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Abstract
Multi-scale convolution can be used in a deep neural network (DNN) to obtain a set of features in parallel with different
perceptive fields, which is beneficial to reduce network depth and lower training difficulty. Also, the attention mechanism has
great advantages to strengthen representation power of a DNN. In this paper, we propose an attention augmented multi-scale
network (AAMN) for single image super-resolution (SISR), in which deep features from different scales are discriminatively
aggregated to improve performance. Specifically, the statistics of features at different scales are first computed by global
average pooling operation, and then used as a guidance to learn the optimal weight allocation for the subsequent feature
recalibration and aggregation. Meanwhile, we adopt feature fusion at two levels to further boost reconstruction power, one of
which is intra-group local hierarchical feature fusion (LHFF), and the other is inter-group global hierarchical feature fusion
(GHFF). Extensive experiments on public standard datasets indicate the superiority of our AAMN over the state-of-the-art
models, in terms of not only quantitative and qualitative evaluation but also model complexity and efficiency.

Keywords Single image super-resolution · Attention mechanism · Multi-scale convolution · Feature recalibration and
aggregation · Local hierarchical feature fusion · Global hierarchical feature fusion.

1 Introduction

Single Image Super-Resolution (SISR), which works to
construct a high-quality high-resolution (HR) image based
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on a corresponding low-resolution (LR) one, has attracted
increasing attention in both academia and industry. With
an efficient and cost-saving SISR technology, the obtained
HR image is expected to equip itself with pleasing visual
comfort and detailed information, which is needed in many
fields, such as security and surveillance imaging [56],
medical or satellite imaging [27, 44] etc. There could be
many super-resolution results for a given LR one due to the
lack of information, thus SISR is a challenging and ill-posed
problem. So far, a large number of SISR schemes were
proposed, which are generally classified as interpolation-
based [3, 6, 29, 34], reconstruction-based [7, 53] and
learning-based methods [2, 9–11, 20, 23, 37–39, 49, 51].

Recently, deep convolutional neural networks (DCNNs)
are widely favored to solve the ill-posed SISR problem,
due to the excellent representation ability of DCNNs. The
DCNNs-based approaches are characterized by data-driven
modeling a non-linear relationship between LR image and
its HR counterpart for the optimal solution, which have
shown great superiority over the traditional schemes in
terms of both image recovery quality and speed. Dong
et al. [9] first introduced a shollow-layer CNN based method
(SRCNN) for SISR reconstruction leading to deep learning-
based SISR methods. Indeed, an increasing number of deep
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architectures are proposed successively. On one hand, some
of these learning-based methods focus on wider or deeper
network designs to improve the SISR performance. With a
residual connection, VDSR [20] holds larger receptive fields
to learn more information from an LR image than SRCNN
[9]. Both DRCN [21] and DRRN [41] adopt a recursive-
supervision structure to expand network depth, which can
extract more complicated features and efficiently control
the number of parameters. Lim et al. [30] proposed a very
deep model (EDSR) by repeating multiple residual blocks
monotonously for better characterization power. On the
other hand, features of different phases along network depth
can be layered, and combined to offer benefits for many
high-level vision tasks [16, 17, 50]. Along this direction,
some researchers introduced multi-path jump connections
to combine features of different layers for SISR, e.g.,
DCSCN [47], SRDenseNet [43], RDN [55] and SRDCNN
[23]. Although increasing network depth and introducing
dense skip connections of layered features can significantly
improve performance, it can also cause problems. First,
deepening network could suffer from training difficulty
with the increased number of parameters. Second, over-
dense skip connections would make networks too complex
to be practical due to the resultant slow speed and heavy
memory burden.

In a deep network design, an important consideration
for increasing the depth of network is to obtain a wider
range of reference information. To reduce network depth,
multi-scale methods such as GoogleNet [40], have attracted
attention. With a similar multi-branch structure, Li et al.
[28] designed a residual block (MSRB) to extract features
on different scales, which can yield more effective results
with a shallower network than most deeper ones. Similarly,
MSFF [13] is a compressed multi-scale fusion network with
structural sparsity, taking five branches to extract rich scale
information by different kernel sizes. Also, Qin et al. [36]
constructed a multi-scale feature fusion block, in which
multi-scale features from four streams are progressively
integrated to work cooperatively. The multi-stream structure
not only captures affluent scale information to deal well
with objects of varying sizes in an image, but also helps
reduce the network complexity and speed up the model
training while improving reconstruction quality.

Another point that needs to be noted in learning-based
methods is that in a deep network there is not only
redundancy of information, but also different degrees of
importance for features from different channels and scales.
How to effectively harness these features is critical to
achieve high performance. Introducing an attention mech-
anism is an efficient solution to address this issue. Zhang
et al. [54] constructed a very deep residual-in-residual net-
work (e.g., over 400 layers), by interpolating an attention
structure to selectively retain or discard feature channels

under the same scale. Instead of first-order statistics in
RCAN [54], Dai et.al [8] exploited the second-order prop-
erties to filter features, and employ region-level non-local
operations to capture long-range context dependencies.

