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Abstract
Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial
plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and
recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and
efficiently processing collected signals and providing accurate diagnosis results. Althoughmany studies have developed machine
leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to
relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In
this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence
prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a
novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest
accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the
authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of
the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing
the result with the other intelligent fault diagnosis methods.

Keywords Intelligent fault diagnosis .Bearing fault . Intelligent controller .CNN + LSTM .Deep learning . IMSbearingdataset .

CWRUbearing dataset

1 Introduction

Bearings are the essential components in rotarymachines. The
bearing fault is one of the main reasons for motor failure and
to detect the fault in primary stages can prevent great down-
time and recovery costs [1]. In recent years implementation of
M.L or D.L in many scientific fields has been drastically in-
creased. Intelligent fault detection is one of the areas which
has received wide attention and used in practical situations.
The key issue of applying M.L techniques into bearing fault

diagnosis is developing a network architecture that can get
satisfactory diagnosis performance in a relatively short time
[2].Mainly, data-driven intelligent fault detection of bearing is
conducted using signal processing approaches. These signals
are “vibration signal” or “motor current signal” that are mea-
sured using accelerometers or frequency inverters [3], respec-
tively. In the literature, the vibration signal has received more
attention due to the more accurate results [4]. To implement
M.L or D.L techniques for bearing fault detection, we need to
extract features and use them in the learning algorithm aiming
to reach the highest accuracy. Features can be categorized in
three different domains as: time-domain [5], frequency-
domain [6], or time-frequency-domain [7]. In the past decade,
M.L techniques such as k-nearest-neighbour (KNN), support-
vector-machine (SVM), and artificial-neural-network (ANN)
had been promising tools for bearing fault detection [2].
However, the output of those methods is typically acceptable
in case of relatively small-scaled-data [8]. For instance, in [9],
Yaqub et al. use KNN for bearing fault diagnosis and test a
small data-frame, they also use higher-order-cumulants
(HOC) and wavelet transform (WT) for the pre-determined
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transformation of data, nevertheless, do not reach an accept-
able accuracy. In [10], Hu et al. use SVM, in the sameway, the
data is pre-processed and the size of the data-frame is relative-
ly small.

In recent years, with the quick development of advanced
measurement techniques, massive data are collected and most
of the mentioned conventional M.L algorithms have draw-
backs to establish decision models on these data [11].
Hence, tendencies have shifted from conventional methods
to more complex ones such as the deep neural network
(DNN), the convolutional neural network (CNN), the recur-
rent neural network (RNN), etc. In [12], Eren et al. utilize a
one-dimensional convolutional neural network for time series
prediction applied to pre-processed data. Particularly, the in-
put data is filtered, decimated, and normalized to reach a better
efficiency. In [11], Zhang et al. claim to reach a high accuracy
using DNN for time sequence prediction, however, they do
not provide any architecture for their proposed DNN network.
The same issue happens in [2], whereMao et al. claim to reach
a high accuracy using a novel deep learning method.
Although, the authors provide just the training accuracy (not
the testing accuracy) and do not provide any feasible architec-
ture for their proposed network which prevents further repro-
ducibility. We could also notice some state-of-the-art articles
like [13, 14] which have simultaneously paid attention to
CNN and Long-Short-Term-Memory (LSTM) networks for
bearing fault diagnosis. However, the architecture and the
step-by-step path they undergo to reach their proposed model
are not clearly explained.

All the former efforts in bearing fault diagnosis have the
following shortcomings: 1. The features are manipulated or
selected. 2. The scale of the dataset is relatively small and
cannot cover the comprehensive data on an industrial scale.
3. The accuracies are relatively high but not enough for
counting on the outcome in industrial scale. 4. The neural
network’s architectures are barely presented and the path to
reach the claimed accuracy is not evident.

