
A hybrid algorithm for the university course timetabling problem
using the improved parallel genetic algorithm and local search

Amin Rezaeipanah1
& Samaneh Sechin Matoori2 & Gholamreza Ahmadi3

Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Scheduling is one of the problems that has attracted the attention of many researchers over the years. The University Course
Timetabling Problem (UCTP) is a highly constrained real-world combinatorial optimization task. Designing course timetables
for academic institutions has always been challenging, because it is a non-deterministic polynomial-time hardness (NP-hard)
problem. This problem attempts to assign specific timeslots and rooms to the events considering a number of hard and soft
constraints. All hard constraints must be satisfied to achieve a feasible solution, whereas satisfying all soft constraints is not
necessary. Although the quality of the solution is directly related to the number of soft constraints that are satisfied. One of the
recent innovative methodologies for solving UCTP is the hybrid algorithm, which attempts to automate the timetabling design
process so that it would be able to work with different instances of problem domains. In this paper, we present a hybrid method
based on the Improved Parallel Genetic Algorithm and Local Search (IPGALS) to solve the course timetabling problem. The
Local Search (LS) approach is used to strengthen the Genetic Algorithm (GA). The IPGALS has applied a representation of the
timetable, which ensure the hard constraints would never be violated. Hard constraints are measured by Distance to Feasibility
(DF) criterion. In fact, applying the DF criterion leads to achieving feasible solutions and promotes the performance of our
algorithm. Due to the wide range of problem constraints, the proposed algorithm is performed in parallel to improve the GA
searching process. The IPGALS algorithm is tested over BenPaechter and ITC-2007 standard benchmarks and comparedwith the
state-of-the-art techniques in this literature. The experimental results confirm the effectiveness and the superiority of the proposed
algorithm compared to other prominent methods for solving UCTP.

Keywords Genetic algorithm . Local search . University course timetabling problem . Distance to feasibility

1 Introduction

The scheduling and timetabling of the courses in universities
is a multi-stage process which requires proper coordination

and communication among several groups. The planning
groups of universities often consist of students, instructors,
department head and education officer [1]. Basically, there
are various constraints in a University Course Timetabling
Problem (UCTP) [2–5]. Some of these constraints must nec-
essarily be satisfied, which are called hard constraints. On the
contrary, another category of constraints known as soft con-
straints helps to improve the timetabling quality [6].
Therefore, satisfying soft constraints leads to approach the
optimal solution. The UCTP attempts to conduct a conflict-
free assignment of all classes and laboratory sessions to in-
structors, rooms, and timeslots considering the hard and soft
constraints [7]. Each institution pursues unique sets of hard
and soft constraints based on its resources and facilities.

Generally, three categories of education timetabling are
considered such as school timetabling [8, 9], course
timetabling [10, 11], and examination timetabling [12, 13].
All above-mentioned categories resemble in some aspects,
but they mainly vary in their unique constraints that require

* Amin Rezaeipanah
amin.rezaeipanah@gmail.com

Samaneh Sechin Matoori
samanehmatoori@gmail.com

Gholamreza Ahmadi
grahmadi@pgu.ac.ir

1 Department of Computer Engineering, University of Rahjuyan
Danesh Borazjan, Bushehr, Iran

2 Department of Computer Engineering, Bushehr Branch, Islamic
Azad University, Bushehr, Iran

3 Department of Computer Engineering, Persian Gulf University,
Bushehr, Iran

https://doi.org/10.1007/s10489-020-01833-x

Published online: 19 August 2020

Applied Intelligence (2021) 51:467–492

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01833-x&domain=pdf
http://orcid.org/0000-0002-9075-9381
mailto:amin.rezaeipanah@gmail.com

to be satisfied. In this paper, course timetabling is investigated
in which courses/events are assigned to certain timeslots and
rooms such that a set of requirements and constraints are sat-
isfied. This problem bears a high resemblance to the graph
coloring problem in which an identical color could not be
assigned to two neighbor nodes (i.e. connected by an edge)
[14]. Formerly, the university timetables were manually
formed. Needless to mention that forming a course timetable
manually is a highly time-consuming and complicated task.
Nonetheless, it is mostly unable to form a conflict-free time-
table even after several reforming iterations. The UCTP is a
hybrid optimization problem and has been shown to be NP-
hard [10–12]. The complexity of UCTP is due to the diversity
of requirements of different institutions. Additionally, various
approaches have been proposed to address the problem due to
its importance [15, 16]. Most of these approaches use optimi-
zation methods to create an automatic timetable that is able to
produce an optimal or best near-optimal schedule. However,
there are still opportunities to generate more solid results.

The BenPaechter and ITC-2007 instances have been widely
used as UCTP benchmarks for algorithmic comparison [16]. In
this literature, numerous approaches have been presented on
these instances to form course timetables so far. Scheduling tasks
including UCTP are recently conducted applying various exact
and meta-heuristic algorithms [17, 18]. Integer Linear
Programming (ILP) settles in the category of exact algorithms
which applies mathematical models to solve an objective func-
tion. ILP is capable of solving scheduling problems including the
UCTP [17]. In addition, a large number of researches have
discussed various meta-heuristic techniques for the UCTP.
Some of the meta-heuristic approaches are Hybrid
Evolutionary Algorithm [19], Hybrid GA with LS [20], Hybrid
Evolutionary Approach with Nonlinear Great Deluge [21] and
Hybrid Electromagnetism-like Mechanism with Great Deluge
[22]. The evolutionary and heuristic algorithms suffer from two
primary drawbacks such as early convergence to and getting
stuck in the local optimum. Hence, hybrid algorithms are pre-
sented to cope with these drawbacks [10]. In fact, hybrid algo-
rithms are a kind of approximate optimization algorithms that
utilize mechanisms for escaping the local optimum and
preventing early convergence as well [23].

In this paper, a hybrid approach based on the Improved
Parallel Genetic Algorithm (GA) and Local Search (LS) is
developed for solving UCTP, which we briefly called
IPGALS. Due to the simultaneous investigation of several
solutions and random survey of case space, which is suitable
for the scheduling problem, the basis of the proposed hybrid
algorithm in this study is the GA. We propose a two-stage
method to deal with the UCTP. In the first stage, feasible
solutions are generated. In the second stage, the algorithm
attempts to improve the generated solutions progressively.
The IPGALS used a representation of the timetable, which
ensure the hard constraints would never be violated. In fact,

hard constraints are measured by Distance to Feasibility (DF)
criterion. GA tries to find feasible solutions based on the DF
criterion. Then, we improve the feasible solutions in terms of
soft constraints violation by using intelligent and elitist oper-
ators. Here, the LS approach is used to strengthen the GA. In
addition, due to the wide range of problem constraints, the
proposed algorithm is performed in parallel to improve the
GA searching process.

The rest of the paper is organized as follows. The details of
the UCTP are presented in Section 2. Section 3 is dedicated to
literature review. The structure of proposed IPGALS algo-
rithm is elaborated in Section 4 and the experimental results
and discussion are presented in Section 5. Finally, Section 6
concludes and suggests possible future works.

2 The university course timetabling problem

The University Course Timetabling Problem (UCTP) is a
classic and famous problem in the field of optimization prob-
lems. This problem is an abstraction of a real-world
timetabling problem. The purpose of UCTP is to schedule a
number of events (courses) in proper timeslots and rooms.
This problem consists of a set of events to be scheduled in a
number of timeslots, a set of rooms in which events can take
place, a set of the attended students in each event, and a set of
features satisfied by rooms and required by events [10].
Therefore, The UCTP is an abstraction of a real-world
timetabling problem. The problem consists of a set of Ne

eventsE ¼ e1f ; e2;…; eNeg scheduled in a set of 45 timeslots
T = {t1, t2,…, t45} (5 days in a week, 9 timeslots per day), and
a set of Nr rooms R ¼ r1f ; r2;…; rNrg, in which events can
take place (rooms capacity is determined according to the
input instances). Additionally, there is a set of Ns students S
¼ s1f ; s2;…; sNsg, which attend in each event, and a set ofNf

features F ¼ f 1f ; f 2;…; f N f
g, which is intended for each

room and is required to satisfy each event (e.g. computer,
video projector, etc.). Meanwhile, each room has a capacity,
and each student attends a number of events.

In addition, there are some hard and soft constraints in the
UCTP. A feasible timetable ensures that the timeslot and room
are assigned to all events while all hard constraints are satis-
fied. In addition, the UCTP attempts to maximize the number
of satisfied soft constraints because violating each soft con-
straint leads to a penalty.

2.1 Constraints

Constraints in UCTP are classified into two hard and soft
constraints. All hard constraints must be satisfied, so that the
generated solution would be feasible. Soft constraints are re-
lated to the objective function. The objective function attempts

468 A. Rezaeipanah et al.

to maximize the number of satisfied soft constraints. Unlike
hard constraints, soft constraints are not necessarily required
to be satisfied. However, the more the number of satisfied soft
constraints increases, the more the quality of solutions of ob-
jective function promotes. In the following, a list of extracted
hard and soft constraints from the literature is presented [24].
We use these constraints to solve the UCTP.

