory synapse
model
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2.2 Encoding of temporal output spikes

Non-linear data is not easily separable and difficult to
segregate into their respective classes in case of a pattern
classification problem. Therefore, proper labelling of output
spike times is very important and it is to be labelled in
a manner so that each class is well separated from other
classes in order to easily discriminate among different
classes. Output spike times are generally selected trial
and error basis in case of SNN within the range of total
simulation time. We have selected output spike times as
1 ms for Class 1 and 2 ms for Class 2 in case of binary
classification. In case of multi class (3-Class) classification
such as iris dataset, we have selected output spike times as 1
ms for Class 1, 2 ms for Class 2, and 3 ms for Class 3. Also,
for a 4-class classification problem such as Wireless indoor
localization dataset, output spike times 1 ms represents
Class 1, 2 ms represents Class 2, 3 ms represents Class 3,
and 4 ms represents Class 4. Since time step is selected as
0.1 ms, each target class is well separated in all cases.

2.3 Architecture of theWOLIF

Figure 2 shows the architecture of the WOLIF classifier
consisting of one input layer and one output layer. There are
m = F × η input neurons in the input layer and only one
output neuron in the output layer. The output neuron is the
LIF neuron.

Although, WOLIF classifier is designed for classifying
non-linear temporal pattern, there is no need of hidden
layer(s) as well as hidden neurons as the only output
LIF neuron is implemented and tuned very efficiently
using GWO algorithm. Figure 3 shows the synapse
model between pre-synaptic neuron 1 and only output
neuron j , and pre-synaptic neuron 2 and only output
neuron j . The synapse model selected is based on the
principle of double decaying kernel function and it is
described by (7). In addition, both excitatory and inhibitory
synapses are used to contribute their respective excitation
or inhibition into the sub threshold regime of membrane
potential. Excitatory synapse produces Excitatory Post-
Synaptic Potential (EPSP) for the membrane potential
and inhibitory synapse produces Inhibitory Post-Synaptic
Potential (IPSP) for the membrane potential. EPSP means
an increase in the potential and IPSP means a decrease in the
potential. In Fig. 3a it is observed that discrete spike time
t1 is converted to continuous curve (i.e., the input stimuli)
using double decaying kernel function given in (7). EPSP
is formed after multiplying positive weight W1 with input
stimuli ξ(t − t1) i.e., the amplitude of the PSP raises. On
the other hand, in Fig. 3b IPSP is formed after multiplying
negative weight W2 with input stimuli ξ(t − t2) i.e., the
amplitude of the PSP declines. At t̂ ms, the membrane

potential reaches threshold 1 mV and at (t̂ + δt) ms comes
to the rest. Since we consider the first spike only, the PSP
value remains zero after firing the first spike. The output
spike time t̂ ms decides the class of a particular temporal
pattern.

2.4 Spike firing behaviour of LIF neuron

The mechanism of firing a single spike is described in this
section. The activity of the sub-threshold regime of the
single output LIF spiking neuron, upon receiving weighted
inputs through the double decay synapse model from pre-
synaptic neurons, is characterised by the (5).

φ(t) = φ(t − δt) +
m∑

i=1

Wi × ψ(t) (5)

where, m is the number of synapses connected to all pre-
synaptic neurons, φ(t) determines the change in internal
state of the only output neuron at time t , δt is the time
step, φ(t − δt) determines the change in internal state of the
output neuron at time t −δt (t = δt ms, indicates the neuron
is at rest),W ∈ IR is the synaptic weight vector, and ψ(t) is
the input stimuli received by the output neuron from all pre-
synaptic neurons m. The definition of the synapse model
which produces the values for ψ(t) is given in (6).

ψ(t) =
m∑

i=1

T +δT∑
t=δT

ξ(t − ti ) (6)

The definition of the double decaying kernel function is
given in (7).

