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Abstract
The usefulness of metric learning in image classification has been proven and has attracted increasing attention in recent
research. In conventional metric learning, it is assumed that the source and target instances are distributed identically,
however, real-world problems may not have such an assumption. Therefore, for better classifying, we need abundant labeled
images, which are inaccessible due to the high cost of labeling. In this way, the knowledge transfer could be utilized. In
this paper, we present a metric transfer learning approach entitled as “Metric Transfer Learning via Geometric Knowledge
Embedding (MTL-GKE)” to actuate metric learning in transfer learning. Specifically, we learn two projection matrices for
each domain to project the source and target domains to a new feature space. In the new shared sub-space, Mahalanobis
distance metric is learned to maximize inter-class and minimize intra-class distances in target domain, while a novel instance
reweighting scheme based on the graph optimization is applied, simultaneously, to employ the weights of source samples for
distribution matching. The results of different experiments on several datasets on object and handwriting recognition tasks
indicate the effectiveness of the proposedMTL-GKE compared to other state-of-the-arts methods.

Keywords Metric learning · Transfer learning · Geometric knowledge embedding · Mahalanobis distance metric

1 Introduction

Today, variety of web technologies, social media and digital
devices continuously generate enormous amount of visual
data such as images and videos in increasing manner
[1].This case confront us with one of the challenging
subjects of big data problem such as data management, in
the rising stream of novel applications and corresponding
data generation. A prerequisite for big data management is
labeling and classification of existing data. However, the
researchers confront with an entirely sparse labeled data,
which is not enough for training an accurate classifier. On
the other hand, labeling this enormous amount of data may
require an expert to use an expensive way.

In such circumstances, transfer learning and domain
adaptation methods [2, 3] can be used to utilize previous
source labeled data to create a classifier and apply it on
new task in target data. Conventional machine learning
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methods have the assumption of same distribution of source
and target samples, while this assumption in real world
application is not considered anymore and the cross-domain
problem arises. Hereupon, domain adaptation with the
aim of reducing the destructive impact of cross domain
problem on the classification accuracy and learning a
domain invariant model from training data, is introduced.
However, state-of-the-arts have three established methods
to mitigate cross domain problems under elimination of
distribution divergence between domains as follows [4]:
1) instance-based methods [5–8] which use more related
source samples for training a predictive classifier for target
data via re-weighting procedure. By doing so, distribution
difference between domains can be decreased. Instance-
based methods have two assumptions. First, with allocating
more weights to those more related samples, only some
of the source instances are used to learn a classifier [9].
Second, the source and target domains should have the same
conditional distribution; however, they could have different
marginal distribution [10]; 2) metric-based methods [11–
15] also called distance metric learning (DML) algorithms,
aim to learn an optimal distance metric for measuring
sample pairs similarity or dissimilarity by exploiting
meaningful correlations between source and target data; 3)
feature-based methods [16–18] with the aim of distribution
divergence and classification error minimization and also
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preservation of important properties of data, attempt to learn
a latent sub-space by discovering the shared features of
source and target data with small distribution gap.

The established researches in domain adaptation (DA)
has three main line of approaches. The first line consists
of metric learning methods, e.g., Consistent distance
metric learning (CDML) [19] that attempts to learn a
consistent distance metric under covariate shift [20] and
utilize Euclidean distance metric to determine sample pairs
correlation. The learned metric under Euclidean distance
is then used in target task classifier to facilitate the
classification problem by measuring the (dis)similaritly
of samples, where it may cause the learned classifier
finds suboptimal solutions because of Euclidean distance
limitations. In the other words, the intra-class distance
decreases while the inter-class distance does not increase
optimally. The second line e.g., Visual domain adaptation
(VDA) [21] seeks a subspace representation, which uncovers
discriminant and domain invariant features and projects
samples from original source and target domains into
achieved sub-space by only one projection matrix. The
third line of researches, for an example Metric transfer
learning framework (MTLF) [4], in order to minimize the
distribution gap between domains, attempt to assign less
weights for those samples of source domain, which are
far from target distribution to avoid from negative transfer.
In MTLF sample reweighting is performed by statistical
analysis such as direct importance estimation [22], which
requires expensive distribution density estimation.

The proposed approach in this paper, called Metric
Transfer Learning via Geometric Knowledge Embedding
(MTL-GKE), uncovers metric-based methods with learning
an appropriate distance metric alongside finding a new fea-
ture representation and utilizes a novel instance reweighting
approach with graph optimization in order to address the
aforementioned issues and bridge the distributional and geo-
metrical divergences between domains as well as maximizes
sample discrepancy for accurately classifying target sam-
ples. Specifically,MTL-GKE learns two projection matrices
for each of source and target domains via a graph Lapla-
cian to map samples from both domains into particular
sub-spaces. Since the geometrical structure of samples plays
crucial role in landmark selection [23], MTL-GKE utilizes
constructed Laplacian graph to select more related samples.
In this way, instead of performing the complex mathemati-
cal operations on matrices, simple arithmetic operations are
performed on an integer. For better classification on tar-
get task followed by better labeling of unknown data, we
need to maximize the sample discrepancy to decrease the
expected error of learned model in classification. For this
purpose, we take advantage of metric learning methods with
learning an appropriate distance metric. However, if most of
the training samples are inappropriate for training a target

model, using a distance metric that does not take the correla-
tion of samples into consideration, an accurate model cannot
be learned. As a result, we employ theMahalanobis distance
metric [24], which considers the dependency of samples in
measuring the similarity or dissimilarity of samples.

