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Abstract
To solve the problem of falling into local optimum and poor convergence speed in large Traveling Salesman Problem
(TSP), this paper proposes a Pearson correlation coefficient-based Pheromone refactoring mechanism for multi-colony Ant
Colony Optimization (PPACO). First, the dynamic guidance mechanism is introduced to dynamically adjust the pheromone
concentration on the path of the maximum and minimum spanning tree, which can effectively balance the diversity and
convergence of the algorithm. Secondly, the frequency of communication between colonies is adjusted adaptively according
to a criterion based on the similarity between the minimum spanning tree and the optimal solution. Besides, the pheromone
matrix of the colony is reconstructed according to the Pearson correlation coefficient or information entropy to help the
algorithm jump out of the local optimum, thus improving the accuracy of the solution. These strategies greatly improve the
adaptability of the algorithm and ensure the effectiveness of the interaction. Finally, the experimental results indicate that
the proposed algorithm could improve the solution accuracy and accelerate the convergence speed, especially for large-scale
TSP instances.
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1 Introduction

Traveling Salesman Problem is a typical combinatorial
optimization problem and a Non-deterministic Polynomial
Complete (NP-C) problem. It is a concentrated general-
ization and simplified form of various complex problems
in many fields and has become an indirect comparison
standard of heuristic search and optimization algorithms.
Besides, TSP is widely used in many fields, such as trans-
portation, computer network, circuit board design, and
logistics distribution. Therefore, it has important theoreti-
cal value and high practical value to solve TSP quickly and
effectively. The TSP can be explained as that the traveler
knows the mutual distances between n cities. He starts from
a certain city, then visits each city once and only once before
returning to the first city. Lastly, he asks to find the shortest

� Xiaoming You
yxm6301@163.com

Han Pan
panhansh@126.com

1 Shanghai University of Engineering Science, Shanghai, China

path to traverse n cities. In the beginning, optimal solution
algorithms have been used to solve TSP, such as the branch
and bound method and the dynamic programming method.
Although the optimal solution algorithm yields exact solu-
tion, the computation time is intolerable and hence various
approximation methods have been developed, such as the
MM algorithm, greedy algorithm, and the MST algorithm.
These approximation algorithms are not satisfactorily close
to the optimal solution, although they can obtain feasible
solutions that are close to the optimal solution relatively
quickly.

Subsequently, various meta-heuristic algorithms were
proposed to solve TSP, which are a combination of stochas-
tic algorithms and local search algorithms. They usually do
not rely on conditions specific to certain problems and thus
can be applied to a wider range of aspects. Today, meta-
heuristic algorithms have been successfully applied in engi-
neering, computer network, biological system modeling,
forecasting, pattern recognition, data clustering, and feature
selection, etc [1–4]. Meta-heuristic algorithms are clas-
sified into local search-based algorithms and population-
based algorithms. Although local search algorithms are
simple, flexible, and easy to implement, they tend to fall
into the local optimum, such as simulated annealing [5],
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tabu search [6], hill climbing [7], etc. Population-based
methods can be divided into evolutionary computation and
swarm intelligence methods. Evolutionary computation is
a well-established global optimization method with high
robustness and wide applicability, such as Genetic Algo-
rithm (GA) [8], Evolutionary Strategy (ES) [9], Evolution-
ary Programming (EG) [10]. However, the algorithms are
dependent on the choice of parameters and most importantly
on their poor local search capability. Swarm intelligence
algorithms primarily simulate the behavior of groups of
insects, herds, birds, and fish. These groups follow a coop-
erative approach to finding food, with each member of
the group constantly changing the direction of the search
by learning from their own experiences and the experi-
ences of other members. It is a bionic and stochastic search
algorithm with robustness and intelligence, such as Ant
Colony Optimization (ACO) [11], Particle Swarm Opti-
mization (PSO) [12], Artificial Bee Colony (ABC) [13], and
Fruit Fly Optimization Algorithm(FOA) [14]. The swarm
intelligence algorithm enables the exchange of information
and mutual collaboration between individuals and groups.
The individual has a certain degree of randomness, which
maintains the diversity of search directions to some extent
and prevents premature convergence. The group grasps the
direction of optimization on the whole, thus ensuring the
convergence of the algorithm. Therefore, in recent years,
more and more swarm intelligence algorithms have been
used to solve TSP [15–18].

The ant colony optimization is a probabilistic algorithm
for finding optimal paths. It was proposed by M. Dorigo
in his doctoral thesis in 1992 [19], and it was inspired
by the behavior of ants discovering paths in the process
of finding food. As ants walk,they release a substance
called pheromones that are used to mark their walking
path. In the process of searching for food, the ants
choose the direction of walking according to pheromone
concentration and eventually reach the food. Compared with
other heuristics, the ant colony algorithm is characterized
by distributed computing, pheromone positive feedback,
and strong robustness. As a result, ant colony optimization
has been widely used in Recommender systems [20],
Feature selection [21], machine layout problem [22],
path planning problem [23], and other fields, and has
obtained remarkable results. Especially for TSP, many
experts and scholars have solved it better by improving ant
colony optimization. However, the multi-colony algorithm
is superior to the single colony algorithm in performance.
Therefore, the research of the multi-colony algorithm
has become an inevitable trend. In the recommendation
system, Pearson correlation coefficient is used to measure
the similarity between two user interests. And in the
multi-colony algorithm, there are similar parts between the

paths found by different sub-colonies, so some scholars
combine Pearson correlation coefficient with multi-colony
algorithms as a way to improve the performance of the
algorithm [24].

Inspired by the above analysis, a Pearson correla-
tion coefficient-based pher-omone refactoring mechanism
for multi-colony ant colony optimization is proposed
in this paper. We focus on improving the accuracy of
the solution on large-scale TSPs and balance the diver-
sity and the convergence performance of the algorithm.
We selected 13 TSP instances of different scales to ver-
ify the performance of PPACO and compared them with
the traditional ant colony algorithms and the improved
metaheuristic algorithms in this field. Second, in order to
illustrate that PPACO is different from the traditional ant
colony algorithms and improved ant colony algorithms,
we use Friedman to prove the statistical significance of the
results. Aside from this, in order to obtain as superior a
set of parameters as possible, we use the orthogonal test to
select the appropriate parameters. Finally, the experimental
results show that the performance of PPACO is better than
several algorithms mentioned in this paper. It can effectively
accelerate the convergence speed while alse obtaining more
accurate solutions. The main contributions of this paper are
summarized as follows:

1. Ant colony optimization based on a dynamic guidance
mechanism (DGMACO) is proposed as a novel
single colony. It dynamically adjusts the phero-mone
concentration on the path of the maximum and
minimum spanning tree, which can effectively balance
the diversity and convergence of the algorithm.

2. The similarity between the minimum spanning tree and
the optimal path is used as the evaluation criterion to
adaptively adjust the communication frequency of the
colony, thus helping the algorithm to jump out of the
local optimum.

3. According to the Pearson correlation coefficient or
information entropy, the pheromone matrix of sub-
colonies can be reconstructed so that a high-precision
solution can be obtained.

This article is organized as follows: Section 2 intro-
duces the related works in the domain of the ACO and the
motivation of our work. Section 3 describes the ACS,
MMAS, Maximum spanning tree and Minimum span-
ning tree, Pearson correlation coefficient, and Information
entropy. The dynamic guidance mechanism and pheromone
refactoring mechanism are proposed in Section 4. Section 5
illustrates the experimental results of TSPs and the compari-
son between different algorithms. Section 6 summarizes our
work and describes some of our future directions.
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2 The related work

In this section, we briefly review some research work in
related areas and discuss the differences and connections
between these works and our method.

Ant Colony Optimization is one of the most effective
metaheuristic algorithms, which simulates the foraging
behavior of ants in nature. It has been successfully applied
to solve combinatorial optimization problems. In 1992,
M.Dorigo et al. proposed the Ant System (AS) [25]
inspired by the mechanism of biological evolution. Since
AS has the characteristics of positive information feedback,
distributed computing, and heuristic search, it has been
widely concerned and studied by many scholars. However,
with the increasing scale of test cases, the performance
degrades severely. The main drawback is the slow rate of
convergence and the tendency to fall into local optimum.