Based on the effectiveness of the multi-scale network
in reducing network complexity and that of attentional
mechanism in features harness, here we propose an attention
augmented multi-scale network (AAMN) for SISR, in
which the attention strategy is adopted to discriminatively
aggregate the features from different scales. The proposed
AAMN exploits global average pooling to compute the
statistics of features on different scales, all of which
are further combined as a guidance to learn the optimal
weight allocation for the subsequent feature recalibration
and aggregation. Meanwhile, a two-level feature fusion
technique is employed to further boost reconstruction power
of the network, including intra-group local hierarchical
feature fusion (LHFF) and inter-group global hierarchical
feature fusion (GHFF) respectively. As presented in Fig. 1,
the proposed AAMN can achieve 0.14 dB performance
gain relative to MSRN [28] with the roughly same setting,
or 0.20 dB gain with the same size of MSRN. Extensive
experiments on public standard datasets show that the
proposed AAMN can obtain comparable results as popular
EDSR [30] and RDN [55], while parameters of about 85%
and 72% are reduced, respectively. This proves that our
AAMN can take advantage of multi-scale and attention
strategies for accurate reconstruction with a relatively
lightweight network.

Our main contributions are listed as follows:

– An attention augmented multi-scale network (AAMN)
for SISR is proposed. Benefiting from the multi-scale
and attention strategies, the AAMN shows superiority
in balancing performance and complexity.
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Fig. 1 Comparison in terms of model size and quantitative results with
the state-of-the-art methods (x4 on Set14)
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– The attention strategy is incoperated into the multi-scale
network to discriminatively and effectively aggregate
features from different scales and improve the super-
resolution performance.

– Extensive experimental results on public standard
datasets demonstrate that the proposed AAMN is
competitive when compared to the state of the art
algorithms, especially obtaining results comparable
to that with EDSR and RDN, while the number of
parameters is reduced by 85% and 72%, respectively.

2 Related work

Recently, SISR technology has drawn increasing attention
from different domains for its active applications and
impressive performance. SISR can mainly be grouped into
two parts: traditional methods and data-driven learning
methods. Here we briefly focus on the multi-scale strategy
based SISR methods and attention mechanism, to which our
proposed network relates.

2.1 Multi-scale SISRmodels

Multi-scale features are defined generally as ones obtained
by convolution kernels of varying sizes, which are different
from MDSR [30], where scales refer to the input with
multiple sizes. Scale features can be roundly grouped into
two categories: features of layers with different depths, and
those of multi-branches with various kernel sizes.

On one hand, recent DCNNs-based SISR methods
mostly focus on gradually widening or deepening network
arcgitechtures to increase SR reconstruction ability, e.g.,
VDSR [20], DRCN [21], DRRN [41] and EDSR [30].
Since features along network depth have different receptive
fields, they can be regarded as scale features, and
are usually named as hierarchical features [55]. Hence,
integrating them by multi-path jump connections can
either promote information transfer or improve multi-
level joint characterization, such as DenseNet [18]. For
SISR, Tai et al. [42] proposed a memory block, and
assemble outputs from different recursive units followed
by a gate unit to maintain a long-term memory. RDN [55]
densely reused features locally and globaly to enable full
feature utilization. Similarily, SRDCNN [23] contains many
densely-connected modules to enhance usage of layered
features. Further, sharing the similar connected pattern as
DLA [50] in a high-level task, Ma et al. [31] presented
a dense discriminative network, resorting to the attention
mechanism to gradually fuse features in a tree style.

On the other hand, multi-scale features are usually
analyzed in the independent multi-stream network, such
as Inception [40]. Fan et al. [13] designed a network

(MSFF) for SISR, in which each MSFF module serves as a
multi-scale feature extractor to help recover high-frequency
details. MSRN [28] introduces two filter sizes (such as
3 × 3, 5 × 5) in each block to adaptively extract features
on different scales via two branches. MSRN exceeds quite
a few methods in quantitative performance, and with lower
complexity. Wang et al. [46] presented a new way for
up-sampling, in which multiple paths with different scale
kernels are applied to predict many HR images, and each
scale branch would be removed or preserved by a learned
weight according to its contribution. Inspired by MSRN,
Qin et al. [36] suggested a basic block, employing four
intertwined fused paths to explore texture structures. With
a multi-scale concept, Wan et al. [45] designed a new
module, utilizing up-sampling layers to progressively fuse
feature maps of hierarchy. However, these ways treat scale
information from paralleled branches equally, neglecting to
their dissimilarities and redundancy.

2.2 Attentionmechanism for fusion

In the visual perception of human, due to limited capability
of processing the entire field of view, humans would pay
orientated attention to specific areas to favor information
which is needed first. Then, this information is used to
guide next focusing points. Inspired by such an idea, many
attempts were made to selectively focus on the most useful
information for different vision tasks, including image
classification, image generation, lip reading and semantic
segmentation [12]. Hu et al. [15] constructed a “Squeeze-
and- Excitation” (SE) block to readjust features of different
channels for enhanced discriminative power of CNN. For
saliency detection, Kuen et al. [24] incorporated attention
idea into a recurrent structure, employing an iterative way
to find sub-regions for gradual saliency refinement. The
attention has been demonstrated effectiveness in guiding
feature learning, and becomes important in the SISR field.
Zhang et al. [54] exploited feature correlations by the
attention mechanism like in the SE block [15], to emphasize
the informative features and filter useless ones. Inspired by
this, Dai et al. [8] utilized higher-order feature statistics for
feature selection. Bai et al. [48] proposed a attention-based
way to adjust the original convolution. However, most of
these attention-based methods just deal with single-scale
features, lacking rich information, and suffer from high
model complexity and unaffordable computing cost, which
hinder their real applications.

3 Proposed AAMNmethod

In this paper, we propose an attention augmented multi-
scale network (AAMN) for SISR, employing an attention-
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driven strategy to guide feature selection and aggregation
among multiple branches. Specifically, we synthesize
information of more than one scale to reasonably refine
features at each scale, instead of that of a single scale.
By this way, we strenthen the reconstruction ability of
our network to an extreme while with low complexity.
Meanwhile, a two-level fusion technique is employed to
further boost reconstruction power of AAMN, including
intra-group local hierarchical feature fusion (LHFF) and
inter-group global hierarchical feature fusion (GHFF). We
first give an overall description for the proposed AAMN
accompanying with an optimization target, and further
analyze its modules in detail.

