
https://doi.org/10.1007/s10489-020-01875-1

ORIGINAL SUBMISSION

Cost-effective workflow scheduling approach on cloud under
deadline constraint using firefly algorithm

Koneti Kalyan Chakravarthi1 · L. Shyamala1 · V. Vaidehi2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Cloud computing, a novel and promising methodology in the distributed computing domain, provides a pay-per-use
framework to solve large-scale scientific and business workflow applications. These workflow applications have a constraint
that each of them must completed within the limited time (deadline constraint). Therefore, scheduling a workflow with
deadline constraints is increasingly becoming a crucial research issue. However, many analytical reviews on scheduling
problems reveal that existing solutions fail to provide cost-effective solutions and they do not consider the parameters like
CPU performance variation, delay in acquisition and termination of Virtual Machines (VMs). This paper presents a Cost-
Effective Firefly based Algorithm (CEFA) to solve workflow scheduling problems that can occur in an Infrastructure as
a Service (IaaS) platform. The proposed CEFA uses a novel method for problem encoding, population initialization and
fitness evaluation with an objective to provide cost-effective and optimized workflow execution within the time limit. The
performance of the proposed CEFA is compared with the state-of-the-art algorithms such as IaaS Cloud-Partial Critical
Path (IC-PCP), Particle Swarm Optimization (PSO), Robustness-Cost-Time (RCT), Robustness-Time-Cost (RTC), and
Regressive Whale Optimization (RWO). Our experimental results demonstrate that the proposed CEFA outperforms current
state-of-the-art heuristics with the criteria of achieving the deadline constraint and minimizing the cost of execution.

Keywords Deadline constraint · Workflow scheduling · Scientific workflows · Firefly

1 Introduction

Complex scientific applications like Physics, Bioinformat-
ics, Earth Science, Astronomy and disaster modeling can
be represented naturally in the form of workflows [1, 2].
One of the benefits of workflow representation is that the
workflow can be reusable, reproducible and even traceable
through other workflows [3, 4]. Workflows, depicted as
Directed Acyclic Graph (DAG), consists of computational
activities interconnected through data-flow and control-flow
dependencies [5]. Scientific workflows are partitioned into
multiple tasks which require complex data of different sizes
and tens of hundreds of processing hours [6]. In the mean-
time, computing systems where catastrophe can occur will

� Koneti Kalyan Chakravarthi
kalyan.koneti@gmail.com

1 School of Computer Science and Engineering,
Vellore Institute of Technology, Chennai, India

2 Mother Teresa Women’s University, Kodaikanal,
Tamil Nadu, India

become useless, if the completion of workflow execution
takes more than some specified time. These workflow-based
applications are highly demanding and challenging for pro-
cessing huge amounts of data in real-time workflow tasks
with the desired cost reduction of computing resources [7].

Cloud provides computing as a utility-based IT resource
over the internet where users pay based on the actual
consumption of computing resources [8]. A cloud service
provider’s basic offerings are categorized as a. Software
as a Service, widely used for remote software application
services (SaaS model) b. Platform as a Service that
provides an application development platform for building
and deploying the applications (PaaS model) and c.
Infrastructure as a Service that provides middleware
associated computing instances (IaaS model) [9]. SaaS
and PaaS based solutions are not feasible for workflow
applications since they only provide a platform to design,
develop, and porting legacy applications to the new platform
[10]. On the other hand, IaaS offers several benefits over
traditional distributed environments [11]. Direct on-demand
provisioning allows the users to directly provision/de-
provision the required computing resources. Elasticity

Published online: 3 October 2020

Applied Intelligence (2021) 51:1629–1644

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01875-1&domain=pdf
mailto: kalyan.koneti@gmail.com

offers the flexibility of procuring or releasing the computing
resources with varying configurations. Therefore, for any
scientific workflow application, the resource pool can grow
or shrink based on its requirement.

In the cloud, the workflow is executed in two phases. In
the first phase, resources are identified and acquired from
the cloud to run the workflow tasks. The second phase
generates a schedule by mapping each task to a suitable
resource so that Quality of Service (QoS) requirements
such as deadline, task precedence constraints are met.
Previous works on the workflow scheduling in traditional
distributed systems are mainly focused on the resource
provisioning phase because these distributed environments
provide a static pool of resources whose configuration is
known in advance. Although, most of the researchers in
traditional distributed systems focused on the minimization
of makespan, while researchers in the cloud focus on other
important parameters such as economic cost, consumption
of energy and secure computation [12] besides execution
time.

Existing works on the workflow scheduling problem
assume that the monetary cost for a computation is based
on the amount of actually used resources [13]. With this
assumption, two key corollaries are 1) the total cost of a
workflow is the sum of the costs of all sub-tasks, and 2)
the cost of a task is fixed when running on certain service.
On the other hand, in the cloud environments, the cost is
determined by the running time of the underlying hosting
instances. In addition, the runtime is usually measured by
counting fixed-size time intervals, with the partially used
intervals rounded up. Such schemes make the cost caused by
a task hard to be precisely predicted before scheduling. For
example, a task that shares the same time interval with the
previous task hosted in the same instance might not produce
extra cost. On the other hand, for a task which starts a new
time interval but does not use it entirely, the cost might be
more than the estimated.

In scheduling, there are still some specific challenges that
need to be addressed. First, the CPU performance variation
due to virtualization, shared and heterogeneous nature of
non-virtualized hardware. Schad et al. [14] reported CPU
performance variation up to 24% in Amazon’s EC2 cloud.
To make an allocation decision, many of the scheduling
policies depend on the estimation of the task’s runtime
on various types of resources, assuming the capacity of
the resource is always optimal. Due to the performance
variation in the virtual machine, the actual completion of
the task takes longer and is delayed. This leads to a deluge
on the sub-tasks execution and may cause an application’s
deadline to be missed, or an increase in budget. So, the
performance variation of the resources has a substantial
impact on workflow scheduling. Secondly, acquiring a
resource requires some time for proper initialization

(acquisition delay) before it is available to the user.
Likewise, when the resource is terminated, an approximate
shutdown time is required (termination delay). Therefore,
longer acquisition times may cause an application to miss its
deadline or increase in budget. Third, there is a limitation in
traditional heterogeneous environments with respect to the
availability of the number of resources and their type. All
the existing list-based heuristics allocate the best suitable
resource to the task by traversing the entire list of available
resources [13]. Since the cloud provides an infinite pool of
resources with various configurations and pricing schemes,
it is not possible to traverse an entire pool of resources. For
example, PSO defines particle position and velocities as t
x r matrices, where t is the number of tasks and r is the
number of resources. However, r would be too large for the
cloud. The typical encoding schemes usually represent the
mapping of tasks to resources that might not be feasible
for the cloud, since the resources acquired and released
dynamically. These encoding schemes result in unnecessary
high time and space complexity. The scheduling algorithm
should take a suitable decision in choosing the resources in
view of performance and cost optimization. All the above
challenges of the cloud dictate the development of novel
resource provisioning and workflow scheduling algorithms.

Workflow scheduling is widely known to be an NP-hard
[17] problem. To solve the nature of NP-hard problem,
heuristic algorithms are more suitable than the deterministic
algorithms [15]. The parallel nature working of the Firefly
Algorithm (FA) resolves the optimization problems. The
‘lower level’ (heuristic) in FA focuses on generating new
solutions within the search space and thus selects the best
solution for survival. On the other hand, Randomization,
allows the search process to prevent the solution being
trapped in local optima. The local search improves a
candidate solution until improvements are detected, i.e.,
places the solution in local optimum.