In general, the contributions of our work are as follows.

1) In order to perform more accurately classification,
MTL-GKE minimizes the distance within each class
and maximizes distance between classes via Maha-
lanobis distance metric in which the correlations
between each sample pairs affect their computed value
distance. As a result, if the sample pairs are more
related, the distance between them will be smaller.

2) In this paper, we utilize a novel instance reweight-
ing strategy that construct a Laplacian graph with
extraction of samples into vertices of graph and try to
optimize the formed graph to minimize the distribu-
tion differences of domains. Therefore, more efficient
classification is performed.

3) Since in optimization problem, learning both source
samples weights and distance metric are performed,
simultaneously, in a pipelined framework and their
values are updated after each other in an iterative
manner, this makes it possible that Mahalanobis
distance metric is learned under a more accurate source
sample weights, which leads to develop an optimal
discrepancy between samples.

In the rest of this paper, we briefly review some related
work from recent literature in Section 2. The details of
our proposed method as well as the required definitions
are presented in Section 3. In Section 4, we propose
a theoretical optimization problem and in Section 5 the
results of our experiments on several datasets are compared.
Eventually, in Section 6 we discuss about the conclusion and
future works.

2 Related work

In this section, we review the previous studies that are
related to our work. According to the available literature
review [2], since different types of knowledge can be
transferred across domains, there are various approaches for
knowledge transfer in domain adaptation. This knowledge
can be either each of instances, feature representation,
relational knowledge across domains or a combination of
them. In this section, we interest to review the most related
works to our method that can be sorted into metric-based,
feature-based and instance-based transfer learning.

In the first class, the goal is to improve the performance
of classification task by learning a distance metric for
target task. Soleimani et al. [25] proposed a deep multi-task
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metric learning (DMML) for offline signature verification.
DMML with the use of deep neural networks, considers the
separated layers for each authentic signer and also a shared
layer for all authors, and utilizes squared Euclidian distance
in top layer for measuring the similarity between different
pairs of signatures to distinguish genuine signature from its
forgery. As another work, a discriminative distance metric
learning with label consistency [26] was proposed for high
spatial resolution remote sensing image classification. In
this approach, at first the features of images are extracted
and then the distance metric was learned for maintaining
the intra-class density and inter-class discrepancy as well as
label consistency. Ding et al. [27] proposed a robust transfer
metric learning framework, which discovers the low-rank
metric to mitigate both marginal and conditional distribution
divergences and attempts to discover a robust metric to
facilitate the learning of target domain. A semi-supervised
metric learning method was proposed as semi-supervised
multi-view distance metric learning [28], which learns a
distance metric from different extracted feature sets and
quantifies dissimilarity of different cartoon characters under
the graph-based learning.

In the second class, sub-space learning is applied to
adapt the source and target domains. Zhu et al. [29] pro-
posed a semantic subspace learning in which the source
and target domains are in text and image format, respec-
tively. They expanded the representation of target images
with semantic concept that extracted from source text via
collective matrix factorization technique [30]. Gong et al.
proposed a geodesic flow kernel (GFK) [31] for unsu-
pervised domain adaptation. The geodesic flow is created
under source domain subspaces to target domain with
different representations to extract those sub-spaces that
are domain invariant. Wang et al. [32] proposed a trans-
fer feature representation method via multi-kernel learn-
ing that combines multiple kernels to create a reproduc-
ing kernel Hilbert space [33] and projects samples to
the achieved space with linear transformation. Xu et al.
[34] proposed an unsupervised transfer representation
method with Takagi-Sugeno-Kang (TSK) Fuzzy system
[35] as (TRL-TSK-FS). In TRL-TSK-FS, TSK Fuzzy sys-
tem is used as feature mapping, which discovers nonlinear
transformation without kernel functions and creates a shared
feature space between domains. It also uses principle com-
ponent analysis and linear discriminative analysis to pre-
serve the intrinsic information of samples. Also, Long et al.
[36] proposed to use deep convolutional neural network for
representation of transfer learning. In fact, they embed task-
specific features of higher layers into a reproducing kernel
Hilbert space to make them safely transferable for kernel

matching across domains. Rossiello et al. [37] proposed a
model to transfer the relational representation of entity pairs
of textual corpora. Specifically, they used Siamese network
to learn similarity between instance pairs and then tried
to minimize the difference between different paraphrases
among the similar entity pairs.

In the third category, Chattopadhyay et al. [5] proposed a
multi-source domain adaptation that obtains a set of weight
vectors for each source domain and incorporates various
source domain data with weight vectors. Moreover, the
weights are used to obtain pseudo labels of target data.
Labeled and pseudo labeled target samples are then used
to learn a target classifier. Gong et al. [38] proposed an
unsupervised instance-based domain adaptation that selects
multiple sets of landmarks where each of which obtains
from different perspective. The landmarks are then used to
create auxiliary tasks that are resulted in domain invariant
features for each task and finally integrates all resulted
features for original domain adaptation problem. Aljundi
et al. [39] attempted to discover a set of landmarks from
source and target domains by assigning a value to each
sample based on the Gaussian kernel [40] and compare it
with predefined threshold. As a result, if it is greater than
the threshold, the sample can be considered in landmark set.
Finally, the landmarks are used to find a new representation
of source and target domains.