2.1.1 Hard constraints

– HC1: No student can have more than one enrolled course
in a timeslot.

– HC2: The roommust be capable of satisfying the required
features of the course.

– HC3: The number of enrolled students in the course must
be less than or equal to the capacity of the room.

– HC4: No more than one course is allowed to be held
during a timeslot in each room.

2.1.2 Soft constraints

– SC1: A student should not have a single course during a
day.

– SC2: A student should not have more than two consecu-
tive courses.

– SC3: A student should not have a course which is sched-
uled in the last timeslot of the day.

The UCTP aims to form feasible timetables with the lowest
penalty. Obviously, no hard constraint is violated in a feasible
timetable, and the violation of soft constraint impose
penalties.

2.2 Benchmarks

A set of benchmark instances from two different sources such
as BenPaechter [25] and ITC-2007 Track 2 [26] is used for
performance evaluation and comparison work. Although
these instances have ignored multiple real-world problem con-
straints, they have empowered us to compare our approach
with the state-of-the-art techniques. The instances in the
BenPaechter benchmark include scheduling 100–400 events
into a timetable with 45 timeslots (5 days and 9 h per day) as
well as satisfying the room features and the room capacity
constraints. These instances are divided into three categories:
small, medium and large. We deal with 12 instances including
five small, five medium and two large ones. We utilize ‘S1’ to
‘S5’ notations to show small instance 1 to 5 respectively, ‘M1’
to ‘M5’ to distinguish medium instance 1 to 5, and ‘L1’ and
‘L2’ notations to identify large instance 1 and 2. More details
on the BenPaechter benchmark are given in Table 1. The
instances with the identical characteristics (e.g. number of

events, number of students, etc.), possess various internal pa-
rameters. Therefore, the time complexity of solving them is
different, and they need different timetabling. The ITC-2007
benchmark is composed by real-world instances and was cre-
ated by the University of Udine (Italy). This ITC-2007 bench-
mark contains 24 instances with 100–600 events. Similarly,
we need to schedule the events into 45 timeslots. More details
on the ITC-2007 benchmark are given in Table 2. In the ex-
perimental studies on this dataset, ‘C01’ to ‘C24’ notations are
utilized to represent the instance COMP01 COMP24,
respectively.

Tables 1 and 2 consist of nine columns in which the first
column is a list of the instances and the other columns repre-
sent the specifications of scheduling resources. Specifications
include the number of events, the number of rooms, the num-
ber of features and the number of students. In addition, rest of
columns represent the maximum students per event, maxi-
mum events per student, mean features per room and mean
features per event, respectively. The reported statistics are
rounded numbers in the table.

All instances have at least one feasible solution (no hard
constraint violations), although it is not known which is the
optimal value for the soft constraints. Also, each instance
comes in a single file, containing a file header and four sec-
tions: room’s capacity, student/event, room/feature, and event/
feature. The header contains number of events, number of
rooms, number of features and number of students. The ca-
pacity for each room represents the maximum number of
seats. The student/event means that the student does attend
the event or not. The room/feature means that the room does
satisfy the feature or not, and finally, event/feature means the
event does require the feature or not.

3 Literature review

In the past few years, researchers have focused on hyper-heu-
ristic, hybridization and meta-heuristic approaches such as
Harmony Search (HS) [27], Ant Colony Optimization
(ACO) [28], Particle Swarm Optimization (PSO) [29],
Genetic Algorithm (GA) [30], Great Deluge (GD) [31],
Simulated Annealing (SA) [32], Hill Climbing (HC) [33],
Local Search (LS) [2] and Tabu Search (TS) [34]. Susan and
Bhutani [35], have compared the performance of SA and GA
for forming the university timetables after mining the stu-
dents’ preferences in selecting courses from the online repos-
itory of the university. Abuhamdah et al. [2] proposed a
population-based LS algorithm for UCTP, which is a subcat-
egory of LS (i.e. a mechanism to exploit the search space).
This method implements two operators. One of them operates
on a single solution to determine the force by comparing the
current generating solution and the most recent generated

469A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

Table 2 Details of the ITC-2007
Track 2 benchmark instances Instances Specifications

Number
of
events

Number
of rooms

Number
of
features

Number
of
students

Max.
students
per event

Max.
events
per
students

Mean
features
per room

Mean
features
per event

COMP01 400 10 10 500 33 25 3 1

COMP02 400 10 10 500 32 24 4 2

COMP03 200 20 10 1000 98 15 3 2

COMP04 200 20 10 1000 82 15 3 2

COMP05 400 20 20 300 19 23 2 1

COMP06 400 20 20 300 20 24 3 2

COMP07 200 20 20 500 43 15 5 3

COMP08 200 20 20 500 39 15 4 3

COMP09 400 10 20 500 34 24 3 1

COMP10 400 10 20 500 32 23 3 2

COMP11 200 10 10 1000 88 15 3 1

COMP12 200 10 10 1000 81 15 4 23

COMP13 400 20 10 300 20 24 2 1

COMP14 400 20 10 300 20 24 3 1

COMP15 200 10 20 500 41 15 2 3

COMP16 200 10 20 500 40 15 5 3

COMP17 100 10 10 500 195 23 4 2

COMP18 200 10 10 500 65 23 4 2

COMP19 300 10 10 1000 55 14 3 1

COMP20 400 10 10 1000 40 15 3 1

COMP21 500 20 20 300 16 23 3 1

COMP22 600 20 20 500 22 25 3 2

COMP23 400 20 30 1000 69 24 5 3

COMP24 400 20 30 1000 41 15 5 3

Table 1 Details of the
BenPaechter benchmark
instances

Instances Specifications

Number
of
events

Number
of rooms

Number
of
features

Number
of
students

Max.
students
per event

Max.
events
per
students

Mean
features
per room

Mean
features
per event

Small1 100 5 5 80 15 15 3 2

Small2 100 5 5 80 13 17 3 2

Small3 100 5 5 80 20 13 3 2

Small4 100 5 5 80 12 12 4 3

Small5 100 5 5 80 17 19 4 3

Medium1 400 10 5 200 11 20 3 2

Medium2 400 10 5 200 11 20 3 2

Medium3 400 10 5 200 12 20 3 3

Medium4 400 10 5 200 11 20 3 2

Medium5 400 10 5 200 20 20 3 3

Large1 400 10 10 400 30 20 5 4

Large2 400 10 10 400 25 20 5 5

470 A. Rezaeipanah et al.

solution. Another one operates on all generated solutions to
determine the force in all directions.

In evolutionary-based optimization methods, GA is very
popular and various GA-based strategies have been examined
for UCTP. Goh et al. [36] utilized a hybrid local search algo-
rithm which hybridizes TS and SAR (SA with Reheating) to
solve the UCTP. Chen et al. [23] developed a TS algorithm
with controlled randomization for solving the UCTP. Here, a
random acceptation strategy with threshold mechanism is pro-
posed to cater for subsequent algorithm design. Muklason
et al. [37] proposed a method called Tabu-Variable
Neighborhood Search to mitigate the drawbacks of meta-
heuristic optimization methods (i.e. requiring the parameters
tuning for every instance). Their method has selected heuris-
tics at each decision point instead of directly solving the prob-
lem. Goh et al. [32] applied a highly tuned SA on the instances
and reported superior results. Mazlan et al. [28] have recently
utilized ACO on these instances. Their method has yielded
more solid results such that it is still considered as the current
state-of-the-art method. Hossain et al. [29] investigated a nov-
el PSO-based method for solving highly constrained UCTP in
which the basic PSO operations are transformed to solve com-
binatorial optimization task of UCTP and introduced couple
of novel operations to PSO to solve UCTP efficiently. In this
method, swap sequence-based velocity calculation and its ap-
plication is implemented to transform each particles in order to
improve them.

Matias et al. [38] investigates the GAwith guided strategies
and a self-adaptive mechanism to solve the UCTP. These data
structures have used to guide or direct the searching process to
an available resource and enhance the solutions produced by
the genetic operators. In addition, a self-adaptive mechanism
has integrated with choosing a neighborhood structure. Gozali
and Fujimura [39] have applied the localized islandmodel GA
with dual dynamic migration policy (DM-LIMGA) for solv-
ing the UCTP. Thepphakorn and Pongcharoen [3] applied
Particle Swarm Optimisation based Timetabling (PSOT) to
solve the real-world datasets of the UCTP. The PSO, the stan-
dard PSO (SPSO), and the Maurice Clerc PSO (MCPSO)
were embedded in the PSOT program for optimising the de-
sirable objective function. TheMCPSO outperformed the oth-
er variants of PSO for most datasets. Pintér and Dávid [5]
proposed a two-stage heuristic method for solving UCTP.
Here, an initial solution is created using a recursive search
algorithm, then its quality is improved using local search heu-
ristic. In addition, they use tabu list of forbidden transforma-
tions at the end of each iteration.

