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Abstract
In recent years, many online streaming feature selection approaches focus on flat data, which means that all data are taken
as a whole. However, in the era of big data, not only the feature space of data has unknown and evolutionary characteristics,
but also the label space of data exists hierarchical structure. To address this problem, an online streaming feature selection
framework for large-scale hierarchical classification task is proposed. The framework consists of three parts: (1) a new
hierarchical data-oriented kernelized fuzzy rough model with sibling strategy is constructed, (2) the online important feature
is selected based on feature correlation analysis, and (3) the online redundant feature is deleted based on feature redundancy.
Finally, an empirical study using several hierarchical classification data sets manifests that the proposed method outperforms
other state-of-the-art online streaming feature selection methods.
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1 Introduction

Hierarchies Taxonomies are popular for organizing large
volume data sets in various application domains [9, 15]. For
example, ImageNet is an image database organized refer to
the WordNet hierarchy (currently only the nouns), in which
hundreds and thousands of images are used to depict each
node of the hierarchy. It also has been used in many areas
including biology data [9], Wikipedia [24], geographical
data [39], and text data [3, 6, 44]. Therefore, large-scale
hierarchical classification learning is an important and
popular learning paradigm in machine learning and data
mining communities [9, 15].

From the viewpoint of biologists, the discovery of
new species is attributed to the new features detected.
Furthermore, these new features are now available in the
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existed species [50]. Therefore, the challenge of hierarchical
classification learning is that the full feature space is
unknown before learning begins. As we know, the full
feature space determines the final label category of the
samples. For example, in the diagnosis of lung cancer,
through clinical testing in a period, doctors can gradually
obtain clinical signs of lung cancer patients. Further, these
patients may need to be diagnosed with small cell lung
cancer, which is the subcategory of lung cancer. This
phenomenon suggests that it is infeasible to collect all
features of disease before diagnosis beginning. Therefore,
the dynamic characteristic of feature might make the
feature space of training data become high dimensional and
uncertain. In order to explore online knowledge discovery
with a dynamic feature space, some streaming feature
selection algorithms are proposed.

Contrary to traditional feature selection methods, stream-
ing feature assumes that all features are precomputed and
presented to a learner before feature selection takes place,
and streaming feature selection is defined as features that
flow in one by one over time whereas the number of train-
ing examples is fixed [5, 28, 48, 55–57]. For example,
hot topics are continuously changing in the social net-
work platforms such as Twitter, and Facebook. When a
popular topic appears, it accompanies with a set of new
keywords. These new keywords may act as key features
to distinguish the popular topic. At present, a number of
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existing online streaming feature selection algorithms have
been proposed. Wu et al. [48] presented an online stream-
ing feature selection framework based on Markov blanket.
Lin et al. [35] proposed a multi-label online streaming fea-
ture selection algorithm based on fuzzy mutual information.
Currently, existing online streaming feature selection algo-
rithms assume that classes are independent of each other,
and often ignore the hierarchical structure between classes
in hierarchical classification data.

Motivated by the above discussion, a new algorithm
named KFOHFS, i.e., Kernelized Fuzzy rough sets based
Online Hierarchical streaming Feature Selection, is pro-
posed in this paper, due to the kernelized fuzzy rough sets
model can effectively measure the fuzzy relation between
samples under the hierarchical label space. More specifi-
cally, KFOHFS conducts online streaming feature selection
for large-scale hierarchical classification through three intu-
itive steps. Firstly, we define a new kernelized fuzzy rough
sets model for large-scale hierarchical classification learn-
ing, and design a novel dependency function to determine
whether the candidate feature on the flow is important to
the label space relative to the selected features. Secondly,
we present two steps for online streaming feature selection,
i.e, online important feature selection, and online redundant
feature recognition, which can be used to obtain discrimi-
native features and discard redundant and useless features,
respectively. Finally, an online heuristic streaming fea-
ture selection algorithm is proposed. Extensive experiments
show the competitive performance of KFOHFS against
some state-of-the-art online streaming feature selection
algorithms.

The remainder of this paper is organized as follows.
Section II discuses related work. Section III introduces
kernelized fuzzy rough sets. In Section IV, we present
a kernelized fuzzy rough sets based online streaming
feature selection algorithm for large-scale hierarchical
classification. Our experiments on several hierarchical
classification data sets are demonstrated in Section V.
Section VI summarizes this paper and outlines the future
directions for this work.