To solve these problems, M. Dorigo proposed the ant
colony system (ACS) in 1996 [26], which is a modified
algorithm based on the AS. The algorithm introduces the
concept of a global update, and the state transition rules used
in path creation are also superior to the AS. As a result, ACS
can get a better solution when solving large TSP instances.
In 1997, T.S tutzle et al., in the experimental analysis and
application research of AS, proposed the Max-Min Ant
System (MMAS) [27]. In the MMAS, each iteration allows
only the best ant to update the pheromone path, and limits
the upper and lower values of pheromone concentration.
The purpose of this is to prevent premature stagnation of
the algorithm, and increase the diversity of the algorithm.
However, the mentioned traditional ant colony algorithms
still have some defects, such as insufficient convergence,
low precision, and easy to fall into local optimum.

To enhance the global search ability and increase the
diversity of the algorithm, a large number of variations
of ACO have been presented over the past few years.
Wu et al. proposed a multimodal continuous ant colony
optimization algorithm and designs an efficient local search
optimization method to ensure high diversity and improve
search efficiency [28]. Ratanavilisagul applied mutation
operation to pheromone to improve the diversity of ant
colony [29]. Gao introduces a premium-penalty strategy to
polarize the pheromone density of all paths [30]. Ye et al.
proposed using search-history information to continuously
acquire failure experience to guide the ant colony to explore
unknown space during the optimization process, and to
utilize the negative feedback to improve the diversity of
solutions [31]. Chen et al. proposed a method to adjust the
time interval adaptively according to the diversity of the
solutions, to increase the ability of the search and avoid
early convergence [32].

The above improvements of ACO have greatly boosted
the performance. But the convergence speed of the

algorithm still needs to be improved. For the above
deficiencies, a novel strengthened pheromone updating
mechanism is designed, which strengthens pheromone on
the edge that never appeared before, using the dynamic
information in the process of the optimal path optimization,
to achieve the purpose of strengthening the convergence
speed [33]. The main idea of Shetty et al. is to generate
multiple minion ants to help the parent ant make a
better decision. Besides, they control the number of
minion ants created by each parent ant to decrease futile
traversal of the same paths again and again [34]. Luo
et al. proposed the inverse feedback mechanism for the
dissemination of pheromones and the positive feedback
mechanism for pheromone concentration to accelerate
the convergence speed [22]. Jun-man et al. designed a
novel optimized implementation approach to enhance the
impact of pheromones on ants, which can accelerate the
convergence of the algorithm [35].

To keep a more reasonable balance between the search
ability and the convergence in the search process, some
scholars have proposed a hybrid algorithm based on ant
colony algorithm. The hybrid algorithm based on ant colony
algorithm can absorb the advantages of other algorithms
so as to obtain better performance [36–39]. Luan et al.
proposed a hybrid algorithm of genetic algorithm and ant
colony optimization, which combines the merits of GA with
great global converging rate and ACO with parallelism and
effective feedback, so the diversity and convergence of the
algorithm are improved [40]. In order to effectively balance
diversity and convergence, Mohsen et al. integrated the
advantages of ACO, SA, mutation operator, and local search
procedure to solve the traveling salesman problem [41].
To overcome the slow convergence of the ant colony
optimization algorithm for continuous domain problems, a
novel hybrid algorithm based on ant colony optimization
and particle swarm optimization algorithm was proposed
by Zhang et al. [42]. Mahi et al. proposed a hybrid
algorithm based on particle swarm optimization, ant colony
optimization, and 3-opt, which enhanced the ability of the
algorithm to jump out of local optimization and improve the
quality of the solution [43].

However, all the above algorithms are single colony
ant colony algorithms. To further improve the search
performance and solution quality of the ant colony
algorithm, the multi-colony ant colony algorithms have been
proposed [44–47]. Different ant colonies have different
characteristics, complementary advantages, and potential
cooperation with each other, so heterogeneous multi-
colony ant colony algorithms have more advantages in
solving complex and large-scale problems. Tuani et al.
solved hard Optimization problems by introducing unique
biases towards the pheromone trail and local heuristics
for each ant. Besides, the well-known Ant System and
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Max-Min Ant System are used as the base algorithms to
implement heterogeneity, so as to effectively improve the
quality of the solution [48]. A heterogeneous feature ant
colony optimization algorithm based on effective vertexes
of obstacles is proposed by Zhao et al. to solve the
problem of poor convergence and local optimum [49]. Lee
et al. proposed a heterogeneous-ants-based path planner
for global path planning of mobile robot applications so
that it could directly find an optimal and smoother path
without post-processing to smooth the path [23]. Yao et al.
proposed a heterogeneous feature ant colony optimization
algorithm to solve the robot path planning problem. In
the proposed method, two kinds of ants with different
features are designed to influence the convergence rate of
the algorithm by controlling the number of them [50].

The inter-species communication of multi-colony ant
colony algorithm allows information sharing among the
colonies, so as to effectively adjust their own search
experience and reduce search time. Therefore, the selection
of the communication period is one of the important issues
to be considered in a multi-colony algorithm. Xu et al.
pointed out that communication among sub-colonies every
other constant period can effectively prevent the colony
from falling into the local optimum [51]. However, the
choice of this fixed constant is not easy. If the selected
constant is too small, the communication will be too
frequent, which will disturb the internal search experience
of the sub-colony and increase the computation time. If the
constant is too large, the timely information sharing among
the colonies is not achieved, which will reduce the search
performance of the colony and increase the probability of
stagnation. We found that the adaptive communication cycle
can better serve the colony. It allows the colony to adaptively
adjust the frequency of communication according to their
search conditions and progress. Besides, the selection of
a multi-colony interaction strategy is also crucial for the
performance of the algorithm. However, the interaction
strategies of some existing multi-colony algorithms are
relatively simple, and the adaptability needs to be improved.
To solve this problem, the Pearson correlation coefficient
is introduced as the evaluation criterion to reward the
parameters of similar paths with an adaptive frequency [24].
Thus, the probability of the colony falling into the local
optimum is reduced. Pearson correlation coefficient is to
examine the degree of correlation between two things.
When the Pearson correlation coefficient is applied to
the ant colony algorithm, we can predict the similarity
between sub-colonies, so we can better carry out inter-
species interaction.

For better performance, a colony owning both of the
above advantages should also be applied. In addition,
the selection of a single population is also important.
We select two classical ant colony algorithms ACS,

MMAS and a new ant colony algorithm DGMACO to
compose the multi-colony algorithm. Among them, ACS
is a representative single colony ant colony algorithm
in terms of convergence, and MMAS is a representative
single colony ant colony algorithm in terms of diversity.
DGMACO is the single colony ant colony algorithm
proposed in this paper, which is responsible for balancing
diversity and convergence. The combination of these single
colonies with different characteristics can improve the
performance of the algorithm. All of the above are what
motivate our work.

The main advantages and disadvantages of the previously
published improved ACO are reported in Table 1. The
methods are evaluated based on their general realizations
and evaluations as reported in the literature. The numbers
in the table represent the algorithm corresponding to the
literature.

3Materials andmethods

3.1 The principle of ACS

3.1.1 Path construction

To solve the defects shown in AS, the ACS was proposed,
which is an optimization algorithm based on Ant-Q. In the
ACS, the selection mechanism from city i to city j is based
on pseudo-random proportion rule. The rule is as follows:

j =
{
arg max

j∈allowed
{τij · η

β
ij } q ≤ q0

J else
(1)

Where q is a random variable uniformly distributed in
the interval [0, 1]. q0(0 ≤ q0 ≤ 1) is a parameter, ηij is
the reciprocal of the distance between city i and city j, τij

represents the total number of pheromones between city i
and city j, allowed means a collection of cities not on the
ant taboo list. J is a random variable generated according to
the probability distribution given by (2):

Pij (t) =
⎧⎨
⎩

[τij (t)]α[ηij ]β∑
s∈allowed

[τis (t)]α[ηis ]β j ∈ allowed

0 else

(2)

Where α and β respectively represent the weight of
pheromone and heuristic factor in probability calculation.

