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Abstract
Discretization is one of the data preprocessing topics in the field of data mining, and is a critical issue to improve the
efficiency and quality of data mining. Multi-scale can reveal the structure and hierarchical characteristics of data objects,
the representation of the data in different granularities will be obtained if we make a reasonable hierarchical division for a
research object. The multi-scale theory is introduced into the process of data discretization and a data discretization method
based on multi-scale and information entropy called MSE is proposed. MSE first conducts scale partition on the domain
attribute to obtain candidate cut point set with different granularity. Then, the information entropy is applied to the candidate
cut point set, and the candidate cut point with the minimum information entropy is selected and detected in turn to determine
the final cut point set using the MDLPC criterion. In such way, MSE avoids the problem that the candidate cut points are
limited to only certain limited attribute values caused by considering only the statistical attribute values in the traditional
discretization methods, and reduces the number of candidates by controlling the data division hierarchy to an optimal range.
Finally, the extensive experiments show that MSE achieves high performance in terms of discretization efficiency and
classification accuracy, especially when it is applied to support vector machines, random forest, and decision trees.

Keywords Data mining · Discretization · Information entropy · Multi-scale · MDLPC criterion

1 Introduction

Data discretization is one of the data preprocessing methods
in the field of data mining and knowledge discovery, which
is to transform quantitative data into qualitative data by divid-
ing continuous domains [35]. For data mining and machine
learning, the discretization of continuous attribute can effec-
tively reduce the granularity of the information system to
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improve the performance and learning accuracy of data min-
ing/ machine learning algorithms, and enhance the ability of
classify, cluster and anti-noise. In addition, many machine
learning and data mining algorithms can only deal with dis-
crete attributes, for example, C4.5/ C5.0 decision trees [26],
association rules [32, 33], Naive Bayes [34] and rough
sets [31]. In essence, data discretization is a data reduc-
tion mechanism. Continuous data is grouped into discrete
intervals, while it still ensures the correlation between each
discrete value and a certain interval. Therefore, data dis-
cretization can effectively hide the defects in original data
and has attracted widespread attention [11].

Actual datasets often contain a large number of attributes,
which can form conceptual hierarchies with a clear partial
order structure. Dividing the attribute values based on
related concepts in the concept hierarchy can form attribute
value with multi-scale characteristics, and can obtain
different granularity representations of the attribute value
set. Since all data subsets in a certain scale representation
form of a dataset are divided according to the attribute
value set of a concept, each data subset has a specific and
clear data meaning. In traditional algorithms, such as CAIM
[18], CACC [27], MDLP [10], etc, only the mean of the
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adjacent attribute intervals is considered as the candidate cut
point set, and the data division based on it is insufficient.
We introduce the multi-scale theory into the discretization
process, which can reasonably divide the attribute value to
obtain a set of candidate cut points. The candidate set is
sorted, then the information entropy is applied recursively,
always selecting the cut point with the smallest entropy.
And MDLPC criterion is applied to decide when to refrain
from applying further binary partitioning to a given interval.
Therefore, the performance of the discretization algorithms
and the classification accuracy of the classifiers have been
significantly improved by combining multi-scale theory.

1.1 Motivations

• The dataset usually involves the relative size of the
conceptual scope and granularity, and the multi-scale
characteristics can reflect the nature of the dataset from
multiple perspectives and hierarchies.

Multi-scale can reveal the nature of the natural
scale of a research object in essence. The data often
corresponds to an attribute set when studying data
from a certain category, which can form a conceptual
hierarchy with a clear partial order structure. Dividing
the data according to the concept hierarchy can form
a dataset with multi-scale data characteristics, which
is helpful for decision makers to make decisions
from different perspectives. And the complexity of
handling problems can also be further reduced by using
scale conversion. Recently, multi-scale theory has been
attempted to apply to general datasets. Hierarchical
theory, conceptual hierarchy, and inclusion theory are
used as the basis for scale division to study the
distribution patterns in different scale hierarchies, and
then to find meaningful facts, such as multi-scale
association rules [21] and multi-scale clustering [12].

• Data discretization is an important data preprocessing
technique. However, most traditional discretization
approaches are difficult to reach a balance between
running time and classification accuracy for classifiers.

Many data mining/machine learning algorithms can
only handle discrete data. However, the original user
data is often continuous. Therefore, the discretization
of these continuous data is necessary to facilitate the
further processing of the algorithms. Moreover, data
can be more further understood and reduced, which
make data analysis faster and more accurate. Most
discretization algorithms are difficult to achieve a
balance in running time and classification accuracy
when applying them to classification algorithms, even
some discretization algorithms are only applicable to
specific datasets. Therefore, it is necessary to research
an efficient and usual data discretization method.

• Incorporating multi-scale theory, a more reasonable
candidate cut point set can be obtained through reason-
able data scale partition.

The exploration of things, phenomena or processes
will vary due to the choice of different scales. As a result,
the inward nature of things may be comprehensively,
partially, even incorrectly reflected. Dataset also tends
to involve this multi-scale nature. If we can follow the
essential characteristics of a research object and divide
the corresponding data reasonably based on different
scale characteristics, we can obtain more valuable infor-
mation. Therefore, we introduce the multi-scale theory
and give specific multi-scale partition strategy to divide
the data and calculate candidate cut points with different
granularities, the candidate set and computational over-
head are greatly reduced. In addition, the classification
results are obtained through a large number of known
condition attributes and decision attributes. Therefore,
the larger the amount of data, the higher the prediction
accuracy. However, most discretization methods only
consider the attribute values that have been counted,
which makes the candidate cut points only limited to the
determined finite attribute values. Cut points with dif-
ferent hierarchies are obtained through multi-scale par-
tition. Then we utilize these points as test data, which
will make the actual classification more reasonable.

1.2 Contributions

Compared with a large number of existing discretization meth-
ods, the main contributions of MSE are summarized as follows:

• The domain attribute is hierarchically divided by
introducing multi-scale theory, and a set of candidate
cut points with different granularity are obtained.

• Information entropy is applied to the obtained candidate
cut point set, and the cut point with the minimum
entropy is recursively selected and judged by MDLPC
criterion to generate the final discrete interval.

• A data discretization algorithm based on multi-scale
and information entropy, called MSE, is proposed.

• We conduct extensive experiments to exhibit that MSE
offers ample opportunities to boost the execution effi-
ciency of discretization algorithms and classification
accuracy for classifiers.

1.3 Organization

The rest of this paper is organized as follows. Section 2
investigates previous work related to this study. In Section 3,
we describe basic concepts pertaining to data discretization
as well as muti-scale. Then, a data discretization algorithm
based multi-scale and information entropy (i.e., MSE) is pre-
sented in Section 4. Sections 5 and 6 detail the experimental
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settings and comparison results respectively. We conclude our
research work and future research directions in Section 7 .

