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Abstract
Surface quality inspection and control are extremely important for electronic manufacturing. The use of machine vision
technology to automatically detect the defects of products has become an indispensable means for better quality control.
A machine vision-based surface quality inspection system is usually composed of two processes: image acquisition and
automatic defect detection. In this paper, we propose a deep learning-based approach for the defect detection of Copper Clad
Laminate (CCL) images acquired from an industrial CCL production line. In the proposed approach, a new convolutional
neural network (CNN) that realizes fast defect detection while maintaining high accuracy is designed. Our proposed
approach makes four contributions. First, we introduce the depthwise separable convolution to reduce the calculation time.
Second, we improve the squeeze-and-excitation block to improve network performance. Third, we introduce the squeeze-
and-expand mechanism to reduce the computation cost. Fourth, we employ a smoother activation function (Mish) to allow
improved information flow. The proposed network is compared with the benchmark CNNs (including Inception, ResNet
and MobileNet). The experimental results show that compared with the benchmark networks, our proposed network has
achieved the best results regarding the accuracy and suboptimal results in terms of the speed compared with the benchmark
networks. Therefore, our proposed method has been integrated into an industrial CCL production line as a guideline for
online defective product rejection.
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1 Introduction

Traditionally, the surface quality inspection of electronic
products employs manual detection methods performed by
quality inspectors. However, these manual methods have the
disadvantages of a low sampling rate, low accuracy, poor real-
time performance, low efficiency and high labor intensity,
whereas machine vision-based automated surface inspec-
tion methods can largely overcome the above drawbacks

This work was supported in part by National Natural Science
Foundation of China under grant number U1609212, Zhejiang
Provincial Science and Technology Plan under grant number
2019C04021, and Zhejiang Province Public Technology Research
Project under grant number LGG20F030002.

� Xiaoqing Zheng
zhengxiaoqing@hdu.edu.cn

Jie Chen
1764588497@qq.com

1 Hangzhou Dianzi University, Hangzhou, China

[1]. At present, the use of machine vision technology, i.e.,
by adding a vision system to the machine or automatic pro-
duction line, has become an indispensable technical means
of quality control for electronics manufacturing. Machine
vision-based surface inspection systems are mainly com-
posed of two processes: image acquisition and defect detec-
tion [2]. The image acquisition module consists of an
industrial camera, an optical lens, and a light source and its
clamping device [1]. The function of the image acquisition
module is to collect the surface images of the target prod-
ucts, and the defect detection process refers to the recogni-
tion of defects through image processing and classification
techniques based on the acquired images.

Traditional machine vision defect detection methods
can be divided into four categories: statistical methods,
spectral methods, model-based methods, and learning-based
methods. To execute these methods, first feature extraction
is performed and then defect identification is implemented.
The feature extraction methods include the histogram [3],
local binary pattern (LBP) [4], and co-occurrence matrix [5]
methods in the spatial domain, and the methods of Fourier

Published online: 19 September 2020

Applied Intelligence (2021) 51:1262–1279

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01877-z&domain=pdf
http://orcid.org/0000-0003-3377-1904
mailto: zhengxiaoqing@hdu.edu.cn
mailto: 1764588497@qq.com


transform [6], wavelet transform [7] and Gabor transform
[8] methods in the transform domain. After the features
are extracted, defect recognition is performed by using
classifiers such as SVM [9], k-nearest neighbor [10] and
random forest [11]. The performance of defect recognition
relies to some extent on how well the features are designed
and extracted. Therefore, the overall performance depends
on how well the manually designed representations can
model the properties of the defects, and expertise is the key
to the success of these methods, which limits their wide
application [12]. In other words, the performance depends
strongly on the knowledge, experience, and judgment of the
engineers who design the representations of the defects. In
recent years, deep learning has achieved very good results in
face recognition, speech recognition, and natural language
processing. However, this method has been rarely applied
to the field of automated surface inspection. The main
reasons are as follows: surface defect datasets are normally
too small to train deep learning networks, deep learning
requires high computing power, and it is laborious to collect
and label image samples. Despite these difficulties, as an
emerging and promising technology, deep learning has the
potential to solve the aforementioned challenges of machine
vision-based surface inspection.