3.1.2 Pheromone updates

1. Global pheromone update: Pheromone update is
applied to the edges on the current best path, and the
updated rule is shown in (3):

τij(t + 1) = (1 − ρ)τij (t) + ρ�τij (3)
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Table 1 Analyze the advantages and disadvantages of the improved ant colony algorithm

Improved ACO Type of algorithm advantages disadvantages

[28–32] Single colony ACO High diversity and good search ability Slow convergence

[22, 33–35] Single colony ACO Strong convergence The precision of the solution is not high

[36–43] Hybrid algorithm based on ACO A more reasonable balance
between the search ability and the
convergence, prevent stagnation

Limited performance of single colony

[23, 24, 44–51] Multi-colony ACO high-quality solutions in complex
and large-scale problems, fast
convergence

Inadequate adaptability

Where �τij = 1/Lgb, Lgb represents the length of the
optimal path so far, �τij is the amount of pheromone
increase and ρ represents the evaporation rate of the
global pheromone. The update of global pheromone
is helpful to improve the convergence speed of the
algorithm.

2. Local pheromone update: When ant k passes the next
city j from city i, the updating rule of pheromone on the
path between city i and city j is shown in (4):

τij(t + 1) = (1 − ρ)τij (t) + ρτ0 (4)

Where ρ represents the evaporation rate of local
pheromone and τ0 represents the initial value of the
pheromone on each path. The update of local pheromone
results in a corresponding reduction of pheromones at
each edge, which prevents the algorithm from falling
into local optimization prematurely and increases the
diversity of the algorithm.

3.2 Max-Min ant system

To make the algorithm search near the shortest path and
gradually find the global optimal solution, the algorithm
only updates the pheromone of the shortest path in the
current cycle. The formula is as follows:

τij (t + 1) = ρτij (t) + �τbest
ij (5)

To prevent some edge pheromones from growing too fast
and causing stagnation, the size of any edge pheromone in
the MMAS algorithm is limited to the range of [τmin , τmin].
If the concentration of pheromone on the current edge is
higher than τmax , then the concentration of pheromone on
the current edge is set to τmax , as shown in the following
formula:

τmax = 1

1 − ρ

1

f (sopt )
(6)

Where f (sopt ) is the global optimal solution and ρ is the
volatile factor of pheromone.

If the concentration of the pheromone on the current edge
is lower than τmin, then the concentration of the pheromone
on the edge is set to τmin, as shown in the following formula:

τmin = τmax(1 − n
√

pbest )

(n/2 − 1) n
√

pbest

(7)

Where, pbest is the probability of finding the optimal
solution when the MMAS algorithm converges, which is
generally 0.05.

3.3Maximum spanning tree andminimum spanning
tree

3.3.1 Definition of maximum andminimum spanning trees

In a completely connected graph G = (V, E) for given n
vertices, the edge between vertex u and vertex v is expressed
as (u, v), and w(u, v) represents the weight of this edge.
If there is a graph where T is a subset of E and is non-
cyclic so that w(T) is minimum, then T is the minimum
spanning tree of G; otherwise, if w(T) is maximum, then T
is the maximum spanning tree of G. w(T) is shown in the
following formula:

w(T ) =
∑

(u,v)∈T

w(u, v) (8)

3.3.2 The construction of maximum andminimum
spanning trees

The construction of maximum and minimum spanning trees
has many famous methods, such as the Kruskal algorithm
and the Prim algorithm.

1. Main ideas of Kruskal algorithm: First, the n vertices
of G are regarded as n isolated connected branches and
all edges are sorted by weight from small to large. Then,
edge weights are increased in order. If there is a circle
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after adding an edge, the edge is not added, and the finally
connected graph is formed.

2. Main ideas of Prim algorithm: Given the connected
graph G and any root node r, the minimum spanning tree
grows from node r until it covers all the nodes in V. In
other words, the minimum spanning tree keeps searching
for lightweight edges to achieve the sum of the minimum
weights.

3.4 Pearson correlation coefficient

The user-based collaborative filtering algorithm finds
neighboring users based on their preferences for items,
and then the favorite items of the neighboring users are
recommended to the current users. In the calculation, the
user’s preference for all items is taken as a vector to
calculate the similarity between users. After finding K
neighbors, according to the similarity weight of neighbors
and their preference for items, the items not involved
in the current user’s preference are predicted, and a
sorted list of items is calculated as a recommendation. At
present, Cosine similarity, Modified cosine similarity, and
Pearson similarity (9) are mainly used to calculate similarity
sim(u, v) in the collaborative filtering algorithm.

sim(u, v) =

∑
i∈Iu,v

(ru,i − r̄u)(rv,i − r̄v)

√ ∑
i∈Iu,v

(ru,i − r̄u)
2
√ ∑

i∈Iu,v

(rv,i − r̄v)
2

(9)

Where, Iu,v represents the set of graded items common to
users u and v, ru,i represents a score of user u for an item i,
and rv,i represents a score of user v for an item i. r̄u and r̄v
respectively represent the average score of user u and user v
on the project.

Since the Pearson correlation coefficient takes into
account the users’ rating scale and the grading matrix in this
paper is a dense matrix, which can accurately calculate the
similarity between users, the Pearson correlation coefficient
is selected as the basis of similarity in this paper. The
mathematical symbols in (9) correspond to the meanings of
the algorithm in this paper: Iu,v represents the common path
in the optimal solution between the sub-colony u and the
sub-colony v. ru,i represents the pheromone concentration
of sub-colony u on path i. rv,i represents the pheromone
concentration of sub-colony v on path i. r̄u represents
the mean value of the pheromone concentration of the
unrepeated path in the pheromone matrix of sub-colony u. r̄v

represents the mean value of the pheromone concentration
of the unrepeated path in the pheromone matrix of sub-
colony v.

3.5 The information entropy

Information entropy is often used as a quantitative index of
the information content of a system, which can be further
used as the objective of system equation optimization or
the criterion of parameter selection. If the system is more
complex and there are more kinds of different situations,
its information entropy is relatively large. If a system
is simpler, there are fewer kinds of situations and less
information entropy. Definition formula of information
entropy:

H(X) = −
∑
x∈X

P (x) log(P (x)) (10)

Where x is a solution, and X is the set of all the solutions.
P(x) is the probability of the solution x. In the ant colony
algorithm, the higher the information entropy of each
iteration, the better the diversity of solutions.

4 Pearson correlation coefficient-based
pheromone refactoringmechanism
for multi-colony ant colony optimization

4.1 Dynamic guidancemechanism

We introduce the dynamic guidance mechanism into
the ACS and propose a new single colony ant colony
optimization named DGMACO. Moreover, it forms a multi-
colony together with ACS and MMAS, which can further
improve the overall search performance of the colony.

In solving the TSPs, the minimum spanning tree is
closely related to the standard optimal path. In general, 70%
∼ 80% [52] of the paths in the minimum spanning tree are
consistent with the optimal path of the TSP. Inspired by this,
the information of the minimum spanning tree is combined
to solve the TSP. More specifically, the pheromones on the
path of the minimum spanning tree of each iteration are
dynamically changed to speed up the convergence speed
of the algorithm in the process of solving the problem.
Therefore, this method plays a role of dynamic positive
guidance.

In the TSP instances, ants choose the next city based on
two factors, one is the pheromone concentration heuristic
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information between city i and city j, and the other is the
distance heuristic information between city i and city j,
namely the reciprocal of the distance between city i and
city j. The initial pheromone between cities is a constant.
At the first iteration of the algorithm, the pheromone on
each path is equally attractive to the ant, but the distance
heuristic information between the cities is different. So
at the beginning of the algorithm, the probability of ant
choosing the next city is dominated by distance heuristic
information. Therefore, the shorter the distance between
cities, the higher the probability of choosing the path.
However, the solution of this path is not necessarily the
optimal solution, so it is easy to fall into the local optimum.
To avoid this defect, the pheromone of n-1 edges of the
maximum spanning tree will be dynamically strengthened
in the early stage of the algorithm, so as to increase the
diversity of the algorithm and play a role of dynamic
negative guidance.

To prevent excessive accumulation of pheromones, the
upper and lower limits of the pheromone mechanism of
MMAS are utilized. Besides, under the common influence
of maximum and minimum spanning trees, the algorithm
can effectively balance the diversity and convergence of the
algorithm.