In this work we are going to use a CNN-LSTM network for
temporal sequence prediction of the data obtained in the time
domain to reach the highest accuracy in a relatively short time.
Compared to the other articles in the literature, we are not doing
any pre-processing or manipulation of the raw data. As a result,
the model can be utilized in a practical situation and extract the
real characteristic of the practical system’s signal under all cir-
cumstances. We have evaluated our proposed model by testing
two benchmark bearing datasets in the literature: Intelligent
Maintenance Systems (IMS) bearing dataset [15] which is a
run to failure raw bearing dataset measured by Centre of
Intelligent Maintenance Systems of University of Cincinnati,
and the Case Western Reserve University(CWRU) bearing
dataset [16] measured by the Bearing Data Centre of the Case
Western Reserve University. The result shows that the average
accuracy rate in the train and test datasets of the proposedmethod

outreaches the state-of-the-art articles in a relatively shorter inter-
val. Moreover, we are going to provide the architecture and the
step by step path we undergo to reach the high accuracy for our
proposed fault detection methodology.

The contribution of the following paper can be summarized
as follows:

1-Using a relatively bigger data-set for training and testing,
compared to the other papers in the literature and achieving a
higher generalization accuracy at the shortest possible time
(relatively shorter time and smaller number of epochs com-
pared to the articles in the literature).

2-A novel deep learning structure is proposed for bearing
fault diagnosis which is highly resistant to overfitting. By
applying the proposed deep learning method, this paper can
effectively utilize the time series to improve the diagnosis
accuracy and the numerical stability for the bearing fault.

3-Themodel is end-to-end and can be fed by the raw vibration
data directly. As a result, no pre-processing such as pre-
determined transformation (such as Fast Fourier Transform
(FFT) or Discrete Wavelet Transform (DWT)), manipulated fea-
ture extraction, and feature selection is required.

The paper is organized as follows. In section 2, a brief review
of CNN-LSTM and the network architecture used in this work is
presented. In section 3, we describe the test rigs, the datasets, the
fault classification and the experiments behind selecting hyper-
parameters of our proposed CRNN architecture. Section 4 is
devoted to discussion and comparison of our method with the
othermethods in the literature and finally, section 5 represents the
conclusion and the future works.

2 Method

2.1 CNN + LSTM network

CNNs are biologically inspired feed-forward ANNs which are
considered as simple computational models of the mammalian
visual cortex [17]. 2D-CNNS and 3D-CNNs are generally
used for image and video processing, while 1D-CNNs are
mainly used for audio and text recognition (as a time series
data). 1D-CNNs are perfect tools for time-series recognition
and prediction. The network have recently been used in state-
of-the-art applications such as early diagnosis, structural
health monitoring, anomaly detection and identification [18].
Considering that our data is of vibration signal (time-series
type); we are going to use 1D-CNNs. In this network, the
output of a convolutional layer (vxij ) at position x of the jth
feature map in the ith layer is denoted as follows [19]:

vxij ¼ g bij þ ∑
m

∑
Pi−1

p¼0
wp
imv

x−p
i−1ð Þm

 !
ð1Þ
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Where m indexes the feature map in the previous layer
((i − 1)th layer) connected to the current feature map; wp

im de-
notes the weight of position p in the mth feature map; Pi is the
width of the kernel toward the spectral dimension; bijis the
bias of jth feature map in the ith layer and g is the activation
function.

Regularly, after one or more CNN layers, a Pooling layer is
used which can offer invariance by reducing the resolution of
the feature maps [20]. Each pooling layer corresponds to the
previous convolutional layer. The most common pooling op-
eration is the max-pooling:

un ¼ max
1≤ j≤k

u j
n

� � ð2Þ

Where uj
n is the jth element of the nth patch, un is the sample

of the nth patch built by max-pooling and “k” is the size of the
nth patch.