Our study is more associated with the work proposed by
Cao et al. [19] named consistent distance metric learning
(CDML) that mitigates the problem of domain shift in
metric learning framework. It is noteworthy that we use
sample reweighting and landmark selection in the same
concept and are interchangeably. The basic idea behind
CDML and our proposedMTL-GKE is similar in decreasing
the distribution gap between the source and target tasks,
but MTL-GKE is different from following three aspects: 1)
in CDML the importance of source instances for sample
reweighting is determined by density ratio estimation [22]
as well as KL-divergence [41]. In contrast, in MTL-GKE,
landmark selection is employed on geometrical structure
of samples and performed based on the graph Laplacian
instead of complex mathematical operations. 2) While
in CDML the source samples are weighted first and
then Mahalanobis distance metric is then learned under
those reweighted samples, in MTL-GKE these two steps
are learned, simultaneously, in an alternative framework.
As a result the distance metric learning is performed
with an appropriate weighted source samples. 3) Finally,
in the proposed MTL-GKE, we utilize two projection
matrices via a graph Laplacian for mapping the source and
target data into a shared subspace, one for each domain.
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Therefore, in the latent space, the source and target data
are distributed identically and the sample structures are
preserved consistently.

3 Proposedmethod

3.1 Problem definition

A. Notations in this paper, we supposed to represent
matrices with bold uppercase letters and vectors via
bold lowercase letters. The weight of source samples
is a vector and is indicated by w, and a sample set is
indicated by X = {xi , yi |i = 1, 2, ..., n} where xi is
the ith sample vector and yi is the correspondence label
vector and n denotes the number of samples. Similarly,
we denote Xs to represent the source samples and Xt

to represent the target samples. We denote A to be the
Mahalanobis matrix, and P, K, L and M to represent
the projection, kernel, Laplacian andMMD (Maximum
Mean Discrepancy) [42] matrices, respectively. The
�2,1 − norm of the assumptive matrix M is denoted by

‖M‖1,2 = ∑
j

√∑
i (Mij )2 and it’s Frobenius norm is

denoted by ‖M‖F =
√∑

i δi(M)2 in which δ(M) is the
singular value of matrix M.

B. Definitions

Definition 1 Domain D consists of an m-dimensional
feature space X and a probability distribution P(x)
where x ∈ X. For a given domain D, task T can be
defined as a composition of label set Y and a predictive
classifier f(x) where T = {Y, f(x)}.

Definition 2 Mahalanobis distance metric is a mea-
sure to compute the similarity between pairs of xi and
xj samples that incorporates the correlation between
samples in its computation via inversed covariance
matrix as follows:

MD =
√

(xi − xj )T C(xi − xj )

where C is an inversed covariance matrix. As a result
for more similar sample pairs, the value of distance
metric decreases.

C. Problem statement In our transfer learning setting,
we consider two different distributions of labeled
source domain Ds and a mostly unlabeled target
domain Dt , where the marginal distribution of domains
are different, i.e., Ps(X) �= Pt (X) and the conditional
distribution of the source and target samples are similar,
i.e., P(ys |Xs) ≈ P(yt |Xt ) . In this situation, the learned
metric with source domain may not be appropriate for
target domain. On the other hand, we have a few labeled

target data for learning a desired target metric. In this
paper, we are supposed to minimize the distribution
gap between source and target domains, and learn an
optimal distance metric with labeled source domain.

3.2 Overall framework

The aim of domain adaptation methods is to transfer
information and knowledge across different distributed
domains. For this purpose, we have to learn a distance
metric and find a shared feature representation on which
domains could be well aligned together. As a result, we
introduce an approach for simultaneously learning the
Mahalanobis distance metric A for target domain, new
feature representations Ks and Kt for source and target
domains, and a predictive function f to label the unseen
target samples. The proposed objective is written as follows:

min J
A,P ,f

= r(A) + ϕ(P s , P t ) + η�(f, A, w) (1)

where η > 0 is a trade-off parameter for balancing the
effect of various terms in objective function. Also, the
first term provides to manage the propagation error of the
learned metric A. The second term provides the knowledge
adaptation and feature matching in which Ps and Pt are
projection matrices to project the samples of source and
target domains onto a common feature spaces, respectively.
The third term � is introduced as a loss function for
predictive function f under the learned Mahalanobis metric
A and instance weight w. The specific definition of each part
of the objective function will be explained in the rest.