The hybrid approaches (the combination of evolutionary
mechanisms with TS) have provided highly efficient solutions
for the UCTP [40]. Yusoff and Roslan [33] proposed a hybrid
GA-HC with the elitist for UCTP considering a bunch of
constraints and a repair mechanism for all infeasible solutions.
Akkan and Gülcü [6] proposed a hybrid bi-criteria GA

algorithm for scheduling in UCTP. Gülcü and Akkan [41]
exposed the problem of a robust UCTP to single and multiple
disruptions. In their study, two versions of a hybrid Multi-
Objective-GA (MOGA) have been developed, i.e. MOGA-
Single Disruption (MOGA-SD) for problems with single dis-
ruptions and MOGA-Sample Average Approximation
(MOGA-SAA) for problems with multiple disruptions. In
fact, these two differ in the robustness level of the generated
solution resulted in the MOGA. These algorithms aimed to
identify an appropriate Pareto Archive which has been deter-
mined by the quality and robustness of the solution (imposed
penalties due to soft constraints violations). A novel GA for
UCTP has been presented by Susan and Bhutani [42]. They
have hybridized the global search strategies of GAwith the LS
heuristics of SA, and implemented a greedy randomized LS
mutation in GA.

Niknamian [37] has provided a survey on hybrid and meta-
heuristic based approaches for UCTP. Kostuch [7] won the
International Timetabling Competition 2002 (ITC-2002)
using a meta-heuristic algorithm. Rezaeipanah et al. [10] pro-
posed a parallel hybrid approach for generating initial timeta-
bles, and applied GA to improve the quality of the generated
timetables. Some other hybrid approaches have been devel-
oped such as the multi-population hybrid GA in [11], the
hybrid fuzzy evolutionary approach in [15] and the fuzzy-
GA with LS in [16]. Hambali et al. [1] proposed a combina-
tion of GA and SA to form a heuristic approach for solving
UCTP in the Federal University Wukari. Bashab et al. [4]
proposed a meta-heuristic algorithm for UCTP which has
combined grey-wolf optimizer and cat swarm optimization.
Habashi et al. [43] suggested an adaptive diversifying meta-
heuristic based approach for UCTP. In their study, a compet-
itive iterated-LS approach has been proposed which has been
strengthened by an add-delete meta-heuristic. The meta-
heuristic has utilized an adaptive heuristic mechanism for gen-
erating solutions by using a variable-length list of add and
delete operations.

4 IPGALS algorithm for UCTP

It is very difficult to find a general and effective solution for
UCTP due to the diversity of the problem, variation of con-
straints, and different needs in universities and institutions
planning. Despite presenting various approaches, many re-
searchers use hybrid methods for solving the UCTP [6, 11,
15]. In addition, extensive researches have shown that GAs is
an effective method for solving the UCTP [44–47]. The GA is
a population-based algorithm which explores the entire search
space without concentrating on the individuals bearing the
best fitness function within a population. The GA may not
always be able to find the optimal solution due to the possi-
bility of premature convergence and getting stuck into local

471A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

optima. Therefore, LS applies changes in the generated solu-
tions. In fact, it performs local changes in a valid solution to
achieve another valid solution in the search space until certain
conditions are satisfied. The process iterated until achieving
an optimal solution or in a time-bound. The hybrid of GA and
LS (GALS) improves the performance by properly adjusting
the global search [20, 33]. Therefore, GA is a well-suited tool
for solving the UCTP which has increasingly attracted the
attention of researchers.

The key superiority of GA is the searching for the solution
with a population of solutions. However, GA requires an im-
provement due to random searches within all the problem
space. This has been inferred after analyzing the solutions
yielded from applying the classic GA on different instances
(i.e. instances with a large number of events). Therefore, we
have proposed a hybrid parallel method to solving the UCTP
using the GA and LS and called it IPGALS. The IPGALS is
an improved GA algorithm with a parallel architecture, where
it is combined with LS for better convergence. Here, GA has
been developed with some reforms such as initial population
creation, offspring production, parallel structure and some in-
telligent operators. Meanwhile, the proposed structure for
timetables does not violate any hard constraints in UCTP.
Hard constraints are measured by Distance to Feasibility
(DF) criterion in IPGALS. This leads to achieving feasible
solutions and promoting the performance of our algorithm.

Parallel Genetic Algorithm (PGA) is such an algorithm that
uses multiple GAs to solve a single task [10]. In the paper, we
use ‘island model’ for PGA, because populations are isolated
from each other. In the PGA, each algorithm performs over its
population. Accordingly, the individuals of populations may
differ from one conducting algorithm to another. Therefore,
PGA may take a little more time than a non-parallel one. For
that reason, PGA solutions are expected to produce more solid
results than non-parallel GA. In addition, if the population of
an algorithm does not progress after a number of generations,
chromosomes are exchanged between algorithms. Higher ge-
netic diversity, finding the global optima with higher proba-
bility, accelerating convergence, search in high-dimensional
spaces, and so on, are the advantages of this work. The archi-
tecture of IPGALS algorithm is depicted in Fig. 1.

In the following, each component of the proposed IPGALS
algorithm is described in details.

4.1 Genetic algorithm

Researchers have applied numerous techniques to find the
most suitable and fastest way of solving UCTP. In proposed
IPGALS algorithm, timetables are formed through combina-
tion of an improved PGA and LS. Several studies have shown
that GA is an effective and executable method for solving
UCTP [44–47]. In computer science, GA is a search heuristic
that is inspired by Charles Darwin’s theory of natural

evolution [33]. This algorithm inspired by the natural selec-
tion of chromosomes in which the fittest chromosomes candi-
dates are combined to produce subsequent offspring. The GA
and developed models of it have been successfully applied to
solve a number of scheduling problems such as UCTP [10,
15]. We have applied the IPGALS to take the advantages of
both GA and LS. Here are the details of the improved GA.

4.1.1 Chromosome representation

Each chromosome in the GA population is represented by a
chromosome representation. The representation scheme re-
flects the structure of the GA problem and either does deter-
mine the applied genetic operators. The proposed chromo-
some representation includes a two-dimensional vector of
gene sequences. The proposed chromosome length in UCTP
is related to the number of events. In addition, each event in
chromosome structure includes two genes characterized by
timeslot (event time) and room number (event location).
Here, chromosome representation is subtly designed to make
the use of genetic operators very simple. Structure of the pro-
posed chromosome is shown in Fig. 2, where ti ∈ T and ri ∈ R
represent the j-th timeslot and k-th room number assigned to i-
th event, respectively.

4.1.2 Initial population

Population initialization is the first step in the GA Process.
Population is a subset of chromosomes in the current genera-
tion. Generally, chromosomes in GA are generated randomly
or by heuristic methods from the search space. The initial
population for the GA is usually generated randomly.
Applying a random method for generating the initial popula-
tion often leads to producing the infeasible solutions due to the
lack of satisfying the problem constraints. In fact, the infeasi-
ble solutions are achieved due to the absence of any precon-
ditions to generate the population. In the following, we will
describe a three-step approach to generate an initial popula-
tion. This approach generates the initial population based on a
random-heuristic method.

– Step 1: Generate all states to set an event (gene) of the
chromosome. All states are determined by the timeslots
and the room’s number. For example, all states of a time-
table with 5 timeslots and 3 rooms are 15 (3 × 5). To
better understand this issue, see Fig. 3. Each state repre-
sents a gene from the chromosome that could be assigned
to an event.

– Step 2: Shuffling technique assists to promote evolution,
the genetic diversity and population variety [10].
Therefore, all the states generated in the first step are
shuffled for producing each new chromosome. This is
done in order to select chromosomes from the entire

472 A. Rezaeipanah et al.

search space and prevent generating of duplicated chro-
mosomes. Preventing the production of duplicate chro-
mosomes is accomplished by considering the value of
an event according to the set of possible states for that
event. Meanwhile, all states are shuffled to generate each
new chromosome. In addition, this technique adds a ran-
dom property to the production of the initial population.
Figure 4 shows the effect of using the shuffling technique
of the given example in Fig. 3.

– Step 3:Here, each event of the chromosome is assigned a
state (among the states of the second step). The proposed
heuristic method provides the best state for each event.
Hence, it is necessary to select a subset of all states
assigned to an event. Finally, a state among the subsets
of the selected states is assigned to the event. The subsets
of states for each event is selected so that all hard con-
straints are not violated in the chromosome. Accordingly,
all the states for each event are investigated. The first state
with no violated hard constraint is assigned to the event.
Then, the selected state is eliminated from the set of all
states, since it should not be selected for other events.
That way, a subset of states is determined for other events.
However, it may not be acceptable state for some events,
especially in the final events of the chromosome.
Therefore, some events may violate hard constraint by
selecting any remaining state. In this paper, these events
are denoted by the ‘-1’ symbols, and we call them

conflicting events. Figure 5 shows an example of a chro-
mosome with six events according to Fig. 4.