LSTM networks are recurrent neural networks equipped with
a special gating mechanism that controls access to memory cells
[21]. Since the gates can prevent the rest of the network from
modifying the contents of the memory cells for multiple time
steps, LSTM networks preserve signals and propagate errors
for much longer than ordinary recurrent neural networks.
LSTM was designed by Hochreiter et al. [21] in order to model
temporal sequences and their long-range dependencies more ac-
curate than conventional RNNs. Each LSTM block consists of
three gates, namely the input gate, the forget gate, and the output
gate. Gates are a way to optionally let the information through;
they are composed out of a sigmoid activation function which
outputs numbers between zero and one:

σ tð Þ ¼ 1

1þ e−t
ð3Þ

The value of zero means nothing passes through and the
value of one means everything passes through the gate. The
equations for the gates are as the following [22]:

it ¼ σ wi ht‐1; xt½ � þ bið Þ ð4Þ
f t ¼ σ wf ht‐1; xt½ � þ bfð Þ ð5Þ
ot ¼ σ wo ht‐1; xt½ � þ boð Þ ð6Þ

Where it is the input gate, ft is the forget gate, ot is the output
gate, σ is the sigmoid activation function, wx is the weight of the
respective gate (x), ht− 1 is the output of the previous LSTM
block at time-step t-1, xt is the input at the current time-step
and bx is the biases for the respective gate (x).

The cell state vector (ct) and output vector of LSTM unit
(ht) can be calculated as the following:

ect ¼ tanh wc ht‐1; xt½ � þ bcð Þ ð7Þ
ct ¼ f t*ct−1 þ it*ect ð8Þ

ht ¼ ot*tanh ctð Þ ð9Þ

Where ect represents the candidate vector for cell state vec-
tor (how much we decide to update each state vector); tanh is
the hyperbolic tangent activation function and (⁎) denotes the
Hadamard product. In the following, a LSTM block is illus-
trated (Fig. 1):

CNN-LSTMs are used for many visual learning tasks but
are also known to be used for speech recognition and natural
language processing [23]. Moreover, CNNs and LSTM are
both powerful tools for temporal sequence prediction [24].
Handling big data or complex temporal sequence problems,
CNN-LSTMnetwork enhances accuracy and precision of pre-
dictions [25].

To explain the temporal sequence prediction, suppose we
observe a dynamical system over a temporal region represent-
ed by an M×N grid which consists of M rows and N columns.
Inside each cell in the grid, there are P measurements which
vary over time. Thus, the number of features can be represent-
ed by a tensor of size PxMxN. If the features are recorded
periodically, the dataset can be divided into samples of equal
temporal length and as a result we have a sequence of tensors
X̂1, X̂2, X̂3,…, X̂n. The temporal sequence prediction problem
is to predict the most likely kth sequence of the observation,
given the previous jthobservation by maximizing the follow-
ing conditional probability [26]:

bY tþ1;…; bY tþk

¼ argmax
X tþ1;…;X tþk

p X tþ1;…;X tþk jbX t− jþ1; bX t− jþ2;…; bX t

� �
ð10Þ

2.2 Architecture and learning method

As mentioned in the previous section, our data is recorded in
the time domain and can be categorized as time-series. Time-
series have local and global features and for a model to be
highly accurate in processing time-series, it must consider
both features at the same time. Time-series have a strong 1D
structure: variables (or pixels) that are temporally nearby are
highly correlated. Local correlations are the reasons for the
well-known advantages of extracting and combining local
features before recognizing global features [27].
Convolutional networks force the extraction of local features
by restricting the receptive fields of hidden units to be local
[27]. On the other hand, LSTMs can learn long-term depen-
dencies between two entities [28] and as a result can handle
global features. Consequently, the combination of these two
networks allows us to handle the scrutiny of the mentioned
data. It is worth mentioning that, CNNs in general, have a de-
noising property that could reduce the effect of the noise in the
learning process (LSTMs on the contrary are sensitive to
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noise) and require relatively little pre-processing compared to
the other temporal prediction methods [29]. Moreover, the
CNN-LSTMmodel is more efficient in preventing overfitting
compared to the other DNN models. Considering the men-
tioned advantages and the numerous experiments fulfilled to
find the best model that reaches the highest accuracy at the
shortest possible interval, an improved CNN-LSTM model is
chosen for bearing fault diagnosis. It must be noted that, if the
CNNs and LSTMs are displaced (the input enters to LSTM
network and CNNs afterward) not only the noise will deteri-
orate the result but also the data will be processed globally in
the first place and the local feature extraction remains
inefficient.