ξ(t − ti ) =
{

exp
(

ti−t
τm

)
− exp

(
ti−t
τs

)
, if t > ti

0, if t ≤ ti
(7)

where, τm is the time constant of the cell membrane, τs (0 <

τs < τm) is another time constant called synaptic time
constant. The value of τm and τs controls the rise and decay
of the PSP respectively. The spike times for all the patterns
presented to the output neuron is described by the set 
ip

given in (8).


ip = {ti : 1 ≤ i ≤ m} = {t : φ(t) ≥ �} (8)

where, p denotes the total number of input patterns
presented to the network for training, and � is the threshold
value.

3 Learning rule for WOLIF classifier

In this section, the tuning principle of the synaptic weights
using GWO algorithm [28] is discussed. The fine tuning
of network parameters in an optimised manner is referred
to as the learning of the WOLIF. The primary objective of
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learning is to optimise the randomly initialised weights in
an efficient manner, so that every neuron contribute into
the membrane potential in the sub-threshold regime it can
be optimised resulting less error. According to the synapse
model shown in Fig. 3, it is observed that the synaptic
weights form a vectorW rather than a matrix due to the use
of only one output neuron. The weight vector, W ∈ [-0.25,
1], guarantees that the synapse structure is a combination of
both excitatory and inhibitory synapse. The main purpose
of tuning vector W with the help of GWO algorithm [28]
is to minimise the difference between desired spike times
t̂
y
d and actual spike times t̂

y
a (where, y varies from 1 to X

is the total number of samples presented to WOLIF). In
GWO algorithm, the leadership is distributed among four
wolves namely α, β, δ, and ω. We did not use ω wolf in this
research for searching the optimum solution in the search
space. The algorithm provides both exploitation (attacking
prey), and exploration (searching for prey) in a very well
manner which ensures that the algorithm is less likely to
fall on pre-mature convergence as well as do not trap at the
local optimum. The effective utilisation of GWO algorithm
along with LIF neuron is described in Algorithm 1 and
calculation of fitness function for the search agents are
described in the Algorithm 2. In this research, a total of 30
search agents denoted by S are used to find the optimum
solution in the search space by effective searching. It is
observed that increasing the number of search agents did not
really improve the classification accuracy, rather it increases
the network load, therefore we did not vary the number of
search agents.

Initially, αs (score of α wolf), βs (score of β wolf), and
δs (score of δ wolf) is set to ∞. Then according to the value
of f E

l (E is the total number of epoch), the value of αs ,
βs , δs as well as αp (position of α wolf), βp (position of
β wolf), and δp (position of δ wolf) are updated as shown
in Algorithm 1. The co-efficient of searching A depends on
the value of a which controls the convergence or divergence
property. The value of a linearly decreases from 2 to 0 and
it emphasises the exploration and exploitation. The random
searching co-efficient A is given by the (9).

A = 2 × a × R − a (9)

Another random searching co-efficient C is characterised
by the (10).

C = 2 × R (10)

where, R is random number ∈ [0, 1]. When |A| < 1,
the algorithm converges towards the optimum solution and
when |A| > 1, the algorithm diverges from optimum
solution. The positions i.e., synaptic weights in our case are
updated according to the (11), (12), and (13).

W1 = αp − A1 × Dα (11)

where, A1 is the random searching co-efficient calculated
using (9) and Dα = |C1 × αp − W| (C1 is another random
searching co-efficient calculated using (10)).

W2 = βp − A2 × Dβ (12)

where, A2 is a different random searching co-efficient than
A1, calculated using (9) and Dβ = |C2 × βp − W| (C2

is another different random searching co-efficient than C1,
calculated using (10)).

W3 = δp − A3 × Dδ (13)

where,A3 is another different random searching co-efficient
than A1, and A2, also calculated using (9) and Dδ = |C3 ×
δp − W| (C3 is also another different random searching co-
efficient than C1, and C2, that is also calculated using (10)).
Finally, weights for the next iteration Wl+1 (l varies from 1
to E) is updated using the (14).