In this example, 10th and 14th states are assigned to first
and second events. Since selecting any remaining state for the
third event violates the hard constraint, this event is set to ‘-1’
symbol. Also, the fourth and fifth events are set to 6th and
15th states. The eighth state with content {2, 1} (2 for timeslot
and 1 for room number), violates the hard constraint in the
sixth event. Therefore, it is impossible to assign this state to
the sixth event. Here, the sixth event has been set to third state
(with content {1, 3}).

4.1.3 Fitness function

The input data for each instance of the problem include num-
ber of events, number of students, number of features, room’s
capacity, attended students in each event, features required for
each event and features satisfied by rooms. Based on the data
of each instance as well as the constraints defined in
Section 2.1, the fitness function for each chromosome is cal-
culated. A fitness function is a particular type of objective
function and shows how close a given design solution is to
achieving the set aims. Here, each chromosome contains a set
of events and each event that causes the constraints violation
penalizes the fitness function. At first, the constraints violation

...

...

...#Timeslot

...#Room

Chromosome Representation

Create initial population with

a random-heuristic method

Fitness function calculation

() = # . + # . + # .

Genetic Operators

Selection: roulette wheel technique

Crossover: uniform, one-point and heuristic

Mutation: local, global and swap

Improvement: reduce distance to feasibility

Elitism: choosing the best chromosome

Apply LS with the
possibility of enhancing

the selection of unobserved

states

Storing the best solution in

the shared memory

New population for

next generation

Timetabling based

on the best solution

Shared memory for

exchange of chromosomes

Stop

condition?
No

Yes

Fig. 1 The architecture of the
IPGALS algorithm

......#Timeslots

......#Rooms

Fig. 2 The structure of proposed
chromosome representation

473A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

in the solution X is calculated based on the fitness function
defined in the Eq. (1) [44, 45].

Fobj Xð Þ ¼ ∑
i¼1

Nsc

wsc
i � Psc

i þ ∑
j¼1

Nhc

whc
j � Phc

j ð1Þ

Where, wsc
i and whc

j represent the weight of each soft and hard

constraint, respectively. Psc
i and Phc

j number of soft and hard

constraints violation, respectively. Also, Nsc and Nhc is the
number of soft and hard constraints, respectively. The con-
straints weight is determined according to their importance
in the timetable. However, Fobj(X) represents the fitness func-
tion for the solution X.

In the IPGALS algorithm, the value of hard constraints is
always equal to zero, i.e. the hard constraints violation is im-
possible. Because we use the ‘-1’ symbol for conflicting

events. Therefore, in Eq. (1) it is always ∑
j¼1

Nhc

whc
j � Phc

j ¼ 0.

However, IPGALS does not allow any of the hard constraint
to be violated in the optimization process. In this paper, in-
stead of hard constraints violation, DF criterion is defined for
conflicting events. Therefore, if there are events with a ‘-1’
symbol in the solution, their penalty is calculated by DF for
the fitness function. DF for a solution expresses the distance to
feasibility. Consequently, the value of fitness function in each
solution considering soft constraints violation and DF criteri-
on is calculated by Eq. (2).

Fobj Xð Þ ¼ ∑
i¼1

Nsc

wsc
i � Psc

i þ ∑
j¼1

Ndf

wdf � Pdf
j ð2Þ

Where,wdf is the weight of DF criterion, Pdf
j shows the DF for

j-th conflicting event, and Ndf is the number of conflicting
events (events with ‘-1’ symbol in the chromosome). The
following is considered to calculate the fitness function of a
solution:

– DF criterion (Pdf): This criterion is calculated for a con-
flicting event based on the number of attended students.
In fact, DF for a solution is the overall of the number of

students in conflicting events. As an example, if the so-
lution contains three conflicting events, and the number
of students in each case is 7, 14 and 3. Hence, the DF for
this solution is equal to 24 (7 + 14 + 3).

– Number of violated soft constraints (Psc): The number of
violated soft constraints is equal to the overall of the three
soft constraints defined in Section 2.1.2.

4.1.4 Selection operator

Selection operator is the stage of GA, which chromosomes
with good fitness function are preferred and allows them to
pass on their genes to the successive generations. So, this
operator is for selecting combining a pair of parents to produce
offspring in the next generation. Parent selection plays an
important role in GA converging duration such a way that
proper parents direct chromosomes to fitter solutions. In
IPGALS, the roulette wheel technique is used to select parents
[48]. This technique is a commonmethod for selecting an item
proportional to its probability. In addition, shared memory
chromosomes are used to aid convergence. Here the first par-
ent is selected from the population of the current GA. Also, the
second parent with a 50% probability is the best chromosome
from the shared memory, and with a 50% probability is se-
lected from the chromosomes of shared memory.

4.1.5 Crossover operator

The performance of GA mainly depends on the type of genetic
operators involve in crossover and mutation. Crossover is a ge-
netic operator used to vary the genome of chromosomes from
one generation to the next. The IPGALS algorithm consists of
three crossover operators: Uniform, One-Point and Heuristic
Operators. According to the two selected parents, one chromo-
some is generated as an offspring in each crossover operator.
Crossover operator is usually applied in a GA with the highest
CR probability. Otherwise, offspring is generated by repeating the
parents in case the crossover is not conducted on a chromosome
pair. However, based on the three crossover operators, three
offspring are generated. The details of the proposed crossover
operators are discussed below.

151413121110987654321

555444333222111#Timeslots

321321321321321#Rooms

Fig. 3 All states of a timetable
with 5 timeslots and 3 rooms

1321127512911381561410

511332434125254#Timeslots

121212332313321#Rooms

Fig. 4 Shuffling technique on the
example given in Fig. 3

474 A. Rezaeipanah et al.

Uniform crossover operator Generally, the uniform crossover
is more effective for many problems, especially for numerical
optimization problems [45, 46]. At first, the chromosome of
offspring is randomly generated with ‘0’ and ‘-1’ genes in the
proposed uniform crossover operator. Then, the equivalent
genes are duplicated from the first parent for each gene with
the content of ‘0’. Afterwards, the genes are duplicated from
the second parent instead of genes with the symbol ‘-1’, pro-
vided they do not violate the hard constraints. Finally, some
genes may not be assigned any value with the content of ‘-1’.
Hence, these genes are considered as conflicting events. An
example of a uniform crossover operator is shown in Fig. 6.

In this example, events 2, 4, and 5 of the offspring chro-
mosome with ‘0’ content and other events (1, 3 and 6) with ‘-
1’ are initially set. Then, events 2, 4, and 5 are duplicated by
the equivalent genes of the first parent. That is, {14, 1}, {2, 3}
and {3, 1}. Similarly, the events 1, 3 and 6 are set by the
second parent, where the hard constraints have been violated
for the third event with {14, 1} content. Therefore, the third
event is a conflicting event.

One-point crossover operator In one-point crossover, a ran-
dom crossover point is selected and the genes of its two par-
ents are swapped to get new offspring. At first, the offspring
chromosome with the content of ‘-1’ is generated by default.
Then a random number is generated and the parents are cut
from the same point. Afterwards, the genes swap is done be-
tween two parent chromosomes. The first part of the first
parent is placed directly on the offspring chromosome. The
genes of the second part of the second parent are used to
complete offspring chromosome, provided they do not violate
the hard constraints. If an event violates a hard constraint, it is
set by the ‘-1’ symbol. An example of a one-point crossover
operator is shown in Fig. 7.

In this example, crossover point is randomly selected with
the value of 3. In this case, events 1 and 2 of the first parent

and other events (3, 4, 5 and 6) of the second parent are used to
generate the offspring chromosome. Here, the third event of
the second parent violates the hard constraints. Therefore, this
event is a conflicting event in the offspring chromosome and it
is denoted by the ‘-1’ symbol.

Heuristic crossover operator The heuristic crossover operator
also fills the offspring chromosome genes with the content of
‘-1’ by default to avoid hard constraints violation at first.
Then, the shared genes between the parents are placed directly
on the offspring chromosome. Afterwards, other genes of the
offspring chromosome are set according to the remaining
events of parents, provided they do not violate the hard con-
straints. An example of the heuristic crossover operator is
illustrated in Fig. 8.

In this example, events 1, 3, and 6 are share to both parents.
Therefore, these events are duplicated in the offspring chro-
mosome with {7, 3}, {5, 2} and {4, 2}, respectively. Then,
according to the remaining events of parents (namely, {14, 1},
{2, 3}, {3, 1}, {6, 1}, {13, 3} and {8, 4}), other genes of the
offspring chromosome are set. Here, none of the remaining
events has been able to complete the fifth event without the
violating hard constraints. Hence, the fifth event is a conflict-
ing event and setting by the ‘-1’ symbol.

4.1.6 Mutation operator

The mutation operator aims to produce a little modification to
a chromosome to produce the next offspring stochastically.
This operator alters one or more gene values in the offspring
chromosomes from its initial state. One of the main advan-
tages of this operator is the ability to access the entire search
space. Mutation operator is used to maintain and introduce
diversity in the genetic population and is usually applied in a
GA with the lowest MR probability. It has been observed that
mutation is essential to the convergence of the GA while
crossover is not [48]. The IPGALS algorithm consists of three
mutation operators: Local, Global and Swap Operators. These
operators apply on three offspring produced by crossover op-
erators. Therefore, the IPGALS algorithm produces nine off-
spring. The details of the proposed mutation operators are
discussed below.