3.1 Overall network framework

As shown in Fig. 2, the proposed AAMN pipeline mainly
consists of four parts, namely shallow features extraction
stage (SFES), local information collection group (LICG)
based deep feature extraction stage (DFES), multi-level
feature fusion stage (MFFS) and reconstruction stage (RS).
All parts cooperate well to take full advanyage of features
with various perceptive fields to achieve an accurate SISR
reconstruction. Given ILR and OSR as input and output of
AAMN, which are an LR image and the predicted SR image
respectively. Similar to [19], we take a convolutional layer
to obtain shallow features H0, which can be used for deep
feature extraction and auxiliary global residual connection
(GRC). Formally, we have

H0 = FSFES(ILR) (1)

where FSFES denotes a convolution operation. Then, H0

is fed into the next deep feature extraction stage (DFES)
to explore complicated features, which involves G local
information collection groups (LICGs). The output of the
g-th LICG Hg can be formulated as

Hg = FLICG(Hg−1) (2)

where FLICG denotes the operation of LICG, and g =
1, 2, ..., G. Hierarchical information at different stages
contributes to the final reconstructed result. Hence, we
globally merge low-level and high-level information from
all LICGs in MFFS (denoted as FMFFS). The final deep
features HDF generated by the MFFS can be expressed as

HDF = FMFFS(H0, H1, ..., Hg, ..., HG) (3)

After the deep feature generation, it is the turn of the
reconstruction stage to convert the features into the super-
resolution (SR) image. Following [55], we choose a sub-
pixel layer [39] followed by a convolution (Conv) layer
to upscale features HDF into a larger and better SR
image, whose size matches that of the target (HR image).
Consequently, the restored SR image OSR from our network
can be discribed as

OSR = FRS(HDF ) = FAAMN(ILR) (4)

where FRS and FAAMN are functions of reconstruction
stage (RS) and our AAMN respectively.

We denote the target HR image as OHR and choose the
L1 loss [30] to optimize our AAMN for fair contrast, instead
of L2 loss [41] and perceptual loss [26]. Given N pairs of
images as our training dataset, which can be denoted as
{I i

LR , Oi
HR}Ni=1, where a pair of images consists of a LR

input and its HR counterpart. The ultimate optimizing target
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is defined as

L(�) = 1

N

N∑

i=1

∥∥∥Oi
SR − Oi

HR

∥∥∥
1

= 1

N

N∑

i=1

∥∥∥FAAMN(I i
LR) − Oi

HR

∥∥∥
1

(5)

where Oi
SR refers to the predicted SR image for

the corresponding I i
LR , and � represents the learnable

parameters of AAMN.

3.2 Local information collection group (LICG)

Hierarchical features play an irreplaceable role in low-level
tasks (e.g., SISR) [55], so we construct a local information
collection group (LICG) as a basic module for deep feature
extraction stage (DFES). The LICG fully assembles features
under different receptive fields from different stages using
an intra-group local hierarchical feature fusion (LHFF)
technology. As is shown in Fig. 2, the LICG contains
three discriminatively scale aggregating blocks (DSABs)
followed by a local residual connection (LRC). We use the
subscript g to represent the g-th LICG. Let Hg−1 and Hg be
the input and output of LICG. Let Hg,m be the output of the
m-th DSAB in LICG, and the outputs of three blocks can be
respectively formulated as

Hg,1 = FDSAB,1(Hg−1)

Hg,2 = FDSAB,2(Hg,1)

Hg,3 = FDSAB,3(Hg,2)

(6)

where FDSAB,m (m = 1, 2, 3) denotes the m-th DSAB block.
To cover various scale features of hierarchy, we perform a
local hierarchical feature fusion (LHFF) operation for all
the outputs mentioned above by skip connections within the
LICG. Thus, the output of LHFF is formulated as:

HL,g = FLHFF (Hg,1, Hg,2,Hg,3) = W1×1([Hg,1, Hg,2,Hg,3]) (7)

where HL,g stands for the output of LFHH, and W1×1

denotes a 1 × 1 convolution. ([Hg,1, Hg,2, Hg,3]) refers to
the concatenated output of feature maps generated by three
DSABs. Then, we resort to a local residual connection
(LRC) to save the output of the g-th LICG as

Hg = FLICG(Hg−1) = Hg−1 + HL,g (8)

The LRC not only lowers training difficulty of the deep
network but also allows a direct flow of low-frequency
information from LR images.

The LICG can exploit and unite scale features of different
levels, which is conducive to further enhance the multi-
scale representation power of AAMN. Compared to multi-
scale residual blocks in MSRN [28], our LICG captures
wider-range dependencies of images by stacking DSABs,
and fully harnesses scale information of hierarchy by skip
connections. Different from RDN [55], which connects
multiple results from simple Conv layers, the LICG aims
to collect outputs of multi-scale residual blocks (DSABs)

for information aggregation. In addition, although there
is no dense and direct access from the preceding layer
to all the subsequent layers as in RDN, the LICG also
enables sufficient information flow and supplement by
combination of residual connections and skip connections
at a lower computational complexity. Also, instead of
repeating general residual blocks simply as in RCAN [54],
our LICG takes the multi-branch residual block as a basic
module to capture more scale information of an image,
and collects outputs of blocks for local fusion to fully
reuse rich and hierarchical features. Before making a further
step towards the discriminatively scale aggregating blocks
(DSABs) to prove advantages of LICG, let us introduce the
attention mechanism simply.