4.1.1 Minimum spanning tree strategy

The pheromone released according to the dynamic guidance
mechanism is called the spanning-tree pheromone. In
the early stage of the algorithm, the information of the
minimum spanning tree is combined. When the current
number of iterations is n ∈ [1, n0] , spanning-tree
pheromones are dynamically changed on the path of the
minimum spanning tree, and the amount of spanning-tree
pheromones is as follows:

τ s
tree = ρsτ0 × n

N
(11)

Where N is the maximum number of iterations, τ0 is the
initial value of edge pheromone, ρs represents the minimum
spanning tree adjustment factor, which is used to adjust
the influence weight of spanning-tree pheromones in the
early stage of the algorithm. Compared with the results of
multiple experiments, when n0 is taken as [N/3] and ρs is
taken as 1, the experimental results in this paper are the best.
The selection method of experimental parameters is given
in Section 5. To obtain strong convergence ability, τ s

tree is

designed as an increasing function so that the algorithm can
achieve rapid convergence.

4.1.2 Maximum spanning tree strategy

In this subsection, the information of the maximum
spanning tree is combined in the early stage of the
algorithm. When the current iteration number is n ∈ [1, n0]
, the algorithm dynamically releases a certain amount of
spanning-tree pheromones on the path of the maximum
spanning tree. The amount of spanning-tree pheromones is
as follows:

τb
tree = ρbτ0 × N − n

N
(12)

Where N is the maximum number of iterations, τ0 is the
initial value of edge pheromone, and ρb is the maximum
spanning tree adjustment factor, which is used to adjust
the influence weight of spanning-tree pheromone in the
early stage of the algorithm. Compared with the results of
multiple experiments, when n0 is taken as [N/3] and ρb

is taken as 1, the experimental results in this paper are
the best. The selection method of experimental parameters
is given in Section 5. To improve the search ability
while keeping fast convergence, τb

tree is designed as a
minus function. Therefore, the increment of spanning-tree
pheromones in the maximum spanning tree path decreases
in each iteration, so that they do not accumulate excessively.
As a consequence, the maximum spanning tree strategy can
improve the diversity of the algorithm in the early stage and
effectively prevent stagnation.

Because of the above analysis, we know that the mini-
mum spanning tree strategy can accelerate the convergence
rate and the maximum spanning tree strategy can improve
diversity. These two strategies work together and comple-
ment each other, which can effectively achieve the goal of
balancing convergence and search ability.

4.2 Pheromone refactoringmechanism

4.2.1 Adaptive interaction frequency

ACS, MMAS, and DGMACO are selected to form a
multi-colony ant colony algorithm in this paper, in which
each sub-colony has a different regulation mechanism of
pheromone, thus improving the search space and search effi-
ciency. However, if sub-colonies do not communicate with
each other and only rely on their single pheromone update
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mechanism, it is still easy to fall into local optimization,
especially for large TSP instances. Meanwhile, frequent
interactions between sub-colonies can lead to an exces-
sive accumulation of pheromones and high time complexity.
Furthermore, the fixed periodic exchange between the sub-
colonies is not conducive to the adaptive development of
the sub-colonies, so that the advantages of each sub-colony
cannot fully complement each other. Therefore, the choice
of the communication cycle is very important. An adaptive
interaction frequency is proposed in this paper, which helps
sub-colonies to adaptively adjust the frequency of commu-
nication with other sub-colonies according to their search
conditions.

70% ∼ 80% of the paths in the minimum spanning tree
are consistent with the optimal path of the TSP. Therefore,
when the similarity between the minimum spanning tree
path and the optimal path of the sub-colony reaches a certain
threshold, and if the similarity value remains unchanged
for a period of iteration, the sub-colony can be considered
to be immersed in local optimum. These sub-colonies are
called u. The algorithm will reconstruct the pheromone
matrix of u which is immersed in local optimum according
to the Pearson correlation coefficient. The selection of
sub-colonies u is shown as follows:

u =

{
U, if H(U) > h0 ∧ D(H(U))>w0 ∧ 1 ≤ U ≤ M

Null, otherwise

(13)

WhereU is the number of sub-colony,H(U) is the similarity
between the optimal path of colony U and the minimum
spanning tree, h0 is a threshold, D(H(U)) is the number of
iterations in which the value of H(U) remains unchanged
and w0 is a threshold and M is the total number of sub-
colonies.

If u is not null in the current iteration, the algorithm
is judged to fall into the local optimum. At this time, the
dynamic interaction strategy needs to be implemented in the
current iteration, and the details of the interaction mech-
anism will be described in section 4.2.2. In other words,
the frequency of colony communication is determined by
the frequency with which u is generated, so that neither
too frequent communication nor too early disruption of the
search experience within the colony. To sum up, this method
helps the sub-colony to adaptively adjust the communica-
tion frequency so that the algorithm breaks the stagnation
state.

4.2.2 Dynamic interaction strategy

When the algorithm falls into local optimization, a simple
method is to reset the pheromone concentration of each edge

to the initial pheromone value. For example, MMAS judges
whether the algorithm is close to the stagnation state by
calculating the pheromone size of each edge or failing to get
a better path in a specified number of iterations, and then
the pheromone is initialized. However, this method not only
fails to retain the experience accumulated by the algorithm
in the past, but also slows down the convergence speed of
the algorithm for large-scale problems.

Collaborative filtering uses the preferences of some
groups with similar interests and common experiences
to recommend information that users are interested in.
It makes predictions and recommendations based on the
ratings or behavior of other users in the system. In this paper,
we use the collaborative filtering algorithm to recommend
the values in the pheromone matrix of the target sub-
colonies, which can not only retain part of the target
sub-colony’s own experience, but also learn the differential
search experiences recommended by other similar sub-
colonies. Thus, the search area can be expanded directly
and effectively, and the accuracy of the solution can be
improved. More specifically, we can use the pheromone
concentration of the corresponding paths of similar sub-
colonies to recommend the pheromone concentration of
the corresponding paths of the target sub-colonies. If the
similarity value is higher, the more the target sub-colonies
retain their own search experience and the less differential
search experience is recommended by other sub-colonies. If
the similarity value is lower, the less the target sub-colonies
retain their own search experience and the more differential
search experience is recommended by other sub-colonies.
In this way, the pheromone matrix of the target sub-colonies
is reconstructed, so that they can effectively jump out of the
local optimum. The target sub-colonies are the sub-colonies
that fall into the local optimum. To implement collaborative
filtering, three steps are needed. The first step is to collect
user preferences. The second step is to find similar users
or items. The third step is to predict and recommend. The
above steps are corresponding to the steps in this paper
are as follows: the first step is to find the iterative optimal
solution of the sub-colonies so far; the second step is to find
the similar sub-colonies of the target sub-colonies; the third
step is to recommend the pheromone concentration on the
corresponding path of the target sub-colonies according to
the information of the similar sub-colonies.

In a collaborative filtering algorithm, the Pearson
correlation coefficient is an important method to measure
the degree of correlation between two variables. The higher
the correlation coefficient between two variables, the higher
the accuracy of prediction from one variable to the other
variable, which means that the two variables will have
more covariant parts, so the more chances of one variable
can be known about the changes of the other variable.
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The range of the Pearson correlation coefficient is (-1,
1). It becomes a complete positive correlation when the
correlation coefficient is 1. When the correlation coefficient
is -1, it becomes a completely negative correlation. The
greater the absolute value of the correlation coefficient,
the stronger the correlation. The closer the correlation
coefficient is to 0, the weaker the correlation.

However, the rating matrix is the basis of the collabo-
rative filtering algorithm, which is mainly used to collect
and store information about user preferences. We can obtain
the Pearson correlation coefficient according to the rating
matrix. In this paper, the Pearson correlation coefficient
is calculated according to the pheromone concentration of
the common path, in which the common path comes from
similar parts of the optimal solution of the sub-colonies.
The rating matrix can be represented by matrix R(m*n), as
shown in Table 2:

Where, Pi represents the sub-colony i, Rj represents the
path j, and Poij represents the pheromone concentration of
the sub-colony i on the path j.