In this paper, an attempt is made to use the Firefly
algorithm to solve the workflow scheduling problem in
the cloud which gives cost-effective realistic schedules.
This paper proposes a novel scheduling algorithm CEFA
which schedules workflow tasks to the low-cost virtual
machine. Our proposal CEFA considers all the challenges of
cloud, such as on-demand resource provisioning, elasticity,
and pay-per-use price model and it also focus on issues
such as CPU performance variation and their acquisition
delay. Major contributions are made in the research of the
workflow scheduling process as follows.

• Through modeling the IaaS cloud and workflow,
we formulate the workflow scheduling problem in
the IaaS cloud as an optimization one that attempts
to minimize the makespan and execution cost of
workflows simultaneously.

1630 K. K. Chakravarthi et al.

• In order to effectively solve the workflow scheduling
problem in clouds, we propose a new deadline-
constrained scheduling algorithm named Cost-Effective
Firefly based Algorithm (CEFA), by designing Novel
schemes for workflow encoding, initial population, and
fitness evaluation.

• We conduct extensive experiments on synthetic data
of real scientific workflows to verify the effectiveness
and efficiency of the proposed CEFA algorithm.
Experimental results show that CEFA can achieve better
cost-makespan tradeoffs compared to three existing
algorithms, including IC-PCP, PSO, RCT, RTC, and
RWO.

The rest of the paper is organized as follows. Section 2
of this paper provides a precise study of literature on
the work carried in the area of workflow scheduling and
highlights the major works and proposals. Section 3 gives an
overview the virtual machine modeling, workflow modeling
and problem formulations, followed by the fundamentals of
firefly algorithm in Section 4. In continuation, the proposed
solution to the workflow scheduling problem shall be
discussed in Section 5. Next is Section 6, which delivers the
evaluation report of the arrived results and its comparison
charts. Towards the end of this paper, in Section 7, the
possible scope of future work in the workflow scheduling is
suggested.

2 Related work

A multitude of studies have been made on scheduling
problems in distributed systems and is NP-hard [17] in
which a feasible schedule can’t be found in polynomial
time unless NP = P. Various heuristic and meta-heuristic
approaches focused on generating the near-optimal sched-
ules [18–23]. However, these solutions focused on meeting

the QoS requirements while generating a schedule. This
section summarizes the bibliographic review of several
scheduling approaches in the IaaS cloud with the user’s QoS
requirements.

Workflow scheduling approaches are classified as either
Heuristic or Meta-heuristic and then sub-categorized
according to workflow multiplicity and scheduling tech-
niques as shown in Fig. 1.

In heuristic-basedworkflow scheduling,MaoandHumphrey
[24] proposed a Scaling-Consolidation-Scheduling (SCS)
algorithm to execute workflow ensembles on the cloud.
They acknowledge that there are various types of VMs with
different prices and that they can be leased on demand,
depending on the application’s requirements. Furthermore,
they tailor their approach so that the execution cost is mini-
mized based on the cloud’s pricing model, that is, VMs are
paid by a fraction of time, which in most cases is one hour.
They try to minimize the execution cost by applying a set
of heuristics such as merging tasks into a single one, iden-
tifying the most cost-effective VM type for each task and
consolidating instances. Although this is a valid approach
capable of reducing the execution cost of workflows on
clouds, the solution proposed only guarantees a reduction
on the cost and not a near-optimal solution.

Another work on workflow ensembles developed for
cloud is presented by Malawski et al. [25]. They proposed
three algorithms in which two are dynamic algorithms,
DPDS (Dynamic Provisioning Dynamic Scheduling), WA-
DPDS (Workflow-Aware DPDS) and one static algorithm
is SPSS (Static Provisioning Static Scheduling). These
algorithms aim to maximize the number of workflows
completed under QoS constraints such as deadline and
budget. Their solutions acknowledge different delays
present when dealing with VMs leased from IaaS cloud
providers such as instance acquisition and termination
delays. Furthermore, their approach is robust in the sense
that the task’s estimated execution time may vary based on

Fig. 1 Classification of scheduling algorithms

1631Cost-effective workflow scheduling approach...

a uniform distribution and they use a cost safety margin to
avoid generating a schedule that goes over budget. Their
work, however, considers only a single type of VM, ignoring
the heterogeneous nature of IaaS clouds.

Static Provisioning-Static Scheduling under Energy and
Deadline Constraints (SPSS-ED) and Static Provisioning-
Static Scheduling under Energy and Budget Constraints
(SPSS-EB) are two energy-aware resource provisioning
algorithms proposed by Pietri et al. [26] to schedule
workflow ensembles based on Static Provisioning-Static
Scheduling (SPSS). SPSS-ED focuses on meeting a
deadline and energy constraints and SPSS-EB focuses on
budget and energy constraints. Both of the algorithms
aim to reduce the consumption of energy and increase
the number of completed workflows. SPSS-ED plan it’s
execution by scheduling each task of the workflow. SPSS-
ED plan is accepted only if the deadline and energy
constraints are satisfied. In SPSS-EB, the same process is
repeated but instead of the deadline, budget constraint is
used. However, they do not account for CPU performance
variations, different workflow structures, data transfer costs,
and instance acquisition and termination delays.

Further, Heuristic based workflow scheduling algorithms
are presented in [27–30] to execute a single workflow in the
IaaS cloud. The work in [27–29] are based on the partial
critical path (PCP) of the workflow. These approaches
reduce the execution cost by scheduling all the workflow
tasks in a critical path on a single machine. However, they
do not have a global optimization strategy in place that
can provide a near-optimal solution; instead, they use a
task level optimization and hence fail to generate a better
solution for the whole workflow.

Abrishami et al. [27] formulated the IaaS Cloud Partial
Critical Path (IC-PCP) algorithm, which is a non-robust
deadline constrained algorithm. This algorithm schedules
a workflow in an IaaS offering whilst reducing costs
involved in execution within the user-specified application’s
deadline. It follows Partial Critical Paths (PCPs) and hence,
it starts identifying the critical paths which are associated
with the exit node of the workflow. Then, it assigns each
task of the critical path on to the cheapest resource, which
can execute before its finish time. If in case, this cannot
be achieved, the cheapest resource that can finish the tasks
before their latest finish time is leased and PCP assigned
to it. The procedure is executed recursively until all the
tasks are scheduled. They try to minimize the execution cost
based on the heuristic of scheduling all tasks in a partial
critical path on a single machine which can finish the tasks
before their latest finish time (which is calculated based on
the application’s deadline and the fastest available instance).
However, they do not have a global optimization technique
in place capable of producing a near-optimal solution;
instead, they use a task level optimization and hence fail to

utilize the whole workflow structure and characteristics to
generate a better solution.

Poola et al. [29] proposed RCT and RTC algorithms,
which are also based on Partial Critical Paths (PCPs).
These algorithms are robust, fault-tolerant and handle the
performance variation and failures of the cloud resources.
These algorithms schedule tasks on two diverse cloud
instances, on-demand and spot (dynamic) instances by
adapting just-in-time heuristics in scheduling. On the other
hand, to handle performance variation of the resources,
some amount of relaxed time slots are identified depending
on the type of robustness and are driven by PCP execution
time and its levels of tolerance to fluctuations in PCP. Also,
to enhance the tolerance level a checkpoint is imposed in a
gap of intervals. When a task fails, the algorithm resumes
the task from the last checkpoint. However, the algorithm
handled uncertainty by assuming the known distribution
function for all the input data; besides increasing the
infrastructural costs as the storage of checkpoints becomes
mandatory. The comparison of our proposed work has been
done with the robust scheduling algorithm only for the
parameters which caters for performance variation and the
acquisition delays of VMs. Furthermore, we have selected
RCT and RTC resource selection policies as our baseline
algorithms.

Just-In-Time (JIT-C) workflow scheduling algorithm for
the Cloud environment is presented by Sahni et al. [30], is a
dynamic cost-effective scheduling approach. If the deadline
factor is achievable, then the optimal solution is generated.
Otherwise, the user has to prompt the deadline again. Their
algorithm exploits the advantages of the cloud computing as
well as the performance variation of the resources and the
acquisition delay.