2 Related work

In the feature selection process of large-scale hierarchical
classification learning, hierarchical class information are
helpful for selecting a feature subset [2, 7, 51]. There are
many proposed feature selection algorithms that leverage
the hierarchical class in a tree. For instance, Freeman
et al. [22] proposed a method using genetic algorithms
for combining feature selection and hierarchical classifier.
Song et al. [42] developed a feature selection algorithm for
hierarchical text classification. Zhao et al. [53] presented

a feature selection framework with recursive regularization
for hierarchical classification.

However, the above mentioned feature selection algo-
rithms assume that global features are precomputed and
presented to a learner before feature selection takes place
[4]. In many real-life applications, features may exist in
a streaming format and arrive one feature at a time. At
present, a number of existing online streaming feature
selection algorithms have been proposed. Roughly speak-
ing, according to the number of labels associated with
the instances, online streaming feature selection algorithms
can be grouped into streaming feature selection for tradi-
tional single-label learning and multi-label learning [46],
respectively.

For traditional single-label learning, Yu et al. [49] pro-
posed a scalable and accurate online feature selection
approach(SAOLA) for high dimensional data. The pro-
posed algorithm employs an online pairwise comparison
to maintain a parsimonious model over time. Nevertheless,
SAOLA ignores the hierarchical structure of the classes.
Javidi and Eskandari [29] proposed a method(SFS-RS)
from the rough set perspective via considering the prob-
lem of streamwise feature selection, in which, Rough Set
Theory is used to control the unknown feature space in
SFS-RS. Eskandari and Javidi [14] proposed a new rough
set model(OS-NRRSARA-SA) for online streaming feature
selection. However, SFS-RS and OS-NRRSARA-SA can-
not deal with numerical features and ignore the hierarchical
structure of the classes. Rahmaninia and Moradi [40] pro-
posed two online stream feature selection methods based
on mutual information(OSFSMI and OSFSMI-k, respec-
tively). However, these methods ignore the hierarchical
structure of the classes and need domain knowledge before
learning. Zhou et al. [57] proposed an online streaming
feature selection algorithm(OFS-Density) based on a new
neighborhood relation which using the density information
of the surrounding instances. OFS-Density uses a fuzzy
equal constraint for redundant analysis to make the selected
feature subset with low redundancy but ignores the hierar-
chical structure of the classes. For multi-label learning, Lin
et al. [35] proposed a multi-label online streaming feature
selection algorithm based on fuzzy mutual information. Liu
et al. [36] proposed an online multi-label streaming feature
selection algorithm based on neighborhood rough sets.

Nevertheless, all aforementioned online streaming fea-
ture selection methods assume that classes are independent
of each other and often ignore the hierarchical structure
between classes in hierarchical classification data. Moti-
vated by these factors, we utilize the hierarchical class
structure and present an online streaming feature selection
framework. Under this framework, we propose a kernelized
fuzzy rough sets based online streaming feature selection
algorithm for large-scale hierarchical classification learning.
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3 Preliminary on kernelized fuzzy rough sets

In this section, we will review the notations and definitions
of kernelized fuzzy rough sets. Fuzzy rough sets is a
feasible method used to deal with numerical and fuzzy
data [1, 17, 25, 26, 34, 37, 45]. However, how to
effectively generate fuzzy similarity relations from data
is still an important problem. Therefore, Hu et al. [27]
proposed a kernelized fuzzy rough sets (KFRS) model,
which used kernel function to measure the relation between
samples.

Formally, a kernel fuzzy approximation space can be
written as < U, A, D, k >, where U called a universe, A

is the set of condition attributes, D is the set of decision
attributes, and k is a kernel function satisfying reflexive,
symmetric, and Tcos-transitive. All samples can be divided
into subset {d1, d2, ..., dm} according to D, where m is the
number of classes. For ∀x ∈ U ,

di(x) =
{
1, x /∈ di;
0, x ∈ di .

Definition 1 [27] Given a kernel fuzzy approximation
space < U, A, D, k >, x ∈ U , k is a kernel
function satisfying reflexive, symmetric, and Tcos-transitive,
the fuzzy lower and upper approximation operators are
defined as

kSdi(x) = inf
y /∈di

(1 − k(x, y));
kθdi(x) = inf

y /∈di

(
√
1 − k2(x, y));

kT di(x) = sup
y∈di

k(x, y);
kσ di(x) = sup

y∈di

(1 − √
1 − k2(x, y)).

(1)

where T , S, θ , and σ stand for fuzzy triangular norm,
fuzzy triangular conorm, T −rediduated implication and its
dual, respectively.

For simplicity, we only use select fuzzy triangular
conorm in the rest of paper.