2 Related work

In the field of data mining and machine learning, discretiza-
tion of continuous attributes can not only effectively reduce
the time and space overhead, but also enhance the learn-
ing accuracy and anti-noise ability of algorithms. The most
attention of discretization algorithms and the multi-scale
theory are summarized as follows:

• Discretization algorithms based on class-attribute
interdependence. Kurgan et al. proposed a clas-
sic algorithm— CAIM (class-attribute interdependence
maximization), which is a global, static, top-down, super-
vised discretization algorithm [18]. They emphasized
that CAIM can generate a minimal number of discrete
intervals and need not require the user to predefine the
number of intervals. However, CAIM has three draw-
backs. First, the importance of attributes is not fully con-
sidered during the discretization process. Second, the
inconsistency rates of the decision-making table is
ignored. Finally, it is unreasonable to adopt the caim
value as a discrete discriminant. The above drawbacks
often results in information loss, and the accuracy of
machine learning is affected. To address the issues of
CAIM, Cano et al. presented ur-CAIM, which extended
the CAIM criterion to address interdependence, redun-
dancy, and uncertainty of class-attributes [5]. Therefore,
the algorithm is superior to CAIM, especially on unbal-
anced datasets, which generating fewer intervals and
better discretization schemes at the lower computational
overhead. The same year, Cano et al. presented LAIM
(Label-Attribute Interdependence Maximization), which
is inspired in the discretization heuristic of CAIM for
single-label classification [4]. LAIM provides the possi-
bility to process multi-label dataset. Tsai et al. proposed
CACC (class-attribute contingency coefficient), which
is a static, global, incremental, supervised and top-down
discretization algorithm [27]. They developed a novel
heuristic objective function that takes into account the
class distribution information for all samples. CACC
avoids overfitting of the algorithm to produce better dis-
cretization results, and improve the classification predic-
tion accuracy of machine learning. However, CACC is
time consuming, which reduces its appeal when applying
on real-world problems. Xiaolong Liu et al. proposed
an improved algorithm based on CACC, which selects
the cut points using the CACC standard and increases
the constraint conditions of the data inconsistency rate
to reduce the amount of data loss information [20].

• Discretization algorithms based on rough set the-
ory. Hong Shi et al. proposed a novel algorithm,
which implements global discretization through con-
sistency measurement, which overcomes the defect of
the inconsistency rate introduced by the local dis-
cretization MDLPC criterion [25]. Cheng et al. pro-
posed an improved continuous attribute discretization
algorithm based on rough set from the perspective
of decision tables and information entropy [38]. In
which, the concepts of ‘conditional attribute weights’
and ‘equivalent class projections’ are defined. Unnec-
essary candidate cut points are quickly eliminated by
judging the importance of conditional attributes to the
decision table and comparing the relations between
conditional attribute values and equivalent class pro-
jections, and then algorithm efficiency is significantly
improved. Jiang et al. proposed a supervised multi-
variate discretization method (abbr. SMDNS), which
uses the interdependence between class information
and condition attributes to improve classification effect
[15]. Cao et al. proposed a continuous attribute dis-
cretization algorithm combining binary ant colony and
rough set [6]. This algorithm constructs a binary ant
colony network on the multi-dimensional continuous
attribute candidate breakpoint set space. According to
the approximate classification accuracy of the rough
set, fitness evaluation function is established to find the
globally optimal discretized breakpoint set.

• Discretization algorithm based on clustering. Min
et al. proposed a global discretization and attribute
reduction algorithm based on clustering and rough set
theory [22]. In which, k-means clustering algorithm is
adopted by comparing different discretization methods.
In order to overcome the deficiency of k-means
clustering algorithm, F-analysis of variance statistics
and the support strength of conditional attributes are
introduced to control the effectiveness of discretization.
In order to meet the premise of rough set theory, a
reasonable number of clusters can be obtained based on
the correlation index. Thereafter, attributes are reduced
by using rough set theory and decision rules are derived.
Jifu Zhang et al. first selected candidate initial fuzzy
clustering center by using the density values of the
samples to effectively overcome the shortcomings of
sensitivity to noise data [35]. Then, the algorithm
parameters are dynamically adjusted to achieve the best
discretization of spectral characteristic lines based on
the compatibility of the decision table.

• Discretization algorithm based on entropy. Recently,
discretization methods based on information entropy
have been widely researched. Fayyad et al. proposed a
discretization algorithm based on the entropy and the
Minimum Description Length Principle (MDLP) [10].
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The algorithm selects the breakpoints that can form a
boundary between classes, and uses MDLPC criterion
to determine the appropriate number of discrete
intervals. However, it belongs to local discretization
methods and it is easy to introduce inconsistency rates.
Addressing to this problem, lots of research work has
been conducted. For example, a comprehensive analysis
of local and global information based on information
entropy is carried out by Wen et al. [28]. In the local
discretization phase, k strong cut points are selected for
each attribute to minimize the conditional entropy.

• Discretization algorithms based on Chi2. The Chi2-
based algorithms are a typical supervised, global,
bottom-up discretization algorithm of statistical inde-
pendence. Kerber proposed the pioneering ChiMerge
method in this series of methods [17]. First, continuous
attribute values are sorted in ascending order, and then
the set of each value of continuous attributes is used as
an interval, and tests all adjacent intervals. The pair of
chi-square statistics are used to determine whether the
current adjacent interval is merged, that is, the mini-
mum chi-square adjacent interval is merged iteratively.
At the same time, a chi-square parameter threshold
(significant level α) is artificially set, and the iterative
process is terminated until the values of all adjacent
interval pairs are greater than the given threshold. How-
ever, the calculation of the inconsistency rate leads to a
reduction in the credibility of the original data and some
classification errors. To cope with this problem, a series
of studies have been proposed. Changlei Zhao et al.
proposed a new data reduction method, namely RS-D
(Rough Sets-Discretization), which performs attribute
reduction and rule reduction on the discrete data using
the Rectified Chi2 algorithm combined with rough set
theory [23]. Yu et al. considered that the theoretical
basis for determining the importance of a node using
the value of the difference between the critical value
D deviding 2V was insufficient, and Accuracy cannot
be guaranteed [24]. So a novel discretization Method
was proposed (a.k.a., Rectified Chi). Rectified Chi uses
(2k−v)/2k as an important part of the value of Eij , and
finally achieves the desired discretization result, which
improves the learning accuracy of the classifier.

• Discretization algorithms based on genetic algorithm.
Jing Zhang et al. proposed a multi-attribute discretization
algorithm based on genetic algorithms and variable-
precision rough sets [36]. It establishes the fitness evalua-
tion function of genetic algorithm by approximating
classification accuracy of variable precision rough set,
and uses genetic algorithm to find the optimal break-
point subset on multidimensional continuous attribute
candidate breakpoint set. The algorithm achieves better
data classification fault tolerance and anti-noise ability.

• Scale theory and data mining. Multi-scale theory has
been paid close attention in data mining field. However,
the research on multi-scale data mining is still in its
infancy, lacking universal theory and methods. With the
deepening of the application of big data, its research
becomes more urgent. Mengmeng Liu et al. conducted
a study of universal multi-scale data mining on theoret-
ical and methodological aspect [21]. The point-domain
Kriging method and area-domain Kerry were intro-
duced to accomplish scale-down and scale-up mining
respectively. Chao Li et al. proposed a multi-scale
association rule scale-up algorithm MSARSUA, which
introduced a similarity calculation method based on
inclusion degree and a Gaussian pyramid scale-up the-
ory [19]. The introduction of multi-scale theory can
not only effectively reduce the scale of the problem to
improve the processing efficiency but also help the deci-
sion maker to make decisions from different perspectives.
In 2019, Ye Zhang et al. proposed a data scale partition
method for multi-scale data mining, which is based on
a discretization method using probability density esti-
mation [37]. This method expands the scale data types
and effectively reduces the scale effect caused by scale
deduction in multi-scale data mining.

In summary, most of the supervised discretization
algorithms ignore the more valuable information that may
exist in the dataset when initially selecting the candidate cut
point set, resulting in insufficient final discretization results.
Therefore, candidate cut points with different granularities
are obtained by incorporating the multi-scale theory to the
division of the initial data, and using these points as test
dataset will make the actual classification more reasonable.