3.3 Attentionmechanism (AM)

To select the most effective features in a full image,
the global information is needed as a guidance to attach
corresponding weights to features in accordance of their
contributions. Due to the local operation in CNN, each
output value can not summarize the holistic dependencies of
the whole image. Let the input be X = [x1, ..., xc, ..., xC],
which contains C feature maps with dimension of H ×
W . The attention mechanism is described in Fig. 3. In
the first step, a global average pooling [15] is applied to
obtain the global statistics, which are denoted as Z =
[z1, ..., zc, ..., zC]. Then, the c-th element of Z is defined as

zc = FGAP (xc) = 1

H × W

H∑

i=1

W∑

j=1

xc(i, j) (9)

where xc(i, j) is the value at the position of (i, j) in the c-
th feature map xc , with FGAP denoting a global average
pooling (GAP) operation. Next, we model the nonlinear
interaction and non-mutually-exclusive relationship among
different feature channels, i.e., an attention learning (AL)
process. The operation can be formulated as

W = FAL(Z) = s(W2δ(W1Z)) (10)

where FAL means an AL process to learn the appropriate
weight for each channel, and s and δ are the sigmoid
function and ReLU function [35] respectively. The W1 and
W2 are parameters of two full connected (FC) layers. The
sigmoid gating allows a selection of multiple important
channels, not a one-hot activation [15]. Assume that Z has

C channels. The output of the first FC layer has
C

r
channels

(r is a reduction ratio), and that of the second is back to C

channels, to reduce model complexity. Finally, we apply the
learned weight set W to reweight the input, so that the c-th
feature map yc of output Y is computed by

yc = wcxc (11)

939Attention augmented multi-scale network for single image super-resolution



Fig. 3 Attention module (AM)
where � denotes element-wise
product
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where xc and wc mean the c-th map of input X and
the corresponding weight factor, respectively. By this way,
the input is rescaled adaptively to focus on the important
features and neglect the others.

3.4 Discriminatively scale aggregating blocks
(DSABs)

Now, we go deep into the discriminative scale aggregation
for three different blocks. First, we combine three convo-
lutional kernels (e.g., 3 × 3, 5 × 5, and 7 × 7) in pairs
into triplicates, which are used for three discriminatively
scale aggregating blocks (DSABs) respectively. Then, in
each block two paralleled branches are utilized to gener-
ate features with different perceptive fields, as shown in
Fig. 2. After that, we use an attention-driven strategy to dis-
tinctively aggregate scale features. To reduce the number of
parameters, we replace the kernel of 5 × 5 with two kernels
of 3 × 3, and the kernel of 7 × 7 with three 3 × 3.

Taking the first discriminatively scale aggregating block
(DSAB 1) in the g-th LICG as an example (see Fig. 2 ),
in which the input is given as Hg−1. The block consists
of two parts: multi-scale feature extraction unit (MFEU)
and discriminatively aggregating unit (DAU) based on the
attention mechanism (Fig. 3). DSAB 1 mainly serves as a
merger of information produced by convolutional kernels of
3 × 3 and 5 × 5. The outputs of MFEU can be computed by

HMFEU,3 = FMFEU,3(Hg−1)

HMFEU,5 = FMFEU,5(Hg−1)
(12)

where HMFEU,3 and HMFEU,5 denote scale features from
two paths respectively, with FMFEU,3 and FMFEU,5 being
the corresponding functions. The multi-scale structure is
capable of capturing more comprehensive structural and
contextual information.

Dealing with all features equally limits the discriminative
learning ability of CNNs, and leads to unbalanced source
allocation. Therefore, a DAU (Fig. 4) is used to fuse
scale features according to their contribution indexes. We
first adaptively assign proper weights to different scales
for feature selection, and then fuse these recalibrated
features. This method contributes to strengthen aggregation
for information with different properties. First, we apply
the global average pooling (GAP) operation [15] for all
scale features to obtain their corresponding and global
compressed statistics, which can be formulated as

HGAP,3 = FGAP (HMFEU,3)

HGAP,5 = FGAP (HMFEU,5)
(13)

where HGAP,3 and HGAP,5 represent outputs of the GAP
operation for dual-path scale features. Then, these statistics
are concatenated as a guidance to allow a reasonable weight
allocation for each scale. The process is represented as

HGAP = Concate(HGAP,3, HGAP,5) (14)

HAL = FAL(HGAP ) (15)

where Concate(·) is a concatenation operation for two-
scale feature maps along channel dimension. Next, the
overall GAP outputs are feed into a series of convolution
operations called the attention learning (AL) process in
Fig. 3, which models interaction among the statistics for
different scales to decide weight values HAL. Further,
we split HAL back into two parts to recalibrate the
corresponding scale features respectively (see the split
operation and element-wise product operation in Fig. 4).
The re-adjusted features for two branches are named as
HR,3 and HR,5 , and input into a 1 × 1 convolutional layer
(W1×1) for feature aggregation and dimension reduction
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simultaneously:

HDAU = F1×1(HR,3, HR,5) = W1×1([HR,3, HR,5]) (16)

where the [HR,3, HR,5] refers to a concatenation output,
with HDAU being the output of feature aggregation for 3×3
and 5 × 5 scales. Finally, to enhance information flow and
stabilize network training, we obtain the final result with
help of a skip residual connection:

HDSAB,1 = FDSAB,1(Hg−1) = HDAU + Hg−1 (17)

where FDSAB,1 and HDSAB,1 denote the operation and
output of the first DSAB, respectively.