Meta-heuristic algorithms [13, 31–35] are the other cate-
gory of workflow scheduling algorithms. Modern meta-
heuristics are accurate and efficient to find a “good enough”
solution in a “small enough” computing time. Population-
based metaheuristics find good solutions by iteratively select-
ing and then combining existing solutions from a population
set by mimicking the principles of natural evolution. Com-
monly used population-based algorithms are the Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) and the
recently developed algorithm called the Firefly Algorithm
(FA) shows a lot of potential [36, 37] in workflow scheduling.

The authors of [32–34] solved the workflow scheduling
problem using Particle Swarm Optimization (PSO). Pandey
et al. [33] explicated an approach that lowers the cost
of execution with load balancing in available machines.
The execution time of the workflow is not considered in
the scheduling objectives and therefore this value can be
considerably high as a result of the cost minimization policy.
The authors do not consider the elasticity of the cloud and
assume a fixed set of VMs is available beforehand. For this

1632 K. K. Chakravarthi et al.

reason, the solution presented is similar to those used for grids
where the schedule generated is a mapping between tasks
and resources instead of a more comprehensive schedule
indicating the number and type of resources that need to be
leased, when they should be acquired and released, and in
which order the tasks should be executed on them.

Rodriguez and Buyya [32] proposed a meta-heuristic
optimization based approach, Particle Swarm Optimization
(PSO) that gives promising results, but there are still rooms
for enhancement. In their approach, particles are encoded
based on the resources index that depicts the position of the
particles. Because the index does not havemuch information
on resources, particles move in a different dimensions
to individual best, and global best does not lead to an
optimal solution. This algorithm focused on the essential
cloud characteristics such as the elasticity, pay as you go
pricing model and heterogeneous nature of the unlimited
resources, including the disparities in performance and the
acquisition and termination delay of VMs. In this work, the
considered PSO parameters are: the acceleration coefficient
(ci=acceleration coefficient; i = 1, 2), number of particles
(n), and inertia factor or weight (ω). In this computation, the
acceleration coefficient (ci) was varied from 1.5 to 2.0, and
the inertia (inertia factor or weight) ranged from 0.1 to 1.0.
The number of particles is set to 100.

Wu et al. [34] proposed Revised Discrete Particle Swarm
Optimization (RDPSO) which focuses on minimizing either
cost or time while meeting a deadline or budget constraints.
But it assumes an initial set of resources available beforehand
and hence lacks in utilizing the elasticity of IaaS clouds.

Reddy and Kumar [47] proposed the Regressive Whale
Optimization (RWO) algorithm for workflow scheduling
in the cloud computing environment. RWO is the meta-
heuristic algorithm, which schedules the task depending on
a fitness function. The fitness function is defined based on
resource utilization, energy, and the Quality of Service (QoS)
constraints. The proposed algorithm differs from the stan-
dard Whlae Optimization Algorithm (WOA) in the position
update step, where the modification is made with the intro-
duction of a regression-based position update. In their
approach, the solution is generated at random without con-
sidering the resource type. Resource Type provides the
necessary information about VM which in turn helps to
comply with the deadline factor. Also, it ignores the essen-
tial cloud characteristics such as the elasticity, pay as you
go pricing model, and heterogeneous nature of the unlim-
ited resources, including the disparities in performance and
the acquisition and termination delay of VMs.

Furthermore, approaches presented by Huang [35], Zhu
et al. [13] and Chen et al. [31] are based on Genetic Algo-
rithms. Chen et al. [31] proposed a cost optimization strat-
egy under deadline constraint that uses the same encoding
approaches as Rodriguez and Buyya [32]. When there is no

optimal/feasible solution, their strategy moves from cost to
time function to minimize the execution time, but not the
cost. Zhu et al. [13] and Huang [35] focused on essential
characteristics of the cloud by ignoring the CPU perfor-
mance variation of the resources and the acquisition delay.
However, these algorithms need to evolve for numerous
generations and a feasible solution may not be found.

In the literature, numerous approaches are proposed on
heuristic and meta-heuristic algorithms. However, meta-
heuristic algorithms outperform other algorithms when the
number of tasks is less and fall behind if the number of
tasks is more. The meta-heuristic algorithms outlined do
not conform to the basic principles of the cloud. So, this
work proposes a Cost-Effective Firefly based Algorithm by
addressing the challenges, such as the CPU performance
variation of the resources, the acquisition delay and attempts
to optimize the cost under deadline constraint.

3Modeling and problem formulation

In this section, we first give the model of virtual machines
(VMs), workflow and then formulate the scheduling problem.

3.1 Virtual machinemodeling

The cloud platform provides an infinite number
of VMs with various configurations. Let V T =
{vt1, vt2, vt3 . . . , vtm} representm types of virtual machines
available in the cloud. The parameter vm

vtu
k represents the

kth VM of type vtu. Also, each virtual machine VM vm
vtu
k

is associated with an estimated lease begin time LBT
vm

vtu
k

and lease end time LET
vm

vtu
k
. The price of the virtual

machine denoted as price(vm
vtu
k) is the cost per unit inter-

val of time. It is worth noting that virtual machines can be
acquired and terminated at any point in time. Also, virtual
machines are charged per unit interval of time, and any
partial use of the unit of time will be charged for the whole
period.

3.2Workflowmodeling

In the cloud, a workflow (W) can be modeled as W =
{G, wd}, where G and wd represent workflow’s structure
and deadline constraint respectively. The structure G of
workflow W can be formally modelled as a directed acyclic
graph (DAG), i.e., G = (T , E), where T = {t1, t2, . . . , tn}
is a set of tasks and the parameter n is the task count;
the vertex tj denotes the j th task in a workflow W . Also,
E ⊆ T × T denotes the directed edges among tasks. An
edge ek,j ∈ E of the form (tk, tj) exists if there is a
precedence constraint between the tasks tk and tj , where tk
is an immediate predecessor of task tj and the task tj is an

1633Cost-effective workflow scheduling approach...

immediate successor of task tk . The pred(tj) denotes the
set of tasks consisting of all tj ’s immediate predecessors,
and succ(tj) represents the set of tasks consisting of all tj ’s
immediate successors. A simple workflow is shown in Fig. 2

3.3 Problem formulation

In workflow scheduling, let ETj,k denotes the execution
time of a task tj on VM vm

vtu
k . The execution time of a task

tj on various instances are calculated based on the task’s
size (Size(tj)) divided by Processing Capacity (PC

vm
vtu
k
) of

the instance type vtu.

ETj,k = Size(tj)

PC
vm

vtu
k

(1)

Additionally, CPU performance variation of the resource
is modeled by altering the processing capacity of the
VM vm

vtu
k by introducing a performance degradation

(PerDeg
vm

vtu
k
) parameter. So, (1) is updated as

ETj,k = Size(tj)

(PC
vm

vtu
k

∗ (1 − PerDeg
vm

vtu
k

))
(2)

Further, data transfer time DTj,k across the tasks on
different virtual machines is the ratio of output-data file size
(dtj) to average bandwidth capacity β within the same data
center in the cloud, as shown in (3). The data transfer time
DTj,k becomes zero when both parent and child tasks are
scheduled on the same VM.

DTj,k = dtj

β
(3)

Finally, total processing time PTj,k of task tj on vm
vtu
k is

obtained using (4). Where e is the out degree of the task tj
and IsV MSame is zero whenever tj and tk run on the same
VM or 1 otherwise.