Wl+1 = W1 + W2 + W3

3
(14)

At the convergence epoch, WOLIF finds the optimum
values for the synaptic weights WE′ (Where E′ is the
convergence epoch) by following the objective function as
given by (15).

O(αs) = 1

1 + αs

(15)

where, αs depends on loss function L(t̂
y
d , t̂

y
a ) which is

treated as the fitness function in this research, defined by the

2178 I. Hussain and D. M. Thounaojam



(16). The loss is calculated in terms of the Mean Squared
Error (MSE).

L(t̂
y
d , t̂

y
a ) = 1

X

X∑
y=1

(t̂
y
a − t̂

y
d )2 (16)

In order to maximise the objective functionO(αs), the value
of αs has to be minimised which indicates indirectly to
minimise the loss function L(t̂

y
d , t̂

y
a ). After training is over,

the trained or optimised weights WE′ are used to test the
performance of the WOLIF classifier on a new set of testing
samples.

4 Benchmarking datasets

We have used four binary datasets (Breast cancer, Iono-
sphere, Liver disorders, and Pima diabetes) and one multi
class dataset (Iris flower) to benchmark WOLIF classifier.

4.1 Breast cancer

Breast cancer (WBC) dataset obtained from the University
of Wisconsin Hospital [29] which utilises breast cytology
gained with the help of fine needle aspirations. The WBC
dataset consists of 699 samples out of which 16 missing
values and these missing values are removed to get a total of
683 samples in this research. There are 444 samples belong
to Benign class and 239 samples belong to Malignant class
[30]. The 9 real valued features of WBC are converted
into 9×3+1=28 pre-synaptic input spike times (3 encoding
neurons and 1 bias neuron). Hence, 28:1 is the network
topology for WBC dataset where there are 28 input neurons
and 1 output neuron. Output spike times are 1 ms for Benign
class and 2 ms forMalignant class.

4.2 Ionosphere

Ionosphere dataset is a collection of radar data collected
through antenna to classify the condition of the ionosphere
whether it is in Good or Bad condition. There are a total of
351 samples, each having 33 attributes representing features
[31, 32]. The network topology for ionosphere is selected
as 33×3+1=100 input neurons and 1 output neuron. A spike
time of 1 ms represents the condition of the ionosphere as
Good and 2 ms represents the condition of the ionosphere
as Bad.

4.3 Liver disorders

The liver disorder dataset consists a total of 345 samples,
each sample having 6 attributes describing the features of
the samples [32, 33]. This dataset classifies the condition
of liver into two classes namely Healthy and Unhealthy.
There are 6×3+1=19 (3 encoding neurons, and 1 bias
neuron) input neurons and 1 output neuron in the network
topology. The output spike time 1 ms specifies a class to the
Healthy category and 2 ms specifies a class to theUnhealthy
category.

Table 1 A brief summary of all datasets used for benchmarking

Dataset Features (real) Features (encoded) Classes Samples

Training Testing

Breast cancer 9 28 2 350 333

Liver disorders 6 19 2 170 175

Ionosphere 33 100 2 175 176

Pima diabetes 8 25 2 384 384

Banknote authentication 4 13 2 1097 275

Iris flower 4 13 3 75 75

Wireless indoor localization 7 22 4 1600 400
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Table 2 Overall performance comparison for binary datasets

Dataset Algorithm Topology SL Classification accuracy

Training (%) Testing (%)

SpikeProp 55:15:2 855 97.3±0.6 97.2±0.6
SWAT 54:702:2 39,312 96.5±0.5 95.8±1.0

Breast cancer OSNN 54:(10-16):2 560-896 91.1±2.0 90.4±1.8
SRESN 54:(5-8) 270-432 93.9±1.8 94.0±2.6
SEFRON 55:1 55 98.3±0.8 96.4±0.7
WOLIF 28:1 28 97.8±0.4 97.0±0.2
SpikeProp 199:25:2 5025 89.0±7.9 86.5±7.2
SWAT 198:2574:2 5,14,800 86.5±6.7 90.0±2.3