Second ParentFirst Parent

581314654325147

543114213213

Final OffspringOffspring Initialization

432-1145-100-10-1

213-114-100-10-1

Fig. 6 An example of uniform
crossover operator

3156-1410

152-154#Timeslots

333-121#Rooms

Fig. 5 Selecting states for a chromosome with six events according to
Fig. 4

475A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

Local mutation operator In this operator, two events are ran-
domly selected from the contradictory events of the offspring
chromosome. Where, contradictory events include a list of
events that violate soft constraints. The selected events are
replaced, provided does not violate the hard constraints and
improve the fitness function. The probability of changing the
timeslot and room is as follows: with a 50% probability both
timeslot and room, with a 25% probability only the timeslots
andwith 25% probability only the room. In this operator, if the
offspring chromosome had conflict events, one of the events is
randomly selected from them. Therefore, according to internal
events investigate of the offspring chromosome, the efficiency
of this mutation operator is local.

Global mutation operator This operator first compiles a list of
all possible states that can be added to the chromosome.
According to Fig. 3, each state consists of the timeslot and the
room number. The possible states are the result of sharing all the
states and states of the offspring chromosome. Then, an event is
randomly selected from the list of possible states and a random
event from the offspring chromosome. The event related to the
offspring chromosome is selected from the conflicting events.
The selected state is replaced, provided does not violate the hard
constraints and improve the fitness function. The probability of
changing timeslot and room is similar to the local mutation op-
erator. In general, there is a probability of selecting any conflict-
ing event from the offspring chromosome in this operator. But, if
the offspring chromosome contains conflicting events, the focus
of selection is only on those events. Therefore, the efficiency of
this mutation operator is global according to investigate of un-
seen events in the chromosome.

Swap mutation operator This operator randomly selects two
events among all events within the chromosome. Then, the

events are swapped in case fitness function produce better
results.

4.1.7 Improvement operator

According to the structure of the proposed chromosome, some
events might not be scheduled in a timetable. These are con-
flicting events which are represented by the ‘-1’ symbols. The
purpose of the improvement operator is to find the timeslot
and the room for conflicting events so that the timetable be-
comes a feasible solution. In fact, this operator has been de-
signed to improve the timetable by reducing the DF criterion
in which we tend to minimize DF in the offspring population.
This operator may drastically increase the number of soft con-
straints violation, but it reduces the DF criterion without vio-
lating hard constraints. Meanwhile, this operator applies to all
nine offspring produced by mutation operator. Improvement
operator performs in following steps for each conflicting
event.

– Creating all possible states for events in ES parameter
– Eliminate the states in the offspring chromosome from ES

– The remaining states in ES are examined in order to be
replaced by conflicting event. The first state that does not
violate any hard constraints for the offspring chromosome
is replaced with the conflicting event.

4.1.8 Elitism operator

The interesting point of GA is the possibility of generating
highly suitable chromosomes in median generations (yielding
solid results at fitness function). These chromosomes might be
destroyed in the result of the crossover and mutation operators

Second ParentFirst Parent

581314654325147

543114213213

Final OffspringOffspring Initialization

5813-1147-1-1-1-1-1-1

543-113-1-1-1-1-1-1

Fig. 7 An example of one-point
crossover operator

Second ParentFirst Parent

48135674325147

243213213213

Final OffspringOffspring Initialization

4-16527-1-1-1-1-1-1

2-11233-1-1-1-1-1-1

Fig. 8 An example of heuristic
crossover operator

476 A. Rezaeipanah et al.

and not generated anymore. Elitism technique identifies such
cases and uses them in subsequent generations. Therefore, this
technique can help IPGALS to find optimal solutions for
UCTP. The elitism operator of this paper selects the best chro-
mosome from the shared memory in each generation and
transfers it directly to the next-generation population (for all
PGAs).

4.1.9 New population for next generation

In the IPGALS, nine offspring chromosomes are produced at
each generation by operators. Three offspring are produced by
crossover operators (C1, C2 and C3) which three offspring
({C1, 1, C1, 2 and C1, 3}, {C2, 1, C2, 2 and C2, 3} and {C3,

1, C3, 2 and C3, 3}) are produced by each offspring through
mutation operators. Thus, GA created a new population se-
quence by designed operators. Therefore, only nine new off-
spring are produced at each generation and the population is
updated based on them. For the next population, the best chro-
mosomes (based on the fitness function) from the old popula-
tion and the offspring population are selected for the next-
generation population. Then, the new generation of candidate
solutions is used in the next generation of the algorithm.
Following the above steps, the genetics cycle is transferred
to the next generation. The reason for producing only nine
offspring chromosomes is to reduce the inter-dependency of
the population size and the algorithm running time in each
generation. Accordingly, the population size can be increased
due to genetic diversity without affecting the running time of
the algorithm. This generation process is repeated until a ter-
mination condition has been reached. In particular, the termi-
nation condition in IPGALS is to reach the maximum number
of the generation Gmax.

4.2 Local search

Local Search (LS) is the basis of many heuristic methods for
combinatorial optimization problems. This algorithm per-
forms local changes in a valid solution to achieve another
valid solution in the search space until certain conditions are
satisfied. In general, LS is introduced to find a solution in
order to maximize a fitness function among a number of on-
going solutions. In UCTP, there might be the genes of a chro-
mosome that are less repeated or never been used. For this
reason, it is necessary to increase the probability of choosing
unselected states for each event. In the IPGALS algorithm, LS
applies to the population of the offspring in each generation.
The LS randomly swaps some of the unused genes in the
chromosome. Unused genes include states that have not been
used as events in the solution. LS changes only the amount of
one gene in each iteration and changes are applied if the qual-
ity (fitness function) of timetabling increases. The maximum
number of iterations to complete the LS process is LSiter.

4.3 Shared memory

Shared memory contains the best chromosomes produced in
all PGAs (based on the fitness function). The shared memory
members are updated after calculating fitness function in each
generation. Each running GA, storesQ chromosomes with the
best fitness function in the shared memory. Therefore, the size
of the shared memory isQ × Z, where Z represents the number
of running PGAs.

4.4 Structure of the PGA

As a matter of fact, the parallel implementation has been in-
troduced for finding the solution in the NP-hard problemswith
the emergence of multi-core systems. Parallel computing tech-
niques can be used to improve the efficiency of GA by
exploiting the concurrency of calculations performed in
GAs. One of the important features of the GA is the capability
of running in parallel and searching for complicated spaces. In
general, the possibility of getting stuck in a local optimum trap
is much low using PGAs. PGA uses multiple genetic algo-
rithms to solve a single task. In PGA, different populations are
generated and processed in parallel instead of using a popula-
tion and evolving it. In UCTP, developing a high-performance
GAwhich always solves the problem is almost impossible due
to the diversity of constraints. In IPGALS, a GA with multi-
population has been proposed to solve this problem. In addi-
tion, in IPGALS, the parallelization of GA is done applying
the shared memory programming and island model. In a par-
allel implementation of an island model each processor exe-
cutes a GA. The processors perform the evolutionary process
by periodically exchanging a portion of their populations.

The chromosome structure is identical in all populations, so
that each population has its own unique operators.Meanwhile,
each population is processed in parallel and independently. In
addition, the initial population and fitness function are calcu-
lated in parallel, since this was the most time-consuming part
of the algorithm. Although the selection, crossover and muta-
tion operators can be performed in parallel, these are not com-
putationally intensive tasks. Here, the process of exchanging
chromosomes between populations of PGAs is performed af-
ter number of generations using elitist methods. Number of
generations for the exchanging the chromosomes is deter-
mined based on th1 threshold. According to this threshold,
each th1 generation of chromosomes is exchanged. In the ex-
change process, L item of the worst chromosomes are elimi-
nated from the current population and the best chromosomes
of the shared memory replace L items. The worst and best
chromosomes are determined by fitness function. The number
of exchanging chromosomes should be selected based on pop-
ulation size. Therefore, choosing a very high or very low value
for L may have negative influences on the evolution of popu-
lation, genetic diversity, and disrupting the final convergence.

477A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

4.5 Pseudo-code for the proposed IPGALS algorithm

The sequence of pseudo-code presented in Fig. 9 shows the
proposed algorithm.

5 Results and discussion

In this section, we conduct an experimental study to evaluate
the performance of the proposed algorithm. All experiments
are carried out on an Intel Core i5 CPU at 2.2GHz and 8GB of
memory and Windows 10 64-bit operating system.
Furthermore, MATLAB R2016a is used for implementation.
In order to achieve more reliable results, all experiments have
been reported an average of 10 independent executions. The
proposed algorithm is evaluated on the BenPaechter [25] and
ITC-2007 Track 2 [26] benchmark instances. Best-known so-
lutions is available at the website of the Timetabling Research
Group at the University of Udine (http://satt.diegm.uniud.it),
which researchers can upload their best solutions and results.