3 Background

To facilitate the presentation of MSE, we summarize the
notation used throughout this paper in Table 1.

3.1 Decision table

Discretization technique aims to divide the domain of the
problem based on the known condition attributes and deci-
sion attributes of the decision table to ensure that the deci-
sion table has a high classification ability. The decision table
is a table-like graphical tool, which is suitable for the situ-
ations that contain multiple, intercombined conditions and
multiple decision-making schemes. A way to express com-
plex logic accurately and concisely is to associate multiple
conditions with actions to be performed after these condi-
tions are met. Decision tables can clearly associate multiple
independent conditions and corresponding action actions.
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Table 1 Symbol and annotation

Symbol Annotation

DT A decision table

U A nonempty finite set of objects called the universe

A Conditional attributes

D Decision attributes

Va Va is the set of values for each a ∈ A ∪ D

Ia U → Va is an information function for each a ∈ A ∪ D

T Cut point

Ca
i Ca

i (a ∈ A, 1 ≤ i ≤ |Va |) is the i-th candidate cut point of
the attribute A

d0 The minimum value of attribute A

dn The maximum value of attribute A

Oj The granularity of hierarchy

Ent Information entropy

Definition 1 (Decision table). A decision table DT is
defined as the 5-tuple [28]:

DT = (U, A, D, {Va|a ∈ A ∪ D}, {Ia|a ∈ A ∪ D}) (1)

where

1. U is a nonempty finite set of objects called the universe;
2. A is a nonempty finite set of conditional attributes;
3. D is a nonempty finite set of decision attributes;
4. Va is the set of values for each a ∈ A ∪ D ; and
5. Ia : U → Va is an information function for each

a ∈ A ∪ D.

Example 1 Table 2 illustrates a decision table DT , where
U = {x1, x2, x3, x4, x5, x6}, A = {a1, a2}, and D = {d}.

3.2 Information entropy

Information entropy is a commonly used method to select
cutting points in the supervised discretization algorithms.
Information entropy is usually used to indicate the degree
of chaos for a system. In this study, information entropy
is used to indicate the purity of the divided dataset. A
smaller entropy value means that the greater the data purity,

Table 2 Example of a decision table DT

U a1 a2 d

x1 4.0 0.4 1

x2 4.3 1.0 1

x3 5.1 1.0 1

x4 4.3 2.9 0

x5 6.2 7.5 0

x6 7.0 7.6 1

that is, the higher availability of the discrete data will be
obtained, and vice versa. Information entropy and its related
definitions are as follows:

Definition 2 (Information entropy). The information
entropy of T is defined as [28]:

Ent(T) = −
∑n

i=1
p(Xi)Log(p(Xi)) (2)

where p(Xi) = |Xi ||U | , and Xi is the distribution of decision
attributes which have been divided according to the cut point
T .

4 Data discretization based onmulti-scale
and information entropy

In this section, we give relevant definitions of the multi-
scale theory, and elaborate on the idea of MSE.

4.1 Multi-scale partition

4.1.1 Related multi-scale definitions

Definition 3 (Scale). Scale refers to the measurement unit
of the research object, and is a standard for measuring
research objects [37].

Broadly speaking, scale can be regarded as the unit or
measurement tool of a research object. We apply scale
theory to user data objects to help effectively discretize data.
The ‘scale measurement’ includes two aspects: the range
measurement (Fig. 1a) and the granularity measurement
(Fig. 1b). The range scale measure studies the size of
an object, and the granularity scale measure concerns the
smallest measurement unit of a study object in a scale range.
In this study, the granularity scale measurement method is
adopted to divide the attribute values.

Definition 4 (Concept hierarchy). The concept hierarchy
H is a partial order relation set (H, ≺), where H represents
a finite concept set, and ≺ reflects a partial order relation
between two adjacent concepts contained in H [21].

The attribute set of data in certain category can form
a conceptual hierarchy with a clear partial order structure:
each attribute hi(i = 1, ..., n) can be regarded as a
concept of the finite concept set H = {h1, ..., hi, ..., hn}.
Based on the domain knowledge, there is a partial order
relationship among attributes, which corresponds to the
partial order relationship of concepts in a finite concept
set. An instantiated attribute hi ∈ H usually corresponds
to a group of specific attribute values, denoted as Vhi =
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Fig. 1 Scale Measurement

{v1, v2, ..., vmi} (where, vj represents a specific discrete
value or a continuous interval). That is, the high abstraction
of the group of attribute values in semantic forms the
attribute (concept) hi , we call the attribute value vj ∈ vhi

belongs to hi in semantic and record it as vj ∈ hi. In
practical applications, the attribute set in regional category
can form a conceptual hierarchy (Hlocation, ≺) = {village ≺
city ≺ province ≺ country} ; the attribute set in the time
category can also form a conceptual hierarchy (Htime, ≺) =
{day ≺ month ≺ year} .

According to the definition of concept hierarchy, we
can conduct multi-scale partition on the attribute values.
Accordingly, those points used to divide the attribute values
are called as the candidate cut point set. Below we give the
definition of the candidate cut point set.

Definition 5 (Candidate cut point set). Given a decision
table DT , the candidate cut point set of attribute A is:

Ca
i = d0 + (dn − d0)i

Oj
(3)

Where

1. Ca
i (a ∈ A, 1 ≤ i ≤ |Va|) is the i-th candidate cut point

of the attribute A;
2. d0 is the minimum value of attribute A;
3. dn is the maximum value of attribute A;
4. Oj is the granularity of hierarchy;
5. O is the order of the tree, which is used to determine

the base of the granularity in the scale. This parameter
defaults to 4, which is a discretizers parameter recommen-
ded by earlier studies. The best default value has also
been verified by subsequent experiments in this study;

6. J is the layer number of the tree, which is used to
determine the index of granularity division. The size
of J depends on the logarithm between the number of
distinct attribute values CountA and order O, that is
J = LogO(CountA/2). The value of J can ensure that
the divided data can be controlled within a certain range
to prevent overfitting.

Example 2 Suppose an attribute value ranges from 0 to 100
and contains a total of 90 different values. According to
formula (3), the value d0 is 1, dn is 100, O is 4, and j is
2. The division process of this attribute value is shown in
Fig. 2.

The candidate cut point set is: [ 0, 6.25, 12.5, 18.75, 25,
31.25, 37.5, 43.75, 50, 56.25, 62.5, 68.75, 75, 81.25, 87.5,
93.75, 100 ].

4.1.2 Multi-scale data partitioning

We apply multi-scale theory to study the optimal scale
selection for continuous data. Due to the different value
ranges and number of values of the multiple attributes
that make up the dataset, we need to determine the best
scale partition for each attribute. Different scale selection
will affect the final conclusion, and even an irrational
scale partition may lead to wrong conclusions. Therefore,
we hierarchically partition the data from coarse to fine
according to the concept hierarchy, then to determine the
best partition scale depending on the adjustment of the scale
granularity.