3.2.1 Metric learning

In this section, we deal with learning a Mahalanobis
distance metric for target domain, which is defined as
follows:

distij =
√

(xi − xj )M(xi − xj )T

where xi and xj are the sample pairs, M ∈ Rd×d is
a positive semi-definite matrix with d dimension, where
it can be decomposed as M = AT A in which A ∈
Rd×d . Therefore, learning a Mahalanobis matrix M can be
substituted by learning the matrix A. The aim of the first
term of objective function is to minimize the propagation
error of the learned metric specified as A, which is defined
as follows:

r(A) = tr(AT A) (2)

where tr(.) denotes the trace of matrix.
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3.2.2 Feature and distribution matching

The aim of domain adaptation methods is to reduce the
distribution gap across domains. For this purpose, we need
a data transition to latent space as well as transferring some
intrinsic and geometric structure of samples and selecting
some latent features that are useful for classification. In this
way, we define ϕ(Ps ,Pt ) as follows:

ϕ(P s , P t ) = (XsP s , XtP t )H + (P T
s Ks , P

T
t K t ) (3)

where the first part mitigates the domain shift problem in
which Ps and Pt are projection matrices and the subscript
H shows the distribution matching that is performed in
Hilbert space. Moreover, the second part shares some latent
factors between domains, i.e., structure consistency and
feature selection in which Ks and Kt are new well aligned
representations for source and target domains, respectively.
In the rest, we specify the details of each part.

A. Distribution matching In domain adaptation methods,
we generally encounter with different distributed
source and target samples. In this section, we attempt
to find a shared subspace for both Xs and Xt with
no distribution difference, any more. Recent researches
utilize MMD to match two distributions based on the
empirical means of domains in a reproducing kernel
Hilbert space as follows:

DMMD(Xs , Xt ) = ‖ 1

ns

ns∑

i=1

ZT
s Xs,i − 1

nt

nt∑

j=1

ZT
t Xt,j‖2H (4)

where ns and nt are the number of source and target
samples, and Zs and Zt are the transformation matrices
onto a latent space, one for each domain. To show
whether these projection matrices correctly project
the source and target samples into a common space,
we combine two projection matrices to learn them,
simultaneously. In this purpose, we introduce data
matrix X as X = (Xs

Xt

)
and projection matrix Z as

Z = (Zs

Zt

)
. Therefore, (4) can be written in closed form

as:

DMMD(Xs , Xt ) = tr(ZT XMXT Z) (5)

where M defines the MMD matrix and is computed as
follows:

Mij =

⎧
⎪⎨

⎪⎩

1
nsns

, if xi , xj ∈ Xs

1
ntnt

, if xi , xj ∈ Xt

−1
nsnt

, otherwise.

Since the distribution matching is performed in an
RKHS space [33], we consider kernel matrix K =
φ(x)T φ(x), in which φ(x) is a kernel mapping. In
this paper, we use Z = φ(x)P to kernelize PCA

(principle component analysis) [43] to map samples
into a common space via a nonlinear mapping φ(x) and
perform a linear PCA in common space. Hence, Eq. (5)
can be rewritten as:

DMMD(Xs , Xt )H = tr(P T KMKT P ) (6)

where P = (Ps

Pt

)
is a transformation matrix for both

kernelized PCA and also mapping K onto a common
subspace.

B. Structure consistency In this study, we consider an
assumption that takes into account the intra-class
compactness and inter-class separability. According to
[44], samples with same class labels tend to stay close
with each other and are connected on a graph. In
this way, to increase the effectiveness of distribution
matching, it is more useful to keep this structure
of samples during transformation and distribution
adaptation. In this way, let ϑi be the new representation
of feature vector xi in common space. According to
[45], the following equation is minimized for structure
preservation:

1

2

n∑

i,j=1

‖ϑi − ϑj‖2W ij (7)

where W is adjacency matrix and Wij defines the
correlation between each sample pair. In this paper, to
acquire W we use cosine similarity as follows:

Wij =
{

cosine(xi , xj ) if xi ∈ Nearestk(xj )

0, otherwise

where Nearestk(xj ) denotes the k-nearest neighbors
of xth

j sample with same class as xi . Given ϑ = PT K,
(7) can be rewritten as follows:

1

2

n∑

(i,j=1)

‖ϑi − ϑj‖2W ij

= 1

2

n∑

(i,j=1)

‖pT K i − P T Kj‖2W ij

=
n∑

i=1

P T K iDiiK
T
i P −

n∑

i,j=1

P T K iW ijK
T
j P

= tr(P T KLKT P ) (8)

where L = D − W denotes the graph Laplacian and
Dii = ∑

j Wij is a diagonal matrix that its ith diagonal

entry is the sum of ith row ofW.
C. Feature selection As discussed in previous sections, we

utilize multiple projections to map high dimensional
features onto a low dimensional common space.
However, latent subspace may include numerous
features that are not really important for domain
adaptation. For alleviate useless features in this part and
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select domain invariant features that are beneficial for
domain adaptation and distribution matching, we apply
�2,1 − norm to the projection matrix in the form of
‖P‖2,1. This leads to select the efficient and domain
invariant features in the shared space. Moreover, during
the distribution matching for knowledge transfer,
information loss may occur. To mitigate this problem,
we propose to introduce PCA regularization that
preserves the intrinsic information of target samples as
follows:

‖K t − P tP
T
t K t‖2F (9)

where it can be rewritten as follows:

−tr((P T
t K t )(P

T
t K t )

T ) = −tr(P T K ÏKT P ) (10)

where Ï is a diagonal matrix defined as:

Ïii =
{
1, if xi ∈ Xt

o, otherwise.