Ionosphere OSNN 198:(4-11):2 800-2,200 76.7±2.4 76.6±4.8
SRESN 198:(6-13) 1,188-2,574 85.1±1.9 79.3±3.0
SEFRON 199:1 199 97.0±2.5 88.9±1.7
WOLIF 100:1 100 94.4±1.3 90.6±1.4
SpikeProp 37:15:2 585 71.5±5.2 65.1±4.7
SWAT 36:468:2 17,784 74.8±2.1 60.9±3.2

Liver disorders OSNN 36:(4-7):2 152-266 58.7±2.2 56.7±1.8
SRESN 36:(5-8) 180-288 59.8±1.2 57.4±1.1
SEFRON 37:1 37 91.5±5.4 67.7±1.3
WOLIF 19:1 19 81.9±0.3 80.3±0.2
SpikeProp 49:20:2 1020 78.6±2.5 76.2±1.8
SWAT 48:624:2 31,200 77.0±2.1 72.1±1.8

Pima diabetes OSNN 48:(8-18):2 400-900 68.2±2.0 63.5±3.0
SRESN 48:(6-12) 288-576 67.0±0.8 66.1±1.4
SEFRON 49:1 49 84.1±1.5 74.0±1.2
WOLIF 25:1 25 84.0±0.6 83.3±0.7

Bold entries indicate best results

4.4 Pima diabetes

Pima Indian diabetes dataset is a collection of attributes to
predict whether a person is suffering from diabetes or not.
All patients are female of Pima Indian heritage. There are
768 samples each having 8 real valued features [32]. A total
of 8×3+1=25 pre-synaptic spike times where there are 3
encoding neurons and 1 bias neuron. The output spike time
1 ms classifies a patient to the Diabetic category, and 2 ms
classifies to the Non-diabetic category. Network topology

follows 25:1 structure, where there are 25 input neurons and
1 output neuron. A brief summary of the datasets containing
features, classes, the number of training, and testing samples
are presented in the Table 1.

4.5 Banknote authentication

Banknote authentication dataset is a non-linear binary
classification problem consists of a total number of 1372
samples [32]. For this dataset, 80% of total samples were

Table 3 Comparison of computational cost of binary datasets with SEFRON

Dataset Algorithm SL Epoch (E) δt (ms) T (ms) Computational cost (Ccost)

SEFRON [27] 55 100 0.01 4 2.2 × 106

Breast cancer WOLIF 28 500 0.1 2 2.8 × 105

SEFRON [27] 199 100 0.01 4 7.9 × 106

Ionosphere WOLIF 100 500 0.1 2 1 × 106

SEFRON [27] 37 100 0.01 4 1.48 × 106

Liver disorders WOLIF 19 500 0.1 2 1.9 × 105

SEFRON [27] 49 100 0.01 4 1.96 × 106

Pima diabetes WOLIF 25 500 0.1 2 2.5 × 105

Bold entries indicate best results
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Table 4 Parameter values used by WOLIF for different types of datasets

Datasets T (ms) δt (ms) τm (ms) τs (ms) � (mV) lb ub η

Binary 2 0.1 1.1 0.55 1 −0.25 1 3

Multiclass (3-Class) 3 0.1 1.1 0.55 1 −0.25 1 3

Multiclass (4-Class) 4 0.1 1.1 0.55 1 −0.25 1 3

used for training and 20% of the total samples were used
for testing. The desired task is to classify the bank notes
whether the notes are authentic or not. There are 4 real
valued features based on which prediction is to be done.
These real valued features are mapped into 4×3+1=13 pre-
synaptic input spike times (3 encoded neurons, and 1 bias
neuron). Output spike time 1 ms represents the Authentic
class and 2 ms represents the Non-authentic class. Network
topology for the dataset follows 13:1 structure, where there
are 13 input neurons and 1 output neuron.