Therefore, the research of deep learning-based automated
surface inspection has attracted strong attention both from
academia and industry. For instance, Chanhee Jang et al.
[13] proposed a defect inspection method combining defect
probability images and a deep convolutional neural network,
which works well on small datasets and removes the human
skill requirement. Ruoxu Ren et al. [14] proposed a generic
deep learning-based approach which requires small training
data for automatic surface inspection. Xiaoqing Zheng
et al. [15] presented a generic semi-supervised deep
learning approach that requires a small quantity of labeled
data for automated surface defect inspection. D. Soukup
et al. [16] trained a classical convolutional neural network
(CNN) on a database of photometric stereo images of metal
surface defects in a purely supervised manner. Je-Kang Park
et al. [17] proposed a new surface defect inspection method
using CNN and tested several types of deep networks with
different depths and layer nodes to select an adequate
structure for surface defect inspection. Tian Wang et al.
[18] proposed a CNN for defect detection with less prior
knowledge regarding the images that is robust to noise.
Alessandra Caggiano et al. [19] developed a machine
learning approach based on a deep convolutional neural
network for on-line fault recognition via automatic image
processing to identify material defects.

Among these deep learning-based defect detection
approaches, the most frequently applied network is a CNN
due to its wide application possibilities in recognizing dif-
ferent patterns [20]. The basic CNN consists of three kinds

of layers, namely, the convolutional layer, pooling layer and
fully connected layer. The convolutional layer learns the
feature representation of the input and generates the feature
map output. The pooling layer aims to reduce the computa-
tional complexity through a dimensionality reduction of the
feature map. The fully connected layer implements the map-
ping of input data to a one-dimensional feature vector for
the final output layer’s use or further feature processing. As
a CNN has a unique feature learning ability to automatically
learn features from image samples, it overcomes the limita-
tion of manual design and exhibits strong reliability. A CNN
has a certain degree of invariance to geometric transforma-
tion and deformation. Therefore, CNNs have a very bright
future in the surface quality inspection area [21].

In our work, we proposed an efficient CNN-based
approach for automated surface inspection of copper clad
laminate images. The approach has realized the accurate and
rapid identification of surface defects of products in CCL
high-speed production lines.

2Machine vision-based surface inspection
system

2.1 System architecture

The machine vision-based automated surface inspection
system has the advantages of high precision, high efficiency,
high speed and continuous detection, and noncontact mea-
surements. This method mainly consists of two processes:
image acquisition and defect detection. The function of the
image acquisition process is to collect the surface images of
the target products, and the defect detection process refers
to the recognition of defects through image processing and
detection techniques. Figure 1 shows the architecture and
flow-sheet of a machine vision system.

As demonstrated in Fig. 1, the image acquisition process
consists of an optical system and an image acquisition unit.
The optical system is composed of a smart camera (usually
CCD and CMOS), an optical lens and a light source. The
optical system generates images that are exported to the
image acquisition unit, which transforms image signals into
data files that can be processed by computers. The image
acquisition unit can control the operations of the camera.

During the defect detection process, the basic image pro-
cessing unit is applied to implement basic image processing,
such as image filtering and feature extraction (geometric fea-
tures, texture features, projection features). Then, the defect
detection and classification unit is used to determine whether
an image is a defective image, the severity of the defects and
the category of the defects. Finally, the defect detection and
classification results are output to an actuator to control and
reject the defective products.
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Fig. 1 Architecture of a machine vision inspection system

In this work, we focus on defect detection and classifi-
cation unit research by applying classical CNN models, as
well as proposing a highly efficient and accurate deep CNN
model.

2.2 Copper clad laminate surface defects

The image samples we applied in this work are collected
from an industrial copper clad laminate (CCL) production
line. A CCL is the basic material of the electronics industry
and is mainly used to manufacture printed circuit boards.
The common surface defects of a CCL include scratches, oil
stains, pinholes, inclusions and so on. Our industrial defect
dataset divides CCL surface defects into 15 categories, as
shown in Fig. 2. Among the fifteen types of defects, most of
them are severe defects (types 1, 3, 4, 5, 6, 7, 9, 11, 12, and
15), whereas some of them (types 2, 8, 10, 13, and 14) are
nonsevere defects. In addition, type number 16 represents
the samples without defects.

3 The proposedmethod

An efficient CNN-based approach for the automated surface
inspection of a CCL is proposed. The proposed method
aims to achieve a balance between the lowest computation
cost and the highest accuracy, as rapid and efficient defect
detection is extremely important for the online use of CCL
automated surface inspection.

3.1 Related work

This section introduces the related algorithms on which our
proposed method is based; these algorithms include depth-
wise separable convolution [22, 23] a squeeze-and-excitation
block [24], and a squeeze-and-expand mechanism [25].