Given (6), (8) and (10) and substituting them in (3), we
can rewrite (3) as follows:

ϕ(P s , P t ) = tr(P T K (M + λL − βÏ )KT P ) +
γ ‖P ‖2,1

s.t ., P T KHKT P = I and λ, β, γ > 0 (11)

where λ, β and γ are penalty parameters. Also,
PT KHKT P = I is defined to avoid the trivial solutions
in which H = In − 1

n
1n, 1n is an n × n matrix that its

elements are equal to 1 and n = ns + nl
t + nt where nl

t

is the number of target samples for training.

3.2.3 Landmark selection

Since the number of labeled target data is rare to learn
a target distance metric, we could utilize source samples
in order to metric learning. However, some samples may
have different distribution from target domain and thus may
cause learning an inappropriate distance metric. To learn
optimal distance metric, we can select more related source
samples to domain adaptation, with the name landmarks,
[7, 22, 39, 46, 47] via statistical analysis, which is a time
consuming operation. Since landmarks are more correlated
to geometrical structures, we suppose to select landmarks
with graph optimization that extracts samples into vertices
of graph and the similarity value of source samples is
measured by its degree.

Considering a C class problem with X = X1∪X2...∪XC ,
we construct graph G where each point of X form a vertex
of graph. For each point of Xi

t we find k-nearest neighbor of
Xi

s based on the cosine similarity after distribution matching

in new feature space as follows:

K =
C⋃

i=1

knnsearch(P T
s K i

s , P
T
t K i

t , k) (12)

where K defines a vertex set of Xs samples that belongs to
the k-nearest neighbor of Xt . Given K , we could connect
each sample of Xt to its k-nearest neighbor of Xs in K.
In this way, the degree of each vertex of source samples
is updated. Those source samples in K with higher degree
is selected as landmarks. We introduce weight vector w ∈
[0, 1] where �iwi = 1 defines the weight of each source
sample based on the degree of them in K. At first for
each sample, it considers the same weight and initializes
w = 1/ns . Then it updates w for each source sample via the
degree of corresponding vertex Ki as follows where deg(.)
is the degree of vertex:

wi = deg(Ki )
∑

i deg(Ki )
. (13)

At the end, the weight vector w is used to learn an optimal
distance metric for target domain.

3.2.4 Loss function

To mitigate the classification problem, we adopt the
proposed approach in [48] to define a loss function for using
k-nearest neighbor classifier as follows:

�(f, A, w) = �in(A, w) − �out (A, w) (14)

on which

�in(A, w) =
∑

yi=yj

w (xi )w(xj )‖A(xi − xj )‖2and

�out (A, w) =
∑

yi �=yj

w (xi )w(xj )‖A(xi − xj )‖2

where �in is the sum of intra-class weighted difference
and �out is the sum of inter-class weighted difference. By
substituting (2), (11) and (14) in (1), we obtain following
objective function for classification problem:

min J
A,P ,f

= tr(AT A) + tr(P T K(M + λL − βÏ )KT P )

+γ ‖P‖2,1 +
η
∑

i,j

w(xi )w(xj )
∥
∥A(xi − xj )

∥
∥
2
δij

s.t .,
Ns∑

i=1

w(xi ) = Ns, P T KHKT P = I

and w(xi ) > 0 (15)

where δij is the indicator function on which if yi = yj then
δij is equal to 1, otherwise is equal to -1. We characterize
used instance pairs in the above equation (inter-class and
intra-class instances) for computing loss function by C.
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With the increase of C value, which defines the number of
instance pairs, the computational cost may also increases.
To mitigate this problem, cross validation is used to obtain a
tradeoff value for C. In the next section, we utilize (15) for
optimization problem in an alternating manner.

4 Optimization problem

In this section, we optimize the objective function in (15).
For the sake of simplicity, we convert an overall constrained
optimization problem to an unconstrained one as follows:

minJ
A,P ,f

= tr(AT A) + tr(P T K + (M + λL − βÏ )KT P )

+γ ‖P‖2,1+η
∑

i,j

w(xi )w(xj )
∥
∥A(xi −xj )

∥
∥
2
δij

+ρ

(

(wT e − Ns)
2 +

Ns∑

i=1

(max(0, −w(xi )))
2

)

+tr
(
(I − P T KHKT P )ζ

)
(16)

where ρ is a non-negative coefficient penalty, ζ is a
Lagrange multiplier and e ∈ R(ns+nl

t )×1 is computed based
on ei = 1 if i ≤ ns and ei = 0 if ns < i ≤ ns + nl

t .
We propose to learn A and P in an iterative optimization
algorithm. Specifically, at iteration t , we first consider the
matrix At to be fixed and update the matrix Pt based on the
following rule:

P t+1 = P t − γ1
∂J
∂P

(17)

where γ1 is the adaptive step-size. Moreover, the derivative
of J with respect to P can be written as:

∂J
∂P

= (K(M + λL − βÏ )KT + γG)P − KHKT P

where G is the sub-gradient of ‖P‖2,1 and also is a diagonal
matrix where Gii = 0 if Pi = 0 else Gii = 1

2
∥
∥Pi

∥
∥ in which

Pi denotes the ith row of P. After updating Pt to Pt+1, we
alternatively update the value of At with the following rule:

At+1 = At − γ2
∂J
∂A

(18)

where γ2 is the adaptive step-size. Moreover, the derivative
of J with respect to A can be written as:

∂J
∂A

= 2η
∑

i,j

w(xi )w(xj )Aνij ν
T
ij δij + 2A

where νij = xi − xj . Moreover, we alternatively update
the value of P and A matrices and consequently the value
of objective function in each iteration until its changes is

smaller than determined threshold ε. The entire procedure
of proposedMTL-GKE is summarized in Algorithm 1.