When scale partition is performed, the more hierarchies
are divided, the finer the partition, however, the amount of

Fig. 2 An example for
generating candidate cut point
set
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Fig. 3 Schematic representation of multi-scale interval of q-order tree

data will also increase accordingly. In the scale partition
process, we can find that better candidate cutting points
often correspond to a certain scale hierarchy. Therefore,
the discretization algorithm can obtain the best trade-
off between time and classification accuracy. Then, the
corresponding hierarchy is the best scale we are looking for.
Granularity scale measurement is the smallest measurement
unit of the research object under the scale range, which is
our main concern. Our proposed method MSE is similar to
equal width discretization method. The biggest difference
between them is that MSE carries out partition based on
different granularities instead of the same granularity used
in equal width discretization method. The specific partition
idea of MSE is described as follows:

Based on the tree structure division, each interval partition
maps the range of continuous values to a node of the tree struc-
ture. And the root of the tree is the value range of continuous
attributes. As we gradually divide down the hierarchy, increa-
singly fine intervals are formed, The number of intervals
determines the degree of accuracy. Figure 3 shows a general
multi-scale interval representation based on a q-order tree,
and Fig. 4 gives an instance of a four-order tree.

In the tree, a discrete interval is represented by two tuples
(m, n), which are corresponding scale and node number
respectively. That is, node (m, n) indicates that the interval
is on the n − th node of the m − th hierarchy (scale m).

The coarsest scale locates the node m = 0 in which
only one interval is expressed as (0, 1) interval (attribute
domain). The number of intervals (a.k.a., the number of
nodes) of the Q-order tree on the scale m is qm. At each
layer, we adopt equal width method to complete partition.
Let [a, b] be the domain of the continuous variable attribute
x, then the discretization interval represented by the node
(m, n) is [a+(b−a)(n−1)/qm, a+(b−a)n/qm]. The larger

the values of q and m, the higher the classification accuracy,
but it also means the calculation amount is also larger. From
formula (4), the data partition hierarchy is determined by
the number of different attribute values, that is, the larger
the number of attribute values, the greater the number of
hierarchies. Based on the interval partition, the obtained
interval values are used as the candidate cut set to be further
optimized in the next step.

4.2 Cut set detection based on information entropy
andMDLPC criterion

In order to judge which points are the best after the candidate
cut set is generated, information entropy is introduced.
From the definition of information entropy introduced in
Section 3.2, we can know that if the data in the dataset has
good consistency, the corresponding information entropy
value will be small. Therefore, our goal is to find a cut point
with a small information entropy. The specific idea of cut
set detection based on information entropy is as follows.

First, each candidate cut point is used to divide attribute
value set Va of an attribute A into two parts, and the
class information entropy corresponding to each cut point is
calculated according to definition 6 according to definition.
Then, the cut point with the minimum entropy value will be
selected as the candidate best cut point. However, whether
the cut point can be determined as the final discrete interval
needs to be judged by the MDLPC criterion (the reasons
and definitions are given below). If a cut point is selected
as the final discrete interval, the attribute value set will
be divided into two subsets by this cut point. And the
above process will be performed recursively on the divided
attribute value subsets until all candidate cut points do not
meet the MDLPC criterion.

Fig. 4 An instance of four-order
tree

997A novel discretization algorithm based on multi-scale and information entropy



Definition 6 (Class information entropy). For an example
set Va , an attribute A, and a cut value T : Let Va1 ∈ Va

be the subset of examples in Va with A − values ≤ T

and Va2 = Va − Va1. The class information entropy of the
partition induced by T , Ent(A, T ; Va), is defined as [10]:

Ent(A, T; Va) = |Va1|
|Va| Ent(Va1) + |Va2|

|Va| Ent(Va2) (4)

The discretized cut point of the attribute A is determined by
selecting the cut point TA with the minimal Ent(A, T ; Va).

In most supervised discretization algorithms, the number
of class labels is set to the maximum interval value of
continuous data to determine the final discrete interval, such
as CAIM, CACC, and so on. However, the division schema
is not flexible enough and is not suitable for the data with
various modes. The ideal discrete algorithm not only needs
to consider enough interval values to prevent the loss of data
information, but also to avoid overfitting due to too many
interval values. Therefore, we use the evaluation standard
proposed by Fayyad and Irani, that is MDLPC criterion
[10]. MDLPC criterion compares the minimum description
length without division and the minimum description length
after division according to the best cut point to determine
whether the cut point can be selected as the final discrete
interval to divide the data. The data should be divided
when the former value is greater than the latter, otherwise
the division should be discarded. The MDLPC criterion is
defined in Definition 7 below.

Definition 7 (MDLPC criterion). The MDLPC criterion
is an evaluation standard for attribute selection metrics, that
is, to determine whether a cutting point is a final cut point.
For a set Va of N examples, if a cut point T can be accepted
as the final discrete cut point iff [10]):

Gain(A, T; Va) >
Log2(N − 1)

N
Ent(Va1) + �(A, T; Va)

N
Ent(Va2) (5)

Where, �(A, T ; Va) = Log2(3k − 2) − [kEnt(Va) −
k1Ent(Va1)−k2Ent(Va2)], Gain(A, T ; Va) = Ent(Va)−
Ent(A, T ; Va). Accept when the conditions are met,
otherwise reject.

According to MDLPC criterion, the final number of
interval values can be obtained objectively without causing
overfitting and information loss.

4.3 Discretization algorithm based onmulti-scale
and information entropy

4.3.1 Algorithm description

Step 1: Select candidate cut points. The continuous
attributes in the decision table are sorted in ascending
order according to their values. we label the minimum

value as dmin and the maximum value as dmax . And
we initialize the discretization scheme D[dmin, dmax] and
candidate cut point set C[dmin, dmax]. The candidate cut
point set C[dmin, dmax] are then mapped to the initial
root nodes of the O-order tree (for the initial value
of O, see definition 5). The continuous attribute value
range represented by C[dmin, dmax] is divided layer by
layer according to Definition 5. The boundary values
corresponding to each node in the tree are calculated by the
formula Ca

i = d0 + (dn−d0)i

Oj (a and i represent attribute and
the number of cut points, respectively) until the number of
division layers J is reached, then a complete O-order tree
will be obtained. During this process candidate cut point set
C will be updated by adding all newly generated boundary
values Ca

i to C (see lines 1 to 9 in Algorithm 1).
Step 2: Select a optimal cut point. The class information

entropy value corresponding to each candidate cut point is
calculated based on definition 6, and the cutting point with
the smallest entropy value is selected as the best cut point
(see lines 12 to 13 of the following algorithm 1).

Step 3: Determine the final discrete interval set. The
MDLPC criterion is adopted to judge whether the best cut
point in step 2 can be selected as the final discrete interval. If
it meets, add it to the discretization scheme D[dmin, dmax],
that is, it is determined as the final cut point to divide the
data. Then, return to step 2 and start repeatedly on each
divided data block. Otherwise, the cut point is discarded
and the next cut point is selected to return to step 2.
The algorithm terminates until all candidate cut points are
judged (see lines 14 to 19 in Algorithm 1)
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4.3.2 Time complexity analysis

In this section, the time complexity of the MSE algorithm
for a single attribute is analyzed. The time complexity of the
MSE algorithm is mainly determined by the calculation of
all possible candidate cut points and the information entropy
of each cut point. The specific steps involved are as follows:

All attribute values are searched to find the maximum and
minimum values of the attribute values in Line 3. Suppose
an attribute contains N objects, so the time complexity
corresponding to this step is O(N).

Line 8 is to calculate all candidate cut point using the
given formula (5). In the worst case, the time complexity of
this step is O(m), where m is the number of unique values
of the attribute.