In this paper, all considered constraints for the comparing
algorithms have been identified according to Section 2.1. Due
to the same constraints and instances, all comparisons be-
tween algorithms have been performed in fair conditions.
This section divided into five subsections. The first subsection
discusses the parameters setting. The second subsection

reports the soft constraints violation for all instances. The third
subsection shows the convergence of IPGALS algorithm in
reducing constraints. The fourth subsection investigates the
effectiveness of each operator in producing the final solutions.
The fifth subsection proves the superiority of IPGALS algo-
rithm versus IGA and IGALS methods. The sixth subsection
compares the IPGALS algorithm with the state-of-the-art
techniques. The discussion on the time complexity of the
IPGALS algorithm is presented in last subsection.

5.1 Parameters setting

The efficiency and effectiveness of hybrid and meta-heuristic
algorithms highly depend on the appropriate adjustment of the
parameters. The IPGALS algorithm has several parameters,
which are presented in Table 3. Parameters are set into three
categories according to the complexity (number of events) of
the instances such as the events fewer than 200 (Ne ≤ 200),
between 200 and 400 (200 <Ne ≤ 400) and more than 400
(Ne > 400). Some of the initial parameter values are derived
from the studies of [47, 49], including control parameters for
the weight adjustment mechanism, i.e.Npop,CR,MR andGmax.
Other parameters (i.e. Z, LSiter, th1, L and Q) are determined
using Taguchi method to achieve the best solution [50]. This
method ensures the identification of effective parameters and
levels with fewer experiments by providing balance among

IPGALS Algorithm: The Improved Parallel Genetic Algorithm And Local Search

input: An instance of BenPaechter or ITC-2007 benchmarks and , , , , , , , and parameters.

1 parfor = 1 to do // Parallel Running

2 Parallel initialization: Create an initial population with the size equal to based on the random-heuristic method.

3 Parallel evaluation: Calculate fitness function for each chromosome.

4 Shared memory: Storing the best chromosome in the shared memory.

5 for = 1 to do
6 Selection operator: Selecting two parents (and) with roulette wheel method.

7 Crossover operator: Apply uniform, one-point and heuristic crossovers and production of three offspring (, and) based on .

8 Improvement operator: Improvement of three offspring , and .

9 Calculate fitness function for three offspring , and .

10 for = 1 to 3 do // For three offspring

if = 0 then11

12 Mutation operator: Apply local and global mutations and production of two offspring (, and ,) based on .

13 else

14 Mutation operator: Apply local and global mutations and production of two offspring (, and ,) base on only conflicting

events (genes with ‘-1’ symbol).

15 end
16 Mutation operator: Apply swap mutation and to produce an offspring (,) base on .

17 Calculate fitness function for three offspring , , , and , .

18 end
19 end
20 Local search: Applying local search with iterations on the offspring population.

21 Next generation: Select the best chromosomes from the old population and offspring population for the next-generation population.

22 Elitism operator: Select the best chromosome from the shared memory and transferring it to the next-generation population.

23 Shared memory: Storing the best chromosome in the shared memory with a limited memory capacity equal to .

24 Chromosome exchange: Transfer of chromosomes from shared memory to the population, based on threshold.

25 end
26 = Chromosome with the best fitness function from shared memory.

output: The timeslots and rooms on each event ().

Fig. 9 Pseudo-code of the proposed IPGALS algorithm

478 A. Rezaeipanah et al.

http://satt.diegm.uniud.it

the orthogonal index, parameters, and levels. The aim of
Taguchi method is to maximize the S/N ratio (signal-to-noise)
which in the paper is calculated by Eq. (3).

S=Nij ¼ −10log10
1

m
∑
m

i¼1
Fobj i; jð Þ2

� �
; ∀ j∈level

ð3Þ
Where, Fobj(i, j) is the objective function value using the pa-
rameter i on j-th level andm is the number of times j-th level of
the parameter i is repeated over the runs of all trials.

The results obtained through various parameters of 4 levels
are estimated based on standard table of orthogonal arrays L16
[50]. Because of the similarity in reasoning procedure, the
parameters setting process is only shown for instances with
100 event numbers. Table 4 presents the value of different
parameters at each level in Taguchi method.

In this Table, rows denote the level of parameters in each
experimental scheme and columns indicate a specific level of
a parameter that is changeable in each scheme. The S/N ratio
obtained from the experiment (illustrated in Fig. 10) indicates
the order of importance of the variables. Rank shows the level
according to which variables should be used in order to re-
ceive the best solution. The level with the highest S/N value is
the most suitable level. According to the S/N ratio, it is in-
ferred that Z, LSiter, th1, L andQ, which are 3, 2000, 10, 2, and

3, respectively, is an appropriate solution based on Taguchi
method.

In IPGALS, the weight for the DF criterion is set to be 1.0
(wdf = 1). This weight prevents the selection of chromosomes
with conflicting events. In general at UCTP, the weight of soft
constraints (wsc) is very effective for determining the optimal
solutions in UCTP. Therefore, the weight of soft constraints is
evaluated by different states to find the most appropriate
values for them. In each state, we assign different weights in
the range [0–1] to the soft constraints wsc

1 , w
sc
2 and wsc

3 . The
performance of the IPGALS is investigated through setting
the weights on the BenPaechter and ITC-2007 benchmarks.
The results of this comparison have been shown in Table 5.

The bold row of the table indicates the relative optimum
values. Here, average of the constraints violation is presented
for all instances. The results show that the best values of
weights are when wsc

1 , wsc
2 and wsc

3 are 0.25, 0.75 and 0.50,
respectively. Meanwhile, selecting chromosomes based on
this weights leads to increase efficiency and genetic diversity.

5.2 The IPGALS algorithm results

We applied the IPGALS algorithm on the instances of
BenPaechter and ITC-2007 benchmarks and the results are
shown in Tables 6 and 7, respectively. The results are depicted
based on the best and mean cases of soft constraints violation.
For each experiment, the average of 10 runs of IPGALS algo-
rithm is reported in the results. IPGALS does not cause the
hard constraints of the input instance. Therefore, the presented
results are only related to soft constraints and DF criterion. In
these tables, the number of violations for each constraint is
individually calculated and has been reported for each in-
stance. DF in Tables 6 and 7 represents the distance to feasi-
bility criterion. In fact, DF indicates how far a solution is from
a feasible solution. The last column of these tables represents
the sum of all soft constraints plus DF criterion. So, the

Table 3 Parameter setting for
IPGALS algorithm Parameters Description Values based on the number of events

Ne ≤ 200 200 <Ne ≤ 400 Ne > 400

Npop Population size 50 30 30

CR Crossover rate 0.75 0.85 0.85

MR Mutation rate 0.35 0.1 0.15

Gmax Maximum number of generation 75 50 50

Z Number of GAs in parallel structure 3 5 10

LSiter Maximum number of iteration in LS 2000 1000 500

th1 Threshold limit for transfer of chromosomes 10 5 5

L Number of chromosomes in the exchange 2 2 2

Q Number of chromosomes allowed to store in shared
memory

3 3 3

Table 4 Level values considered for parameters

Parameters Level 1 Level 2 Level 3 Level 3

Z 2 3 4 5

LSiter 1000 2000 3000 4000

th1 5 10 15 20

L 1 2 3 4

Q 1 2 3 4

479A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

column is entitled ‘Total’ equals SC1 + SC2 + SC3 + DF,
where SCi is the i-th soft constraint in the fitness function.

The results of Table 6 show that the IPGALS generates
solutions without constraints for all small instances in the
BenPaechter benchmark. Medium instances have little soft
constraints. However, IPGALS is able to present a feasible
timetable for all medium instances (the DF criterion for all
medium instances equals zero). In large instances, the number
of constraints violation is greater than in small instances. For
example, the total number of violated constraints in the
Medium1 instance is 84, while this value is 516 for Large1
instance (best case). In addition, the performance of the
IPGALS is satisfactory based on DF criterion, since feasible
solutions are presented for all the 12 instances of the
BenPaechter benchmark (best case). DF criterion results are
193 and 386 on average for Large1 and Large2 instances,
respectively. These results indicate that the IPGALS does
not always provide the feasible timetable for large instances.
Moreover, the results of SC1, SC2 and SC3 constraints show
that reducing SC2 is more difficult for IPGALS. This con-
straint is equivalent to the number of times a student has taken
more than two consecutive classes.

Results of Table 7 for the ITC-2007 benchmark show that
the IPGALS algorithm for some instances always presents the
timetable without any violated constraint, i.e. C05-C09, C13-
C18 and C21. The results of other instances are also satisfac-
tory, since feasible solutions are presented for all 24 instances
of the ITC-2007 benchmark (best case). However, the average
DF results for C01, C10, C22 and C23 instances show that the

IPGALS has not always been able to always provide a feasible
timetable. In addition, the results show the relatively high
difference between the average and the best value, which rep-
resents the scattering in the solution space. It is believed that
there is a close relationship among the soft constraints. Note
that satisfy soft constraint 1, increases the violation on soft
constraint 2 and 3, because more events will be scheduled in
a day to avoid having a single event on a day. For example, in
Table 7, satisfaction of soft constraints 2 and 3 is weaker in
most instances.