Definition 2 [27] Given a kernel fuzzy approximation
space < U, A, D, k >, let B ⊆ A be a subset of attributes.
The kernel fuzzy positive region of D in term of B is
defined as

POSS
B(D) =

m⋃
i=1

kSdi . (2)

Definition 3 [27] Given a kernel fuzzy approximation
space < U, A, D, k >, let B ⊆ A be a subset of attributes.

The kernel fuzzy dependency function of D in term of B is
defined as

γ S
B (D) =

|
m⋃

i=1
kSdi |

|U | . (3)

Definition 4 [27] Given a kernel fuzzy approximation
space < U, A, D, k >, let B ⊆ A be a subset of attributes.
The significance of a feature f ∈ A−B relative to D under
B is defined as

SIG(f, B, D) = γ S
B∪f (D) − γ S

B (D). (4)

The significance reflects the approximation ability of
kernel fuzzy equivalence class induced by conditional
attributes with respect to the decision attribute.

4 The proposed algorithms

4.1 Kernelized fuzzy rough sets for hierarchical
classification

There exist different categories of hierarchical classification
learning, such as graph-based and tree-based. In this paper,
we propose a kernelized fuzzy rough sets for tree-based
hierarchical classification learning. For simplicity, Table 1
describes the symbols most commonly used in this paper.
Given a tree-based hierarchical class structure kernel fuzzy
approximation space < U, C, Dtree, k >, U is a non-empty
set of samples, C is a set of condition attributes, Dtree is
the decision attribute which divides the samples into subset
{d1, d2, ..., dm} (m is the number of the classes), and a
kernel function k satisfying reflexive, symmetric, and Tcos-
transitive. In these symbols,Dtree satisfies a pair (Dtree, ≺),
where “≺” represents the “IS-A” relationship, which is the
subclass-of relationship with the following properties [31]:

(1) Asymmetry: if di ≺ dj then dj �≺ di for every di, dj ∈
Dtree;

(2) Anti-reflexivity: di �≺ di for every di ∈ Dtree;

Table 1 Description of symbols

Symbol Meaning

D, D̂ Sets of predicted and true classes

Daug , D̂aug Augmented Sets of predicted and true classes

anc(di) The set of ancestor categories of class di

des(di) The set of descendant categories of class di

sib(di) The set of sibling categories of class di

LCA(di, d̂j ) Lowest common ancestor of classes di and dj

S. Bai et al.1604



Table 2 Three strategies of positive and negative samples’ definitions

Method Positive sample Negative samples

Exclusive strategy [19] A Not A

Inclusive strategy [19] A + des(A) Not [A + des(A)]
Sibling strategy [12] A sib(A)

(3) Transitivity: if di ≺ dj and dj ≺ dk , then di ≺ dk for
every di, dj , dk ∈ Dtree.

Given the hierarchical class structure, there are several
methods used to define the set of positive (same) and
negative (different) classes for a target sample, as shown
in Table 2. Compared with other strategies, sibling strategy
based hierarchical class can reduce the search scope
of the negative samples via using the pre-defined class
hierarchy [52].

In this paper, we adopt sibling strategy as the final
strategy. For ∀x ∈ U , we have

di(x) =
{
0 x ∈ sib(di);
1 x ∈ {di}. (5)

Definition 5 Given < U, C, Dtree, k >, ∀x ∈ U , let
di be a class of samples labeled with i, the fuzzy lower
and upper approximation operators with sibling strategy are
respectively defined as

kSsib
di(x) = inf

y∈sib(di )
(1 − k(x, y));

kθ sib
di(x) = inf

y∈sib(di )

(√
1 − k2(x, y)

)
;

kT sibdi(x) = sup
y∈{di }

k

(x, y);

kσ sibdi(x) = sup
y∈{di }

(1 − √
1 − k2(x, y)).

(6)

Example 1 Considering the example data in Table 3, we
have 12 samples and each sample is characterized by a
condition attribute C. Dtree is the decision attribute which
divides the samples into subset {d1, d2, d3, d4, d5, d6}. The
tree structure of example data is shown in Fig. 1. Assume

Gaussian kernel k(x, y) = exp(−||x−y||2
σ

) is used to
compute the lower approximation with sibling strategy, and
the parameter σ is set as 0.2. For x3 with class d2, we
have sib(d2) = {d3, d4}. Then, we can compute the lower

approximation with the sibling strategy as follow:

kSsib
d2(x3) = inf

y∈sib(d2)
(1 − k(x3, y)) = inf

y∈{d3,d4}
(1 − k(x3, y))

= 1 − exp(−−||x3 − x7||
0.2

) = 0.0695

Several properties of the kernelized fuzzy rough sets for
hierarchical classification are discussed as follows.