Lines 10 to 19 in the algorithm are used to determine
the final discrete interval. First, lines 12 to 13 calculate
the entropy value of each candidate cut point. It can
be known from the above algorithm description that the
complexity of entropy calculation is O(N), so the time
complexity corresponding to these steps is O(mN). Then
the MDLPC criterion is used to detect these cut point. From
the definition 7, it can be seen that the time complexity
of the detection process i is O(N), so the overall time
complexity from line 10 to 19 is O(mN) + O(N).

Therefore, for a dataset containing K attributes, the time
complexity of the algorithm is O(k) × O(N + m + mN +
N) = O(2NK + mK + mNK) = O(mNK).

5 Experimental setup

In this section, some existing classic algorithms (see
Section 5.2 in details) and classifiers(see Section 5.3 in
details) are selected to evaluate the performance of our
proposed algorithm MSE. The performance differences
among them are examined and analysis using the ten UCI
datasets (see Section 5.4 in details).

5.1 Experimental setup

We implement the MSE and its comparison algorithms
using Python 3.6.2 on a computing node equipped with
Windows 10 operating system, InterCore i5-7500G Hz CPU
and SamsungDDR44GB memory.

5.2 Discretization algorithms for comparison

The following typical discretization algorithms are chosen
to effectively evaluate our algorithm MSE.

1. Multi-scale Data and Information Entropy
2. EW [29]: Equal Width

3. EF [29]: Equal Frequency
4. KMeans [8]: Clustering-based
5. MDLP [10]: Minimum Description Length Principle
6. CAIM [18]: Class-Attribute Interdependence Maxi-

mization
7. CACC [27]: Class-Attribute Contingency Coefficient
8. UrCAIM [5]: Improved CAIM Discretization
9. TSD [28]: A Two-stage Discretization

5.3 Classifiers for comparison

In order to avoid the bias of particular classifiers to data, 5
different classifiers belonging to different families are used
to evaluate the classification performance, which increases
the strength of the experimental study. The classifiers are:

1. CART [2]: This is a typical binary decision tree, consid-
ered one of the top 10 DM algorithms [30].

2. Naive Bayes [16]: This is another of the top 10 DM algo-
rithms [30]. Its aim is to construct a rule which will allow
us to assign future objects to a class, assuming indepen-
dence of attributes when probabilities are established.

3. RandomForest [3]: This is an algorithm that integrates
multiple trees through the idea of ensemble learning. It
is unexcelled in accuracy among current algorithms.

4. SVM [7]: It is a supervised learning method, which is
widely used in statistical classification and regression
analysis. It is also considered one of the top 10 DM
algorithms [30].

5. OneR [14]: This is a very simple classification method,
which can quickly build a model for classification
prediction. The basic idea of OneR is to use the most
important features found in all the features of the dataset
for classification.

5.4 Experimental dataset

We choose 10 datasets from the University of California Irvine
Machine Learning UCI Database (http://archive.ics.uci.edu/
ml) [1] to evaluate our algorithm. These datasets are typical

Table 3 The summary of 10 UCI experimental datasets

No. Name Examples Attributes Classes

1 abalone 4177 8 28
2 glass 214 10 6
3 ionosphere 351 33 2
4 iris 150 4 3
5 optdigit 5620 64 10
6 pendigits 10992 16 10
7 satellite 6435 36 7
8 shuttle 58000 9 10
9 waveform 5000 21 3
10 winequality 4894 11 7
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due to their differences in complexity, number of classes,
number of attributes, number of instances, etc., and they
are often used by other algorithms to evaluate discretization
performance [11].

1. Abalone Data (abalone)
2. Glass Identification Database (glass)
3. Johne Hopkins University ionosphere Database (iono-

sphere)
4. Iris Plants dataset Iris (iris)
5. Optical Recognition of Handwritten Digits (optdigit)
6. Pen-Based Recognition of Handwritten Digits Dataset

(pendigits)
7. Statlog (Landsat Satellite) Dataset (satellite)
8. Statlog (shuttle) Dataset (shuttle)
9. Waveform Database Generator (Version 1) dataset

(waveform)
10. Wine Quality (winequality)

The main characteristics of these datasets are summa-
rized in Table 3. And the corresponding probability density

functions are shown in Fig. 5 to express the probability of the
attribute values of the datasets. In addition, the covariance
matrix (Fig. 6) is adopted to demonstrate the actual rela-
tion among the attributes of each dataset. However, too large
conditional attributes will make it impossible to display all
the attribute information at the same time in the visualiza-
tion process. Therefore, for cases where there are too many
conditional attributes in individual datasets (such as iono-
sphere, optdigits, satellite, shuttle, waveform, winewuality),
we select the conditional attributes with greater correlations
to plot by calculating the correlation between conditional
attributes and decision attributes using the chi-square.

6 Experimental analysis

In the experimental evaluation process, ten UCI datasets
were tested to evaluate the performance of MSE. Note that
the best results are marked in bold in all tables exhibiting
experimental results below.

Fig. 5 The probability density functions of datasets
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Fig. 6 The covariance matrix of datasets

In the subsequent experimental results, we added the last
row or column (i.e., Rank) to compare the grades of the
nine algorithms. Each Rank value is the grade mean of
the corresponding discretization algorithm on 10 datasets.
That is, for each dataset, we assign different grade to each
algorithm according to performance. The algorithm grade
with the best performance is assigned to 1, and so on.
To further evaluate the significant differences in algorithm
performance, we used the Friedman test and Holm post-
hoc test [13] [9] to verify statistically. When the Friedman

statistic value is greater than a certain threshold, it indicates
that there is a statistical difference among the Rank of the
discretization methods. The Friedman statistical distribution
corresponds to the F-distribution with degrees of freedom
k − 1 and (k − 1)(N − 1), in which k is the number
of algorithms, N is the number of data sets. When the
Rank difference between the two comparison algorithms is
greater than the critical difference obtained by Holm post-
hoc test, it indicates that the algorithm with the larger Rank
value has a significant performance advantage.

Table 4 Impacts of different partition orders on the classification accuracy of CART

Orders Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality

3 24.9 86.21 − 95.33 89.02 96 83.48 99.04 76.8 46.45

4 25.43 90.05 92.3 93.33 89.02 96.45 83.75 99.96 76.1 44.49

5 25.07 90.95 90.6 94 90.05 96.23 83.1 99.07 75.8 45.53

6 24.47 − 91.45 93.33 90.05 96.64 83.26 98.93 76.48 45.53
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Table 5 Impacts of different partition orders on the classification accuracy of RandomForest

Orders Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality

3 24.44 84.31 − 94.67 95.99 98.71 88.41 99.04 81.6 47.77

4 25.47 86.19 93.74 94.7 95.37 98.61 88.42 99.96 82.18 47.33

5 24.68 86.19 94.31 94 96.03 98.54 87.99 99.08 82.88 47.59

6 24.04 − 93.75 92.67 95.44 98.67 88.02 98.94 82.22 47.94

Table 6 Impacts of different partition orders on the runtime of MSE

Orders Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality

3 5.58 0.1825 − 0.015 0.7725 3.0575 1.7625 3.195 4.6675 1.3025

4 4.3425 0.1375 1.525 0.02 1.2025 2.5475 2.3725 2.9525 3.78 1.12

5 4.5475 0.2025 1.1025 0.0175 0.5025 1.07 1.18 3.1725 8.7275 1.315

6 5.235 − 1.8375 0.0175 0.615 1.62 1.73 3.325 3.3725 0.7775

Table 7 Impacts of different partition orders on the interval number of MSE

Orders Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality

3 46 28 − 11 241 162 438 68 105 36

4 45 28 130 13 253 161 420 73 109 40

5 45 28 131 12 206 161 424 73 109 38

6 45 − 132 11 224 164 442 68 106 38

Table 8 Impacts of different partition hierarchies on the classification accuracy of CART