The raw vibration datasets or features are collected in the
time domain. The following figure represents the data struc-
ture (Fig. 2):

Where X tð Þ
i ; Y tð Þ

i represent the variables of ithbearing at time
t, D is the number of bearings (test-cases) and T is the total
test-time.

Our proposed CNN-LSTM architecture is depicted in Fig. 3.
The input of our CRNN network are tensors of equal size,
therefore, the first step is to divide the dataset into samples or
temporal sequences of equal length in order to feed them to our
CRNN model. In the next step, the features are split into train,
validation, and test sets. The hyper-parameters of the model are
obtained by minimizing the cost function (average of loss func-
tions of the entire training set). As it can be observed in Fig. 3,
the proposed architecture consists of 1D-CNNs and LSTMs
layers. The proposed network is tested in section 3 using a
big dataset (IMs bearing dataset) in order to find the optimum
hyper-parameters of which minimize the cost function effi-
ciently (the smaller datasets such as the one we select from
CWRU bearing dataset, present more accurate results due to
slighter risk of overfitting). Throughout our experiments, an
acceptable accuracy is obtained using a 1D-CNN of 84 × 84
dimensionality and an LSTM containing 24 neurons. There is
one dropout layer after each main layer, a dropout layer effec-
tively prevents overfitting by reducing the correlation between
neurons [30] (Fig. 4).

We have also used batch-normalization layers in order
to speed up and enhance the stability of network and the
accuracy of learning [31]. Batch-normalization makes net-
works robust to bad initialization of weights; reduces co-
variance shift by normalizing and scaling inputs and scale
and shift parameters to avoid losing stability of the net-
work [31]. The following equations represent a Batch-

Fig. 1 LSTM block

Fig. 2 Dataset
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Normalization transform applied to activation x over a
mini-batch [31]:

Input : mb ¼ x1……mf g ð11Þ

meanmb ¼ 1

n
∑
n

i¼1
xi ð12Þ

σ2
mb ¼

1

n
∑
n

i¼1
xi‐meanmbð Þ2 ð13Þ

bxi ¼ xi−meanmbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
mb þ ε

q ð14Þ

Output : yi ¼ γbxi þ β ¼ BNγ;β xið Þ ð15Þ

Where the input is a mini-batch of size m; γ and β are the
parameters to be learned; σ2

mb is the mini-batch variance;bx1;…:m are the normalized values.
Finally, the fully-connected layer takes advantage of sig-

moid activation. To solve the optimization problem, the
Adagrad method is used. In addition, the loss functions used
for compiling is mean-squared-logarithmic-error (MSLE).
The proposed CRNN network predicts ŷ, and using the fol-
lowingMSLE loss function, the deviation and accuracy of the
model are measured:

L y;by� �
¼ 1

N
∑
N

i¼0
log yi þ 1ð Þ‐log byi þ 1

� �� �2
ð16Þ

Fig. 4 Dropout Neural Net
Model. Left: A standard neural
net with 2 hidden layers. Right :
An example of a thinned net
produced by applying dropout to
the network on the left.Crossed
units have been dropped [30]

Fig. 3 The proposed CRNN architecture
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3 Experiments

In this section, we are going to evaluate our proposed method,
by testing it on two benchmark bearing datasets: IMS and
CWRU. In the following, we are going to describe the test rigs
used for capturing the vibration data, fault classification (la-
bels), and the raw vibration signals (features) which are used
as the input of our CRNN algorithm. The section proceeds
toward analysing the amplitude/time diagrams of the datasets,
the procedure of designing our architecture, and finally, the
accuracy/loss diagrams and confusion matrixes for each test.

3.1 IMS bearing dataset

To validate the proposed method, experimental datasets
are applied to test its performance. The first dataset is
provided by the University of Cincinnati Center of
Intelligent Maintenance Systems [8]. The experimental
apparatus is shown in Fig. 5.