4.6 Iris flower

Iris dataset is a three class non-linear problemhaving 150 sam-
ples out of which every class consists of 50 samples each
[32, 34]. Three classes represent the species of Iris plant
namely Setosa, Versicolor, and Virginica. There are four real
values features and those are mapped into 4×3+1=13 pre-
synaptic input spike times (3 encoded neurons, and 1 bias
neuron). Output spike time 1 ms represents Setosa species,
2 ms represents Versicolor species, and 3 ms represents Vir-
ginicia species. The network topology for Iris dataset is 13:1
(13 input neurons, and 1 output neuron).

4.7Wireless indoor localization

Wireless indoor localization is a multiclass non-linear
classification problemwhere there are 4 classes having 2000
total number of samples [35, 36]. In this case, 80% of total
samples were used for training and 20% of the total samples
were used for testing. There are 7 real valued attributes
representing features and these are mapped into 7×3+1=22
pre-synaptic input spike times (3 encoded neurons, and 1
bias neuron). The output spike time 1 ms represents the

location of First-room, 2 ms Second-room, 3 ms Third-
room, and 4 ms Fourth-room. The network topology for the
dataset is 22:1 (22 input neurons, and 1 output neuron).

5 Results and Discussion

To check the performance of the WOLIF classifier, it is
experimented with four binary classification problems as
well as one multi class classification problem.

The experimental results are compared with the state-of-
the-art algorithms and found better in terms of Classification
accuracy, and overall network parameters i.e., Synaptic
Load (SL). Table 2 shows the network Topology, SL,
Classification accuracy (Training), Classification accuracy
(Testing) as well as comparison with the state-of-the-art
algorithms.

In addition, Table 3 shows the comparison between
SEFRON and WOLIF in case of binary classification and
SpikeProp and WOLIF in case of Iris classification problem
in terms of computational cost (Ccost ) defined as in (17).

Ccost = SL × E × T

δt
(17)

In (17), a lower value of Ccost indicates a computationally
efficient model. All experiments were carried out using
Python 3 in a 64-bit Windows 10 operating system installed
in a desktop-PC having Intel Xeon processor configured
with 8 GB RAM, and 3.0 GHz clock speed. For each
dataset, 10 random training trial set were generated. Table 2
shows the average training accuracy along with the standard
deviation. The selection of parameter values is one of the
most crucial and important step in order to work efficiently
with SNN. In this section, the role and effectiveness of

Table 5 Overall performance comparison for multi class dataset

Dataset Algorithm Topology SL Classification accuracy

Training (%) Testing (%)

SpikeProp [11] 50:10:3 530 97.4±0.1 96.1±0.1

SWAT [19] 16:208:3 3952 95.5±0.6 95.3±3.6

Iris flower SRESN [25] 20:5 100 - 97.0±0.7

WOLIF 13:1 13 94.1±0.2 95.1±0.4

Bold entries indicate best results
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Table 6 Comparison of computational cost of multi class dataset with SpikeProp

Dataset Algorithm SL Epoch (E) δt (ms) T (ms) Computational cost (Ccost)

SpikeProp [11] 530 1000 0.01 50 2.65 × 109

Iris flower WOLIF 13 500 0.1 3 1.95 × 105

Bold entries indicate best results

major network parameters are also discussed along with
experimental results.

Table 4 shows a brief summary of parameter values used
by WOLIF where η is the number of encoding neurons, lb,
and ub represents the lower and upper bound of random
weight initialisation respectively.