3.1.1 Depthwise separable convolution

Depthwise separable convolution consists of a depthwise
convolution (channelwise spatial convolution) and a point-
wise convolution (1*1 convolution). Specifically, a 3*3
depthwise separable convolution can be decomposed into
a 3*3 depthwise convolution, where each input channel is
convoluted by applying a 3*3 convolution filter, and a point-
wise convolution, which applies a 1*1 convolution on the
output of the depthwise convolution to obtain new feature
maps. The calculation amount for a standard 3*3 convolu-
tion is 3*3*M*N*D*D, where M is the number of input
channels, N is the number of output channels, and D*D is
the size of the output feature map. For a 3*3 depthwise
separable convolution, the calculation amount is:

C = 3 ∗ 3 ∗ M ∗ D ∗ D + 1 ∗ 1 ∗ M ∗ N ∗ D ∗ D (1)

Therefore, compared with standard 3*3 convolutions, the
3*3 depthwise separable convolution can achieve 8 to 9
times greater computation savings while ensuring almost the
same accuracy.

3.1.2 Squeeze-and-excitation block

The squeeze-and-excitation block (SE block) adaptively
recalibrates channelwise feature responses between chan-
nels and facilitates significant performance improvements
[24]. In the SE block, the features are passed through a
squeeze operation and an excitation operation. The squeeze
operation generates a channel descriptor by aggregating fea-
ture maps across their spatial dimensions. The descriptor
produces an embedding of the global distribution of chan-
nelwise feature responses. The excitation operation takes
the embedding as the input and produces a collection of
per-channel modulation weights, which are applied to the
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Fig. 2 Image samples of CCL surface defects ((Type No. 1) Belt G2:
severe defect mingled with belt; (Type No. 2) Belt G0: part of the con-
veyor belt (the dark region); (Type No. 3) Bending G2: severe defects
related to material bending; (Type No. 4) Board Mark G2: severe
defect caused by multiple pits and dents; (Type No. 5) CST G2: severe
defect of corrosion; (Type No. 6) CuBreak G2: severe defect due to
broken material (Copper); (Type No. 7) Dark Spot G2: defect of a
major dark spot or foreign item; (Type No. 8) DC G0: small dark spot

or corrosion; (Type No. 9) PmK G2: severe defect caused by long or
multiple pits and dents; (Type No. 10) PnD G0: small pit and dents;
(Type No. 11) PnD G2: severe defect caused by a severe pit and dents;
(Type No. 12) Scratch G2: severe defect caused by a scratch; (Type
No. 13) Shiny Spot G0: minor shiny spot; (Type No. 14) Suction Mark
G0: suction mark; and (Type No. 15) Wrinkle G2: severe defect of a
wrinkle type)

feature maps to generate the output of the SE block [24].
Finally, the weight of each channel learned is multiplied by
the original feature after the activation function to obtain the
new feature and improve the training model results.

3.1.3 Squeeze-and-expandmechanism

The squeeze-and-expand mechanism reduces the quantity
of parameters by replacing the 3*3 convolution kernel with
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1*1 convolution kernels and by decreasing the number of
input channels of the 3*3 convolution kernel. This mecha-
nism mainly includes two layers of convolution operations:
one is the squeeze layer with a 1*1 convolution kernel, and
the other is the expand layer with two branches, each using
1*1 and 3*3 convolution kernels. The number of filters in
the squeeze layer is less than the total number of filters in
the expand layer. Finally, the two branches of the expand
layer are concatenated, and the final feature map is output.

3.2 The proposedmethod

We propose an efficient convolutional neural network for
defect detection by first introducing a depthwise separable
convolution, a squeeze-and-expand mechanism and an
improved squeeze-and-excitation block and then combining
them in a neat and orderly fashion to form a compact and
efficient network structure. The proposed method aims to
achieve high accuracy at a high computation speed.

The main contributions of our proposed method are as
follows:

1. Introduce a depthwise separable convolution to reduce
the number of model parameters and calculations.

2. Improve the squeeze-and-excitation block. In this block,
the importance of each feature channel can be obtained auto-
matically by learning. Then, based on the obtained informa-
tion, the useful features can be enhanced, and the features
that are not useful for the detection task can be suppressed.

3. Introduce a squeeze-and-expand mechanism to signif-
icantly reduce the number of parameters and improve the
accuracy when the number of parameters is limited.

4. Improved activation function. A smoother activation
function (Mish) is employed as the activation function to
allow a deeper flow and better spread of information.