In this method, the Pearson correlation coefficient is
calculated by (9). The selection method of the colony falling
into the local optimum is given by (13). Then the users
are sorted according to the degree of similarity, and k users
with the highest similarity are selected as the k-nearest
neighbor set. However, the probability of the target sub-
colonies exploring new paths and exploiting the original
paths is dynamically adjusted by the k-Nearest Neighbor
set. The larger the value of k, the lower the probability that
the target sub-colonies retain the original search path, and
the higher the probability of the differential search path
recommended by other sub-colonies. The smaller the value
of k, the higher the probability that the target sub-colonies
retain the original search path, and the lower the probability
of the differential search path recommended by other sub-
colonies. More specifically, sub-colonies are explored and
exploited at the same time. Therefore, the algorithm can
achieve the purpose of effectively balancing exploration and
exploitation.

Table 2 The rating matrix of the colony

R1 ... Rj ... Rn

P1 Po11 ... Po1j ... Po1n

... ... ... ... ... ...

Pi Poi1 ... Poij ... Poin

... ... ... ... ... ...

Pm Pom1 ... Pomj ... Pomn

When the Pearson correlation coefficient is 1 or -1,
the relationship between colonies is a completely positive
correlation or negative correlation respectively. Therefore,
if the Pearson correlation coefficient is other values,
the predictive pheromone has some error, that is, the
problem of credibility. We take the following measures
to solve the problem. First of all, the probability of sub-
colony u communicating with each other is sg by the
Pearson correlation coefficient. sg is calculated by the (14).
Meanwhile, the pheromone matrix predicted by the Pearson
correlation coefficient is inaccurate. So the algorithm will
conduct pheromone communication between sub-colony
u and sub-colony h with the probability of (1-sg). h
is the sub-colony with the highest information entropy.
More specifically, the higher the similarity, the higher the
probability that the target sub-colonies can reconstruct the
pheromone matrix with the Pearson correlation coefficient,
and the lower the similarity, the higher the probability that
the target sub-colonies exchange information with the sub-
colonies with the highest information entropy. Because the
higher the similarity, the more accurate the recommended
value will be. In this way, the effectiveness of the interaction
is guaranteed, and the target sub-colonies are easier to jump
out of the local optimum.

Pheromone updates on the relevant paths of sub-colony u
are shown as follows:

sg = max(|sim(u, 1)| , |sim(u, 2)| , · · ·, |sim(u, n)|) (14)

Where, sim(u, n) represents the Pearson correlation coeffi-
cient between the sub-colony u and the n-th sub-colony.

pu,j
j∈NR

=

⎧⎪⎨
⎪⎩

r̄u +
∑

v∈N(u)

sim(u,v)×(rv,j −r̄v )∑
v∈N(u)

sim(u,v)
, s0 ≤ sg

ph,j , else

(15)

Where, NR represents the set of paths between cities, pu,j

represents the pheromone concentration on the path j of
colony u, r̄u represents the mean value of the pheromone
concentration of the unrepeated path in the pheromone
matrix of sub-colony u, r̄v represents the mean value of
the pheromone concentration of the unrepeated path in the
pheromone matrix of sub-colony v, N(u) represents the k-
Nearest Neighbor set of target colony u, and s0 is a random
number between 0 and 1.

In this paper, the adaptive interaction frequency strategy
determines the frequency of communication, and the
dynamic interaction strategy determines which colonies
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communicate and how to communicate. According to
the search progress of the sub-colonies themselves, the
two strategies adaptively organize the interaction tasks of
the sub-colony, which guarantees the effectiveness of the
interaction, strengthens the adaptability of the algorithm,
and also helps to improve the accuracy of the solution.

4.3 Algorithm framework

The above is the pseudo-code of the algorithm in this
paper. Figure 1 is the basic framework of the algorithm
in this paper. The multi-colony ant colony algorithm
proposed in this paper is composed of three types of
single colony algorithms: ACS, MMAS, and DGMACO.
ACS is responsible for accelerating convergence, MMAS
is responsible for improving diversity and DGMACO is
responsible for balancing convergence and diversity. In
the beginning, sub-colonies carry out path optimization
and pheromone update operations according to their
respective mechanisms. When the adaptive communication
conditions are met, the relevant sub-colonies are selected
to communicate with each other, which helps the colony
jump out of the local optimum and obtain high-precision
solutions.

4.4 The time complexity of the algorithm

From the analysis of the above algorithm pseudo-code, it
can be concluded that the number of executions of the
PPACO algorithm is n ∗ N ∗ k ∗ m . Where n is the number
of sub-colonies, it is a constant, N is the maximum number
of iterations, k is the total number of ants in each sub-
colony, and m is the number of cities. So the maximum
time complexity of PPACO is o(N ∗ k ∗ m) . However, the
maximum time complexity of ACS is o(N ∗ k ∗ m) and the
maximum time complexity of MMAS is o(N ∗k∗m) . It can
be seen that compared with ACS and MMAS, the PPACO
algorithm does not change the maximum time complexity.

5 Experiment and simulation

The experiments were simulated in MATLABR2016a on an
Intel Core-i5 PC. To effectively verify the performance of
PPACO, the experiments in this paper selected several cities
from the standard TSPLIB database for systematic analysis.
Meanwhile, it also made a comprehensive comparison with
the classical ACS and MMAS algorithms to analyze the
advantages and disadvantages of the proposed algorithm.
Finally, PPACO is compared with other improved ant colony
algorithms and other intelligent algorithms to further test the
performance of the proposed algorithm.

5.1 Parameter setting of PPACO algorithm

The scientific method of designing experiments should not
only minimize the number of experiments as much as
possible, but also make use of the obtained experimental
data on the basis of a small number of experiments to
analyze the correct conclusions and get better results. The
orthogonal experiment can select a few test schemes with
strong representativeness evenly, and introduce a better
scheme among the few test results. Therefore, in order to
make the PPACO have better performance, the orthogonal
test of three levels and four factors is used to determine
the parameters in ACS, the orthogonal test of three levels
and three factors is used to determine the parameters in
MMAS, and the orthogonal test of two levels and seven
factors is used to determine the parameters in DGMACO,
so as to make the algorithm obtain a better combination of
parameters. As other orthogonal experiments, the values in
this paper are obtained through the preliminary optimization
phase. We ran every program 15 times and further calculated
the average of TSP eil76.

Based on the experimental results in Tables 3, 4, 5, 6, 7,
8, 9, 10 and 11. We know that in ACS, the best combination
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Fig. 1 Flowchart of the PPACO

of parameters is that α takes the value of 1, β takes the value
of 4, ρ takes the value of 0.3, ξ takes the value of 0.1, in
MMAS, the best combination of parameters is that α takes
the value of 1, β takes the value of 3, ρ takes the value of
0.2, and in DGMACO, the best combination of parameters
is that α takes the value of 1, β takes the value of 4, ρ takes
the value of 0.4, ξ takes the value of 0.2, ρb takes the value
of 1, ρs takes the value of 1, n0 takes the value of N/3.

Table 3 Experimental Factors and Levels of ACS

α β ρ ξ

Level 1 1 2 0.2 0.1

Level 2 2 3 0.3 0.2

Level 3 3 4 0.4 0.3

*ρ is the globally updated evaporation factor in the ACS, and ξ is the
locally updated evaporation factor in the ACS.

5.2 Statistical test of the algorithm

Because ant colony optimization is a probability algorithm,
we can only do a limited number of experiments. However,

Table 4 Orthogonal test scheme and test results of ACS

no. α β ρ ξ results

1 1 2 0.2 0.1 548.1

2 1 3 0.3 0.2 544.0

3 1 4 0.4 0.3 543.1

4 2 2 0.3 0.3 551.3

5 2 3 0.4 0.1 543.2

6 2 4 0.2 0.2 543.6

7 3 2 0.4 0.2 550.0

8 3 3 0.2 0.3 549.3

9 3 4 0.3 0.1 539.7

*no. is the number of tests, and results are the average of 15 test data
in each group.
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Table 5 Analysis of test results of ACS

K α β ρ ξ

K1 1635.20 1649.40 1641.00 1631.00

K2 1638.10 1636.50 1635.00 1637.60

K3 1639.00 1626.40 1636.30 1643.70

k1 545.07 549.80 547.00 543.67

k2 546.03 545.50 545.00 545.87

k3 546.33 542.13 545.43 547.90

max 546.33 549.80 547.00 547.90

min 545.07 542.13 545.00 543.67

range 1.26 7.67 2 4.23

scheme Level 1 Level 3 Level 2 Level 1

*Ki(i = 1, 2, 3) are the sum of results. ki(i = 1, 2, 3) are the means
of every level. max and min are the results of maximal and minimal
path length respectively. range is the difference by the max minus the
min, which will be applied to determine which one factor is important.
scheme is the project of every factor by orthogonal test to obtain the
best result.