Hierarchies Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Suttle Waveform Winequality

J = logO(CountA/2) − 2 25.62 58.48 88.05 - 9.27 95.88 68.72 87.98 75.48 47.43

J = logO(CountA/2) − 1 25.26 87.21 91.18 94.67 90.12 96.55 82.86 97.97 74.98 45.39

J = logO(CountA/2) 25.43 90.05 92.3 93.3 89.02 96.45 83.75 99.96 76.1 44.49

J = logO(CountA/2) + 1 − − − 94 89.88 96.38 83.09 99.96 76.44 45.27

J = logO(CountA/2) + 2 − − − − 89.88 96.38 83.45 − − −

Table 9 Impacts of different partition hierarchies on the classification accuracy of RandomForest

Hierarchies Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Suttle Waveform Winequality

J = logO(CountA/2) − 2 25.83 57.58 90.87 − 9.32 97.42 72.91 87.98 81.62 46.78

J = logO(CountA/2) − 1 24.61 83.89 92.32 94.67 95.68 98.54 87.99 97.97 82.04 47.65

J = logO(CountA/2) 25.47 86.19 93.74 94.67 95.37 98.61 88.42 99.96 82.18 47.33

J = logO(CountA/2) + 1 − − − 95.33 95.93 98.77 88.28 99.96 82.4 47.47

J = logO(CountA/2) + 2 − − − − 95.93 98.77 88.78 − − −

Table 10 Impacts of different partition hierarchies on the runtime of MSE

Hierarchies Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Suttle Waveform Winequality

J = logO(CountA/2) − 2 0.40 0.01 0.17 − 0.17 0.28 0.18 0.32 0.39 0.14

J = logO(CountA/2) − 1 1.39 0.065 0.67 0.005 0.44 0.97 0.92 1.20 1.31 0.27

J = logO(CountA/2) 6.02 0.2 1.93 0.03 1.45 3.77 3 3.95 5.38 1.30

J = logO(CountA/2) + 1 − − − 0.06 5.61 12 11.29 18.32 19.08 4.97

J = logO(CountA/2) + 2 − 0 − − - 49.93 41.42 70.55 − −
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Table 11 Impacts of different partition hierarchies on the interval number of MSE

Hierarchies Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Suttle Waveform Winequality

J = logO(CountA/2) − 2 35 18 80 − 74 64 117 19 109 24

J = logO(CountA/2) − 1 43 24 121 12 186 150 322 36 105 36

J = logO(CountA/2) 45 28 130 13 253 161 420 73 109 40

J = logO(CountA/2) + 1 − − − 12 278 165 448 134 106 37

J = logO(CountA/2) + 2 − − − − − 165 448 190 − −

6.1 Impact of parameters onMSE

The parameters that affect the performance of the MSE
algorithm mainly include the order and number of layers of
the data partition. In this group of experiment, we verified
the impact of these two parameters on the performance of
the MSE algorithm in terms of running time, number of
intervals, and classification accuracy.

In order to make the experimental results more convinc-
ing, experiments were performed on CART and Random-
Forest. CART has the characteristics of strong fault toler-
ance for outliers and high robustness, so it is not affected
by some abnormal parameters in our experiments. For Ran-
domForest, compared with other classification algorithms, it
has a strong ability to resist overfitting, and can also balance
errors on unbalanced datasets.

The effects of different partition orders on the perfor-
mance of CART and RandomForest are shown Tables 4 and
5. It can be seen that when the order is 4, the classification
accuracy performs best. From Tables 6 and 7, we can also
see when the other parameters of the algorithm are fixed,
the running time and interval numbers on most datasets are
not much different for different orders. This trend is consis-
tent with the quantile theory in statistics. The quartile, as a
form of quantile, has very important meaning and function
in statistics, which can effectively help us identify the char-
acteristics of the data: (1) intuitively identify outliers in the

dataset, (2) judge the degree of data dispersion and bias of
the dataset.

Tables 8 and 9 show the effect of different partition hier-
archies on the performance of CART and RandomForest.
The experimental results clearly show that the classifica-
tion accuracy can reach the optimal value when the number
of hierarchies J = logO(CountA/2). The experimental
results in Table 10 clearly show that the execution time will
increase as the number of partition hierarchies increases.
And, the experimental results illustrated in Table 11 show
that the number of interval values also increases with the
number of partition hierarchies until a specific value is
reached. The sign ‘ - ’ in the table indicates that the run-
ning time is too long due to too many candidate cut points
generated by the attribute value division. The reason for
this trend is that more candidate cut points provide a bet-
ter opportunity to choose the best cut point, so that the
classification accuracy is improved. When the partition hier-
archies reaches a certain value, the classification accuracy
is no longer significantly improved because the number of
selected cut points has met the selection criteria.

6.2 Discretization efficiency

In the comparative experiment, the parameter intervals
of the unsupervised discretization algorithm are all set
to 4 referring to other literatures [28], and the analysis

Table 12 Discretization efficiency of the nine algorithms

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 6.17 0.13 1.98 0.016 1.84 4.28 3.19 5.49 6.81 1.5 4.15

EW 0.023 0.024 0.072 0.01 0.12 0.04 0.07 0.045 0.06 0.025 1.1

EF 0.034 0.051 0.065 0.026 0.13 0.05 0.215 0.067 0.115 0.123 2.2

KMeans 0.478 0.226 1.349 0.07 4.31 1.421 1.58 2.976 1.844 0.558 4.1

MDLP 13.48 0.189 2.01 0.025 2.15 6.667 4.06 9.378 16.75 3.102 5.8

CAIM 969.6 0.74 0.45 0.016 5.23 24.68 9.1 21.48 9.14 9.04 6.65

CACC 3535 7.2 100.7 0.156 6.78 112.9 88.4 653.7 4290.5 341.8 8.9

UrCAIM 32.97 0.5825 0.275 0.0325 1.3175 4.795 3.275 6.6475 5.8825 1.635 4.9

TSD 1.598 5.46 2.866 0.142 27.944 18.31 13.548 197.20 8.58 4.562 7.2
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Table 13 Number of discretized interval generated by the nine algorithms

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 45 28 130 13 253 161 420 73 109 40 6.2

EW 32 40 132 16 256 64 144 36 84 44 4.6

EF 28 32 130 16 207 64 144 34 84 44 4.2

KMeans 32 40 132 16 256 64 144 36 84 44 6.0

MDLP 50 29 130 12 278 165 448 199 106 37 6.4

CAIM 198 70 64 12 571 160 216 63 63 77 6.4

CACC 37 148 135 11 196 55 120 37 469 93 5.5

UrCAIM 32 45 110 11 201 64 133 29 53 29 3.1

TSD 37 27 24 12 18 40 58 35 38 22 2.3

results are shown in Table 12. For the supervised
discretization algorithms, their parameter settings defer to
the recommended configuration.