3.2.1 Proposed CNN

To obtain the highest accuracy with the fewest model param-
eters and calculations, we designed two building blocks
referred to as depthwiseFire and depthwiseResidual in
the proposed CNN. These building blocks are illustrated
in Fig. 3. The structure of the DepthwiseFire block is
inspired by the squeeze-and-expand mechanism, which has
two branches. This structure helps to achieve the highest
accuracy with the lowest computation cost. The Depthwis-
eResidual block has a parameter-free shortcut connection
added, which is inspired by the residual structure [26].
The shortcut connection helps the network to converge,
which helps us to find the appropriate network depth
through experiments of stacking different numbers of lay-
ers together. Furthermore, depthwise separable convolutions
and queeze-and-excitation blocks are employed by both
blocks to improve network performance further.

The structure of the DepthwiseFire block can reduce the
parameters and calculation amount by using the squeeze-
and-expand mechanism, which is illustrated in Fig. 3a
DepthwiseFire. A squeeze layer is used to reduce the
number of input channels to the expander layer with 3*3
convolutions. An expanding layer has two branches. One
branch uses 1*1 convolutions instead of 3*3 convolutions
to reduce the calculation amount. The other branches
use 3*3 depthwise separable convolutions with a reduced
number of input channels, which can achieve good accuracy
with fewer calculation parameters. Furthermore, the two-
branch structure with 3*3 convolutions and an improved
SE block helps to greatly improve the detection accuracy.
Specifically, as illustrated in Fig. 3, the block DepthwiseFire
starts with a squeeze layer by performing 1*1 convolutions,
followed by an expand layer with two branches. The left
branch performs a 1*1 convolution, and the right branch
performs a 3*3 depthwise separable convolution, followed
by SE Block and 1*1 convolutions. Then, the outputs of
the two branches are concatenated together. Here, we use
a 1*1 convolution rather than a 3*3 convolution in the
squeeze layer, through which the number of parameters
of a convolution operation is reduced by 9 times. The
relationship between the number of channels (E) in each
branch of the expand layer and the number of channels (S)
in the squeeze layer is as follows:

E = 4 ∗ S (2)

In this way, the input channels of the expand layer are
decreased by a factor of four, resulting in a significant reduc-
tion in the calculation amount. In addition, the use of the
depthwise separable convolution can save 8 to 9 times the
amount of calculation while ensuring almost the same accu-
racy. Therefore, the combination of the squeeze-expand
mechanism and depthwise separable convolution in Depth-
wiseFire results in a significant reduction in the number of
calculations and greatly improves the calculation efficiency.

The structure of the DepthwiseResidual block reduces
the parameters and computation by using the depthwise
separable convolution operation. In addition, the residual
structure and SE block improve the performance of
the model. Specifically, in the DepthwiseResidual block,
two 3*3 depthwise separable convolution layers and an
improved SE block are stacked together with a parameter-
free identity shortcut connection added. By adding the SE
block, processing is added between two adjacent layers,
which makes the information interaction between channels
possible and further improves the accuracy of the network.
In addition, the shortcut connection helps the network to
converge, and depthwise separable convolution helps to save
computation cost

The details of the improved squeeze-and-excitation block
(SE block) are illustrated in Fig. 4; it is mainly divided into
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Fig. 3 The building blocks: a DepthwiseFire, b DepthwiseResidual, and c SE Block

three steps: first, the squeeze operation, then the excitation
operation, and finally, the scale operation. In the improved
SE block, the size of the input feature map is H*W*C, where
H is the height, W is the width, and C is the number of
channels. The feature map first passes through an average
pooling layer to obtain a feature map of size 1*1*C (which
can be regarded as the squeeze operation). Thus, the two-
dimensional feature channel is changed to one dimension.
This one-dimensional feature has a global receptive field,
and its output dimension equals the channel number of
the input feature map. This squeeze operation characterizes
the global distribution of the responses on the feature
channel and makes the one-dimensional features obtain the

previous global view of H*W and a wider receptive field.
The next step is the operation of excitation. To reduce the
complexity of the model and improve the generalization
ability, the bottleneck structure containing two convolution
layers is used in the excitation operation. The input
feature map is passed through a 1*1 convolution layer to
generate an output feature map of size 1*1*C/16. This 1*1
convolution layer plays a role of channel reduction. Then,
the feature map is input into the other 1*1 convolutional
layer to generate a feature map of size 1*1*C. This 1*1
convolutional layer is aimed to restore the original channel.
The purpose of the two-layer excitation operation is to
reduce the number of channels and thus the amount of
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Fig. 4 The structure of the Squeeze-and-Excitation Block (SE Block)

computation. Then, a swish activation layer is applied, and
the output feature map of size 1*1*C is obtained. The
formula of swish is as follows:

f (x) = x ∗ sigmod(x) (3)

In this operation, we improve the original SE block by using
a 1*1 convolution to replace its original fully connected
layer.