Proposition 1 Given < U, C, Dtree, k >, let di be a class
of samples labeled with i, ∀x ∈ U , we have

kSsib
di(x) ≥ kSdi(x),

kθ sib
di(x) ≥ kθdi(x).

(7)

Proof Suppose yi is the sample with class yi ∈ sib(di) such
that kSsib

di(x) = 1 − k(x, yi). Suppose yj is the sample
with class yj ∈ Dtree\di such that kSdi(x) = 1 − k(x, yj ).
Since sib(di) ⊆ Dtree\di , we have k(x, yi) ≤ k(x, yj ).
Therefore, kSsib

di(x) ≥ kSdi(x). Analogically, we can also
obtain kθ sib

di(x) ≥ kθdi(x).

Proposition 2 Given < U, C, Dtree, k >, x ∈ U . If di is a
class of samples labeled with i and ∀x ∈ U , we have

kT sibdi(x) = kT di(x),

kσ sibdi(x) = kσ di(x).
(8)

Proof Since kT di(x) = sup
y∈di

k(x, y) and kT sibdi(x) =
sup
y∈di

k(x, y). Therefore, kT sibdi(x) = kT di(x). Analogi-

cally, kσ sibdi(x) = kσ di(x).

4.2 Kernelized fuzzy rough sets using sibling
strategy based feature evaluation

As we know, the kernelized fuzzy rough sets theory is
an effective tool for selective discriminative features, and
feature evaluation is a main step in the process of feature
selection.

Definition 6 Given < U, C, Dtree, k >, let B ⊆ C be a
subset of attributes. Dtree = {d0, d1, d2, ..., dm}, where d0 is
the root of the tree and is not the real class, and U is divided
into {d1, d2, ..., dm} by the decision attribute, where m is the

Table 3 Example data

Sample x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

C 0 0.12 0.19 0.37 0.45 0.49 0.31 0.62 0.35 0.81 0.89 0.92

Dtree d1 d1 d2 d2 d3 d3 d4 d4 d5 d5 d6 d6

Kernelized fuzzy rough sets based online streaming... 1605



Fig. 1 Tree structure of example data

number of classes. The kernel fuzzy positive region of Dtree

in term of B is defined as

POSS
Bsib(Dtree) =

m⋃
i=1

kSsib
di . (9)

Definition 7 Given < U, C, Dtree, k >, let B ⊆ C be a
subset of attributes, and U is divided into {d1, d2, ..., dm} by
the decision attribute, where m is the number of classes. The
quality of classification approximation is defined as

γ S
B sib(Dtree) = | ∪m

i=1 kSsib
di |

|U | . (10)

As kSsib
di(x) = inf

y∈sib(di )
(1 − k(x, y)), we can get

| ∪m
i=1 kSsib

di | =
|U |∑
j=1

m∑
i=1

kSsib
di(xj ). (11)

Let xj /∈ {di}, we have kSdi(xj ) = 0. We also have
kSsib

di(xj ) = 0 according to Proposition 1. Thus, we have

∑|U |
j=1

∑m
i=1 kSsib

di(xj ) = ∑|U |
j=1 kSsib

d(xj )

= ∑|U |
j=1 inf

xj ∈{d},y∈sib(d)
(1 − k(xj , y)),

(12)

where d is the class label of xj .

The coefficient of classification quality manifests the
approximation ability of the approximation space, or
the ability that the decision attribution is defined by
the granulated space, contained in feature subset [27].
The coefficient named the dependency between decision
attribute and condition attribute is able to evaluate the
condition attributes with degree γ S

B sib
(Dtree).

4.3 Online streaming feature selection
for large-scale hierarchical classification
via kernelized fuzzy rough sets

In this section, we propose a framework of online streaming
feature selection for large-scale hierarchical classification
learning. This framework consists of two-phase: online
important feature selection and online redundant feature
update. The details of the proposed method is shown in the
following sections.

4.3.1 Online important feature selection

In order to measure the significance of feature relative to
the decision attribute under the selected features, the kernel
fuzzy dependency with respect to Dtree can be employed.
Because the dependency reflects the discernibility of
feature, and the greater the dependency is, the greater the
recognition power of feature has. The significance of feature
in a tree-based hierarchical class structure using kernel
fuzzy approximation space < U, C, Dtree, k >, can be
defined as follow.