Here, we perform the global pooling operation (GAP) on
scale features to keep their own properties independent and
not spoiled, instead of working on the fused features as in
[31]. Then, these statistics HGAP,3 and HGAP,5 are further
concatenated as a guidance in the form of HGAP , which
synthesizes global and comprehensive information from
different scale features, and properly decides which scale
information should be removed or preserved. It is worth
noting that, different from previous attention-based SISR
models [8, 54], which mainly select important information
on single scale, we combine information from multiple
scales to guide feature selection. Furthermore, when
compared to MSRN, which fuses scale features by a naı̈ve
1×1 convolution, the proposed method has two advantages.
One is that the AAMN motivates an excellent feature
selection by taking multi-branch information as a guide to
learn weight allocation for each scale. The other one is that
the multi-path guidance provides an implicit supervision
for subsequent feature aggregation by a mechanism of
selection and fusion. In this way, we enhance discriminative
learning and multi-scale joint representation power of the
network.

As shown in Fig. 2, DSAB 2 and DSAB 3 are in charge
of merging information produced with the convolutional
kernels of 5 × 5 and 7 × 7, 3 × 3 and 7 × 7. Due
to the fact that three blocks share the same aggregating
mechanism, we will not describe the DSAB 2 and DSAB 3
further.

3.5 Multi-level feature fusion stage (MFFS)

The residual connections in LICGs help overcome gradi-
ent disappearance as network deepening, and ease training.
While the features from different LICGs are also hierar-
chical, most of which would vanish gradually when being
delivered along network depth [28]. To take full advan-
tage of low- and high-level multi-scale information for more
accurate reconstruction, we perform fusion for features from

all the LICGs followed by a global residual connection. We
first integrate these features by a 1×1 and 3×3 convolution
(FGHFF ) as HGF :

HGF = FGHFF (H1, ..., Hg, HG)

= W3×3(W1×1([H1, ..., Hg, HG])) (18)

where [H1, ..., Hg, HG] stands for a concatenation of
shallow and deep features from LICG 1, ..., g, ..., G,
W1×1 and W3×3 denote 1 × 1 and 3 × 3 convolutions
respectively. To enhance information flow and alleviate
gradient vanishment, we add a global residual connection
(GRN) to obtain the final output HDF as

HDF = HGF + H0 (19)

GHFF could make the best of layered features from
different stages to guide information restoration, which
is neglected in RCAN [54]. Furthermore, different from
global fusion in MSRN [28], AAMN uses a global residual
connection (GRC) to hold the final fused result. GRC
not only speeds up the training process but also boosts
expression power of the network. Finally, sharing similar
ways of fusion, AAMN fully utilizes features from multi-
scale residual modules, while RDN [55] devotes to reusing
those from the dense residual block (RDB). Different
from the intra-group LHFF technology within LICG,
GHFF targets an inter-group pattern. With the two-level
fusion technique, AAMN covers longer-range structural
and contextual information to ensure width and depth of
information, which further boosts reconstruction power of
the network.

4 Implementation setup

In our implementation, we set different convolution kernel
sizes for specific modules. Concretely, kernels of 3 × 3 and
5 × 5 are used in DSAB1, 5 × 5 and 7 × 7 in DSAB 2, and
3 × 3 and 7 × 7 in DSAB 3, respectively. We use the size
of 3 × 3 for other kernels except for fusion and attention
with 1 × 1.

For each LICG, we stack three DSABs followed by
a 1 × 1 filter to obtain its outputs. Similar to [54], the
reduction ratio r in the attention module is set to 16.
Furthermore, our network contains an adjustable number
of LICGs, which is denoted as G. Except for extra notes,
all layers have 64-channel filters. Finally, we choose
ESPCN [39] for reconstruction, followed by a three-
filter convolutional layer, producing the final RGB HR
image.
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Table 1 Effectiveness analysis of DAU (x4 on Set5)

Schemes DAU A DAU B DAU C (ours)

Set5 32.40 32.35 32.43

5 Experiments

5.1 Experimental settings

Our training dataset derives from 800 high-resolution (HR)
images in DIV2K [1] dataset, in which 800 images for
training, 100 images for validation, and 100 images for test.
We perform a Bicubic down-sample on 800 images at three
scale factors (×2, ×3, and ×4) to gain LR input patches,
which cooperate with HR images in pairs. All training
images are augmented by randomly rotating 90◦, 180◦, 270◦
and flipping horizontally to increase diversity of data. For
each mini-batch, we randomly crop 16 LR images with size
of 48 × 48 as inputs. Our model is optimize by Adam [22]
with β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate
is initialized 10−4 for the AAMN network, and reduced half
every 200 epochs.

For evaluation, we utilize five standard benchmark
datasets: Set5 [4], Set14 [52], BSD100 [32], Urban 100 [32]
and Manga 109 [33], which involve various characteristics
and resolutions. And with PSNR and structural similarity as
a metric, the proposed method is evaluated quantitatively on
luminance channel, namely Y part of transformed YCbCr
space, and higher value of which means more accurate
restoration. All experiments are conducted on PyTorch
platform with a NVIDIA GTX 1080Ti GPU.

5.2 Analysis of DAU and G

To verify advantages of the discriminatively aggregating
unit (DAU) on SISR reconstruction task, we design another
two variants to replace DAU, called DAU A and DAU B

for comparison. Similar to [31], DAU A first fuses the
concatenated features with 1 × 1 convolution, then apply
an attention mechanism to select the informative features.
While, based on the motivation of choosing the best
for combination, DAU B firstly select the best parts for
different scales respectively, then followed by a 1×1 fusion.
But the DAU B doesn’t consider if these best parts directly
can be fused well to work best. Consequently, the DAU C
synthesizes multi-scale information as a guidance to learn
the weight allocation for feature selection, which enables an
implicit supervision for later feature aggregation. Different
to DAU A, we compute global statistics for all the scale
features to keep their own characteristics undestroyed. With
the number of LICG as 12, Table 1 shows performance
comparison between the DAU-based and the other two
methods on Set5 in 6 × 105 iterations. It can be found that
the DAU C can obtain better results, increasing by 0.03
dB than DAU A and 0.08dB than DAU B, which shows
effectiveness of the proposed DAU.