The final step is a scale operation. We regard the
activation value of the excitation operation to be a
representation of the importance of each feature channel
after feature selection and then multiply the activation
value by their previous features to complete the channel
dimension matching and recalibration of original features.
Therefore, the training model can achieve better accuracy.

Furthermore, we use Mish as the activation function
instead of Relu in our proposed network. In large-scale
neural networks, with an increase in the layer depth, the
accuracy of activation functions such as ReLU decreases
rapidly, whereas Mish [27] is able to maintain accuracy and
propagate information correctly. The formula of Mish is as
follows:

f (x) = x ∗ tanh(ln(1 + ex)) (4)

Based on these two building blocks (depthwiseFire and
depthwiseResidual), we propose an efficient convolutional
neural network by stacking them together. The overall
structure of our proposed network is shown in Table 1.
To reduce the overfitting of the model, dropout and batch
normalization [33] are also used before each convolution
operation.

The network structure and process are described as
follows: The size of the input picture is 224*224.

A 3*3 convolution with 32 filters and stride 2 results in a
112*112*32 output.

A maxpool layer with a kernel size of 3*3 and stride 2
results in a 56*56*32 output.

A DepthwiseFire, resulting in a 56*56*32 output.
A DepthwiseFire, resulting in a 56*56*64 output.
A DepthwiseFire, stride 2, resulting in a 28*28*96

output.
A maxpool layer with a kernel size of 3*3 and stride 2

results in a 14*14*128 output.
A DepthwiseFire, resulting in a 14*14*256 output.
A maxpool layer with a 3*3 filter size and stride 2 results

in a 7*7*256 output.
Two DepthwiseResidual, resulting in a 7*7*256 output.
Two DepthwiseResidual, resulting in a 7*7*512 output.
A DepthwiseResidual, resulting in a 7*7*1024 output.
An average pool with a kernel size of 7*7, resulting in a

1*1*1024 output.
A fully connected layer and classifier to accomplish

classification.

3.2.2 Defect detection architecture

The defect detection architecture based on our proposed
CNN is demonstrated in Fig. 5. The detection process is
mainly divided into two parts: the training stage and the
detection stage. In the training stage, image acquisition,
image preprocessing and data augmentation are carried out
first. Then, the images are input into our proposed network
for iterative training. During iteration, the model parameters
and structures are adjusted to obtain a well-trained model
that meets the high accuracy requirement of CCL defect
detection. In the detection phase, we collect the target
images to be detected and input them into the well-trained
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Table 1 Structure of our proposed network

Group name Output size Filter shape Stride

conv1 112*112*32 3*3,32 2

pool 56*56*32 3*3 Maxpool 2

DepthwiseFire 56*56*32 DepthwiseFire, 32 1

DepthwiseFire 56*56*64 DepthwiseFire, 64 1

DepthwiseFire 28*28*96 DepthwiseFire, 96 2

DepthwiseFire 28*28*128 DepthwiseFire, 128 1

Pool 14*14*128 3*3 Maxpool 2

DepthwiseFire 14*14*192 DepthwiseFire, 192 1

DepthwiseFire 14*14*256 DepthwiseFire, 256 1

Pool 7*7*256 3*3 Maxpool 2

DepthwiseResidual 7*7*256 DepthwiseResidual, 256 1

DepthwiseResidual 7*7*256 DepthwiseResidual, 256 1

DepthwiseResidual 7*7*512 DepthwiseResidual, 512 1

DepthwiseResidual 7*7*512 DepthwiseResidual, 512 1

DepthwiseResidual 7*7*1024 DepthwiseResidual, 1024 1

Pool 1*1*1024 7*7 Average pool 1

Dense 1*1*15 Dense 1

model to complete defect detection and obtain the detection
results.

4 Experiments and discussions

The experiments are carried out under the Linux operating
system in a server configured Tesla V100 GPU with 32G
memory. The construction, training and testing of neural
networks are realized by calling the Keras deep learning
library in Python language.