As depicted in Fig. 5, there is a shaft on which four
bearings are installed. The bearings model is Rexnord
ZA-2115 double-row. Two high precision accelerometers
are connected to each bearing in Cartesian coordinates;
therefore, the vibration is measured in X and Y directions
for each bearing. The shaft is driven by an alternative
current (AC) motor which is connected to the shaft using
a conveyor belt. The shaft and bearings are under a radial
load of 2721.5 Kg imposed by a spring mechanism. The
rotation speed of the shaft is 2000 revolution per minute
(RPM). The sampling rate is set as 20 KHz and every
20,480 data points (recorded in one second) are recorded
in a single file. In every 5 or 10 min, the data is recorded
and written in files while the bearings ae rotating. Each
test consists of 2156 files. Therefore, the total number of
data-points is 44,154,880 for each test. Previous works
done on the 1st-test of IMS bearing dataset shows that

there are seven different states of health during the test
[32]:

& Early (initial run-in of the bearings).
& Normal.
& Suspect (the health seems to be deteriorating).
& Imminent failure (for bearings 1 and 2, which didn’t fail,

but were prone to damage).
& Inner race failure (bearing 3).
& Rolling element failure (bearing 4).
& Stage 2 failure (bearing 4).

The vibration signals of some states are pretty close which
cannot be distinguished by signal processing, therefore to re-
duce the calculation complexity and improve the performance
of our learning algorithm, we choose the labels with the
highest importance both in fault detection and practical situa-
tion (the other states underlie the following ones):

& Healthy (data taken from early and normal states).
& Suspected.
& Inner Race failure.
& Rolling element failure.

As discussed above, the number of data-points in the 1st-
test is pretty big and it is so time and memory consuming to
use this big dataset as the input of our learning algorithm.
Therefore, we randomly choose 30 files for each class or state
of health. In the next step, data is concatenated, labelled and
prepared to be fed to the learning algorithm. Labels are
0-(Healthy), 1-(Suspected), 2-(Inner-race-fault) and
3-(Rolling-element-fault). As explained in the previous sec-
tion we are using a CRNN network; hence, the input is sup-
posed to be sequence of tensors with equal dimensions. The
sampling rate is 20KHz and the rotation speed is 2000RPM,
so it can be calculated that there are 600 points per revolution

Fig. 5 a Image of a bearing with the connected accelerometers. b Schematic of the test rig with details

741A. Khorram et al.



(rotation period). The size of each sample is set to be a quarter
of the rotation period, which is 150 rows of data. In each row
of data, we have the vibration data of bearings in X and Y
directions. Therefore, there are 8 features in each row namely:

& X1, Y1 (measured by accelerometers connected on the first
bearing).

& X2, Y2(measured by accelerometers connected on the sec-
ond bearing).

& X3, Y3(measured by accelerometers connected on the
third bearing).

& X4, Y4 (measured by accelerometers connected on the
fourth bearing).

As a result, each sample is a tensor of (150x8x1) dimension
and the input tensor for each health state has a dimension of
(4096x150x8). The total number of samples is 16,384 with
4096 samples for each health state. The number of samples for
each class can be observed in Table 1. The Amplitude/time
diagram of the four health states is depicted in Fig. 6. As it can
be observed, each health state has a specific vibration signal
signature.

In the next step, data is split into train, validation and test sets.
To take advantage of a stateful LSTM network, the split and
batch-size selection should be performed in a way so that the

number of samples in train and test sets be integers and divisible
by the batch-size. The number of samples for all the four classes
are 16,384. Therefore, we allocate 25% of dataset to the train and
75% to the test sets and the optimum batch-size turns to be 64.

To select the best architecture for our model, different net-
works with various hyper-parameters are experimented. The
number of epochs for all the accomplished tests is set to 50
and the goal is to reach the highest training accuracy at the
shortest possible time. The simulation model is based on the
Tensorflow library in the Python. The Processor is Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz, 1992 MHz, 4
Core(s), 8 Logical Processor(s) and Physical Memory
(RAM) is 8GB.