5.1 Classification accuracy and Ccost

From Table 2, it is observed that in case of Breast cancer
dataset, WOLIF achieves training accuracy of 97.8% and
testing accuracy of 97.0% while SEFRON gives 98.3%
training accuracy, SpikeProp gives 97.2% testing accuracy
those are little bit higher than that of WOLIF. However,
WOLIF uses very less synaptic load i.e., 28 almost half
compared to SEFRON and very very less compared to other
algorithms mentioned in the Table 2. In addition, Table 3
shows the better Ccost of 2.8 × 105 for WOLIF than that
of SEFRON which is 2.2 × 106 in case of Breast cancer
dataset. In case of Ionosphere dataset, training accuracy
94.4% is achieved by WOLIF that can be considered better
although SEFRON gets 97.0% since SEFRON performs
poor in testing accuracy and also synaptic load for WOLIF
is 100 that is almost half compared to SEFRON. Moreover,
for Ionosphere dataset, WOLIF has a Ccost of 1 × 106 and
SEFRON has 7.9×106. From Table 2, we observe that Liver
disorders dataset and Pima diabetes dataset is not easily
separable from their respective classes. In these two dataset,
WOLIF outperforms all the other algorithms in terms of

testing accuracy and synaptic load. WOLIF gives 80.3% and
83.3% testing accuracy for Liver disorders dataset and Pima
diabetes dataset respectively. Although SEFRON attains
little bit higher training accuracy for the two aforementioned
dataset, it shows poor performance in testing. Note that,
both of these dataset has a better Ccost value with WOLIF as
shown in Table 3. Iris dataset is a multi class classification
problem where WOLIF shows 94.1% training accuracy and
95.1% testing accuracy those are very comparable with
other algorithms shown in the Table 5 when synaptic load is
also considered as it is one of the most important factor in
case of SNN. WOLIF has a synaptic load of almost 8 times
lesser than SRESN and very very less when compared with
state-of-the-art algorithms.

In addition, SpikeProp has Ccost value of 6.625 × 109

while WOLIF has 1.95 × 105 as shown in Table 6.
In Table 7, the overall performance of WOLIF in case

of all the benchmarked datasets are presented to analyse
the performance of WOLIF in different classification
problems having a wide variety of number of samples. It
is observed from the Table 7 that the in case of 4 class
classification problem (Wireless indoor localization) also,
WOLIF shows a good training accuracy of 84.6% and a
good testing accuracy of 84.8% if we consider the number
of epochs. In addition, for Banknote authentication dataset,
WOLIF shows very satisfactory training accuracy and
testing accuracy those are 95.5% and 93.2% respectively.

Figure 4a shows the training accuracy curve for Breast
cancer dataset and Fig. 4b shows the training accuracy curve

Table 7 Overall performance of WOLIF in case of all the seven datasets

Algorithm Datasets Epoch Classification accuracy

Training (±σ ) % Testing (±σ ) %

Breast cancer 500 97.8 (0.4) 97.0 (0.2)

Ionosphere 500 94.4 (1.3) 90.6 (1.4)

Liver disorders 500 81.9 (0.3) 80.3 (0.2)

WOLIF Pima diabetes 500 84.0 (0.6) 83.3 (0.7)

Iris flower 500 94.1 (0.2) 95.1 (0.4)

Banknote authentication 500 95.5 (0.9) 93.2 (1.7)

Wireless indoor localization 500 84.6 (1.5) 84.8 (1.8)

Average (±σ ) 500 (0.0) 90.3 (6.0) 89.2 (5.9)

Bold entries indicate best results
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Fig. 4 a Training curve of Breast cancer dataset with all 10 set of random trials. b Training curve of Ionosphere dataset with all 10 set of random
trials

for Ionosphere dataset along with all 10 set of random trials.
Figure 5a and b show the training accuracy curve for Liver
disorders dataset and Pima diabetes dataset respectively
along with all 10 set of random trials. In Fig. 6a, training
accuracy curve for Iris flower dataset is presented along
with 10 set of random trials.

Figure 6b shows the behaviour of PSPs in case of
three different class samples drawn from Iris dataset after
training. The first PSP reaches the threshold at 1.2 ms
that was supposed to be 1 ms in case of the best case
scenario that means PSP reaches the threshold 0.2 ms late.
Likewise other two PSPs reaches the threshold at 2.2 ms
(desired is 2 ms), and 2.9 ms (desired is 3 ms) respectively.
In this case, MSE for class Setosa is 4%, MSE for class
Versicolor is 4%, and MSE for Virginica is 1%. Overall
loss in terms of MSE is 3% i.e., training accuracy of 97%
where each class is having only one sample. Figure 7a and
b shows the behaviour of WOLIF while training in case
of Banknote authentication and Wireless indoor localization

datasets respectively. All 10 random trials are clearly shown
in Fig. 7a and b respectively.