4.1 Experimental methods

In our work, the state of the art efficient CNN architectures
including Inception [28, 29], ResNet [26] and MobileNet
[22, 23], are employed as benchmark networks. We
compare the experimental results of our proposed network
with those of the benchmark networks. Inception and
ResNet are large-sized CNN models that have achieved
outstanding performance on ImageNet [30]. Inception-
v3 factorizes convolutions into smaller convolutions or
asymmetric convolutions to reduce the computation cost.
For instance, the 5*5 convolution is decomposed into two
3*3 convolution operations, and the convolution with a
kernel size of n*n is decomposed into two convolutions
with sizes of 1*n and n*1. At the same time, its filter
bank sizes are extended to maintain the computation ability.
ResNet utilizes efficient residual networks to address the
degradation problem; that is, the training accuracy saturates
and then degrades rapidly as the number of network

layers increases. As the degradation problem is addressed,
the network performance can be improved by simply
increasing the network depth. In ResNet-50, a bottleneck
building block is applied to improve efficiency, where
1*1, 3*3, and 1*1 convolutions are stacked together with
a shortcut connection, where the first 1*1 convolution is
responsible for dimensionality reduction, and the last 1*1
convolution is for dimension restoration. MobileNet is a
lightweight network designed for mobile and embedded
vision applications. This algorithm utilizes depthwise
separable convolution to factorize a standard convolution
into a depthwise convolution and pointwise convolution to
greatly reduce the computation and model size. Inception,
ResNet and MobileNet are all efficient networks that aim
to reduce computation complexity while retaining good
accuracy. We choose them as benchmark methods, as rapid
and efficient defect detection is extremely important for the
online use of machine vision-based CCL surface inspection.

4.1.1 Data augmentation

Data augmentation is an effective method to address the
requirement of deep learning for large-scale datasets. This
method can effectively increase available datasets, reduce
overfitting, enhance model generalization and improve
training accuracy. Transfer learning [31, 32] or training
from scratch can benefit from data augmentation. Data
augmentation is implemented by performing an image
transformation, through which artificial data are created
based on the original datasets [32]. Our image samples are
collected from an actual production line and cannot meet the
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Fig. 5 The defect detection architecture based on our proposed network

big data needs of deep learning. Therefore, we artificially
enlarge our dataset by label-preserving transformations.
We test the common transformation methods, including
flipping, random cropping, rescaling and color shifting,
and find that flipping and noise reduction are best for
the performance improvement of CCL defect detection.
Therefore, the methods of flipping and noise reduction are
employed in our work to expand the original CCL dataset to

address the problem of insufficient samples. Several image
samples after data augmentation are illustrated in Fig. 6.

Specifically, the 12390 defect image samples collected
from an industrial CCL production line were investigated
and manually sorted and labeled as 15 categories. This work
is time-consuming and laborious, but it is worthwhile and
necessary to achieve good image classification results in the
upcoming experiments. Then, data augmentation methods
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Fig. 6 Image samples after data augmentation

of flipping and noise reduction were applied to expand the
labeled dataset. We first flipped all of the original images
and then denoised the original images as well as the flipped
images. In this way, we expanded the original dataset by
four times. The original dataset consists of 12390 product
defect images labeled as 15 categories, while the expanded
dataset contains 49560 images also labeled as 15 categories.

As shown in Table 2, we divided the expanded dataset
into a training set, a validation set and a testing set at a
ratio of 8:1:1, resulting in three sets with 36768, 4956, and
4956 image samples, respectively. We used this training,

validation, and testing set for all of the deep learning
networks’ training carried out in this work.

4.1.2 Network training

The networks includingMobileNet-v2, Inception-v3, Resnet-
50 and our proposed network were trained to classify
CCL defect images. For MobileNet-v2, Inception-v3, and
Resnet-50, we only utilized their model structures and trained
them from scratch using randomly initialized weights.
Several common parameters were set for training as follows.
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Table 2 Data quantity and distribution

Type Total Train Valid Test

49560 36768 4956 4956

Type No. 1 4968 3974 497 497

Type No. 2 1236 988 124 124

Type No. 3 1804 1444 180 180

Type No. 4 5120 4096 512 512

Type No. 5 4432 3546 443 443

Type No. 6 2672 2138 267 267

Type No. 7 1592 1274 159 159

Type No. 8 2796 2236 280 280

Type No. 9 4588 3670 459 459

Type No. 10 7448 5958 745 745

Type No. 11 2372 1898 237 237

Type No. 12 2852 2282 285 285

Type No. 13 5044 4036 504 504

Type No. 14 308 246 31 31

Type No. 15 2328 1862 233 233

Set the batch size to 100, which means extracting 100
samples from the training set each time to participate in
training.