Network depth plays a significant role on improving
reconstruction performance. Consequently, we study the
influence of number of LICGs (i.e., G), with G increasing
from 8 to 12. Figure 5 shows convergence analysis of
proposed AAMN with different G for scaling factor ×4
on Set14 and DIV2K. As depicted in graph Fig. 5, higher
value of G will contribute to performance improvement
due to the excellent non-linear abstract ability of deep
network. So does in Fig. 5, as G increasing from 8 to 12,
the loss will tend to converge more quickly. Meanwhile,
it can be observed that the learning curves will tend to
make a slight difference after G=10, which can be called
saturated phenomenon of deeper network. In addition,

Fig. 5 Convergence analysis on Set14 and DIV2K with scaling factor ×4
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Table 2 Ablation investigations of multi-scale structure (Multi-scale), discriminatively aggregating unit (DAU), local hierarchical feature fusion
(LHFF), global hierarchical feature fusion (GHFF) and global residual connection (GRC)

Schemes Base A B C D E F G H

Multi-scale × � � � � � � � �
DAU × × � × × × � � �
LHFF × × × � × × � � �
GHFF × × × × � × × � �
GRC × × × × × � × × �
PSNR 32.09 32.19 32.31 32.24 32.30 32.28 32.32 32.33 32.37

The best results on Set5 (×4) in 200 epochs are shown

although with only G=8 LICGs, the relatively shallow
AAMN is still superior to the MSRN [28], from which our
design motivation derives. In later sections, we set G=12
for all experiments to balance the performance and model
parameters.

5.3 Ablation experiments

In this section, we decompose our AAMN to explore
effectiveness of each module, namely the multi-scale
structure (Multi-scale), discriminatively aggregating unit
(DAU), intra-group local hierarchical features fusion
(LHFF), inter-group global hierarchical features fusion
(GHFF) and global residual connection (GRC). Here, the
LHFF operation is always tied with the local residual
connection (LRC) together to promote information flow.
Our base model (denoted as Base) remove these five
parts, with a single path to replace two-branch structure.
Specifically, we just reserve a largest kernel (5 × 5 path in
DSAB 1, 7×7 path in DSAB 2, and 7×7 path in DSAB 3).
So in the Base scheme, each DSAB will be a simple residual
block. Setting the number of LICG as 12, the best results on

Fig. 6 Convergence analysis on Set5 with scaling factor ×4

Set5 for scale factor ×4 in 200 epochs are summarized as
Table 2

From the Table 2, the Base network performs poorly,
just gaining PSNR=32.09 dB. Then, we add each module
to the Base respectively to investigate the effectiveness of
five modules, resulting in A, B, C D and E schemes in
Table 2. Compare to the baseline, the A increases by 0.10
dB, owing to that the multi-scale structure can capture
more abundant scale structure and provide adequate clues
to guide infommation recovery. Furthermore, the B model
with DAU makes about 0.22 dB improvements on PSNR
over the Base because of advantages of scale aggreagting
technology. Also, the other three models (C, D, E) achieve
obvious quantitative performance gains (shown from the 5-
th to 7-th column in Table 2) This is mainly because the
hierarchical feature fusion and residual learning contribute
a lot to information reuse and supplement.

Next, we further add three components (LHFF, GHFF
and GRC) to the B model successively to validate
effectiveness of combined modules, yielding F, G and H
schemes in Table 2. Comparing the results, we can find
that the model with multiple components performs better
than the rest. Among them, the AAMN obtain the best
performance when equipping with five modules, which
is also presented in Fig. 6 (visualization of convergence
process for these nine schemes on Set5). Furthermore, we
can see that the residual learning and integration of layered
features help to stabilize training process, which makes the
AAMN avoid too much PSNR fluctuation.

5.4 Model complexity

Table 3 shows comparisons with some mainstream
approaches with scaling factor of 4 on Set14, in term of
model parameters and quantitative performance. First, com-
pare to MSRN [28], by which our method is inspired.
Keeping the same number of blocks (G=12) as MSRN,
our AAMN can gain higher PSNR by a large margin (0.20
dB) with slightly less parameters. This Here, “M” denotes
million. Then, ours can achieve comparable performance
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Table 3 Comparison of model size and quantitative results

Methods SRCNN DRRN DCAN EDSR MSRN D-DBPN RDN Ours

Parameters 0.05M 0.3M 1.7 M 43M 6.4M 10M 22.3M 6.3M

PSNR/dB 27.49 28.21 28.30 28.80 28.60 28.82 28.81 28.80

The best quantitative performance is shown in bold, and the second best is underlined

as EDSR [30], D-DPBN [14] and RDN [55], while just
possess much fewer parameters and storage. So the pro-
posed method AAMN can performs better on keeping a
trade-off between the performance and model complexity,
when compared with these state-of-the-arts. Consequently,
the combination of attention and multi-scale branch allows
the AAMN to be more practical in real world.