5.3 Observing the convergence of IPGALS

GA results are usually converged when there is no significant
improvement in the values of the fitness function of the pop-
ulation from one generation to the next. It causes evolution
halting because all chromosomes in the population become
identical. IPGALS convergence analysis for reducing the con-
straints is covered in this subsection.

In order to solve constrained optimization problems
through GA, the algorithm must generate feasible solutions
and select a near-optimal solution among all the feasible so-
lutions. IPGALS algorithm benefits from being able to escape
local optima utilizing intelligent operators. In IPGALS, accel-
erating the convergence is performed using improvement op-
erator and LS. These operators reproduce valid chromosomes
in each generation. Moreover, IPGALS accelerates conver-
gence by embedding the process of reasoning with reducing

Table 5 The Performance results of the IPGALS with different weights

Soft constraints weight Average constraints violated

wsc
1 wsc

2 wsc
3 BenPaechter ITC-2007

0.25 0.50 0.75 148.20 179.63

0.25 0.75 0.50 132.83 166.04

0.50 0.25 0.75 155.72 188.13

0.50 0.75 0.25 146.27 180.51

0.75 0.25 0.50 155.25 187.67

0.75 0.50 0.25 151.35 183.09

1 2 3 4

-126

-124

-122

S
/N
 R
a
te

Z

1 2 3 4

-125

-124

-123

LS
i t e r

1 2 3 4

Levels

-125

-124

-123

th
1

1 2 3 4

-127

-126

-125

L

1 2 3 4

-125

-124

-123

Q

Fig. 10 The S/N ratio obtained in the Taguchi method

480 A. Rezaeipanah et al.

Table 7 The performance of
IPGALS algorithm ITC-2007
benchmark

Instances Constraints

SC1 SC2 SC3 DF Total

Mean/
Best

Mean Best Mean Best Mean Best Mean Best Mean Best

COMP01 43 36 270 256 124 117 133 0 570 409

COMP02 89 87 205 198 103 96 0 0 397 381

COMP03 54 50 91 83 69 62 0 0 214 195

COMP04 40 35 119 100 83 76 0 0 242 211

COMP05 0 0 0 0 0 0 0 0 0 0

COMP06 0 0 0 0 0 0 0 0 0 0

COMP07 0 0 0 0 0 0 0 0 0 0

COMP08 0 0 0 0 0 0 0 0 0 0

COMP09 0 0 0 0 0 0 0 0 0 0

COMP10 63 57 299 281 150 138 142 0 654 476

COMP11 37 32 66 63 46 40 0 0 149 135

COMP12 39 35 83 77 47 41 0 0 169 153

COMP13 0 0 0 0 0 0 0 0 0 0

COMP14 0 0 0 0 0 0 0 0 0 0

COMP15 0 0 0 0 0 0 0 0 0 0

COMP16 0 0 0 0 0 0 0 0 0 0

COMP17 0 0 0 0 0 0 0 0 0 0

COMP18 0 0 0 0 0 0 0 0 0 0

COMP19 18 13 67 44 26 18 0 0 111 75

COMP20 34 30 191 178 93 87 0 0 318 295

COMP21 0 0 0 0 0 0 0 0 0 0

COMP22 93 81 367 328 131 124 176 0 767 533

COMP23 148 133 439 417 330 306 382 0 1299 856

COMP24 44 31 158 141 71 63 0 0 273 266

Table 6 The performance of
IPGALS algorithm on
BenPaechter benchmark

Instances Constraints

SC1 SC2 SC3 DF Total

Mean/
Best

Mean Best Mean Best Mean Best Mean Best Mean Best

Small1 0 0 0 0 0 0 0 0 0 0

Small2 0 0 0 0 0 0 0 0 0 0

Small3 0 0 0 0 0 0 0 0 0 0

Small4 0 0 0 0 0 0 0 0 0 0

Small5 0 0 0 0 0 0 0 0 0 0

Medium1 0 0 82 76 11 8 0 0 93 84

Medium2 0 0 105 96 6 3 0 0 111 99

Medium3 4 2 126 118 24 22 0 0 154 142

Medium4 1 0 82 78 7 6 0 0 90 84

Medium5 4 3 97 87 31 22 0 0 132 112

Large1 129 142 298 353 16 21 193 0 636 516

Large2 16 26 309 388 122 143 386 0 833 557

481A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

the distance to feasibility. Because IPGALS does not waste its
time on the infeasible solutions.

In Figs. 11 and 12 the convergence of IPGALS for the
BenPaechter and ITC-2007 benchmarks is shown based on the
number of violated constraints. Meanwhile, the results have been
reported on average for all small, medium and large instances in
the BenPaechter benchmark. For example, convergence in small
instances is calculated based on the average S1-S5 instances.
Similarly, the results have been reported on average for instances
with a number of events of less than 200, between 200 and 400,
and more than 400 in the ITC-2007 benchmark.

DF criterion in small instances converges to zero rapid-
ly which means a feasible solution has been produced. For
these instances, due to the tiny size of the search space and
the random-heuristic method for initial population, the
hard constraints are not violated. This means that there is
no gene with the ‘-1’ symbol in the solution. Therefore,
operators focus on reducing soft constraints based on the
mutation operator structure. In fact, mutation operators for
solutions without DF constraints only apply to conflicting
events. Obviously, all three soft constraints SC1, SC2 and
SC3 are rapidly reduced and the best result is achieved
after the 60th generation. However, DF values are not zero
in the medium and large instances, due to the extent of the
problem dimensions in these instances. Therefore,
IPGALS focuses on reducing DF constraints according to
the designed operators and IPGALS algorithm strategy
against DF criterion. For this reason, other soft constraints
are sometimes increased by DF decrement. That is clearly
indicated in the Fig. 11 for medium and large instances.
For example, DF value is about 100 in the first generation
of the medium instances and after 17 generations con-
verges to an optimum value of zero. However, SC2 is
about 150 in the first generation and its value reaches more
than 160 after 17 generations. In general, SC2 constraint
value is higher than any other constraints. The number of
SC2 constraint is much higher than SC1 and SC3 con-
straints due to the high number of students and events
for each student.

In all experiments, only the value of DF criterion equals
zero for IPGALS except for the small instances of
BenPaechter. It demonstrates that reducing DF constraints is
more important than the soft constraints for IPGALS.
Because, IPGALS algorithm allocates higher priority to re-
ducing DF, through allocating higher weight and the behavior
of some operators. Figure 12 confirms that IPGALS for the
instances on the ITC-2007 benchmark performs similar to the
BenPaechter benchmark.

5.4 Observing the effectiveness of operators

IPGALS algorithm defines different operators for reproducing
and improving the solutions. These operators consist of uni-
form crossover, one-point crossover, heuristic crossover, local
mutation, global mutation, swap mutation, improvement, elit-
ism and local search. Each of these operators has different
responsibilities in creating a new population. In Figs. 13 and
14 the effectiveness of each operator in producing the final
solutions is shown for BenPaechter and ITC-2007 instances.
The effectiveness of an operator in producing final solutions is
measured based on performing IPGALS with deactivating
that operator. Therefore, greater importance for an operator
is achievedwhen the efficiency of IPGALS is reduced without
its use.

Here, the number of violated constraints with deactivating
each operator is reported based on 10 runs of an instance on
the best case. In Figs. 13 and 14, the term ‘S1’means the first
instance of small data, ‘S2’ means the second instance of
small data, and so on. Likewise, the term ‘M1’ denotes the
first instance of the medium data and ‘L1’ denotes the first
instance of large data and so on. Similarly, the term ‘C01’
means COMP01 instance, ‘C02’ means COMP02 instance,
and so on. The effectiveness of improvement, local search,
and heuristic crossover operators is clearly demonstrated in
various instances. The importance of these operators (espe-
cially improvement operator) is in reducing the DF criterion
and creating feasible solutions. The improvement operator is

0 10 20 30 40 50 60 70
Generation

0

1

2

3

4

5

6

7

8

9

N
o.

of
vi

ol
at

ed
co

ns
tra

in
ts

Average small instances

SC1

SC2
SC3

DF

0 10 20 30 40 50
Generation

0

20

40

60

80

100

120

140

160

180

N
o.

of
vi

ol
at

ed
co

ns
tra

in
ts

Average medium instances

SC1

SC2
SC3

DF

0 10 20 30 40 50
Generation

0

100

200

300

400

500

600

700

N
o.

of
vi

ol
at

ed
co

ns
tra

in
ts

Average large instances

SC1

SC2
SC3

DF

Fig. 11 The convergence of proposed algorithm on the BenPaechter instances

482 A. Rezaeipanah et al.

more efficient than all operators except M4 instance of
BenPaechter and C06 and C09 instances of ITC-2007.