Use the ADMA optimizer (beta 1 = 0.9, beta 2 = 0.999)
Apply the cross-entropy loss function.

Loss = −[y1 ∗ logy2 + (1 − y1) ∗ log(1 − y2)] (5)

where y1 and y2 denote the original label and the recognized
label of the samples,respectively.

Set the Epoch number to 150. The accuracy is evaluated
at the end of each epoch. If the accuracy was not improved
within 20 epochs during training, then the training was
terminated in advance.

Fig. 7 Accuracy of the four networks for the CCL dataset during
training iterations

The training progress of the four networks is illustrated
in Fig. 7. As shown in Fig. 6, it does not take many iteration
epochs for the four networks to converge, and our proposed
network achieves the best training accuracy. The conver-
gence curves of our proposed method are also illustrated in
Fig. 8. The convergence curve of the validation set fits very
well to that of the corresponding training set, demonstrating
that overfitting does not occur with our proposed method.

4.2 Results and discussions

The performance of MobileNet-v2, Inception-v3, ResNet-
50 and our proposed network on the CCL testing set with
4956 image samples is demonstrated in Table 3. The overall
accuracy and the accuracy of each type of CCL surface

Fig. 8 Convergence curves of our proposed method during training
and validation iterations
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Table 3 Performance of four networks

Accuracy MobileNet-v2 Inception-v3 Resnet-50 Proposed network

Overall 98.93% 99.07% 98.53% 99.15%

Type No. 1 100.00% 100.00% 100.00% 100.00%

Type No. 2 100.00% 100.00% 100.00% 100.00%

Type No. 3 100.00% 100.00% 98.33% 100.00%

Type No. 4 97.85% 99.02% 96.29% 98.63%

Type No. 5 99.55% 99.77% 98.19% 99.77%

Type No. 6 95.51% 98.88% 97.38% 96.25%

Type No. 7 98.74% 91.82% 96.86% 95.60%

Type No. 8 97.86% 98.21% 95.36% 98.57%

Type No. 9 98.47% 97.82% 98.69% 99.35%

Type No. 10 99.46% 99.60% 99.73% 99.33%

Type No. 11 96.62% 97.89% 98.31% 97.89%

Type No. 12 100.00% 100.00% 99.65% 100.00%

Type No. 13 99.80% 100.00% 99.40% 100.00%

Type No. 14 100.00% 100.00% 100.00% 100.00%

Type No. 15 100.00% 99.57% 99.14% 100.00%

defect (depicted in Fig. 2) are listed. The accuracy of each
defect type equals the number of correctly classified images
divided by the total number of images of this type.

Furthermore, the confusion matrix results are illustrated
in Figs. 9, 10, 11 and 12. In a confusion matrix, the first
column contains the names of the true classes, and the

first row corresponds to the names of the predicted classes.
The diagonal cells correspond to items that are classified
correctly.

We can conclude from Table 3 and Figs. 9, 10, 11 and
12 that our proposed method achieves the highest accuracy
compared with the three benchmark networks and meets

Fig. 9 Confusion matrix of MobileNet-v2
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Fig. 10 Confusion matrix of Inception-v3

the high-precision defect detection requirement of a CCL
production line. Another observation is that there are several
types of defects that are easily misclassified by all four
networks. The six types with the highest classification errors

are illustrated in Table 4. These defect types are listed in
descending order from top 1 to top 6.

As shown in Table 4, the six types of CCL defects that
are most easily misclassified are defect type No. 4, type

Fig. 11 Confusion matrix of ResNet-50
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Fig. 12 Confusion matrix of proposed network

Table 4 The six defect types with top error rates for the four networks

Models Error Rate Top 1 Top 2 Top 3 Top 4 Top 5 Top 6

MobileNet-v2 Type No. 6 Type No. 11 Type No. 4 Type No. 8 Type No. 9 Type No. 7

Inception-v3 Type No. 7 Type No. 9 Type No. 11 Type No. 8 Type No. 6 Type No. 4

ResNet-50 Type No. 8 Type No. 4 Type No. 7 Type No. 6 Type No. 11 Type No. 3

Proposed network Type No. 7 Type No. 6 Type No. 11 Type No. 8 Type No. 4 Type No. 10

Fig. 13 Image sample analysis. a Defect types No. 4, 6, 9, and 11, which share similar features; b Defect types No. 7 and No. 8, which have
similar features; c Defect types No. 1, 2, 3, 12, 13, 14, and 15, which have distinct features
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No. 6, type No. 7, type No. 8, type No. 9 and type No. 11.
Through the manual analysis of these image samples, we
find that some samples with defect type No. 4, type No.
6, type No. 9 and type No. 11 are similar to each other,
resulting in confusion and misclassification. Additionally,
some samples with defect type 7 and type 8 share similar
features. In contrast, the images with obvious features
obtain satisfactory accuracy in every network, such as type
No. 1, type No. 2, type No. 3, type No. 12, type No. 13,
type No. 14 and type No. 15. These samples are illustrated
in Fig. 13. Therefore, we conclude that labeled sample
images with distinct features are crucial to achieving high
classification accuracy.