Table 6 Experimental factors and levels of MMAS

α β ρ

Level 1 1 1 0.1

Level 2 2 2 0.2

Level 3 3 3 0.3

*ρ is the evaporation factor in the MMAS.

Table 7 Orthogonal test scheme and test results of MMAS

no. α β ρ results

1 1 1 0.1 557.9

2 1 2 0.2 554.4

3 1 3 0.3 545.8

4 2 1 0.2 562.5

5 2 2 0.3 557.5

6 2 3 0.1 551.1

7 3 1 0.3 564.4

8 3 2 0.1 559.2

9 3 3 0.2 550.2

Table 8 Analysis of test results of MMAS

K α β ρ

K1 1658.10 1684.80 1668.20

K2 1671.10 1671.10 1667.10

K3 1673.80 1647.10 1667.70

k1 552.70 561.60 556.07

k2 557.03 557.03 555.70

k3 557.93 549.03 555.90

max 557.93 561.60 556.07

min 552.70 549.03 555.70

range 5.23 12.57 0.37

scheme Level 1 Level 3 Level 2

Table 9 Experimental factors and levels of DGMACO

α β ρ ξ ρb ρs n0

Level 1 1 3 0.3 0.1 1 1 N/2

Level 2 2 4 0.4 0.2 2 2 N/3

*ρ is the globally updated evaporation factor in the DGMACO, and
ξ is the locally updated evaporation factor in the DGMACO. ρb

represents the maximum spanning tree adjustment factor, ρs represents
the minimum spanning tree adjustment factor, n0 is the threshold for
the number of iterations, N is the maximum number of iterations of the
algorithm.

Table 10 Orthogonal test scheme and test results of DGMACO

no. α β ρ ξ ρb ρs n0 results

1 1 3 0.3 0.1 1 1 N/2 543.9

2 1 3 0.3 0.2 2 2 N/3 545.2

3 1 4 0.4 0.1 1 2 N/3 542.6

4 1 4 0.4 0.2 2 1 N/2 541.0

5 2 3 0.4 0.1 2 1 N/3 547.2

6 2 3 0.4 0.2 1 2 N/2 547.5

7 2 4 0.3 0.1 2 2 N/2 547.2

8 2 4 0.3 0.2 1 1 N/3 543.1
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Table 11 Analysis of test results of DGMACO

K α β ρ ξ ρb ρs n0

K1 2172.70 2183.80 2179.40 2180.90 2177.10 2175.20 2179.60

K2 2185.00 2173.90 2178.30 2176.80 2180.60 2182.50 2178.10

k1 543.18 545.95 544.85 545.23 544.28 543.80 544.90

k2 546.25 543.48 544.58 544.20 545.15 545.63 544.53

max 546.25 545.95 544.85 545.23 545.15 545.63 544.90

min 543.18 543.48 544.58 544.20 544.28 543.80 544.53

range 3.07 2.47 0.27 1.03 0.87 1.83 0.37

scheme Level 1 Level 2 Level 2 Level 2 Level 1 Level 1 Level 2

when we analyze the performance difference between
algorithms through the experimental results, we cannot
judge whether the difference is purely chance variation or
caused by the improvement work we have done. So we
need to carry out a significance test to check whether the
algorithm proposed in this paper is significantly different
from the traditional ant colony optimization and other
improved ant colony optimization. Because the Friedman
test does not require the assumption of normality and
homogeneity of variance, the Friedman test is used to test
the significance in this paper. EDHACO is one of the other
published improved ant colony algorithms [46].

Friedman test only focuses on whether there are
significant differences between the levels of each column,
and it is not interested in the area groups of each row at all.
So to make the experiment more reasonable, we selected
the large-scale TSP instance lin318, the medium-scale TSP
instance kroa200, the small-scale TSP instance eil76 as the
experimental objects. Besides, we selected 10 experimental
data from each scale instance to carry out the Friedman test
in spss25 software.

First, we give the original hypothesis, H0 : there is
no significant difference in the performance of the four
algorithms. Then, we input the data into spss25 software and
get the final result chart. The significance level in Table 12

Table 12 Hypothesis Test Summary

Null Hypothesis Test Sig. Decision

The distribu-
tions of PPACO,
MMAS, ACS
and EDHACO
are the same.

Related-
Samples
Friedman’s
Two-Way Anal-
ysis of Variance
by Ranks

0 Reject the null
hypothesis.

*The significance level is 0.05.

is p = 0 < 0.05 , so the decision is to reject the null
hypothesis. More specifically, the performance of the four
algorithms is significantly different. It can be seen from
Fig. 2 that the mean rank of PPACO is 1.00, the mean rank of
MMAS is 3.95, the mean rank of ACS is 2.08, and the mean
rank of EDHACO is 2.97. Pairwise comparisons are needed
because of the difference in response rates at different
frequencies. The results of the pairwise comparison are
shown in Table 13. As can be seen from Table 13, the Adj.
Sig of PPACO and ACS was 0.007 < 0.05. The Adj. Sig
of PPACO and MMAS was 0 < 0.05. The Adj. Sig of
PPACO and EDHACOwas 0< 0.05. In conclusion, PPACO
is different from ACS, MMAS, and EDHACO. In other
words, the performance comparison between PPACO and
other algorithms has statistical significance in the following
experiments.

5.3 Performance test of PPACO

5.3.1 Analysis of experimental results of PPACO

To compare the performance of ACS, MMAS, and PPACO
in multiple directions, 13 TSP instances of different scales
were selected in this paper. Each experiment was performed
by 2,000 iterations. The experimental analysis is carried
out from the following aspects: the optimal solution (Best),
the average solution (Mean), standard deviation (dev), the
minimum error rate (Error rate), the convergence iteration
(Convergence). The experimental data is in Table 14.
Equation (16) is the specific solution formula of standard
deviation.

dev =
√√√√ 1

N

N∑
i=1

(Li − Lr)
2 (16)

764 Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony...



Fig. 2 Related-Samples Friendman’s Two-Way Analysis of Variance by Ranks

Where N is the number of experiments per TSP instance
(N= 15), Li is the optimal solution for each experiment, Lr

is the average solution for N experiments.
The results listed in Table 14 can be analyzed more

specifically. On small scale TSP instances with less than
100 cities, the PPACO can find the optimal solution
faster than ACS and MMAS. Because of the minimum
spanning tree strategy in the dynamic guidance mechanism,
the PPACO can get a faster convergence rate. On the
medium scale TSP instances, such as kroB150 ch150,
kroA200, PPACO can obtain the standard optimal solution.
Because of the pheromone refactoring mechanism based on
Pearson correlation coefficient, the PPACO jumps out of
the local optimum. For tsp225, pr226, and a280, although
PPACO does not find the standard optimal solution, the
accuracy of the optimal solution is higher than that of
ACS and MMAS. It demonstrates that the quality of the
solution can be improved by the pheromone refactoring
mechanism based on Pearson correlation coefficient. In
large scale TSP instances with more than 300 cities,
the PPACO is difficult to find the standard optimal
solution, but its convergence rate and solution accuracy
are better than those of ACS and MMAS. Moreover, the
error rates of PPACO can be kept within 1%. These
results prove that the dynamic guidance mechanism and
the pheromone refactoring mechanism based on Pearson
correlation coefficient in the proposed algorithm can ensure

the solution accuracy while accelerating the convergence
rate.

Besides, the error rates of different scales of instances are
depicted in Fig. 3. We can intuitively see that the error rate
of PPACO is much lower than that of ACS and MMAS in
TSP instances of different scales. This further proves that
PPACO can obtain more accurate solutions.

Standard deviation can reflect the dispersion degree of a
data set, which represents the stability of the algorithm in
this paper (16). In the 13 TSP instances in Fig. 4, the column
height of PPACO is lower than that of ACS and MMAS. It
can be seen from the dev column data in Table 14 that the
standard deviations of PPACO are lower than those of ACS
andMMAS. It indicates that the stability of PPACO is better
than that of ACS and MMAS in TSP instances of different
scales.