5.2 Effect of τm and τs

The major focus in SNN is the efficient updating process of
the membrane potential so that PSP can reach the threshold
value not so early as well as not so late. Time constants
such as τm and τs plays a very crucial role along with
synaptic weights W in the synapse model those contributes
information to the sub-threshold regime. τm controls the
rising of PSP curve towards threshold and τs controls
decaying width of the PSP curve which is necessary for
overlapping in case of multiple PSPs. Therefore, good
selection of the values for τm and τs improves the spike
firing capability of the neuron. A high value of τm, forces
the neuron to fire a spike too early and a low value of τm

does not allow a PSP to raise easily towards threshold. Since
weights get multiplied with τm and τs indirectly, it becomes

Fig. 5 a Training curve of Liver disorders dataset with all 10 set of random trials. b Training curve of Pima diabetes dataset with all 10 set of
random trials
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Fig. 6 a Training curve of Iris flower dataset with all 10 set of random trials. b Illustration of the classifying behaviour of WOLIF in case of Iris
dataset after training for three samples of different classes

more important to make a balance between the selection
of values for τm and τs . In addition, a higher value of τs

produces wide shaped PSPs and therefore less overlapping
happens among multiple PSPs. It is recommended to select
the value of τm slightly greater than the encoding interval
�T i.e., 1 ms in our case. The value of τm is set to 1.1
ms that is just one time step ahead (since we have used
time step δt as 0.1 ms). Note that, the value of τs is set to
half of τm and found better experimentally. Figure 8a and
b shows the shape of PSPs upon varying τm while keeping
τs half of τm and the shape of PSPs upon varying τs while
keeping τm 1.1 ms respectively. From Fig. 8a and b, the
effect of τm and τs on the rise and decay of PSP is clearly
interpretable. Moreover, Fig. 9a shows the shape of PSP by
varying both τm and τs where the need of overlapping is
clearly presented.

5.3 Effect of weights initialisation range

SNN is very sensitive to synaptic weights which is a very
important parameter that affects the spike firing behaviour

of a neuron directly. Therefore, initialisation of weights
to some random value has to be done very carefully.
We applied heuristic rule for the selection of weights
initialisation range. The rule is to set the upper limit less or
equal to threshold and lower limit to some small negative
values. We have selected the range as [-0.25, 1] where the
negative lower limit allows 20% negative weights from [-
0.25, 0) which corresponds to the inhibitory synapse and the
positive upper limit allows 80% positive weights from [0,
1] which corresponds to the excitatory synapse. Figure 9b
shows the shape of an excitatory PSP and an inhibitory PSP
where shapes clearly explain their role towards the updating
process of PSPs. Although many researchers claim that a
mixture of inhibitory and excitatory synapse does not allow
a classifier to converge easily, we have used the same in an
efficient way with better convergence rate.

5.4 Role of bias neuron

The bias neuron initially starts the membrane potential
updating process if there are more number of lateral

Fig. 7 a Training curve of Banknote authentication dataset with all 10 set of random trials. b Training curve of Wireless indoor localization dataset
with all 10 set of random trials
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Fig. 8 a The value of τm varies keeping τs same i.e., half of the first value of τm. b The value of τs varies keeping τm same i.e., 1.1 ms

pre-synaptic spike times. Therefore, the spike time for the
bias neuron is set to a very early pre-synaptic spike time i.e.,
0 ms.