PTj,k = ETj,k +
e∑

1

(
DTejk

∗ IsV MSame

)
(4)

Fig. 2 An example workflow

Besides, the symbols ESTj,k and EFTj,k denotes the
earliest start time and earliest finish time of a task tj on
VM vm

vtu
k . The earliest time at which a task tj can begin its

execution on VM vm
vtu
k is known as the earliest start time

and calculated as follows.

ESTj =
{

0, if pred(tj) = NULL

max
tp∈pred(tj)

{
ESTp + METp + MT Tp,j

}
, otherwise

(5)

Where MT Tp,j denotes the minimum data communication
time from predecessor task tp to current task tj and METj

represent the minimum execution time of a task tj on VM
vm

vtu
k ∈ V T that have minimum execution time among all

VM types in the cloud and computed as

METj = min
vm

vtu
k εV T

{
ETj,k

}
(6)

Evidently, the estimated finish time,EFTj can be computed
as

EFTj = ESTj + METj (7)

In an arbitrary workflow scheduling, the latest finish time
LFTj of task tj is the period before which task completes
its computation, such that finish time of workflow W is less
than the user-specified deadline, wd . It is defined as

LFTj =
{

wd, if succ(tj)=NULL

min
tp∈succ(tj)

{
LFTp−METp−MT Tp,j

}
, otherwise

(8)

Due to precedence constraints in a workflow, the task
can’t be executed until it gathers all of the data from its
immediate predecessors.

FTp,k + DTp,j ≤ STj,k ∀ep,j ∈ E (9)

Where FTp,k denotes task tp’s finish time on VM vm
vtu
k ,

DTp,j denotes the data transfer time between task tp and tj
and STj,k represent the start time of task tj on VM vm

vtu
k .

In workflow scheduling environments, finish time of
workflowWFT is the maximal finish time of all its tasks and
is defined as

WFT = max
tj ∈(W)

{
FTj,k

}
(10)

The cost cj,k for executing task tj on VM vm
vtu
k is calculated

as

cj,k = Price
(
vm

vtu
k

) ∗
[
ETj,k

Nt

]
(11)

Where Price(vm
vtu
k) is the cost of the VM vm

vtu
k per one

interval of time and Nt is the unit of time interval.
To ensure the deadline of a workflow, all the workflow

tasks in W must finish their execution before its deadline

1634 K. K. Chakravarthi et al.

wd . Consequently, this brings with it another constraint

WFT ≤ wd (12)

Subject to aforementioned constraints in (9) and (12), the
primary goal of optimization is to minimize the Total
Execution Cost (TEC) of completing workflow W, which
can be computed as

Minimize T EC =
|V M|∑

k=1

Price(vm
vtu
k) · pk (13)

where |VM| represents the number of acquired VMs and pk

denotes the number of time units of leased VM vm
vtu
k .

4 Firefly algorithm

Swarm based algorithms have received more attention in
the research community due to advances in computing
infrastructures. Fireflies are tiny winged beetles that belong
to the family of Lampyridae. They are capable of flashing
light to fascinate mates. They work like a capacitor,
gradually charge to a definite threshold and discharge
accumulated energy in the form of light. Based on this
phenomenon Yang [37] developed the firefly algorithm.

The firefly algorithm has many advantages such as:

� The rate of convergence is maximum or maximizing.
� It can be used as a general as well as a global problem

solver.
� Each firefly toils independently and settles with a supe-

rior position than its current position and the position of
other fireflies. Hence, it is easy to escape from the local
optima and scale to settle with global optimum.

� It is accomplished with the provision of diversified levels
of robustness when compared to other meta-heuristic
algorithms.

� It is simple, flexible, versatile and effectively efficient in
addressing extensive range, but assorted real-time prob-
lems.

4.1 Inspiration

Firefly Algorithm (FA) developed byYang [37, 46] represents
one of the newest meta-heuristic techniques that idealizes
the characteristics and behavior of the fireflies. The Firefly
algorithm depends on three idealized principles [45]:

1. Fireflies have a unisex character; each firefly is
fascinated by another, irrespective of gender.

2. Attractiveness factor is directly proportional to its
brightness. A firefly with lesser brightness gets
attracted to a firefly with more brightness.

3. The brightness of the firefly is represented by a fitness
function that is maximized. This determines the quality
of the workflow schedule.

In accordance with the previous rules, the basic Firefly
algorithm is given in Algorithm 1.

4.2 Firefly evaluation

Light intensity computation of firefly, highly relies on the
nature of investigating the problem. In this scenario, the
quality of the workflow schedule solution is computed by
Total-Execution-Cost (TEC) using (13).

4.3 Distance

Let the distance between any two fireflies, firefly “i at yi”
and “j at yj” be ‘rij ’. In the Cartesian framework, ‘rij ’
is defined using (14). Where yj,k is the kth component of
spatial coordinate yj associated with j th firefly and d is the
dimension of the investigating issue [46].

rij = ∥∥yi − yj

∥∥ =
√√√√

d∑

k=1

(
yi,k − yj,k

)2 (14)

4.4 Attractiveness

The attractiveness (β) of two fireflies depends on the
distance (r) between fireflies and absorption coefficient
of light (γ). The degree of attraction β(r) of a firefly is
estimated by (15).

β(r) = β0e
−γ r2 (15)

1635Cost-effective workflow scheduling approach...

4.5 Movement

The movement of the firefly k at yk towards more attractive
firefly j is established using (16).

yk+1 = yk + β0e
−γ r2kj (yk − yj) + α(rand − 0.5) (16)

4.6 Efficacy of firefly algorithm

By inheritance, FA follows all the advantages that other
swarm intelligence-based algorithms have. Upon analysis, a
few insights that draw attention are as follows:

� FA has the potential to automatically divide the whole
population into subgroups. This is because, invariably,
local attraction strength is superior to long-distance attrac-
tions; resulting FA efficiently handles the extremely non-
linear and multi-facet optimization problems naturally.

� FA believes neither the historical individual best nor
the explicit global best. This draws the strength to
resist the probable weakness of impulsive convergence.
Additionally, FA does not rely on the velocities similar
to that of velocities in PSO.

� FA is equipped to control and acclimatize to crisis settings
by imposing control over the scaling constraint like, γ .

5 Proposed firefly based workflow
scheduling

In the cloud computing, an efficient encoding mechanism can
provide an efficient solution that fulfills the QoS constraints
and raise efficiency. There are two steps involved in model-
ing the Firefly problem. First, the encoding mechanism used
in defining the problem, that is, how initial solution is rep-
resented. Second, the fitness function that measures the
quality of the solution.

5.1 Map between FA andworkflow scheduling

A map between workflow scheduling and FA is provided
before describing the proposed scheduling method. The
proposed mapping would be as follows.

a. The dimension of the problem (d) is mapped to the total
number of tasks in the workflow.

b. The location (yi) of each firefly is mapped to a potential
solution to the workflow scheduling problem.

c. Intensity (I) is mapped to the fitness of each solution
of the workflow scheduling. Schedules with lower-cost
are equivalent to fireflies of higher intensity.

d. Movement of low-intensity fireflies towards high-
intensity fireflies is mapped to changing non-optimal
schedules to more optimal schedules.

5.2 Fireflymodelling

For the workflow scheduling scenario, the firefly represents
workflow tasks; hence, the total number of tasks in
workflow determines the size of a typical firefly. Workflow
tasks execution order is determined based on dependency
constraints of workflow and the index is assigned to each
workflow task. A workflow schedule consists of 3 elements,
first is task execution order (TaskPriorityIndex), second is
allocation of the appropriate resource (TaskToResource) and
third determines the resource type (ResourceType). Figure 3
shows the sample firefly encoding for the workflow in
Fig. 2. This figure clearly shows the mapping of the task to a
resource. For example, task t3 will be executed at the virtual
machine number 2 of type 1.