Definition 8 Given the decision attribute Dtree , St−1 is
the selected feature subset at time t − 1, and Ft is a new
arrived feature at time t . Therefore, the significance degree
of feature Ft can be defined as

SD(Ft , St−1, Dtree) =
|γ S

St−1∪Ft sib
(Dtree) − γ S

St−1 sib
(Dtree)|

|γ S
St−1 sib

(Dtree)|
.

(13)
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As γ S
St−1 sib

(Dtree) ∈ [0, 1], and γ S
St−1∪Ft sib

(Dtree) ≥
γ S
St−1 sib

(Dtree), we have SD(Ft , St−1, Dtree) ∈ [0, 1]. We
say that feature Ft is superfluous relative to the currently
selected features if SD(Ft , St−1, Dtree) = 0; Otherwise, Ft

has a positive impact on the selected features St−1.

Definition 9 Given the decision attribute Dtree, St is the
selected feature subset at time t . For each feature Fi ∈ St ,
we can calculate the dependency between Fi and Dtree,
and the mean value of all dependency values between each
feature Fi and the decision attribute Dtree can be defined as


(S, Dtree) =
∑

Fi∈St
γ S
St sib

(Dtree)

|S| . (14)

Definition 10 Assume St−1 is the selected feature subset at
time t − 1, Ft is a new feature at time t . If γ S

Ft sib
(Dtree) ≥


(St−1, Dtree), Ft is identified as an important feature with
respect to the decision attribute Dtree; Otherwise, Ft is
abandoned as a nonsignificant feature.

FromDefinitions 8 and10, the local optimum is an important
analysis process, i.e., it is meaningful for the arrival sequence
of features to choose the new feature. What is more, it is
hard to get a satisfied condition in the following features if
there is a high discriminative capacity in the former arrived
features. In addition, Ft is redundant but links with the cur-
rently selected features. Besides, Ft can not be identified
worthless since it would be much more precious compared
with its corresponding superfluous features. Accordingly, a
further online redundancy updation is necessary.

4.3.2 Online redundant feature updation

In this section, online redundant feature updation can get an
optimal feature subset by reevaluating the newly arrived feature
Ft . Ft is considered as an superfluous feature in the online
important feature selection period. Reevaluating feature
can be completed in two steps: (1) selecting the redundant
feature within new features, i.e., redundancy recognition,
and (2)ensuring the preserved features, i.e., redundancy
updation. In order to clearly filter out superfluous features,
pairwise comparisons are used to online calculate the
correlations between features and the decision attribute.

Definition 11 (Redundancy recognition) Assume St−1

is the selected feature subset at time t − 1, and an
important threshold δ is given. If ∃Fk ∈ St−1 such that
SD(Fi, Fk, Dtree) ≤ δ(0 ≤ δ ≤ 1), it proves that adding
Fi alone to Fk does not enhance the predictive capability of
Fk . That is, Fk is redundant with Fi .

Definition 12 (Redundancy updation) Assume St−1 is the
selected feature subset at time t − 1, Fk ∈ St−1, Ft is a
new feature at time t , and an important threshold δ is given.

If SD(Ft , Fk, Dtree) ≤ δ(0 ≤ δ ≤ 1) holds, then Ft

should be added into St−1 if γ S
Ft sib

(Dtree) ≥ γ S
Fk sib

(Dtree);

Otherwise, Fk should be preserved if γ S
Ft sib

(Dtree) ≤
γ S
Fk sib

(Dtree).

4.4 Kernelized Fuzzy rough sets based online
hierarchical streaming feature selection(KFOHFS)

To illustrate the process of online hierarchical streaming
feature selection, a flowchart of online streaming feature
selection framework is given in Fig. 2. Under this
framework, we propose the KFOHFS algorithm in detail, as
shown in Algorithm 2.

Kernelized fuzzy rough sets based online streaming... 1607



Fig. 2 The process of online hierarchical streaming feature selection

5 Experimental analysis

In this section, we first describe the information of data sets,
evaluation measures, and comparative methods respectively.
Then, the influence of parameter δ is reported. Moreover, we
compare the performance of four evaluation metrics among 6
algorithms to verify the effectiveness of the proposed method.
Finally, statistical analysis and time complexity analysis are
adopted to further explore the performance analysis.