5.5 Running time evaluations

In this section, we make comparisons with 9 typical
approaches in terms of running time to demonstrate
efficiency of AAMN. They include SRCNN [9], FSRCNN
[10], VDSR [20], LapSRN [25], DCAN [48], DRRN [41],
EDSR [30], MSRN [28] and RDN [55]. Here, we do not
consider SAN [8], which takes much time and storage
to conducted, so less suitable to real applications. The
evaluation results are exhibited in Fig. 7, which describes
the trade-off between the mean PSNR and running time
on Set5 dataset at scaling factor x4. With the comparable
performance, the AAMN is slightly slower than EDSR with
an acceptable rate, and holds a faster speed when compared
to RDN. Although not the fastest, the AAMN outperforms
the rest of methods by a large margin (at least over 0.20
dB) in reconstruction performance at relative fast inference
speed. The reason is that the AAMN need some time to
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Fig. 7 The trade-off of between the reconstructed accuracy and
running time on Set5 for scaling factor ×4. Ours is marked in red

generate global statistics and reweight the features in DAU
process. In summary, the proposed model can restore an
accurate SR image with high efficiency.

5.6 Comparisons with state-of-the-art approaches

For model evaluation, We apply Bicubic down-sampling
operation to generate LR images from the original HR
images. We compare the proposed model with 11 state-of-
the-art methods on five standard test datasets to evaluate
effectiveness of AAMN from a quantitative perspective.
These methods includes Bicubic, SRCNN [9], FSRCNN
[10], VDSR [20], DRRN [41], DCAN [48], SRDCNN [23],
LapSRN [25], EDSR [30], ,D-DPBN [14] and RDN [55].
Here, we leave out three models: MDSR [30] which takes
multi-scale patches as input, RCAN [54] whose number of
layers is quadruple of ours (i.e., over 400 layers in RCAN),
and SAN [8] which take too much time and memory.
Following [30], we apply a self-ensemble strategy to our
network, resulting in AAMN+. Table 4 reports quantitative
comparisons for scaling factors ×2, ×3 and ×4. Results of
these are gained by executing their publicly available source
codes.

As is shown in Table 4, our AAMN+ can almost
perform best on all the datasets for three scaling factors.
Although without the self-ensemble strategy, ours can still
reach comparable level as EDSR [30], D-DPBN [14], and
RDN [55], while with much lower model parameters (see
Table 3) and storage consumption. It indicates our AAMN
can hold a great balance for quantitative performance and
model complexity. Furthermore, the AAMN can obtain
more enhanced results by a remarkable margin (at least
0.08dB) on five datasets for all the scaling factors, when
compared to the rest approaches. There are mainly some
reasons accountable for this. First, the multi-scale structure
allows AAMN to explore more diverse structure and texture
dependencies, thus can provide adequate clues to guide
information restoration. Second, the scale aggregating unit
(DAU) can comprehensively synthesize features at different
scales to assign the reasonable weight value for each
scale, which can motivate these recalibrated features to
be effectively fused. Third, two-level fusion technique
(LHFF and GHFF) allows to aggregate information
from different phases maximallly for more accurate
reconstruction.
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Table 4 Quantitative results of BI degradation model for scaling factors ×2, ×3 and ×4

Methods Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic x2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN [9] x2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [10] x2 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR [20] x2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

SRDCNN [23] x2 37.26/0.9573 32.69/0.8986 31.55/0.8908 -/- -/-

LapSRN [25] x2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

DRRN [41] x2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.60/0.9736

DCAN [48] x2 37.96/0.9614 33.29/0.9160 32.15/0.9001 31.51/0.9230 -/-

EDSR [30] x2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 -/-

D-DPBN [14] x2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775

RDN [55] x2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

AAMN (Ours) x2 38.19/0.9611 33.88/0.9200 32.31/0.9013 32.86/0.9347 39.14/0.9774

AAMN+ (Ours) x2 38.24/0.9616 33.97/0.9213 32.35/0.9017 33.05/0.9360 39.32/0.9780

Bicubic x3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN [9] x3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [10] x3 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR [20] x3 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

SRDCNN [23] x3 33.59/0.9234 29.54/0.8244 28.80/0.7973 -/- -/-

LapSRN [25] x3 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

DRRN [41] x3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.42/0.9359

DCAN [48] x3 34.16/0.9263 29.94/0.8364 28.94/0.8020 27.41/0.8371 -/-

EDSR [30] x3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 -/-

D-DPBN [14] x3 -/- -/- -/- -/- -/-

RDN [55] x3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8652 34.13/0.9484

AAMN (Ours) x3 34.67/0.9292 30.53/0.8460 29.24/0.8087 28.77/0.8638 34.07/0.9477

AAMN+ (Ours) x3 34.74/0.9297 30.62/0.8472 29.29/0.8096 28.94/0.8664 34.33/0.9491

Bicubic x4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [9] x4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [10] x4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [20] x4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870

SRDCNN [23] x4 31.16/0.8788 27.85/0.7644 27.08/0.7090 -/- -/-

LapSRN [25] x4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

DRRN [41] x4 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638 29.18/0.8914

DCAN [48] x4 31.90/0.8921 28.30/0.7772 27.44/0.7340 25.57/0.7720 -/-

EDSR [30] x4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 -/-

D-DPBN [14] x4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137

RDN [55] x4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

AAMN (Ours) x4 32.45/0.8982 28.80/0.7865 27.71/0.7409 26.58/0.8013 30.92/0.9141

AAMN+ (Ours) x4 32.57/0.8995 28.86/0.7878 27.76/0.7420 26.77/0.8049 31.24/0.9171

The best performance is shown in bold, and the second best is underlined

Furthermore, we make comparisons between the pro-
posed AAMN with some similar networks with multi-scale
concept for SISR on Set14 for all scaling factors, and
the evaluations are listed in Table 5. These comparisons

contain PSRN, network depth and parameters. This net-
works include MSFF [13], MSRN [28], MSRCAN [5] and
PRNet [45]. Among these, MSFF [13] presents a com-
pressed multi-scale feature fusion module, utilizing five
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Table 5 Comparisons of Quantitative result, model depth and parameters (for x4) with some similar multi-scale methods on Set14

Method x2 x3 x4 Depth Para.