4.1 Computational complexity

In this section, the computational complexity of our
proposed MTL-GKE is described. Since T , C and d denote
the number of iterations, number of instance pairs and
dimension of samples, respectively, the computation of
kernel matrix K, MMD matrix M and Laplacian matrix L
have O(n2) cost. The computational costs for updating the
sub-gradient G and graph Laplacian L isO(T n2); however,
updating the projection matrix P costs O(T dn2) and
updating the source sample weights have O(T nsnt ) cost.
Moreover, the computational cost of updating Mahalanobis
matrix A is O(TCdn2). As a result, the overall computation
cost ofMTL-GKE algorithm is O(T (Cdn2 + nsnt )).

5 Experiments

To represent the usefulness of our MTL-GKE, we examine
our method on different image classification tasks on
Office-Caltech256 [49], USPS [50] and MNIST [51]
datasets. We first introduce the details of used datasets and
provide parameter analysis and discussion in the following
section and then the experimental results are described. For
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an unbiased comparison, all algorithms were implemented
with same setup in MATLAB R2016 where no library is
used in their implementation.

5.1 Data description

The Office-Caltech256 dataset that is used for cross domain
object recognition, is a benchmark dataset with ten common
classes that consists of four domains including Dslr (d),
Webcam (w), Amazon (a) and Caltech256 (c). Amazon and
Caltech256 domains consist of images, which obtained from
office environment and Amazon.com, in turn. Also, Dslr
and Webcam domains include images, which obtained from
Dslr and Webcam cameras, respectively. Since the images
of different domains were collected under various factors
(position, angle view, resolution and location), all four
domains have different distributions compared to each other.
We construct 12 recognition tasks from datasets, where each
of them is denoted by SD-TD in which SD defines source
domain for training and TD represents target domain.

USPS and MNIST datasets are benchmark datasets
including digit handwriting images from 10 categories in
range of 0 to 9 of different distributions. The USPS dataset
consists of 1,800 labeled images in size of 16 × 16, and the
MNIST dataset consists of 2,000 labeled in size of 28× 28.
We construct two handwriting recognition tasks usps-mnist
and mnist-usps. For usps-mnist task, 1,800 labeled images
of USPS dataset are used as source domain (Ds),705 labeled
images from MNIST are used as Dl

t and 1,295 unlabeled
image from MNIST dataset is used as test data Du

t . For the
mnist-usps task, 2,000 labeled samples are used as source
domain, 637 labeled images from target domain are used for
training and 1,371 unlabeled instances from target domain
are used as test data. Since we introduce source and target
domains with the same feature space, we resize all images
to 16 × 16 scale.

5.2 Parameter tuning

In this section, we design some experiments on different
datasets to obtain optimal value of parameters of proposed
objective function. According to (16), we have three penalty
parameters λ, β and γ , one penalty coefficient ρ, and
one tradeoff parameter η. Additionally, in the classification
setting, we own further parameters such as the number
of instance pairs C and the number of nearest neighbors
k that used in kNN classifier. Since, the proposed MTL-
GKE uses the PCA dimensionality reduction, we conduct
additional experiments on parameter d, which defines the
reduced dimensions. Since in transfer learning, it is difficult
to obtain the optimal parameters via cross validation, we
perform parameter tuning empirically on each dataset and
describe the best result of experiments.

5.2.1 Analysis of parameter k

Different number of nearest neighbor parameter k can affect
the classification accuracy, which examined on Office-
Caltech256 dataset where the results are shown in Fig. 1a.
Given the figure, two tasks w-d and d-w receive high
accuracy than other tasks. We examined the classification
accuracy on different number of nearest neighbors from 1 to
30 and observe that, as the number of neighbors increased,
the accuracy also decreased. Therefore, we intend to set
parameter k equal to 1.

5.2.2 Analysis of parameter C

The instance pairs are chosen randomly for optimization
problem to conduct several experiments on the accuracy of
different number of instance pairs in range of 50 to 1500 on
Office-Caltech256 dataset as shown in Fig. 1b. According to
experiments, with increase of C, the accuracy is also slightly
increased. However, we are interested to set the parameter
C to small values. Because, with large number of instance
pairs, the computational cost will also increase. As a result
in our experiments, we consider 50 instance pairs.