5.1 Data sets and experimental settings

5.1.1 Data sets

There are six data sets in the experiments, and their basic infor-
mation is listed in Table 4. For these data sets, AWAphog [33]
has 10 classes and 9,607 samples, which is collected fromAni-
mals. Bridges [10] is from the University of Colifornia-Irvine
(UCI) library. Cifar [32] is labeled subsets of the 80 mil-
lion tiny image data sets. VOC [20] provides the vision and
machine learning communities with a standard data set of
images and annotation as well as standard evaluation pro-
cedures. DD [16] is a protein data set, which has 27 real
classes and four major structural classes. F194 [47] is also

a protein data set, which has 194 classes, which are all leaf
nodes.

5.1.2 Hierarchical classification evaluation measures

To evaluate the performance of the proposed algorithm, three
additional hierarchical classification evaluation measures,
i.e., Tree Induced Error (TIE) [13], Hierarchical-F1[11]
and Lowest Common Ancestor-F1 (LCA − F1) [43], are
introduced to describe the degree of misclassification in
hierarchical structure, respectively.

Let D and D̂ denote true classes and predicted classes of
instances respectively. Then, the augmentation of D and D̂

is defined as

Daug = D ∪ anc(D), D̂aug = D̂ ∪ anc(D̂), (15)

and the lowest common ancestor augmentation of D and D̂

is defined as

DLCA
aug =D ∪LCA(D, D̂), D̂LCA

aug =D̂ ∪LCA(D, D̂). (16)

Hierarchical Precision and Hierarchical Recall are defined as

PH = |D̂aug ∩ Daug|
|D̂aug|

, RH = |D̂aug ∩ Daug|
|Daug| . (17)

Table 4 Dataset description
Data set Type Instance Features Class Node Height

AWAphog Image 6405 252 10 17 4
Bridges Num&Sym 108 12 6 8 3
Cifar Image 50000 512 100 121 3
VOC Image 7178 1000 20 30 5
DD Protein 3625 473 27 32 3
F194 Protein 8525 473 194 202 3

S. Bai et al.1608
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Table 5 Predictive accuracy using the LSVM classifier

Data set OFS-Density OFS-A3M Fast-OSFS OSFS SAOLA KFOHFS

AWAphog 0.1867 0.2512 0.2195 0.2080 0.1781 0.3240

Bridges 0.5644 0.6256 0.6300 0.6300 0.6300 0.6311

VOC 0.2898 0.3165 0.2671 0.2594 0.2568 0.3575

DD 0.3079 0.7054 0.3707 0.3704 0.2929 0.7233

F194 0.1010 0.0879 0.2537 0.2197 0.2252 0.5051

Cifar 0.1289 0.2710 0.0747 0.0674 0.0201 0.2768

Average 0.2631 0.3763 0.3026 0.2925 0.2672 0.4696

Lowest Common Ancestor Hierarchical Precision and
Lowest Common Ancestor Hierarchical Recall are defined
as

PLCAH = |D̂LCA
aug ∩ DLCA

aug |
|D̂LCA

aug | , RLCAH = |D̂LCA
aug ∩ DLCA

aug |
|DLCA

aug | .

(18)

where | · | denotes the count of elements.
The T IE is computed by predicting class D̂i when the

true classes is Di

T IE(D, D̂) = 1

|D|
|D|∑
i=1

|EH (Di, D̂i)|, (19)

where EH (Di, D̂i) is the set of edges along the path from
Di to D̂i in the hierarchy, and | · | denotes the count of
elements.

The Hierachical −F1 is the F1-measure of hierarchical
precision and recall, and defined as

Hierachical − F1 = 2 · PH · RH

PH + RH

. (20)

The LCA − F1 is the F1-measure of lowest common
ancestor hierarchical precision and recall, and defined as

LCA − F1 = 2 · PLCAH · RLCAH

PLCAH + RLCAH

. (21)

5.1.3 Experimental settings

To explain the effectiveness of the proposed algorithm, five
state-of-the-art online streaming feature selection methods,
including OFS-Density [57], OFS-A3M [54], Fast-OSFS
[48], OSFS [48], and SAOLA [49] are selected as baselines.
For OSFS, Fast-OSFS, and SAOLA, the significance level
α is set as 0.01, as suggested in the literature. For
KFOHFS, the parameter δ is acquiescently set to 0.01%
and more details refer to Section 5.2. Besides, the basic
classifier LSVM is used to evaluate the classification
performance of all feature selection algorithms. Ultimately,
Predictive Accuracy, LCA−F1, Hierachical−F1, and
T IE are selected as criteria to evaluate the performance of
feature selection. Since the four criteria come from different
evaluate viewpoints, and few algorithms are superior to the
algorithms based on the above four criteria.