The fitness function should reflect the objectives of work-
flow scheduling, as it determines how “good” the potential
solution is. The fitness function value is the overall execu-
tion cost for each of the associated schedule derived from
the firefly’s position.

5.3 Schedule generation

In order to handle theworkflow scheduling problem, evaluation
of total execution time and total execution cost of the consid-
ered workflow should be carried with an explicit task-resource
mapping. The evaluation of the Total-Execution-Cost
(TEC) and the Total-Execution-Time (TET) in a generic
workflow is presented in Algorithm 2. Initialize an array
V MS for maintaining the provisioned resources. Now, this
algorithm evaluates the execution time of a task ti ∈ T in
each type of vti ∈ V T using (2) and data transfer time
DTj,k , to transfer data from task tj to tk using (3). The Start
Time of task tj (STj) has two scenarios. If the task does
not have any parents, then it can start its execution as soon
as the virtual machine is allotted. Otherwise, the task starts
as soon as the parents finish their execution and transfer
their output. The finish time of the task tj is obtained by
adding STj to PTj . Then update the resource in VMS. This
process continued until each workflow task is scheduled.

Fig. 3 Firefly Encoding for
Sample Workflow (For Fig. 2)

1636 K. K. Chakravarthi et al.

5.4 Initial population

The execution time of tasks in the critical path affects the
total execution time significantly, but the execution cost
is a minor part of the total cost of execution. Therefore,
assigning critical path tasks to faster virtual machines
significantly reduces the total execution time, while the
cost of execution has a limited impact on the total cost
of execution. The diversity and veracity of the initial
population of a firefly influence the performance greatly.
To improve the convergence speed and solution quality,
20% of the initial population in the critical path [44] is
assigned to the fastest virtual machines and the next 20%
of the initial population is assigned to virtual machines
with low processing capability. The rest of the population is
generated randomly.

6 Performance evaluation

This section presents the experiments conducted to evaluate
the performance of the proposed approach.

6.1 Experimental workflows

The performance of CEFA is evaluated with different work-
flows used in different scientific fields: LIGO, Epigenomics,
CyberShake, and Montage. These workflows have diverse
structural properties such as pipeline, aggregation, distribu-
tion, and redistributions as well as different composition as
shown in Fig. 4. Montage, an astronomy application stitches
a series of images to create personalized sky mosaics. Mon-
tage tasks require high intense I/O and CPU with low
processing capacity. The LIGO workflow aims to detect
gravitational waves. This workflow requires a large memory
with a high CPU. The Epigenomics is used in bioinformatics
to automate genome sequencing operation. Moreover, these
tasks demand high power computational processors with
limited I/O regulations. Cybershake is best suited for simu-
lating the earthquake hazards using synthetic seismograms.
These workflow tasks require large memory and high CPU.
To ease the evaluation of scheduling algorithms, Bharathi
[43] developed a set of synthetic workflows of various
sizes that resembles concrete scientific workflows. Syn-
thetic workflows are characterized by DAG in XML format
and are available in [42]. For assessing the results of the pro-
posed algorithm in terms of performance, experiments are
carefully designed and carried out for the above-specified
workflows with a varying number of tasks: small (about
25 tasks), average (about 100 tasks) and large (about 1000
tasks).

6.2 Experimental settings

The cloud service providers provide various types of VMs
with varying configurations. The VM configurations of EC2
cloud offerings [41] are shown in Table 1. It is assumed
that for each type of VM, the processing capacity in
terms of floating-point operations per second (FLOPS) is
available from the provider or can be estimated [40]. The
estimated execution time of workflow tasks in various types
of virtual machines is obtained based on their processing
capacity. The change in CPU performance of each VM is
modeled based on the results presented by Schad et al.
[14]. Also, each virtual machine’s performance is reduced
by a maximum of 24% based on the normal distribution.
Its average mean is found to be 12% along with a 10%
standard deviation. In a similar way, the data transfer time
in the same data center is increased by a maximum of 19%
[14], based on the normal distribution. Its average mean is

1637Cost-effective workflow scheduling approach...

Fig. 4 Workflow structures differed in terms of characterization

found to be 9.5% along with a 5% standard deviation. The
average bandwidth is set based on Amazon’s Elastic Block
Store [39] i.e., 20 MBps. The VM billing time is set to 10-
minute interval and the estimated acquisition delay is set to
one minute similar to Meena et al. [10].

In this work, the FA parameters considered are: the
number of generations (G), number of fireflies (n), the
coefficient of light absorption (γ), random variable (α) and
initial attractiveness (β0). These are selected in a random
fashion and the combination factor (n ∗ G) determines the
extent of search in the solution space for obtaining the
optimal solution. If the value of (n ∗ G) is high, then it
requires longer computational time, but it helps to get the
best solution. In this computation, the coefficients of light
absorption (γ) vary from ‘0’ to ‘10’ similar to Fister et al.
[16], and the randomized parameter can have the fractional
values from ‘0’ to ‘1’.

To evaluate the performance metrics, two types of deadline
constraints SoftDeadline and HardDeadline are considered.
We introduce a deadline factor δ similar to Abrishami et al.
[27] and vary from 0 to 3.2 with a step length of 0.4. For this,
all workflow tasks are executed on the fastest resources and
the minimum time to run the workflow WMET is obtained.
WMET is the lower limit of the workflow execution time.
The deadlines are established according to the rule specified
in (17).

wd = WMET ∗ (1 + δ) (17)

Table 1 VM Instance specifications

Type of VM ECU Memory(GiB) Cost($/h)

m3.medium 1 3.75 0.067

c3.xlarge 4 3.75 0.21

m3.xlarge 4 15 0.266

c3.2xlarge 8 15 0.42

m3.2xlarge 16 30 0.532

Where WMET is the minimum time required to execute the
submitted workflow and δ is the deadline factor defined as
follows.

For ‘HardDeadline’: 0 ≤ δ ≤ 1.2
For ‘SoftDeadline’: 1.2 ≤ δ ≤ 3.2
The deadline factor δ was varied with 0.4 disparity

6.3 Results analysis

The performance of the proposed CEFA is analyzed in
terms of the compliance bounded by the deadline factor.
The success rate for different scientific workflows under
different deadlines is shown in Table 2. Table 2 presents the
percentage of an improvement for experimental workflows
with hard and soft deadline factors. Recently published
algorithms IC-PCP [27], PSO [32], Robustness-Cost-Time
[29], Robustness-Time-Cost [29], and RWO [47] are used
as the baseline algorithms to evaluate the proposed solution.

6.3.1 Evaluation of deadline constraints

It can be seen from Table 2 that the proposed CEFA
gives an improvement of 90.5%, 84.5%, 87.5% and
87.5% in Montage, Epigenomics, LIGO, and CyberShake
respectively for hard deadline condition. It is also seen
that for soft deadline conditions, the proposed CEFA gives
73%, 62%, 70.5% and 66.5% improvement for Montage,
Epigenomics, LIGO, and CyberShake respectively.