We also provide other evaluation metrics for the four
networks, such as precision, recall rate and F1-score in
Table 5.

Precision = T P

T P + FP
(6)

Recall = T P

T P + FN
(7)

F1 − Score = 2 ∗ Precision ∗ Recall

P recision + Recall
(8)

where, TP, FN, TN, and FP represent the numbers of true
positives, false negatives, true negatives, and false positives,
respectively. These indicators reflect the quality of the
model and its generalization capabilities. It can be seen from
the table that our model has achieved the best indicators
compared with other benchmark networks.

The average computational time for detecting a CCL
image is also depicted in Fig. 14. The results are 0.01
seconds for MobileNet-v2, 0.02 seconds for Inception-v3,
0.018 seconds for ResNet-50, and 0.016 seconds for our
proposed network. Obviously, MobileNet-v2 achieves the
best computation speed results, and our proposed method
ranks second.

In addition, we illustrate the five different stages
of feature maps generated during the training process
in Fig. 14. As shown in Fig. 15, a very important
and universal characteristic of representations learned by
deep neural networks is that as the depth of the layers
increases, the features extracted by the layers become
increasingly abstract. Higher-level activations carry less

Fig. 14 The computation cost of four models

information about the input (irrelevant information) and
more information about the target (defect information).
A deep neural network effectively acts as a pipeline for
information extraction. Raw data are input and repeatedly
transformed so that irrelevant information is filtered
out, whereas useful information is amplified and refined
(information of defects).

Compared with the benchmark networks, our proposed
network achieves the highest accuracy and suboptimal
computation speed. The lightweight network MobileNet
has a lower computation cost than our proposed network.
However, its accuracy is also lower than that of our
proposed network. Our proposed network has a lower
computation cost and a higher accuracy than Inception-
v3 and Resnet-50. Additionally, our proposed network
has achieved a balance between high accuracy and high
detection speed. The high detection speed is obtained by
using the squeeze-and-expand structure and a 3*3 depthwise
separable convolution. The squeeze-and-expand structure
decreases 4 times the number of input channels to 3*3
depthwise separable convolutions, resulting in a significant
reduction in the calculation parameters. Furthermore, the
use of 3*3 depthwise separable convolutions reduces the
calculation amount by 8 to 9 times compared with standard
convolutions. The high accuracy of our proposed network is
achieved by adding more residual blocks into the network
while sacrificing less efficiency, as well as the use of an
improved squeeze-and-excitation block to improve network
performance.

Table 5 Other evaluation metrics

MobileNet-v2 Inception-v3 Resnet-50 Proposed network

Precision 0.98936 0.99075 0.98562 0.99135

Recall rate 0.98931 0.99072 0.98527 0.99132

F1-score 0.98931 0.99069 0.98533 0.99132
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Fig. 15 Visualization of the feature maps

5 Conclusions

This paper mainly studied deep learning technology for
the CCL machine vision-based surface defect detection
process. We proposed a highly efficient and accurate
convolutional neural network to realize accurate and fast
CCL defect detection. Our proposed approach makes four
contributions. First, we introduce the depthwise separable
convolution to reduce the calculation time. Second, we
improve the squeeze-and-excitation block to improve
network performance. Third, we introduce the squeeze-
and-expand mechanism to save computation cost. Fourth,
we employ a smoother activation function (Mish) to
allow information to flow better. The proposed network
is compared with benchmark CNNs, including Inception,
ResNet and MobileNet. The experimental results show that
our proposed efficient network has achieved a good balance
of accuracy and speed and has been chosen for CCL online
defect detection since it can meet the requirements of
rapid and accurate real-time detection. Our future research
will focus on network investigation by applying model
compression technology to further improve the calculation
efficiency while ensuring accuracy. Additionally, we will
broaden our deep learning technology application research
in the field of machine vision-based surface inspection.
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