MSFF [13] 33.04/0.913 29.80/0.832 28.07/0.768 10 0.047M

MSRN [28] 33.74/0.917 30.34/0.839 28.60/0.775 25 6.4M

MSRCAN [5] 33.37/0.915 30.09/0.837 28.33/0.775 24 4.4M

PRNet [45] 34.02/0.921 30.57/0.847 28.86/0.788 232 17.5M

AAMN (Ours) 33.88/0.920 30.53/0.846 28.80/0.787 113 6.3M

The best performance is shown in bold, and the second best is underlined (PSNR /SSIM)

branches with different kernel sizes to capture rich struc-
ture information. Then, MSRN [28] introduces two paths to
adaptively detect features at different scales, and integrate
them into a multi-scale grid block by a skip connection.
MSRCAN [5] places a attention module after the fused
scale features to select key information in both LR and
HR space, which is equivalent to the mentioned DAU A
scheme (Table 1 ). And the PRNet [45] presents a new
way to gradually aggregate feature maps of hierarchy and
different sizes for image reconstruction by a series of up-
sampling operations. From the results, we can find that
the AAMN performs well with reasonable model complex-
ity. here, “M” denotes million. Especially, although keeping
a lighter architecture, the AAMN still reach a compara-
ble level as PRNet. Furthermore, involving dense-connected
up-sampling operations, the PRNet would occupy too much
storage and time. All of these prove effectiveness and
applicability of AAMN.

5.7 Qualitative analysis

To further validate the advantages of our AAMN, we
continue to make qualitative result analyses on some
representative images from the standard datasests. For the
scaling factor of ×3 and ×4, we choose two images for
comparison respectively (shown in Fig. 8 and Fig. 9). It
can be shown that the AAMN can gain a sharper and
visually comfortable HR image than all the comparative
methods. More important, benefiting from the multi-scale
structure and scale aggregating unit, the AAMN is capable
to distinguish minute details from a complex structure.
Take the image “barbara” as an example. Most of the
compared models can just predict a single direction of
the grid structure. However, our AAMN can restore a
complete grid shape. Also, for the image “img 024” and
“YumeiroCooking”, the AAMN can gain clear strip shapes,
while the rest models tend to generate artifact or twining

Fig. 8 Visual result comparisons
for “barbara” (top) from Set14
and “img 024”(bottom) from
Urban100 at scaling factor ×3.
(Zoom in for best view)
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Fig. 9 Visual result
comparisons for “img 073”
(top) from Urban100, and
“YumeiroCooking” (bottom)
from Manga109 at scaling factor
×4. (Zoom in for best view)

shapes. That is because the proposed AAMN can take rich
information to comprehensively decide which parts should
be reserved or neglected, thus not be interfered by other
scale features unexpectedly.

In addition, we also display visual comparisons with
two mainstream models (EDSR [28] and RDN [25]) in
several complicated images from Urban100 and BSD100 in
Fig. 10. For the images “img 004” and “img 092”, both the
other two models bring obvious artifacts and make more
ambiguous prediction. Moreover, when dealing with the tiny
and intricate stripes, EDSR and RDN tend to restore false
direction, as shown on the image “img 092” and “8023”.
This phenomenon may be due to that EDSR and RDN are
not good at processing more subtle structures, or make a
proper feature selection from a complicated background.
On the contrary, with the multi-scale structure and scale
aggregating module, the AAMN can (1) grasp a variety
of scale information to deal well with objects at varying
sizes in an image; (2) take global information as a guidance

to selectively keep correct scale and discard the rest,
which provides a potential supervision for effective scale
feature aggregation. Consequently, the proposed method is
qualified to distinguish error-prone shapes from complex
structures and infer accurate and sharper details, which fit
to the Ground Truth better.

6 Conclusions

In this paper, we have proposed an attention augmented
multi-scale network (AAMN), which can sufficiently and
efficiently merge features of different perceptual fields from
multiple paralleled branches. Specifically, an attention-
driven aggregating strategy is designed to fully aggregate
scale features in the discriminatively scale aggregating
block (DSAB). This way allows to synthesize multi-cale
information to allocate weights for features at different
scales, which guides subsequent feature aggregation. Also,
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Fig. 10 Visual result
comparisons for “img 004”
(top) and “img 092” (middle)
from Urban 100, and “8023”
from BSD100 (bottom) at
scaling factor ×4. (Zoom in for
best view)

a two-level fusion technique is proposed to further boost
the reconstruction power of the network, which involves
intra-group local hierarchical feature fusion (LHFF) and
inter-group global hierarchical feature fusion (GHFF). The
technique not only fully harnesses scale features of hierar-
chy within a local information collection group(LICG) but
also integrates information from all LICGs, to strengthen
information transmission and ease training difficulty. With
these advantages, AAMN boost discriminative learning
ability and multi-scale joint characterization power of
the network. Experimental results on benchmark datasets
demonstrate the superiority of our AAMN over the state-of-
the-art methods, in terms of quantitative and qualitative per-
formance, model complexity and reconstruction efficiency,
which is critically important for real-world applications.
In the future, we will extend the proposed attention-driven

aggregating strategy to the related image restoration tasks,
and explore more effective algorithms for accurate and
efficient SISR reconstruction.
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