5.2 The influence of δ

In this section, we will analyze the influence of δ in
KFOHFS. Four values (0.01%, 0.05%, 0.1% and 0.5%) of δ

and the absolutely equivalent constraint (δ = 0) are selected
as compared objects. Fig. 3 demonstrates the experimental
results of five different δ values (0, 0.01%, 0.05%, 0.1%
and 0.5%) on these data sets (AWAphog, DD, VOC, F194),
in which, Fig. 3(e) and Fig. 3(f) represent the running
time and the mean of selected features on these data sets,
respectively.

Table 6 LCA − F1 score using the LSVM classifier (↑)
Data set OFS-Density OFS-A3M Fast-OSFS OSFS SAOLA KFOHFS

AWAphog 0.4482 0.4948 0.4712 0.4643 0.4484 0.5431

Bridges 0.7528 0.7861 0.7852 0.7852 0.7852 0.7917

VOC 0.5411 0.5605 0.5236 0.5184 0.5165 0.5882

DD 0.5743 0.8370 0.6339 0.6338 0.5786 0.8458

F194 0.4526 0.4517 0.5809 0.5553 0.5635 0.7227

Cifar 0.4352 0.5328 0.3967 0.3908 0.3559 0.5365

Average 0.534 0.6105 0.5652 0.558 0.5414 0.6713
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Table 7 Hierachical − F1 score using the LSVM classifier (↑)
Data set OFS-Density OFS-A3M Fast-OSFS OSFS SAOLA KFOHFS

AWAphog 0.5231 0.5672 0.5446 0.5391 0.5297 0.6080

Bridges 0.7852 0.8031 0.8068 0.8068 0.8068 0.8117

VOC 0.5571 0.5870 0.5300 0.5230 0.5204 0.6177

DD 0.6100 0.8703 0.6874 0.6874 0.6286 0.8760

F194 0.5048 0.5117 0.6597 0.6311 0.6438 0.7760

Cifar 0.4511 0.5515 0.4102 0.4033 0.3651 0.5551

Average 0.5719 0.6485 0.6065 0.5985 0.5824 0.7074

From Fig. 3, we have the following observations: (1)
There is no significant difference between different values
of δ. In which, δ = 0 and δ = 0.01% get the best
performance in three data sets (AWAphog, DD, F194), and
δ = 0.01% gets the best performance in all data sets; (2)
With the augment of values of δ, the corresponding running
time fleetly increases in two data sets (DD, F194); (3) For
the number of selected features, δ = 0 selects more features
than others, which denotes some redundant features are
caused by the exactly equal constraint.

In summary, the exactly equal restriction is able
to eliminate redundant features and improve predictive
accuracy. Therefore, in the following experiments, we set
δ = 0.01%.

5.3 Performance analysis on evaluationmeasures

In this section, we group experiments into two parts:
(1) We make comparison on the performance of four
evaluation metrics (Predictive Accuracy, LCA − F1,
Hierachical − F1, and T IE) among OFS-Density, OFS-
A3M, Fast-OSFS, OSFS, SAOLA, and KFOHFS; (2) Based
on the statistical analysis in the comparison algorithms, we
analyze performance in a systematic way.

Tables 5-8 show the performance of OFS-Density, OFS-
A3M, Fast-OSFS, OSFS, SAOLA, and KFOHFS with
respect to four evaluation metrics. Among these tables, bold
font embodies the optimum performance of each data set,

italics shows the average performance of each algorithm
on all data sets, ↑ manifests the larger the better, and
↓ demonstrates the smaller the better, respectively. The
experiments show that, in all four evaluation measures,
KFOHFS dramatically outperforms other online streaming
feature selection algorithms for all datasets.

The Friedman test [21] and Bonferroni-Dunn test [18]
are adopted to further explore the performance analysis over
the six feature selection algorithms. Given k comparing
algorithms and N data sets, the average rank of algorithm
j on all data sets is Rj = 1

N

∑N
i=1 r

j
i , where r

j
i is the

rank of the j -th algorithm on the i-th data set. Under the
null-hypothesis, the Friedman statistic following a Fisher
distribution with (k − 1) and (k − 1)(N − 1) degrees of
freedom can be defined as

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

,

where χ2
F = 12N

k(k + 1)

(
k∑

i=1

R2
i − k(k + 1)2

4

)
(22)

Table 9 presents the Friedman statistic FF on different
evaluation metrics and the corresponding critical values. In
accordance with Table 9, the null hypothesis of “equal”
performance among all algorithms is obviously rejected
on all different evaluation measures at significance level
α = 0.10. Afterwards, we select given post-hoc tests, such