5.3.2 Convergence comparison and optimal path graph
of PPACO

The convergence curves of different scales of instances
are also depicted in Fig. 5, where we take the instance
eil51, kroA100, kroB150, kroA200, pr264, and lin318
as examples to illustrate the convergence ability of our
proposed algorithm. Figure 5 demonstrates that in small
scale and medium scale instances, PPACO not only
converges faster than ACS and MMAS, but also can

Table 13 Multiple comparison

Sample1-Sample2 Test Statistic std. Error Std. Test Statistic Sig. Adj.Sig

PPACO-ACS -1.083 0.333 -3.250 0.001 0.007

PPACO-EDHACO -1.967 0.333 -5.900 0 0

PPACO-MMAS -2.950 0.333 -8.850 0 0

ACS-EDHACO -0.883 0.333 -2.650 0.008 0.048

ACS-MMAS 1.867 0.333 5.600 0 0

EDHACO-MMAS 0.983 0.333 2.950 0.003 0.019
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Table 14 Performance comparison of PPACO, ACS, MMAS in different TSP instances

Instances Opt ACO Best Mean dev Error rate(%) Convergence

ACS 426 428 1.08 0 1092

Eil51 426 MMAS 428 431 2.94 0.46 1582

PPACO 426 427 0.48 0 277

ACS 538 543 4.58 0 1528

Eil76 538 MMAS 543 550 3.46 0.92 1765

PPACO 538 539 2.08 0 177

ACS 21282 21316 43.53 0 1538

kroA100 21282 MMAS 21349 21568 151.51 0.31 1990

PPACO 21282 21291 9.61 0 249

ACS 26161 26341 90.22 0.10 923

kroB150 26130 MMAS 26878 27197 236.03 2.86 1953

PPACO 26130 26232 62.82 0 596

ACS 6543 6577 21.86 0.22 1125

ch150 6528 MMAS 6655 6744 66.59 1.94 1481

PPACO 6528 6556 14.95 0 329

ACS 29495 29626 138.85 0.43 1297

kroA200 29368 MMAS 29803 30359 353.64 1.48 1424

PPACO 29368 29480 77.50 0 1075

ACS 3944 3995 23.86 0.72 1880

tsp225 3916 MMAS 4104 4192 105.80 4.80 1986

PPACO 3935 3957 15.07 0.40 219

ACS 80618 80881 337.15 0.30 1332

pr226 80369 MMAS 81852 82531 409.15 1.84 1148

PPACO 80381 80450 35.43 0.01 1257

ACS 49645 50335 881.84 1.03 1773

pr264 49135 MMAS 51430 52662 621.24 4.67 1741

PPACO 49135 49183 24.17 0 670

ACS 2605 2636 22.57 1.00 1885

a280 2579 MMAS 2722 2784 126.87 5.54 1987

PPACO 2582 2601 15.12 0.10 1684

ACS 43155 43650 297.14 2.67 1979

lin318 42029 MMAS 44794 45285 534.43 6.57 1881

PPACO 42214 42832 297.02 0.40 963

ACS 12193 12330 254.28 2.80 1989

fl417 11861 MMAS 12664 13116 254.267 6.77 1890

PPACO 11957 11999 25.75 0.80 307

ACS 109037 110650 4540.90 1.70 1906

pr439 107217 MMAS 117104 122830 6935.30 9.22 1808

PPACO 108263 108983 321.78 0.97 1866

accurately and quickly find the standard optimal solutions of
eil51, kroA100, kroB150, kroA200. In large scale instances,
the convergence speed of the PPACO is still better than
that of ACS and MMAS. Although it does not find the
standard optimal solution, the accuracy of the optimal

solution obtained is much higher than that of ACS and
MMAS. These results prove that the minimum spanning tree
strategy in the dynamic guidance mechanism can accelerate
the convergence of the algorithm directionality. Besides,
the PPACO adopts the pheromone refactoring mechanism,
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which makes the algorithm easy to jump out of the local
optimum and find the value closer to the standard optimal
solution.

To verify the authenticity of the optimal solution obtained
by the algorithm, Fig. 6 illustrates the tours of optimal
solutions found by our algorithm in several TSP instances.

5.4 Performance Analysis of ImprovedMechanism

5.4.1 Dynamic Guidance Mechanism Experiment

To verify the performance advantages of a dynamic
guidance mechanism to the algorithm, a small-scale
instance kro100, a medium-scale instance kroA200 and a
large-scale instance lin318 were selected for convergence
analysis in this paper. Each experiment was performed
15 times and the optimal solution was selected to
compare the convergence. L-DGMACO is a PPACO that
removes the dynamic guidance mechanism, that is, PPACO
removes the single colony DGMACO. Figure 7 shows
that the convergence rate of PPACO is faster than that
of the L-DGMACO, and the convergence accuracy is
also improved. Because of the high similarity between
the minimum spanning tree and the standard optimal
path, the minimum spanning tree strategy in the dynamic
guidance mechanism adaptively strengthens the pheromone
concentration on the relevant paths, thus accelerating the
directional convergence of the colony. Besides, due to the
dominance of distance heuristic information in the initial
iteration, the maximum spanning tree strategy dynamically
adjusts the pheromone concentration of the relevant paths,
which increases the diversity of the algorithm and leads
to improved convergence accuracy. Therefore, the dynamic
guidance strategy plays a very good role in balancing the
diversity and convergence of the algorithm.

5.4.2 Pheromone refactoring mechanism experiment

The improved algorithm can find the optimal solution on
the small test set and is not easily immersed in local opti-
mization. To prove the effectiveness of the pheromone
refactoring mechanism based on Pearson correlation coef-
ficient, two medium-scale instances kroA200, pr264, and
a large-scale instance lin318 were selected in this paper
as the precision analysis of solution. Each experiment was
performed 15 times and the optimal solution was selected
to compare the convergence. L-PPACO is a PPACO that
removes the pheromone refactoring mechanism based on
Pearson correlation coefficient. Figure 8 demonstrates the
convergence speed of the PPACO is faster than that of
the L-PPACO. More importantly, the L-PPACO produces a
value of the optimal solution inferior to that of the PPACO
for the accuracy of the solution, which indicates that the

Fig. 3 Comparison chart of ACS, MMAS, and PPACO error rate

pheromone refactoring mechanism based on Pearson cor-
relation coefficient can make the PPACO easily jump out
of local optimum, and greatly improve the quality of the
solution. On the other hand, Fig. 9 shows that the error
rate of the PPACO is lower than that of the L-PPACO in
TSP instances of different scales, which also proves that the
PPACO can improve the accuracy of the solution. Because
the pheromone reconstruction mechanism based on Pearson
correlation coefficient can not only make the sub-colony
have a certain probability to retain the original search paths,
but also have a certain probability to learn the different
search paths recommended by other sub-colonies. This will
be beneficial to the exploitation and exploration of the sub-
colony at the same time, so as to effectively balance the
exploitation and exploration.

5.4.3 Comprehensive performance analysis

To further validate the effectiveness of the dynamic guid-
ance mechanism and pheromone refactoring mechanism on
the algorithm, we selected kroA200 and lin318 as experi-
mental objects. The two TSP instances were tested 15 times.
The experimental analysis is carried out from the follow-
ing aspects: the optimal solution (Best), the average solution

Fig. 4 Comparison of the stability of different algorithms

767H. Pan et al.



Fig. 5 Comparison of convergence of ACS, MMAS, and PPACO

Fig. 6 Best tours for each TSP instance found by PPACO

Fig. 7 Comparison convergence of PPACO and L-DGMACO
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Fig. 8 Comparison of convergence of PPACO and L-PPACO

(Mean), the minimum error rate (Error rate), the conver-
gence iteration (Convergence). The experimental data is
in Table 15. L-DGMACO is an improved algorithm with
a pheromone refactoring mechanism but lacks a dynamic
guidance mechanism. L-PPACO is an improved algorithm
with a dynamic guidance mechanism but lacks a pheromone
refactoring mechanism.