The following tables represent part of the numerous exper-
iments we fulfilled in order to find the optimum hyper-
parameters for our proposed model:

The best result is achieved in test no.12. As can be inferred,
increasing the kernel size results in a more generalized snap-
shot of the input [33]. As can be inferred, the accuracy of the
model improves dramatically by increasing the Conv1D
hyper-parameters up to a certain level. The enhancement acts
diversely from that point on. Tests no.13 and no.14 reveal that
exaggerating the number of filters or kernel size for the
Conv1D layer, not only deteriorates the test accuracy but also
increases the calculation time dramatically. The best value for
the LSTM neurons is obtained in test no.4. In this test, the
number of LSTM neurons is modified to 24 and the accuracies
are improved clearly. Test no.5 expresses that further en-
hancement of LSTM neurons does not improve the network
performance.

In the following table, some multi-layer networks are eval-
uated to clarify the effect of additional layers on the accuracy:

In Table 3, test no.1 consists of two Conv1D layers with 32
and 16 number of filters, and kernel-size of 8 and 4 respec-
tively. Comparing the result with test no.4, in Table 2 we can

Table 1 – Number of samples and class number for each health state,
IMS dataset

State Number of samples Class (Label)

Healthy 4096 0

Suspected 4096 1

Inner-race-fault
Rolling-element-fault

4096
4096

2
3

Fig. 6 IMS Bearing Dataset, raw vibration signal for Healthy, Suspected, Inner-race-fault and Rolling-element-fault
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conclude that increasing the number of layers has a negative
effect on the accuracy. In the following, additional layers are
added to the optimum network (Test no.12 in Table 2).
Comparing the accuracy of test no.4 and no.5 in Table 3 with
test no.12 in Table 2, the negative effect of additional layers is
evident.

Finally, in the following table, the rest of hyper-parameters
(Activation functions, Loss functions, etc.) for the optimum
network are evaluated:

Throughout the numerous experiments we fulfilled (of
which only some are represented in Tables 2, 3 and 4) the
most acceptable hyper-parameters for our proposed model
are embolden in Table 2, test no.12. which contains a
conv1D layer of 84 filters with kernel size of 84, plus a

LSTM layer containing 24 neurons. The best activation
for Conv1D and Fully-connected layers are elu and sig-
moid respectively and the best keras loss/optimizer func-
tions are MSLE and Adagrad respectively. The best train
and test accuracies are 1.000 and 0.9713 respectively and
the computation time of the test iss 419 s. The schematic
of the optimum architecture is presented in Fig. 4.

The train and test accuracies/losses diagrams of the opti-
mum result on IMS dataset can be observed in Fig. 7, and the
confusion matrix for this test is depicted in Fig. 8.

As it can be observed in Fig. 8, the classifier has missed
some predictions in classes 1 and 3 or the “suspected state”
and “outer-race-fault state”. Returning to Fig. 6, the signal
diagram of the two classes are pretty close and confusing for
the CRNN model. However, considering that we have not
used any data pre-processing, data selection or manipulation,
the strength of the model in Health vs Fault state diagnosis for
this test is acceptable.

We have reached a high fault detection accuracy for IMS
bearing dataset, implementing our CRNN algorithm. In the
next step we are going to test our proposed model for the
second benchmark bearing dataset.

3.2 CWRU bearing dataset

The CWRU dataset is provided by Case Western Reserve
University Bearing Data-Center [16]. The test rig is shown
in Fig. 9.