From above, it is observed that IC-PCP has low
performance in all reference algorithms for ‘HardDeadline’
and ‘SoftDeadline’ constraints. IC-PCP doesn’t consider the
performance degradation and delay in the acquisition of
resources, which has a substantial effect on the execution
cost and execution time, whereas the proposed CEFA
considers performance degradation (PerDeg) and cloud
resource startup time, which helps us to calculate the
beginning and end time of task to ensure every task is
executed under deadline constraint. The RTC and RCT

1638 K. K. Chakravarthi et al.

Ta
bl
e
2

Pe
rc
en
ta
ge

of
im

pr
ov
em

en
tf
or

ex
pe
ri
m
en
ta
lw

or
kf
lo
w
s
w
ith

de
ad
lin

e
fa
ct
or

D
ea
dl
in
e
fa
ct
or

A
lg
or
ith

m
M
on
ta
ge

E
pi
ge
no
m
ic
s

L
IG

O
C
yb
er
Sh

ak
e

Su
cc
es
s
ra
te

Im
pr
ov
em

en
t

%
of

C
E
FA

Su
cc
es
s
ra
te

Im
pr
ov
em

en
t

%
of

C
E
FA

Su
cc
es
s
ra
te

Im
pr
ov
em

en
t

%
of

C
E
FA

Su
cc
es
s
ra
te

Im
pr
ov
em

en
t

%
of

C
E
FA

H
ar
d
de
ad
lin

e
IC
-P
C
P

0
90
.5

0
84
.5

0
87
.5

0
87
.5

R
C
T

47
43
.5

37
.5

47
53
.5

34
40

43
.5

R
T
C

81
.5

9
72
.5

12
80

7.
5

79
.5

8
R
W
O

85
.5

5
78
.5

6
83
.5

4
82

5.
5

PS
O

88
.5

2
80

4.
5

84
3.
5

84
.5

3
C
E
FA

90
.5

-
84
.5

-
87
.5

-
87
.5

-

So
ft
de
ad
lin

e
IC
-P
C
P

27
73

38
62

29
.5

70
.5

33
.5

66
.5

R
C
T

52
48

53
.5

46
.5

56
.5

43
.5

49
51

R
T
C

10
0

0
10
0

0
10
0

0
10
0

0
R
W
O

10
0

0
10
0

0
10
0

0
10
0

0
PS

O
10
0

0
10
0

0
10
0

0
10
0

0
C
E
FA

10
0

-
10
0

-
10
0

-
10
0

-

algorithms work on the policy of resource selection and their
priorities are specified based on the Partial Critical Path
(PCP) heuristics. Both can tolerate the CPU performance
variation of the instance only to a certain extent.

In PSO, particles are encoded based on the resources
index that depicts the position of the particles. Because the
index does not have much information on the resources,
particles tend to move in various directions towards the indi-
vidual best, and global best may not lead to an ideal solution.
In RWO, solutions are generated randomly based on the
static resource pool and do not have much information on
the resource types. RWO also ignores the CPU performance
variation and the acquisition delay of the resources, which
has a significant impact on the execution cost and exe-
cution time However, if the user specifies a hard deadline,
then it’s difficult to generate a feasible schedule for these
approaches. CEFA encodes the firefly based on TaskPrior-
ityIndex, TaskToResource mapping, and ResourceType. In
TaskPriorityIndex, each task is assigned to an integer index
based on its execution order. In TaskToResource, each task
is mapped to a suitable resource and in ResourceType, vtu
type resource is selected from a pool of resources. This
mechanism provides necessary information about the VM
which in turn helps to comply with the deadline factor.
Therefore, CEFA exceeds all baseline algorithms in respect
of meeting the user-specified deadline factor.

6.3.2 Makespan and cost evaluation (TET and TEC)

The proposed solution is anticipated to generate a schedule
map which is cost-effective under deadline factor, therefore
a comparison with the average of the makespan and the
average cost should be observed. For each sample workflow,
an average cost of execution (in $, in Fig. 5b, d, f, h) and
total average execution time (in seconds) are depicted in
Fig. 5a, c, e, g. The X-axis denotes the user-defined deadline
factor values. If the deadline factor is between 0 and 1.2,
then it is known as the hard deadline. Any value above 1.2
is known as a soft deadline.

It can be seen in Fig. 5a, c, e, g, IC-PCP generates the
cheapest schedule with the longest running time for each
type of workflow deadline and hence, it does not meet any
of the deadlines. On the other hand, the algorithm’s goal
is to devise an optimal and also a feasible schedule by
minimizing the cost under the deadline factor. Therefore, an
inexpensive schedule with a deadline factor violation is not
useful. Therefore, the comparison is made among baseline
algorithms that have the objective of meeting the deadlines.
As seen in Fig. 5a, c, e, g, among PSO, RTC, RCT, RWO,
and CEFA, the proposed algorithm generates the profitable
schedule for each type of the workflow with an average
success rate of 87.5% for hard deadline and 100% for a soft
deadline.

1639Cost-effective workflow scheduling approach...

Fig. 5 a. Makespan for montage workflow. b. Execution cost for Mon-
tage workflow. c. Makespan for LIGO workflow. d. Execution cost for
LIGO workflow. e. Makespan for CyberShake workflow. f. Execution

cost for CyberShake workflow. g. Makespan for Epigenomics work-
flow. h. Execution cost for Epigenomics workflow

1640 K. K. Chakravarthi et al.

Fig. 5 (continued)

It can be seen from Fig. 5a for Montage workflow under
deadline factor, CEFA gives an average lower makespan
of 28%, 11%, 22%, 13% for RCT, PSO, RTC and RWO
respectively. In a similar way, a lower makespan trend

(Fig. 5c, e, g) is observed in LIGO, CyberShake, and
Epigenomics workflows.

Figure 5b, d, f, h presents the cost incurred in the execution
of Montage, LIGO, CyberShake, and Epigenomics for RTC,

1641Cost-effective workflow scheduling approach...

RCT, PSO, RWO, and CEFA. It can be observed that the pro-
posed CEFA cost is 30%, 21%, 24% lower than RCT, PSO,
RWO respectively for Montage work flow. Similarly, a
cost reduction trend is observed in LIGO, CyberShake, and
Epigenomics.

Thus, results conclude that CEFA delivers better perfor-
mance in comparison with baseline algorithms. For hard
deadlines, CEFA is able to deliver the maximum percentage
of success rates for all experimental workflows at a lower
cost. However, as deadlines get relaxed, CEFA decreases
the execution time and cost by capitalizing on the increased
slack time.

6.3.3 Computational complexity

For deriving the computational complexity, it is assumed
that scheduled workflow W is composed of k tasks and
e edges. Since scheduled workflow W is represented as
DAG, the total number of edges in the given workflow
W is k(k − 1)/2 ≈ O

(
k2

)
. For each firefly generation,

the distance, attractiveness and objective function of
fireflies are evaluated. The extent of search in the solution
space is determined by the overall available number
of fireflies (N), along with their dimensions (d). The
complexity of the objective function is determined by
the schedule map algorithm and count of workflow tasks
(T) and resources (R). As per the formulation d=k, the
computational complexity of the recommending mechanism
is O

(
N ∗ T 2 ∗ R

)
per iteration. RCT, RTC, and IC-PCP

are based on a heuristic approach. They execute much
quicker than the proposed approach. While RCT, RTC,
and IC-PCP have a polynomial time complexity, the time
complexity of proposed CEFA is high which is similar to
other meta-heuristic algorithms [38]. Though the proposed
algorithm has got higher time complexity, it provides better
schedules than the existing RCT, RTC, PSO,RWO, and
IC-PCP algorithms. Hence this drawback can be tolerated.

7 Conclusion and future work

This paper presented a meta-heuristic Cost-Effective Firefly
based Algorithm (CEFA) which minimizes the cost of
execution under deadline constraint. Also, CEFA considers
the parameters like CPU performance variation, delay in
acquisition and termination of Virtual Machines (VMs)
to attain the proposed objectives. For simulation, the
CloudSim tool is used and the obtained results are
compared with baseline algorithms such as IC-PCP, PSO,
RWO, Robustness-Cost-Time, and Robustness-Time-Cost
on diverse real-world scientific workflows. Observations
reveal that the proposed scheme provides better results in

terms of cost-effective realistic schedules. The proposed
work can be extended in the real cloud environment. The
present scheme considers the pricing from a single cloud
service provider. This work can be extended for multiple
pricing schemes from various cloud service providers.