Table 12 shows The two classic unsupervised discretiza-
tion algorithms, equal width and equal frequency, run faster
than other algorithms because unsupervised algorithms do
not involve heuristic knowledge and avoid extra judgement
time. It can also be seen from Table 12 that our MSE
algorithm outperforms most other supervised discretization
algorithms in execution time. That is, there are signifi-
cant differences between MSE and other algorithms, and
it performs significantly better than the time-consuming
CACC algorithm, which is also verified by Friedman test
(the Friedman statistical value 6.43 is greater than the
threshold of 3.1) and Bonferroni-Dunn test (the critical
difference is 3.34). Because MSE effectively controls the
amount of candidate set of cut points through scale divi-
sion, thereby the calculation time of the optimal cut point
selection is reduced. It is worth noting that the CACC and
CAIM discretization algorithms obviously behave poorly
on abalone dataset. This is mainly because the dataset is
unevenly distributed and the large number of class labels
affect the algorithm runtime. However, we also found that
the UrCAIM algorithm performs better on certain datasets,
because UrCAIM improves the efficiency of the CAIM
algorithm by improving the discretization standard. How-
ever, TSD consumes a lot of time due to its two-stage
execution strategy.

For different datasets, in the case that the amount
of attribute data is less than 1000, such as glass,
ionosphere, and iris, the algorithms run faster because the
amount of data that needs to be processed is relatively
small. However, from the time comparison of various
discretization algorithms running on these three datasets,
it is obvious that the ionosphere dataset consumes longer
than the other two datasets. This is because the ionosphere
dataset requires 33 discrete attributes, which is much larger
than the other two datasets. As a result, the number of cycles
of the algorithm will increase, and the running time will

also increase, especially for CACC discretization algorithm.
In the case where the data volume of an attribute is around
5000, such as abalone, optdigit, satellite, waveform, and
winequality, most algorithms take a relatively long time on
the two datasets abalone and waveform. This is because
these two datasets contain more unique attribute values.
And, for the two datasets pendigits and shuttle, although
the data volume is large (the data volume of an attribute
exceeds 10,000), the values are all integer values and the
data distribution is relatively concentrated. Therefore, the
running time on the two datasets is relatively stable.

6.3 Number of discretized intervals

Table 13 statistics the number of intervals generated by the
discrete algorithm. In this group of tests, the corresponding
Friedman statistical test value 5.52 of Table 13 is greater
than the threshold value of 3.1, indicating that there is a
statistical difference among the Rank of these discretization
methods. The subsequent Bonferroni-Dunn test (the critical
difference is 3.34) shows that MSE has no significant
performance advantage over other algorithms. Since the

Table 14 Parameters of the discretizers and classifiers

Method Parameters

CART Pruned tree, 2 example per split, 1 example per leaf

RandomForest Pruned tree, 2 example per split, 1 example per leaf

SVM K=3, threshold =0.01

EW numIntervals = 4

EF numIntervals = 4

KMeans numIntervals = 4

MDLP Recommended by the authors

CAIM Recommended by the authors

CACC Recommended by the authors

urCAIM Recommended by the authors

TSD Recommended by the authors

1004 Y. Xun et al.



Table 15 Impacts on classification accuracy of CART

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 25.43 90.05 92.3 95.33 89.02 96.45 83.75 99.96 76.1 44.49 2.1

EW 24.85 70.74 88.64 87.33 88.64 95.67 81.7 89.55 72.7 40.42 6.4

EF 24.83 67.38 87.76 88.67 88.78 95.53 81.06 89.45 74.32 40.92 6.5

KMeans 24.28 67.08 83.76 95.33 83.35 95.72 80.89 99.1 72.1 41.42 6.55

MDLP 24.71 95.71 90.90 94.0 89.88 96.38 83.45 99.96 75.98 44.83 2.2

CAIM 21.91 94.76 90.03 94.0 89.72 96.14 83.22 99.93 74.56 44.69 3.65

CACC 23.08 90.95 88.9 94.0 89.18 95.05 23.95 99.94 71.98 43.04 5.9

UrCAIM 25.06 90 90.04 94 89.59 95.3 83.5 99.82 73.18 44.53 4.1

TSD 24.49 57.64 84.91 94 10.48 89.77 55.79 99.81 60.98 43.26 7.6

difference in Rank between MSE and other algorithms does
not exceed this critical value observed from Table 13.

The interval of the two unsupervised algorithms (i.e.,
equal width and equal frequency algorithms) and the
KMeans algorithm are directly given by the user with
strong randomness. Therefore, the interval are fixed. For the
supervised discretization algorithm, the number of interval
of MSE algorithm and MDLP algorithm is more than
the other two supervised discretization algorithms. The
main reason is that these two algorithms use the MDLPC
criterion to obtain the interval instead of the fixed value
given in advance. In the such way, continuous data can
be divided more fully, which can reduce information loss
caused by inconsistent data. Overall, the CACC and TSD
algorithms perform better on the number of discretized
interval. Because the number of intervals generated by
the CACC algorithm is always kept within the number
of class labels. And, TSD discretizes the data using two
stages, which makes the result of local discretization further
reduced during the global discretization process, resulting
in fewer discrete intervals.

6.4 Impacts on classification accuracy

We evaluate the the impact of the MSE discretization
algorithm on classification accuracy by applying our MSE
to five classic classification algorithms, widely used to
verify the classification accuracy for the discretization
algorithms. The datasets used in the experiment are
partitioned using the 10-fold cross-validation (10-fcv)
procedure. The parameters we used in the discretizer
and classifier experiments were recommended by their
respective authors, and we assume that these parameters
are optimal. The specific parameters are listed in Table 14.
From the Rank value, Friedman and Bonferroni-Dunn tests
show that the MSE algorithm has the best comprehensive
performance, because it ranks the first in four classification
algorithms. On the contrary, the TSD algorithm performs
the worst among the remaining algorithms. Below, we
elaborate on the impact of these discretization methods on
the accuracy of each classifier.

All experimental results shows the two unsupervised
discretization methods, the equal width and equal frequency

Table 16 Impacts on classification accuracy of RandomForest

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 25.47 86.19 93.74 94.7 95.37 98.61 88.42 99.96 82.18 47.33 2.35

EW 24.71 65.67 90.06 85.33 93.73 97.38 85.52 89.55 78.94 47.96 6.3

EF 24.45 66.1 90.12 90.67 93.65 97.53 86.06 89.09 81.34 48.63 5.6

KMeans 24.23 63.18 91.46 93.33 90.37 97.49 86.28 99.1 78.16 47.35 6.2

IEM 24.06 87.21 94.02 95.33 95.93 98.77 88.78 99.96 82.02 46.88 2.45

CAIM 23.56 82.38 92.9 94.0 96.05 98.49 87.69 99.93 79.8 49.27 3.75

CACC 23.41 84.76 92.6 93.33 94.68 96.38 25.1 99.93 78.24 46.06 6.45

UrCAIM 24.9 83.42 94.04 94.67 95.78 97.48 86.71 99.82 78.46 46.45 4.1

TSD 24.22 55.37 86.33 94.66 10.44 91.38 57.71 99.81 67.36 44.85 7.8
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Table 17 Impacts on classification accuracy of Naive Bayes

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 19.08 81 92.6 95.33 78.15 84.91 79.16 51.97 81.76 7.76 3.0

EW 11.4 45.52 90.63 84.7 70.18 77.54 72.7 0.4 78.14 2.16 7.3

EF 12.12 55.23 90.34 86 70.89 77.58 77.24 16.83 81.28 39.89 5.4

KMeans 15.9 29.33 74.94 91.3 42.28 70.18 76.28 14.79 73.38 37.01 7.0

IEM 13.31 95.24 89.7 94.7 76.16 84.79 79.34 93.64 82.04 10.84 3.0

CAIM 12.28 90.02 92.3 94.0 76.98 84.41 77.58 90.85 81.26 18.15 3.95

CACC 8.24 90.47 92.3 94.0 68.08 82.75 24.77 98.38 80.08 39.28 5.15

UrCAIM 11.25 90.48 93.15 94 74.77 83.36 78.26 91.03 80.84 38.06 4.0

TSD 12.35 31.32 70.96 96 10.559 72.51 51.12 71.91 71.76 40.38 6.2

discretization methods, behave poor classification accuracy
because of a large data inconsistency rate caused by
the equal division of data without considering decision
attributes. The classification effect of KMeans discretization
algorithm be superior to the two unsupervised algorithms,
because it clusters close data into one category when
dividing dataset. However, the classification effect of
KMeans is not perfect because it lacks guidance knowledge
without considering the decision attributes.