The test rig consists of a 2-hp Reliance Electric motor,
bearing and fastened accelerometer, a torque transducer/
encoder and a dynamometer. The tested bearing is SKF
deep-groove ball bearings 6205-2RS JEM. Accelerometer is
placed at the 12 o’clock position of the motor housing. Data is
collected at 12 KHz for drive-end-bearing-experiment. Single
point fault is introduced to the test bearing using electro-
discharge machining with fault diameters of 0.53mm at the
inner raceway, rolling element and outer raceway. The

Fig. 7 IMS Bearing Dataset, train/test accuracy and loss diagrams

Fig. 8 Confusion matrix of the test on the IMS dataset
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approximate motor speed is 1750 rpm. There are 6 states of
health for this test (Table 5):

& Normal (Healthy).
& Ball Fault.
& Inner-Race-Fault.
& Outer-Race-Fault at 3 o’clock (Fault placed at the load

zone).
& Outer-Race-Fault at 6 o’clock (Fault placed orthogonal to

the load zone).
& Outer-Race-Fault at 12 o’clock (Fault placed orthogonal

to the load zone).

We choose 121,155 data-points for each state of health.
Implementing our CRNN model, the input is supposed to be
sequence of tensors with equal dimensions. Given the sam-
pling rate of 12KHz and rotation speed of 1750 rpm, there are
approximately 411 points per revolution (rotation period). We
choose the number of data-points in each sample to be 205
corresponding to half a revolution approximately, to reach the
highest train and test accuracy. The number of data-points for
each health state is also selected so that it would be divisible
by the number of data-point per sample. Therefore, each sam-
ple is a tensor of (205x1x1) dimension and the input tensor for
each health state has the dimension of (591x205x1).

The Amplitude/time diagram of the six health states is il-
lustrated in Fig. 10. As can be observed, each health state has a
specific vibration signal signature.

The samples of equal size are split into train, validation
and test sets. To take advantage of a stateful LSTM net-
work, the split and batch size selection should be per-
formed in a way so that the number of samples in train
and test sets be integers and divisible by the batch size.
The number of samples for all the six classes is 3546,
therefore, we allocate 50% of the dataset to train and
50% to test and the optimum batch-size would be 197.
Consequently, the accuracies of train and test for 50
epochs turn to be 1.0000 and 0.9977 respectively. The
calculation time for 50 epochs is 61 s.

The train and test accuracies/losses diagrams of the test on
the CWRU dataset can be observed in Fig. 11, and the confu-
sion matrix for the test is depicted in Fig. 12.

As can be observed in Fig. 12, the classifier has almost
predicted all the six classes correctly. It only missed some
predictions in classes number 4 and 5 or the “outer race
fault-6 o’clock” and “outer race fault-12 o’clock” labels.
Although returning back to Fig. 10, the signal diagrams of
the two classes are pretty close, and considering that both
faults are on the outer race, the error can be overlooked.
Taking into consideration that we have not used any data
pre-processing, data selection or manipulation, the strength
of the model in fault diagnosis for this test can be rated as
exceptional.

4 Discussion

Comparison of classification accuracies with different bearing
fault detection methods using the same benchmark datasets is
shown in Table 6.

In the literature, almost all the previous methods have used
some sort of data pre-processing. For instance, Filtering,
higher-order-cumulants (HOCs), wavelet transform (WT),
wavelet packet transform (WP). Then the best set of features
is selected from high dimensional extracted features by apply-
ing various dimension reduction techniques such as principal
component analysis. For classification of the selected features,
various classifiers have been used; although, we can observe

Fig. 9 a Image of the test rig b Schematic of the test rig with details

Table 5 – Number of samples and class number for each health state,
CWRU dataset

State Number of Samples Class(Label)

Healthy 591 0

Ball Fault 591 1

Inner-Race-Fault
Outer-Race-Fault-3 o’clock
Outer-Race-Fault-6 o’clock
Outer-Race-Fault-12 o’clock