5.2.3 Analysis of parameter d

In our proposed method, on Office-Caltech256 and USPS-
MNIST datasets, we use PCA for dimensionality reduction
as preprocessing step. In this section, we investigate
the impact of several number of reduced dimensions
on classification accuracy in both Office-Caltech256 and
USPS-MNIST datasets. The results of our experiments are
shown in Fig. 1c and d. According to Fig. 1c, for Office-
Caltech256 dataset, all tasks have increasing manner in
accuracy related to the number of dimension from 1 to 30.
However, for those numbers of dimensions greater than 30,
the accuracy have no significant change. On the other hand,
as shown in Fig. 1d, this is also the case for USPS-MNIST
dataset in which the accuracy is slightly increased for the
dimensions greater than 40. Since the greater number of
dimensions causes higher computational cost, we set the
number of reduced dimensions d = 40.

5.2.4 Analysis of parameters λ,β , γ and η

In this section, we present the effect of different values
for λ, β and γ in range of [0.01, 1] and parameter η

on accuracy of 12 tasks of Office-Caltech256 dataset in
Fig. 2a and b, respectively. For λ, β and γ , the mean of 12
tasks is considered for comparison. As shown from figures,
all four parameters are not sensitive and their changes do
not make significant difference in classification accuracy.
Since parameter β controls the target domain information,
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Fig. 1 Analysis of a number of nearest neighbors k, b number of instance pairs C, and c number of dimensions d in Office-Caltech256 dataset,
and d number of dimensions d in USPS-MNIST dataset

Fig. 2 Analysis of parameters a λ, β, γ and b η on Office-Caltech256 dataset
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Fig. 3 Sensitivity analysis on parameter ρ and investigating the effect of ρ on the convergence rate. a Convergence rate of �J on different values
of ρ on d-w task, b convergence rate of �w on different ρ on d-w task, c sensitivity analysis of parameter ρ on Office-Caltech256 dataset

the higher values of it boosts the information preservation,
while the adaptation degrades.

5.2.5 Analysis of algorithm convergence

In this section, we design experiments for analysis of
different values of ρ from -3 to 3 on the Office-Caltech256
dataset where the results are shown in Fig. 3a. According
to the figure, it is observable that the penalty coefficient ρ

is not sensitive, while the larger values of ρ may increase
the computational time. To analyze the convergence of

algorithm, we design another experiment by several values
of ρ from 1 to 10 on d-w task whose results are shown
in Fig. 3b and c in which �J = Jt+1 − Jt , �w =
‖wt+1 − wt‖ and t denotes the number of iterations. From
the figures, we find that at the higher iteration, the value
of �J and �w for each ρ are decreased, especially �J
and �w are tend to zero. Since the parameter ρ is not very
sensitive, it is better to have no large values, therefore, we
set ρ = 1 or ρ = 2.

As a result, the optimal values of obtained parameters
from experiments are summarized in Table 1.

Table 1 The optimal values of parameters

Parameter k C d ρ λ β γ η

Optimal value 1 50 40 2 0.1 0.01 1 0.001
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5.3 Basics of comparison

In our experiments, we evaluate our proposed MTL-
GKE with variety of methods for cross domain object
recognition and cross domain digit recognition tasks. The
baseline methods including principle component analysis
(PCA) [52], transfer component analysis (TCA) [10],
metric transfer learning methods consist of consistent
distance metric learning (CDML) [53], metric transfer
learning framework (MTLF) [4], information theoretic
metric learning (ITML) [54], robust transfer metric learning
(RTML) [27], semi-supervised maximum independence
domain adaptation (SMIDA) [55], semi-supervised metric
transfer learning framework (SSMT) [56], semi-supervised
metric transfer learning with relative constraints (SSMTR)
[57], domain adaptation using metric learning on manifolds
(GCA) [58], and feature-based methods including geodesic
flow kernel (GFK) [31], transfer independently together
(TIT) [23], joint distribution adaptation (JDA) [18],
marginalized stacked denoising autoencoders (mSDA) [59]
and max-margin domain transforms (MMDT) [60].

5.4 Experiment results

In this section, we represent experimental results on
different datasets to show the effectiveness of our MTL-
GKE. In the experiments, at first we learn Mahalanobis
distance metric, then construct a Laplacian graph via MTL-
GKE, and finally use the distance defined in form of (1) in
kNN classifier for classification. For the input test data xi ,
we first transform it to the latent sub-space and compute
Mahalanobis distance metric between xi and each source
and target samples in new space. The label of xi is assigned
with a senior vote of its k-nearest samples.

Experimental results on Office-Caltech256 and USPS-
MNIST datasets are shown in Tables 2 and 3, respectively.
For the Office-Caltech256 dataset, we perform 20 random
permutation and compute the average of performances as
well as the variation. From Table 2, we can observe that
the classification accuracy ofMTL-GKE is much better than
the conventional metric learning algorithms i.e., PCA and
ITML, which only use the source instances for training a
classifier and make a prediction on different distributed
target samples. Therefore, the learned metric on the source
domain cannot work correctly on target data.