Firstly, we analyze whether each mechanism effectively
improves the algorithm. It can be seen in Table 15, all
three improved algorithms can find the standard optimal
solution in kroA100. Although the ACS also finds the
standard optimal solution, the average value of the three
improved ant colony algorithms is better than that of the
ACS and MMAS. Only PPACO can find the standard
optimal solution in pr264, but the optimal and average
solutions of the three improved algorithms are still better
than ACS and MMAS. Besides, it can be seen in Fig. 10 that
the three improved algorithms converge faster than ACS and
MMAS. Therefore, it can be understood that the accuracy
and convergence rate of the three improved algorithms are
better than that of ACS and MMAS. In other words, the
dynamic guidance mechanism and pheromone refactoring
mechanism based on Pearson correlation coefficient play an
effective role in the performance of the algorithm.

Then, the main effects of each mechanism on the
algorithm are analyzed. It can be seen from Table 15
that the quality of the optimal solution and average
solution of the L-PPACO is worse than that of PPACO
and L-DGMACO. In addition, in pr264 instance, PPACO
can find the standard optimal solution, and L-DGMACO
finds the optimal solution is very close to the standard
optimal solution. It indicates that the pheromone refactoring
mechanism based on Pearson correlation coefficient is
helpful for the algorithm to improve the accuracy of the
solution and jump out of the local optimal. According to
Fig. 10, it can be seen that the convergence curves of L-
DGMACO are slower than that of the other two improved
algorithms in two TSP instances. It can be seen from Fig. 11

that in the early iteration of pr264 instance, the curve of L-
DGMACO is outside the curve of the other two improved
algorithms. It proves that the dynamic guidance mechanism
can effectively accelerate the convergence of the algorithm.

Finally, Figs. 10 and 11 and Table 15 show that the
convergence of PPACO is the fastest, and its solution is
also the most accurate. Therefore, the dynamic guidance
mechanism and pheromone refactoring mechanism based
on Pearson correlation coefficient jointly improve the
performance of the algorithm, so that the solution accuracy
and convergence speed of PPACO is improved.

5.5 Compared with other improved algorithms
in TSP

To further illustrating the performance of our proposed
algorithm, we compare it with several improved algorithms.
Table 16 shows the data of PPACO and other improved
algorithms. EDHACO, PACO-3Opt and PCCACO are
improved multi-colony ant colony algorithms. PSO-ACO-
3Opt, AS-SA-Opt, and HACO are hybrid algorithms based

Fig. 9 Comparison chart of L-PPACO and PPACO error rate
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Table 15 Performance analysis of algorithms with different mechanisms

Instances ACO Best Mean Error rate(%) Convergence

PPACO 21282 21291 0 249

L-DGMACO 21282 21313 0 787

kroA100 L-PPACO 21282 21320 0 349

ACS 21282 21336 0 1538

MMAS 21349 21609 0.31 1990

PPACO 49135 49183 0 670

L-DGMACO 49212 49351 0.15 1601

pr264 L-PPACO 49295 49515 0.32 780

ACS 49645 50335 1.03 1773

MMAS 51430 52662 4.67 1741

on ant colony algorithm. GA, FOA, PSO, and ABC are
other intelligent algorithms. The data refers to its relevant
literature, and the number in parentheses after the algorithm
name indicates the location of the reference. Best is the
optimal path length of the relevant algorithm, Mean is the
average path length of the algorithm, and PD Best(%) is
the minimum error rate of the algorithm.

As shown in Table 16, for small scale and medium
scale TSP instances with less than 200 cities, PPACO
can all find the standard optimal solution, while not all
other improved algorithms can find the standard optimal
solution. The average solution of the PPACO is better
than most of the other algorithms. For medium scale
and large scale TSP instances with more than 200 cities,
the accuracy of solutions found by the PPACO is better
than that of other multi-colony ant colony algorithms,
hybrid algorithms based on ant colony algorithm and other
intelligent algorithms. Especially for large-scale problems,
the optimal solution of PPACO is closer to the standard

optimal solution than other improved algorithms, and its
error rate can be kept within 1%.

Through a series of experimental analysis, we can
see that the PPACO has certain advantages over other
improved algorithms. PPACO not only speeds up the
convergence speed, but also improves the accuracy of the
solution.

6 Conclusion

In this paper, an ant colony optimization based on a dynamic
guidance mechanism is proposed as a single colony, which
is combined with ACS and MMAS to form a multi-colony
ant colony algorithm. In the early stage of the algorithm, the
maximum spanning tree strategy is introduced to increase
the pheromone on the path of the maximum spanning tree
adaptively, which can improve the search ability of the
algorithm. Meanwhile, the minimum spanning tree strategy

Fig. 10 Comparison of
convergence of algorithms with
different mechanisms
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Fig. 11 Iterative breakpoint graph of pr264 with different algorithms

is introduced to increase the pheromone on the path of the
minimum spanning tree adaptively, which can accelerate
the convergence rate of the algorithm.These two strategies
complement each other and can effectively balance diversity
and convergence.

In addition, pheromone refactoring mechanisms are
defined to ensure effective communication between sub-
colonies. First, an adaptive interaction frequency strategy
is used to adjust the frequency of communication among
sub-colonies. Then, the dynamic interaction strategy can
reconstruct the pheromone matrix of the sub-colonies. The
sub-colonies can choose the original path or the differential
path recommended by other sub-colonies, which can
effectively balance exploration and exploitation. Therefore,
under the joint action of the two strategies, the algorithm

Table 16 Comparison with other improved algorithms in TSP

ACO Eil51 Eil76 KroA100 KroB150 Ch150 KroA200 Lin318 Pr439

Opt 426 538 21282 26130 6528 29368 42029 107217

Best 426 538 21282 26130 6528 29368 42214 108263

PPACO Mean 427 540 21291 26232 6556 29480 42832 108983

PD Best(%) 0 0 0 0 0 0 0.44 0.97

Best 426 538 21282 26328 - 29694 43291 -

EDHACO Mean 431 545 21355 26873 - 30391 43926 -

(2019)[46] PD Best(%) 0 0 0 0.76 - 1.11 3 -

Best 426 538 21282 - 6570 29533 - -

PACO-3Opt Mean 427 539 21327 - 6601 29645 - -

(2018)[44] PD Best(%) 0 0 0 - 0.64 0.56 - -

Best 426 538 21282 26130 - 29391 42461 -

PCCACO Mean 427 539 21383 26241 - 29485 42933 -

(2019)[24] PD Best(%) 0 0 0 0 - 0.07 1.03 -

Best 426 538 21301 - 6538 29468 - -

PSO-ACO-3Opt Mean 427 539 21445 - 6564 29646 - -

(2015)[43] PD Best(%) 0 0 0.09 - 0.15 0.34 - -

Best 426 538 21283 - 6533 29370 - -

AS-SA-opt Mean - - - - - - - -

(2018)[38] PD Best(%) 0 0 0.005 - 0.08 0.007 - -

Best 426 538 21283 - 6531 29372 - -

HACO Mean - - - - - - - -

(2017)[40] PD Best(%) 0 0 0.005 - 0.05 0.01 - -

Best 429 - 21753 - - - 45280 114158

GA Mean 432 - 22014 - - - 46609 117905

(2015)[15] PD Best(%) 0.7 - 2.2 - - - 7.7 6.4

Best 426 540 21282 - 6558 - - -

FOA Mean 427 544 21357 - 6618 - - -

(2017)[16] PD Best(%) 0 0.3 0 - 0.45 - - -

Best 426 538 21282 26130 6528 29368 - -

PSO Mean 426 538 21282 26153 6537 29495 - -

(2018)[17] PD Best(%) 0 0 0 0 0 0 - -

Best 429 550 - 26799 - 30161 - -
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Table 16 (continued)

ACO Eil51 Eil76 KroA100 KroB150 Ch150 KroA200 Lin318 Pr439

ABC Mean 433 554 - 26988 - 30229 - -

(2012)[18] PD Best(%) 0.15 0.91 - 2.52 - 2.63 - -

can jump out of the local optimum and get a high-precision
solution.

The experimental results show that the solution quality
and convergence of the PPACO in this paper are greatly
improved for medium scale and large scale TSP instances.
The experiment also proves that compared with some single
colony ant colony algorithms, multi-colony ant colony
algorithms and other intelligent algorithms, the PPACO still
has better performance. The future research direction will be
a hybrid algorithm, which is generated by the combination
of multi-colony ant colony algorithm and game theory, so as
to better improve the performance of the algorithm.
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