591
591
591
591

2
3
4
5
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that over time, tendencies have shifted from simpler super-
vised learning models such as SVM and KNN to more com-
plex learning models such as CNN and DNN. The main draw-
back of almost all these studies is that they have used selected
data or manipulated features to increase the accuracy. The
manipulated features may not represent the characteristics of
the practical system’s signal under all circumstances.
Consequently, this approach limits the general applicability
of those solutions. Moreover, extracting high dimensional fea-
tures along with necessary post-processing or feature selection
methods can significantly increase the cost and computational
complexity of the whole system [12]. The next point is that,
although many studies have reported an acceptable classifica-
tion accuracy, their results have generally been limited to rel-
atively small train and test datasets. We used a relatively big-
ger data-frame of learning features compared to the other ar-

ticles mentioned in Table 6, and reached a higher accuracy,
voiding any data pre-processing or manipulation of features.
Moreover, some previous studies claimed to reach a high ac-
curacy although they did not provide their proposed network’s
architecture and the feasible way through the accuracy [2, 35].
In this paper, the network architecture of which was used to
achieve the high accuracy, and the experiments behind choos-
ing every single element of the proposed networkwas present-
ed. Consequently, the advantages of our model are: it is an
end-to-end system that has a high resistance against
overfitting, can handle big datasets at the shortest possible
time, reaches one of the highest accuracies in the literature
voiding any sort of pre-processing. In addition, the architec-
ture and step by step procedure are explained clearly which
was barely observed in the previous works fulfilled in the field
of bearing fault diagnosis.

Fig. 11 CWRU bearing dataset, train/test accuracy and loss diagram

Fig. 10 CWRU Bearing Dataset, raw vibration signal for different states
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5 Conclusion

In this work, the performance of a generic real-time induction
bearing fault diagnosis based on a newly supervised D.L ap-
proach was extensively studied. The intelligent system em-
ploys a CRNN classifier that is fed by raw time-domain fea-
tures that are reshaped in the form of tensors of time sequence.
Using the end-to-end feature extraction model, the raw bear-
ing vibration data is trained automatically and properly. The
model can diagnose the fault precisely and considering the big
dataset, in a relatively short time. Implementing the proposed

method in a practical situation and industrial-scale has the
following advantages compared to the other methods:

& Monitoring a larger and more comprehensive recorded
data because the model is highly resistant to overfitting.

& Reaching a more accurate prediction, compared to the
other articles in the literature, at a relatively shorter time
and the number of epochs.

& The model is end-to-end and can be fed by the raw vibra-
tion data directly and no data pre-processing, pre-
determined transformation (such as FFT or DWT), manip-
ulated feature extraction and feature selection is required.

& The calculation is more cost-effective compared to some
solutions containing data-pre-processing and some com-
plex deep architectures in the literature.

The CRNN classifier-based fault diagnosis system is tested
for bearing fault diagnosis using two benchmark vibration
datasets. The experimental results validate the effectiveness
and feasibility of the CRNN classifier in fault diagnosis. The
classifier achieved overall classification accuracies of 97.13%
for IMS and 99.77% for CWRU bearing datasets.
Classification results demonstrated that the CRNN model
can learn highly discriminative features directly from the
raw input sensor data.

5.1 Future work

Testing and evaluation of a GRU-LSTM network using the
collected motor current signal instead of vibration signal as
well as reducing the calculation time of the system. Plus,
working on unbalanced small scaled datasets using a novel
generative adversarial network (GAN) such as the work ful-
filled in [36] would be the future work.

Table 6 - comparison between
other methods in the literature and
our proposed model

Classifier Data pre-processing IMS test
accuracy

CWRU test accuracy

KNN [9] HOCs and WT – 91.23%

SVM [10]

SVM ensemble [10]

SVM [35]

DNN with temporal
coherence [12]

Compact 1D CNN
[36]

Deep output kernel
learning [2]

Our proposed
CRNN

WP

WP

Statistical locally linear embedding

-

Filtering-Decimation-Normalization

-

-

62.5%

-

-

94.9%

93.9%

-

0.9713

98.7% (4-classes and small
number of samples)

89.8%–100% (4-classes and
small number of Samples)

77.8–94.1% (4-classes and small
number of samples)

94.4% (provide no architecture
for their claim)

93.2%

- (provided the training accuracy
not testing accuracy)

0.9977

Fig. 12 Confusion matrix of the test on the CWRU dataset
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