The supervised discretization algorithms are applied
to a binary decision tree algorithm CART to evaluate
the classification accuracy performance of our proposed
algorithm. Table 15 shows results of this comparison of
various discretization algorithms on different datasets. It can
be seen that our proposed MSE algorithm appears good
classification accuracy, especially for six datasets. This is
because we divide the dataset into appropriate scales to
obtain candidate cut point sets with different manifestations.
Therefore, these cut point sets can better reflect the essential
characteristics of the research objects, thereby improving
the classification accuracy.

Tables 16, 17 and 18 reveals the impacts of the ten
discretization algorithmths on three commonly used classi-
fication algorithms. It can be seen from the experimental
results MSE significantly improves classification accuracy,
especially for naive Bayes (see Table 17) and support vec-
tor machines (see Table 18), the classification accuracy is
significantly improved. Compared with other types of dis-
cretization algorithms, MSE is more suitable for datasets
with a larger number of class labels, a larger amount of
data, and uneven distribution. For this type of dataset, the
candidate cut point set selected by MSE can get a wider
range of data, thereby finding more valuable cut points. For
this kind of data, the candidate cut point set selected by
MSE can get a wider range of data, thereby finding more
valuable cut points. In other cases, MSE can also maintain
relatively stable classification accuracy compared with other
discretization algorithms.

Table 19 shows the classification accuracy on the 1R
classification algorithm, which is the simplest classification
algorithm. 1R is to constructs rules for each feature in
a dataset based on a single feature, that is 1-rules. As

Table 18 Impacts on classification accuracy of SVM

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 27.32 85.71 93.46 95.33 98.13 99.18 88.56 99.73 86.64 53.58 2.35

EW 25.64 63.23 92.89 90.67 98.11 97.65 87.16 89.55 82.46 50.04 6.1

EF 25.06 64.13 92.32 91.33 98.05 97.33 87.49 89.76 85.36 53.68 5.3

KMeans 26.17 50.22 88.9 90.67 78.72 93.96 86.82 99.07 77.06 49.96 7.6

IEM 27.29 90 92.31 94.0 98.13 99.16 88.64 99.74 86.56 54.49 2.7

CAIM 26.31 75.80 94.29 93.33 98.38 99.08 88.81 99.85 83.64 52.27 2.8

CACC 23.49 65.91 92.32 93.33 96.74 96.78 29.14 99.88 35.22 45.63 6.7

UrCAIM 26.6 70.54 94.02 94 97.94 97.97 87.07 99.78 82.66 53.39 3.95

TSD 24.97 51.49 85.76 93.33 10.39 89.33 57.79 99.77 72.98 51.94 7.8
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Table 19 Impacts on classification accuracy of OneR

Algorithms Abalone Glass Ionosphere Iris Optdigit Pendigits Satellite Shuttle Waveform Winequality Rank

MSE 25.9 92.6 81.82 97.4 24.78 35.8 60.66 89.48 54.7 45.96 4.55

EW 24.3 81.48 80.68 86.8 23.77 32.64 48.47 87.5 55 49.96 6.1

EF 23.5 80.76 80.11 73.7 23.34 32.18 51.34 87.3 54.4 49.06 7.4

KMeans 24.21 81.48 82.95 100 24.48 32.5 51.46 85.25 54.2 46.53 6.1

IEM 27.17 100 86.36 97.4 25.48 39.7 60.97 94.89 55.5 47.76 2.15

CAIM 30.52 100 84.1 97.37 26.19 38.46 60.85 94.87 55.92 50.45 2.0

CACC 23.14 100 86.36 97.37 24.84 36.0 32.7 92.7 55.52 45.8 4.85

UrCAIM 24.4 88.89 86.36 97.37 25.05 35.63 58.11 92.7 54.56 45.8 4.85

TSD 24.21 62.96 63.63 97.37 9.7 26.1 50.4 89.27 55.6 47.18 7.0

can be seen from Table 19, the CAIM gains the optimal
performance. Because the CAIM algorithm finds the most
number of points in the set for data partitioning, which
is similar to the 1R algorithm. However, the selection of
cut points by the MSE algorithm is based on information
entropy and MDLPC criterion, which may result in more
data division points and relatively fewer datasets. Therefore,
the performance of classification accuracy is slightly
unsatisfactory. But we cannot deny the validity of MSE
because 1R algorithm is only suitable for the case where
only focuses on one attribute.

In general, CAIM, CACC and UrCAIM belong to
the discretization algorithms whose class attributes are
interdependent. And the latter two algorithms are the
improvement of CAIM algorithm, that is, they maximize
the class attribute interdependence and calculate the best
interval according to their own criteria. It can be seen that
CAIM and UrCAIM algorithms have similar Ranks, and
UrCAIM performs best on two classification algorithms
and CAIM performs best on one classification algorithm
for the ionosphere dataset. The ionosphere dataset contains
many conditional attributes, and the number of class labels
is only two. The discretization algorithm based on the
interdependence of class attributes performs better in this
type of feature distribution dataset.

MSE, IEM and TSD algorithms all use information
entropy in the selection of interval points. We found
that IEM and MSE algorithms have similar ranks, and
they perform well in most datasets. Because they can
obtain appropriate discrete interval number that are more
in line with the data distribution feature by adopting
the MDLPC standard. In addition, we can also see that
the classification accuracy on the two datasets abalone
and winequality is relatively low. Because the abalone
dataset contains up to 28 class labels, it is difficult to
effectively distinguish the category to which the attribute
belongs in the discretization process. In particular, the
MSE algorithm has higher classification accuracy than
other discrete algorithms. Because it divides the candidate

set more widely. For the winequality dataset, the low
classification accuracy is mainly due to its large attribute
value difference.

7 Conclusion and future work

In this study, we developed a supervised, top-down, static
discretization algorithm called MSE, which addresses to
balance the running time and classification accuracy. The
algorithm performs reasonable multi-scale partitioning on
the dataset and can generate the smallest candidate cut for
a given continuous attribute. For the evaluation of each best
candidate cut point, the MDLPC criterion is used to make
the selection of the cut point more objective and reasonable.
We verified the performance of our proposed algorithm
through extensive experiments by comparing five classic
classification algorithms and nine discretization algorithms
on 10 UCI datasets. The evidence shows our MSE exhibits
higher execution efficiency than that of other supervised
discretization algorithms and better prediction classification
accuracy for the five classification algorithms.

The importance of attributes will be considered in our
future research work, as well as the relationship between
attributes. According to the importance of the attributes,
unnecessary attributes are eliminated by setting a reasonable
weight value for each attribute to further improve the
running time of the algorithm. Besides, in recent years, a big
evolution of information technology has brought a sudden
growth in data size. Such big data are not only large in
size but also complex-structured. Therefore, distributed and
parallel computing based on cluster environment are widely
to adopted to discretization process.
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