TCA is a feature-based method, which tries to seek a new
representation with goal of feature matching, while JDA is
a semi-supervised method that uses labeled target data in
training classifier and utilizes a dimensionality reduction
method for marginal and conditional distribution matching.
Thus, in results of Tables 2 and 3, we can see that JDA
outperforms TCA. In the meantime, we observe much better
accuracy performance of MTL-GKE than TCA and JDA.
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Table 3 Classification accuracy (%) of semi-supervised domain adaptation on USPS-MNIST dataset

data PCA mSDA TCA JDA GFK CDML MMDT SSMT SSMTR TIT MTLF MTL-GKE

usps-mnist 44.95 43.20 51.05 59.65 46.45 56.53 82.03 74.80 74.80 84.63 82.99 87.8

mnist-usps 66.22 66.94 56.28 67.28 67.22 57.21 85.86 84.33 84.33 86.67 90.1 91.14

Avg. 55.59 55.07 53.67 63.47 56.84 56.87 83.94 79.56 79.56 85.65 86.54 89.47

The bold values show the maximum value in each row

This happens because unlike MTL-5GKE, JDA does not
consider the impact of feature matching in classification
accuracy and ignores the advantages of distance metric
learning. Thus, the distribution matching performs under an
inappropriate distance metric.

GFK attempts to mitigate the distribution gap between
source and target domains via mapping samples to a low
dimensional subspace in a Grassmanmanifold, which leads
to lose some beneficial information of samples during map.
However, the proposed MTL-GKE preserves the intrinsic
information of samples during the projection and causes
much better results in accuracy classification.

mSDA is a domain adaptation method, which adapts
stacked denoising autoencoders by combining the source
and target samples to learn a new representation for domain
adaptation. However, it ignores the use of distance metric
for class discrepancy. As a result, mSDA may not address
the domain shift problem compared to MTL-GKE and thus
we observe better results in experiments.

Compared to RTML, MTL-GKE receives better perfor-
mance. It is because of that in RTML, the instance reweight-
ing is ignored and model is not trained with more related
source samples. While inMTL-GKE, the instance reweight-
ing is performed due to the increase of classification accu-
racy by finding a more related samples. Thus, the model will
be trained, accurately.

From Table 2, we also can find that MTL-GKE outper-
forms CDML, because in CDML, learning distance metric
and sample reweighting performs in a pipelined framework.
In contrast, inMTL-GKE, the instance reweighting and met-
ric learning performs, simultaneously. Therefore, instance
reweighting performs well under an appropriate distance
metric.

SMIDA is a semi-supervised feature-based method for
domain adaptation, which tries to find domain-invariant
feature space. Since it ignores the important impact
of distance metric learning and instance reweighting

in minimizing the distribution difference, it shows low
classification accuracy compared to our proposed MTL-
GKE.

SSMT and SSMTR are semi-supervised metric learning
frameworks that use KL divergence for instance reweight-
ing. Since the KL divergence is a parametric method and
reflects the amount of data lost, requires expensive dis-
tribution density calculation. Also, they do not take into
consideration the effect of feature matching in reducing the
distribution gap. Therefore, in comparing with SSMT and
SSMTR, ourMTL-GKE results are much better.

GCA is a domain adaptation method that reduces the
statistical and geometrical differences between domains.
However, unlike MTL-GKE, the effective role of instance
reweighting and feature matching on distribution matching
is ignored on GCA. As a result, the classification accuracy
ofMTL-GKE has significant improvement against GCA.

In comparison with TIT and MTLF, MTL-GKE has
better performance in classification accuracy. This happens
because of that in TIT, learning a distance metric is ignored
and inter-class discrepancy is denied and it adversely affects
the classification accuracy. Also, MTLF does not take the
importance of feature matching in reducing of distribution
divergence into consideration. Thus, the distribution gap is
not minimized, explicitly.

In order to compare our proposed MTL-GKE with
MMDT in Table 3, MTL-GKE performs better on both
tasks. This is because of that, MMDT only seeks a new
representation for feature space and ignores the negative
impact of distribution gap between source and target
domains on domain adaptation.

5.5 Time complexity

In this section, the computational cost of our proposedMTL-
GKE in comparison with several compared methods has
indicated in Table 4. Experiments are designed on usps-

Table 4 Time complexity of MTL-GKE on usps-mnist task

method MTLF TIT TCA JDA GFK MTL-GKE

time (second) 1.65 130.86 44.40 48.82 8.10 38.78
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mnist task with 1800 source samples and 2000 test samples
and each of which has 256 features. We observe that MTL-
GKE has much better running time than TIT, JDA and TCA.
However,MTLF andGFK have better running time than our
proposed method.

6 Conclusion

In this paper, we proposed MTL-GKE framework, which
is a generalized model for domain adaptation task.
MTL-GKE defines an objective function based on the
Mahalanobis distance metric that makes it possible to
more efficiently classify the data by maximizing the inter-
class and minimizing the intra-class distances. Moreover, it
utilizes two projection matrices to project the source and
target samples into latent common sub-space, separately,
to mitigate the distribution gap. We also proposed a
novel instance reweighting approach to select more related
instances for training. We conduct extensive experiments
on Office-Caltech256 and USPS-MNIST datasets, and
compared our experimental results with following machine
learning and domain adaptation methods, PCA, TCA, JDA,
GFK, CDML, ITML, mSDA, RTML, SMIDA, SSMT,
SSMTR, GCA, TIT andMTLF to demonstrate our proposed
MTL-GKE efficiency. The results shows the superiority of
MTL-GKE against other compared baselines where it could
be used for several cross domain problems with significant
distribution gap. Hereafter, we aim to study multi-label
classification, zero-shot transfer learning and utilize deep
structure for learning.
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