References

1. Arabnejad V, Bubendorfer K, Ng B (2019) Budget and deadline
aware e-science workflow scheduling in clouds. IEEE Trans Parallel
and Distrib Sys 30(1):29–44. https://doi.org/10.1109/tpds.2018.28
49396

2. Partheeban P, Kavitha V (2018) Versatile provisioning and
workflow scheduling in WaaS under cost and deadline constraints
for cloud computing. Trans Emerg Telecommun Technol 30(1).
https://doi.org/10.1002/ett.3527

3. Guo W, Lin B, Chen G, Chen Y, Liang F (2018) Cost-
driven scheduling for deadline-based workflow across multiple
clouds. IEEE Transactions on Network and Service Management
15(4):1571–1585. https://doi.org/10.1109/tnsm.2018.2872066

4. Iyenghar P, Pulvermueller E (2018) A model-driven workflow for
energy-aware scheduling analysis of IoT-enabled use cases. IEEE
Internet of Things Journal 5(6):4914–4925. https://doi.org/10.
1109/jiot.2018.2879746

5. Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K
(2013) Characterizing and profiling scientific workflows. Future
Gen Comput Sys 29(3):682–692. https://doi.org/10.1016/j.future.
2012.08.015

6. Rodriguez MA, Buyya R (2016) A taxonomy and survey on
scheduling algorithms for scientific workflows in IaaS cloud
computing environments. Concurrency and Computation: Practice
and Experience 29(8). https://doi.org/10.1002/cpe.4041

7. Gupta BB, Agrawal DP (2019) Handbook of research on cloud
computing and big data applications in IoT. Hershey, PA: IGI
Global, Engineering Science Reference (an imprint of IGI Global).
https://doi.org/10.4018/978-1-5225-8407-0

8. Gabrani N (n.d.) Formal definition of cloud computing by NIST.
Retrieved from http://www.thecloudtutorial.com/nistcloudcomput
ingdefinition.html

9. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud
computing and emerging IT platforms: vision, hype, and reality
for delivering computing as the 5th utility. Future Gen Comput
Sys 25(6):599–616. https://doi.org/10.1016/j.future.2008.12.001

10. Meena J, Kumar M, Vardhan M (2015) Efficient utilization of
commodity computers in academic institutes: a cloud computing
approach [Abstract]. Int J Comput Elect Autom Control Inform Eng
9(2)

11. Aloisio G, Cafaro M (2011) Scientific workflows in the cloud
grids, clouds and virtualization. Springer, New York

12. Olakanmi OO, Dada A (2019) An efficient privacy-preserving
approach for secure verifiable outsourced computing on untrusted
platforms. Int J Cloud Appl Comput 9(2):79–98. https://doi.org/
10.4018/ijcac.2019040105

13. Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objective
workflow scheduling in cloud. IEEE Trans Parallel Distributed
Sys 27(5):1344–1357. https://doi.org/10.1109/tpds.2015.2446459

14. Schad J, Dittrich J, Quiane-Ruiz J (2010) Runtime measurements
in the cloud. Proceedings of the VLDB Endowment 3(1-2):460–
471. https://doi.org/10.14778/1920841.1920902

15. Pooranian Z, Shojafar M, Abawajy JH, Abraham A (2015) An
efficient meta-heuristic algorithm for grid computing. J Comb
Optim 30(3):413–434

1642 K. K. Chakravarthi et al.

https://doi.org/10.1109/tpds.2018.2849396
https://doi.org/10.1109/tpds.2018.2849396
https://doi.org/10.1002/ett.3527
https://doi.org/10.1109/tnsm.2018.2872066
https://doi.org/10.1109/jiot.2018.2879746
https://doi.org/10.1109/jiot.2018.2879746
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1002/cpe.4041
https://doi.org/10.4018/978-1-5225-8407-0
http://www.thecloudtutorial.com/nistcloudcomputingdefinition.html
http://www.thecloudtutorial.com/nistcloudcomputingdefinition.html
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.4018/ijcac.2019040105
https://doi.org/10.4018/ijcac.2019040105
https://doi.org/10.1109/tpds.2015.2446459
https://doi.org/10.14778/1920841.1920902

16. Fister I, Fister I, Yang X, Brest J (2013) A comprehensive review
of firefly algorithms. Swarm and Evolutionary Computation
13:34–46. https://doi.org/10.1016/j.swevo.2013.06.001

17. Sousa T (2004) Particle swarm based data mining algorithms for
classification tasks. Parallel Computing. https://doi.org/10.1016/
s0167-8191(04)00042-0

18. Yu J, Buyya R, Tham CK (n.d.) Cost-based scheduling
of scientific workflow application on utility grids. In: First
international conference on e-science and grid computing (e-
Science’05). https://doi.org/10.1109/e-science.2005.26ce.2005.26

19. Afzal A, Darlington J, Mcgough A (2006) QoS-constrained
stochastic workflow scheduling in enterprise and scientific
grids. In: 2006 7th IEEE/ACM international conference on grid
computing. https://doi.org/10.1109/icgrid.2006.310991

20. Duan R, Prodan R, Fahringer T (2007) Performance and cost opti-
mization for multiple large-scale grid workflow applications. In:
Proceedings of the 2007 ACM/IEEE conference on supercomput-
ing - SC 07. https://doi.org/10.1145/1362622.1362639

21. Garg R, Singh AK (2013) Multi-objective workflow grid schedul-
ing using ε-fuzzy dominance sort based discrete particle swarm
optimization. J Supercomput 68(2):709–732. https://doi.org/10.
1007/s11227-013-1059-8

22. Smanchat S, Viriyapant K (2015) Taxonomies of workflow
scheduling problem and techniques in the cloud. Future Gen Com-
put Sys 52:1–12. https://doi.org/10.1016/j.future.2015.04.019

23. Alkhanak EN, Lee SP, Khan SU (2015) Cost-aware challenges
for workflow scheduling approaches in cloud computing envi-
ronments: taxonomy and opportunities. Future Gen Comput Sys
50:3–21. https://doi.org/10.1016/j.future.2015.01.007

24. Mao M, Humphrey M (2011) Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In: Proceedings
of 2011 international conference for high performance computing,
networking, storage and analysis on - SC 11. https://doi.org/10.
1145/2063384.2063449

25. Malawski M, Juve G, Deelman E, Nabrzyski J (2012) Cost
and deadline-constrained provisioning for scientific workflow
ensembles in IaaS clouds. In: 2012 international conference for
high performance computing, networking, storage and analysis.
https://doi.org/10.1109/sc.2012.38

26. Pietri I, Malawski M, Juve G, Deelman E, Nabrzyski J, Sakellariou
R (2013) Energy-constrained provisioning for scientific workflow
ensembles. In: 2013 international conference on cloud and green
computing. https://doi.org/10.1109/cgc.2013.14

27. Abrishami S, Naghibzadeh M, Epema DH (2013) Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds. Future Gen Comput Sys 29(1):158–169. https://
doi.org/10.1016/j.future.2012.05.004

28. Calheiros RN, Buyya R (2014) Meeting deadlines of scientific
workflows in public clouds with tasks replication. IEEE Trans Par-
allel Distrib Sys 25(7):1787–1796. https://doi.org/10.1109/tpds.
2013.238

29. Poola D, Garg SK, Buyya R, Yang Y, Ramamohanarao K (2014)
Robust scheduling of scientific workflows with deadline and
budget constraints in clouds. In: 2014 IEEE 28th international
conference on advanced information networking and applications.
https://doi.org/10.1109/aina.2014.105

30. Sahni J, Vidyarthi P (2018) A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment. IEEE Trans Cloud Comput 6(1):2–18. https://doi.
org/10.1109/tcc.2015.2451649

31. Chen Z, Du K, Zhan Z, Zhang J (2015) Deadline constrained
cloud computing resources scheduling for cost optimization based
on dynamic objective genetic algorithm. In: 2015 IEEE congress
on evolutionary computation (CEC). https://doi.org/10.1109/cec.
2015.7256960