5.5 Role of time step

A small value of time step δt takes more iteration over total
simulation time T thereby increases computational cost. We
have used T as 2 ms for binary classification problem, 3
ms for 3-class classification problem, and 4 ms for 4-class
classification problem. The value of δt is set to 0.1 ms,
therefore it takes at most 20 iterations to produce a spike
for binary classification problem, at most 30 iterations to
produce a spike in case of 3-class classification problem,
and at most 40 iterations to produce a spike in case of 4-class
classification problem. However, a large value of δt over T

does not allow SNN to learn form non-linear data properly
and thus affects the training of the classifier. In SEFRON,
the value of T was taken as 4 ms and δt was taken as 0.01
ms i.e., computationally costlier than that of WOLIF.

5.6 Effect of encoding neurons

The selection of the number of encoding neuron η directly
affects the computational cost. A higher value of η means
higher is the number of input neurons since population
encoding is used in this research. Therefore, it has to
be selected in a very careful manner. We set the value
of η as 3 therefore we successfully minimise the total
network load in terms of synaptic connections to an
optimum level and it is clearly visible in the Tables 2
and 5.

5.7 Stability and generalisation

From Tables 2, 5, and 7 when accuracies are analysed it
is observed that WOLIF is more stable in case of random
set of trial since the standard deviation does not differ very
much from the mean value of accuracies. Moreover, the
capability of handling versatile dataset with the minimal
synaptic load and without hidden layer in case of non-linear

Fig. 9 a The value of τm varies by 1 ms each and accordingly value of τs varies. In all cases the value of τs is exactly half of the value of τm. b
Unweighed excitatory and inhibitory synapse
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temporal patterns, inclines WOLIF towards the property of
generalisation.

6 Conclusion

In this paper, an efficient classifier WOLIF along with
its learning rule in order to classify non-linear temporal
patterns has been presented. WOLIF shows very impressive
training and testing accuracy as well as computational cost
which uses GWO algorithm for weights optimisation and
LIF neuron having double decaying synapse model for
the generation of temporal spikes. It is both biologically
plausible and computationally efficient. The usage of
static long-term synaptic weights that is a combination
of both inhibitory and excitatory synapses justifies the
biological plausibility. WOLIF outperforms state-of-the-
art algorithms in case of binary classification and almost
equally performed in case of multi class classification
problem. The total simulation time is also reduced to
improve computational cost compared to the state-of-the-art
algorithms. In addition, the stability and generalisation of
WOLIF classifier is also mentionable.

In future work, WOLIF can be improved further by
allowing to fire multiple spikes from the same neuron.
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10. Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis
via spiking neurons. Network: Computation in Neural Systems
9(3):319–332

11. Bohte SM, Kok JN, La Poutre H (2002) Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomput-
ing 48(1-4):17–37

12. Kistler WM, Gerstner W, Leo van Hemmen J (1997) Reduction
of the hodgkin-huxley equations to a single-variable threshold
model. Neural Comput 9(5):1015–1045

13. Gerstner W (1995) Time structure of the activity in neural network
models. Phys Rev E 51(1):738

14. Hodgkin AL, Huxley AF (1952) A quantitative description of
membrane current and its application to conduction and excitation
in nerve. The Journal of Physiology 117(4):500–544

15. Stein RB (1965) A theoretical analysis of neuronal variability.
Biophys J 5(2):173–194

16. Stein RB (1967) Some models of neuronal variability. Biophysical
J 7(1):37–68

17. Vazquez RA, Cachón A (2010) Integrate and fire neurons and
their application in pattern recognition. In: 2010 7Th international
conference on electrical engineering computing science and
automatic control, IEEE, pp 424–428

18. Gütig R, Sompolinsky H (2006) The tempotron: a neuron
that learns spike timing–based decisions. Nature Neuroscience
9(3):420–428

19. Wade JJ, McDaid LJ, Santos JA, Sayers HM (2010) Swat:
a spiking neural network training algorithm for classification
problems. IEEE Trans Neural Networks 21(11):1817–1830

20. Tsodyks MV, Markram H (1996) Plasticity of neocortical
synapses enables transitions between rate and temporal coding. In:
International conference on artificial neural networks, Springer,
pp 445–450
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