Table 8 TIE score using the LSVM classifier (↓)
Data set OFS-Density OFS-A3M Fast-OSFS OSFS SAOLA KFOHFS

AWAphog 3.8151 3.4626 3.6434 3.6868 3.7627 3.1363

Bridges 1.1389 1.0000 1.0093 1.0093 1.0093 0.9722

VOC 2.6800 2.5632 2.7877 2.8175 2.8268 2.3980

DD 2.3399 0.7779 1.8759 1.8759 2.2284 0.7437

F194 2.9713 2.9300 2.0418 2.2133 2.1370 1.3440

Cifar 3.2936 2.6907 3.5390 3.5803 3.8094 2.6691

Average 2.7065 2.2374 2.4829 2.5305 2.6289 1.8772

Kernelized fuzzy rough sets based online streaming... 1611



Table 9 Summary of the Friedman statistics FF (k = 6, N = 6)
and the critical value on different evaluation measures(k : comparing
algorithms; N : data sets)
Evaluation measure FF critical value (α = 0.1000)

Predictive Accuracy 6.9318 2.0800

LCA − F1 7.5249

Hierachical − F1 8.9381

TIE 10.4791

as the Bonferroni-Dunn test, to further analyze the related
performance among the comparing algorithms. Here, the
difference between the average ranks of KFOHFS and one
baseline is compared with the following critical difference
(CD):

CDα = qα

√
k(k + 1)

6N
. (23)

Hence, we have qα = 2.3260 at significance level α =
0.10, and thus CD=2.5124 (k = 6, N = 6).

To visually display the relative performance of KFOHFS
and other algorithms, Fig. 4 clarifies the CD diagram
on different evaluation metrics, where the average ranks
of each comparing algorithm are signed along the axis.
From Fig. 4, we can observe that KFOHFS performs
obviously better than OFS-Density, SAOLA, and OSFS on
all evaluation measures. In conclusion, KFOHFS is not
statistically better than OFS-A3M and Fast-OSFS, but it

outperforms all competing algorithms on all data sets, due
to KFOHFS utilizes the hierarchical class information.

5.4 Time complexity analysis

To illustrate the efficiency of each algorithm, we compare
the time complexity of each algorithm (OFS-Density, OFS-
A3M, Fast-OSFS, OSFS, SAOLA) in this section. As we
know, the dependency between features is taken as the main
time complexity of KFOHFS. According to Section 4.2, the
time complexity of SSFE is O(|U |2 ·log|U |). |C| is the total
number of features. Thus, the time complexity of KFOHFS
is O(|C|2 ·|U |2 ·log|U |). The time complexity of both OFS-
Density and OFS-A3M is O(|C|2 · |U |2 · log |U |), where
|C| is the total number of features and |U | is the number
of samples. The time complexity of OSFS is O(|C|2 · k|C|),
where k|C| is all subsets of size and is less than or equal
to k(1 ≤ k ≤ |C|). The worst time complexity of Fast-
OSFS is O(|CR| · |C| · k|C|), where |CR| is the number of
all relevant features in |C|. The time complexity of SAOLA
is O(|C|2).

From the above theoretical analysis of time complexity,
it can be observed that the time complexity of OFS-Density,
OFS-A3M, and KFOHFS is equal. Compared with other
comparison algorithms, the influence of the total number
of samples should be considered in the calculation process,
which need more calculation time. Therefore, the time
complexity of Fast-OSFS, OSFS and SAOLA is relatively
optimal.

Fig. 4 Comparison of KFOHFS
(control algorithm) against other
comparing algorithms with the
Bonferroni-Dunn test
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6 Conclusions

In this paper, we presented a kernelized fuzzy rough sets
based online streaming feature selection for large-scale
hierarchical classification learning. We first used sibling
nodes as the nearest samples from different classes to gran-
ulate all instances, and define a new dependency function to
evaluate the features. Then, two phases were divided in the
proposed online hierarchical streaming feature selection,
i.e., online important feature selection and online redun-
dant feature updation. Specially, KFOHFS did not need the
domain knowledge before learning, and measured the fuzzy
relation between samples effectively. In addition, KFOHFS
took advantage of hierarchical class structure for classifica-
tion learning. Compared with the other five state-of-the-art
online streaming feature selection algorithms, KFOHFS
achieves competitive performance against all competitors
in all flat and hierarchical evaluations. However, the current
implementation of the algorithm is limited to a tree structure
of class labels. In the future, we will design online streaming
feature selection algorithms for general graph structures.
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