32. Rodriguez MA, Buyya R (2014) Deadline based resource
provisioning and scheduling algorithm for scientific workflows on
clouds. IEEE Trans Cloud Comput 2(2):222–235. https://doi.org/
10.1109/tcc.2014.2314655

33. Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm
optimization-based heuristic for scheduling workflow applications
in cloud computing environments. In: 2010 24th IEEE inter-
national conference on advanced information networking and
applications. https://doi.org/10.1109/aina.2010.31

34. Wu Z, Ni Z, Gu L, Liu X (2010) A revised discrete
particle swarm optimization for cloud workflow scheduling. In:
2010 international conference on computational intelligence and
security. https://doi.org/10.1109/cis.2010.46

35. Huang J (2014) The workflow task scheduling algorithm based on
the GA model in the cloud computing environment. J Soft 9(4).
https://doi.org/10.4304/jsw.9.4.873-880

36. Luke S (2009) Essentials of metaheuristics: a set of undergraduate
lecture notes. Place of publication not identified: Lulu

37. Yang X (2008) Nature-inspired metaheuristic algorithms. Luniver
Press, Frome

38. Mapetu JPB, Chen Z, Kong L (2019) Low-time complexity and
low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing. Applied Intel-
ligence 49(9):3308–3330. https://doi.org/10.1007/s10489-019-
01448-x

39. Amazon Elastic Block Store (EBS) - Amazon Web Services.
(n.d.). Retrieved from http://aws.amazon.com/ebs

40. Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer
T, Epema D (2010) A performance analysis of ec2 cloud
computing services for scientific computing. Cloud Computing
Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, pp 115–131.
https://doi.org/10.1007/978-3-642-12636-9 9

41. Anwar N, Deng H (2018) Elastic scheduling of scientific
workflows under deadline constraints in cloud computing envi-
ronments. Future Internet 10(1):5. https://doi.org/10.3390/fi1001
0005

42. WorkflowGenerator- Pegasus - Pegasus Workflow Management
System. Retrieved from https://confluence.pegasus.isi.edu/

43. Bharathi S, Chervenak A, Deelman E, Mehta G, Su M, Vahi
K (2008) Characterization of scientific workflows. In: 2008
third workshop on workflows in support of large-scale science.
https://doi.org/10.1109/works.2008.4723958

44. Ma T, Buyya R (2005) Critical-path and priority based algorithms
for scheduling workflows with parameter sweep tasks on global
grids. In: 17th international symposium on computer architecture
and high-performance computing (SBAC-PAD05). https://doi.org/
10.1109/cahpc.2005.22

45. Yang X (2013) Chaos-enhanced firefly algorithm with automatic
parameter tuning. In: Shi Y (ed) Recent algorithms and
applications in swarm intelligence research. IGI Global, Hershey,
pp 125–136. https://doi.org/10.4018/978-1-4666-2479-5.ch007

46. Yang X (2009) Firefly algorithms for multimodal optimization.
Stochastic Algorithms: Foundations and Applications Lecture
Notes in Computer Science, pp 169–178. https://doi.org/10.1007/
978-3-642-04944-6 14

47. Reddy GN, Kumar SP (2019) Regressive whale optimization for
workflow scheduling in cloud computing. Int J Computat Intell
Appl 18(04):1950024. https://doi.org/10.1142/s1469026819500
24x

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1643Cost-effective workflow scheduling approach...

https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1016/s0167-8191(04)00042-0
https://doi.org/10.1016/s0167-8191(04)00042-0
https://doi.org/10.1109/e-science.2005.26ce.2005.26
https://doi.org/10.1109/icgrid.2006.310991
https://doi.org/10.1145/1362622.1362639
https://doi.org/10.1007/s11227-013-1059-8
https://doi.org/10.1007/s11227-013-1059-8
https://doi.org/10.1016/j.future.2015.04.019
https://doi.org/10.1016/j.future.2015.01.007
https://doi.org/10.1145/2063384.2063449
https://doi.org/10.1145/2063384.2063449
https://doi.org/10.1109/sc.2012.38
https://doi.org/10.1109/cgc.2013.14
https://doi.org/10.1016/j.future.2012.05.004
https://doi.org/10.1016/j.future.2012.05.004
https://doi.org/10.1109/tpds.2013.238
https://doi.org/10.1109/tpds.2013.238
https://doi.org/10.1109/aina.2014.105
https://doi.org/10.1109/tcc.2015.2451649
https://doi.org/10.1109/tcc.2015.2451649
https://doi.org/10.1109/cec.2015.7256960
https://doi.org/10.1109/cec.2015.7256960
https://doi.org/10.1109/tcc.2014.2314655
https://doi.org/10.1109/tcc.2014.2314655
https://doi.org/10.1109/aina.2010.31
https://doi.org/10.1109/cis.2010.46
https://doi.org/10.4304/jsw.9.4.873-880
https://doi.org/10.1007/s10489-019-01448-x
https://doi.org/10.1007/s10489-019-01448-x
http://aws.amazon.com/ebs
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.3390/fi10010005
https://doi.org/10.3390/fi10010005
https://confluence.pegasus.isi.edu/
https://doi.org/10.1109/works.2008.4723958
https://doi.org/10.1109/cahpc.2005.22
https://doi.org/10.1109/cahpc.2005.22
https://doi.org/10.4018/978-1-4666-2479-5.ch007
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1142/s146902681950024x
https://doi.org/10.1142/s146902681950024x

Koneti Kalyan Chakravarthi
is currently working as Lead
Quality Engineer in Caterpil-
lar India Pvt Ltd, Chennai,
India. He received Mas-
ter’s degree from Jawaharlal
Nehru Technological Univer-
sity, Anantapur, India. His
research interest includes
Software Engineering, Cloud
Computing, and Software
Quality.

Dr. L. Shyamala is currently
working as Assistant Profes-
sor in Vellore Institute of
Technology, Chennai, India.
Her research interest includes
Software Engineering, Image
Processing, Cloud Computing,
and Software Quality.

Dr. V. Vaidehi has done her
BE in ECE from College of
Engineering, Guindy, Univer-
sity of Madras, ME Applied
Electronics from MIT and
Ph.D Electronics Engineering
from MIT. She has joined
Madras Institute of Technol-
ogy, Anna University in 1982
after serving as Scientific
Assistant in I.I.Sc, Bangalore.

In MIT, She has served
as Head-Computer Centre,
Member Board of Studies,
Member - Academic Council,
Head- Electronics Engineer-

ing, Head- Computer Technology, and Head-Information Technology,
Director of AU-KBC Research Center and Chairman of Faculty
of Information and Communication Engineering, Anna University.
She has served as Senior Professor and Dean School of Comput-
ing Science and Engineering in VIT, Chennai. Currently she is the
Vice-Chancellor of Mother Teresa Women’s University, Kodaikanal.

She has executed several funded research projects and published
several research papers in reputed international journals and confer-
ences. She has received several awards. Her areas of interest are
Networks, Data Mining, and Image processing.

1644 K. K. Chakravarthi et al.

	Cost-effective workflow scheduling approach...
	Abstract
	Introduction
	Related work
	Modeling and problem formulation
	Virtual machine modeling
	Workflow modeling
	Problem formulation

	Firefly algorithm
	Inspiration
	Firefly evaluation
	Distance
	Attractiveness
	Movement
	Efficacy of firefly algorithm

	Proposed firefly based workflow scheduling
	Map between FA and workflow scheduling
	Firefly modelling
	Schedule generation
	Initial population

	Performance evaluation
	Experimental workflows
	Experimental settings
	Results analysis
	Evaluation of deadline constraints
	Makespan and cost evaluation (TET and TEC)
	Computational complexity

	Conclusion and future work
	References