5.5 Comparing IPGALS with IGA and IGALS

In this paper, we proposed a hybrid method for solving UCTP
using IPGALS. IPGALS is a hybrid of GA and LS that use a
parallel architecture. Here, we compare the results of IPGALS
with the results of IGA and IGALS methods. IGA is an im-
proved GA, and IGALS is a combined algorithm of IGA and
LS. The IGA and IGALS methods details are similar to the
proposed IPGALS algorithm. The performance of IPGALS
versus IGA and IGALS is shown by the total average of vio-
lated soft constraints (for all instances) in Table 8. The results
are reported an average of 10 runs for each instance of
BenPaechter and ITC-2007 benchmarks.

As evident in Table 8, each algorithm recorded the average
of violated soft constraints for all instances of a benchmark.
The averages produced by IGALS and IPGALS methods are
comparable for these benchmarks. Meanwhile, IPGALS
clearly outperforms IGA on the both benchmarks. Overall,
IPGALS seems to be the most effective algorithm.

Here, we compare the performance of IGA, IGALS and
IPGALS methods in minimizing the number of violated soft
constraints. For BenPaechter instances, the comparison be-
tween IPGALS and IGALS is shown in Table 9. In order to
compare, the best values of soft constraints violation are
depicted for 10 runs. Moreover, a paired t-test has been used
to verify the effectiveness of the proposed algorithm. The
paired t-test has been performed between IPGALS and each
of the IGA and IGALS methods. A value of p < 0.05 is con-
sidered to determine statistical significance. The t-test values
constitute of the soft constraints violation achieved with

Fig. 13 The effectiveness of the proposed algorithm operators on BenPaechter instances

0 10 20 30 40 50 60 70
Generation

0

20

40

60

80

100
N

o.
 o

f v
io

la
te

d
co

ns
tra

in
ts

Average instances with events of 100 and 200

SC1

SC2
SC3

DF

0 10 20 30 40 50
Generation

0

50

100

150

200

250

N
o.

 o
f v

io
la

te
d

co
ns

tra
in

ts

Average instances with events of 300 and 400

SC1

SC2
SC3

DF

0 10 20 30 40 50
Generation

0

50

100

150

200

250

N
o.

 o
f v

io
la

te
d

co
ns

tra
in

ts

Average instances with events of 500 and 600

SC1

SC2
SC3

DF

Fig. 12 The convergence of proposed algorithm on the ITC-2007 instances

483A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

methods as one distribution. The p values reveal that there is
no significant difference between the means of IGALS and
IPGALS for all the instances except M4 where IGALS is
better than IPGALS. In addition, IPGALS performance is
clearly better than IGA for all instances.

Results of comparison between IGA, IGALS and IPGALS
methods for ITC-2007 instances have been shown in
Table 10. The t-tests show that IGALS only performed better
than IPGALS for instances C03, C04 and C11. However,
IPGALS is clearly more effective for instances C02 and
C19. The difference between both methods for the rest of
the instances is negligible on average. In addition, IPGALS
has performed significantly better compared to IGA for in-
stances C02, C06, C10, C19, C22, C23 and C24. IGA has
performed better than IPGALS for instance C03 on the best
case. The difference between both methods for the rest of the
instances is negligible on average. Totally, IPGALS outper-
forms IGALS on 4 instances. Also, IPGALS is significantly

outperforming IGA on 12 instances. The t-tests to indicate
significant statistical differences between the means of the
three methods for the rest of the instances.

5.6 Comparing IPGALS with other methods

The existence of different methods for solving UCTP has
opened a vast opportunity for researchers in this field.
Therefore, choosing the best method or following its sequence
could provide relatively better successes for future ap-
proaches. In this respect, the BenPaechter and ITC-2007 in-
stances have been widely used as UCTP benchmarks for al-
gorithmic comparison. Here, the performance of the proposed
IPGALS algorithm is compared with other methods in solving
UCTP. The average numbers of constraints violation of 10
independent executions for BenPaechter instances are shown
in Table 11. In addition, comparison results for ITC-2007
instances are reported in Table 12. Meanwhile, Ai (i = 1, 2,
…, 38) denote the compared methods which A38 denotes the
proposed IPGALS algorithm. Appendix is dedicated to pres-
ent a list of compared methods.

In Table 11, the number of violated soft constraints is pre-
sented on the mean and best cases for all small (S1–S5), me-
dium (M1–M5) and large (L1 and L2) instances. The terms B
and M refer to the best and mean cases, respectively. The
reported results confirm the superiority of the IPGALS algo-
rithm in comparison with other methods in most of the in-
stances. According to Table 11, A2, A8, A11, A18 and A21 suffer
from inefficiency for small instances. Hereby, the

Fig. 14 The effectiveness of the proposed algorithm operators on ITC-2007 instances

Table 8 Comparing average of soft constraints violation between IGA,
IGALS and IPGALS algorithms

Benchmarks Algorithms

IGA IGALS IPGALS

BenPaechter 178 142 133

ITC-2007 193 176 166

Total 371 318 299

484 A. Rezaeipanah et al.

performance of algorithms is degraded over medium in-
stances. Here, the order of superiority of methods is A38,
A23, A12, A4 and A17. In general, A3, A12, A23 and A38 methods
have appropriate efficiency over large instances. The methods
A1, A3, A5, A12, A15, A16, A17, A19, A22, A23 and A38 methods in
small instances present best performances, because they do
not violate any soft constraints. However, the worst perfor-
mance belongs to both A11 and A21 methods.

We have obtained the performance of the above methods
on medium instances, where the A38 method (IPGALS algo-
rithm) presents the best efficiency and A12 and A23 methods
have an acceptable performance. However, the worst perfor-
mance belongs to A2 and A18 methods. Finally, we have ob-
tained the performance of the abovementioned methods on
large instances in which the A23 method presents the best
performance and A3 and A38 methods have an acceptable per-
formance. However, the worst performance belongs to both
A11 and A13 methods.

Similarly, the number of violated soft constraints has been
presented for ITC-2007 instances in Table 12. In general,
A24, A30 and A38 methods have appropriate efficiency over
C05-C08 and C13-C18 instances because they do not violate
any soft constraints. In addition, the performance for these
methods is degraded over other instances. Here, the order of
superiority of methods is A38, A25 and A30. Hereto, the method
A32 yields the best performance while A38, A27 and A36

methods show appropriate performances. Meanwhile, we re-
alized that the A23, A32 and A38 methods outperformed other
methods in all instances.

Table 13 presents a summary of the results to evaluate the
performance of the IPGALS algorithm in comparison with
other methods. The number of violated soft constraints in
the best case is presented for the average of all instances in
each method. Here, results for both BenPaechter and ITC-
2007 benchmarks are reported based on the difference in the
number of violated soft constraints. In addition, comparisons
have also been conducted in terms of the number of instances,
which the IPGALS algorithm performance is superior to other
methods. Negative values refer to the no-superiority of the
IPGALS algorithm over any of the compared methods. It is

worth-mentioning the methods whose results are not reported
in this comparison have not been used to calculate results in
some instances.

The results of this comparison show that in all instances
except A23 (for BenPaechter benchmark) and A32, A37 (for
ITC-2007 benchmark), the IPGALS algorithm performs better
than the other methods. This superiority is clearly evident in
both the average of violated soft constraints and the number of
instances with lower number of violated soft constraints. The
best IPGALS results are obtained compared to A2 in the
BenPaechter, where 187 is less violated constraints and is
superior in all 10 instances. In addition, IPGALS reports the
best results compared to the A31 at ITC-2007, where the num-
ber of violated constraints is 551 less, and it performs better in
23 out of the 24 instances.

5.7 Time complexity for IPGALS

Studenovský [51] showed that the time complexity of UCTP
was initially O(n4). In general, UCTP parameters include: set
of events, E ¼ e1f ; e2;…; eNeg, set of timeslots, T = {t1, t2,
…, t45}, set of rooms, R ¼ r1f ; r2;…; rNrg, set of students, S
¼ s1f ; s2;…; sNsg a n d s e t o f f e a t u r e s F ¼ f 1f
; f 2;…; f N f

g. It is clear that these conditions can be verified

in a time O(n4). However, the proposed IPGALS algorithm
for solving UCTP bears less time complexity. The time com-
plexity of IPGALS highly depends on GA. In some cases,
GAs are not chaotic, they are stochastic. IPGALS complexity
depends on the genetic operators, their implementation (which
may have a very significant effect on overall complexity), the
representation of the chromosomes, the population size, and
obviously on the fitness function. According to the applied
operators, the time complexity for the roulette wheel selection
is O(Npop), the uniform crossover is O(Ne), the one-point
crossover is O(Ne), the heuristic crossover is O(Ne

2), the local
mutation is O(Ne), the global mutation is O(Ne), the swap
mutation is O(1), the improvement is O(Ne

2), the elitism is
O(1), the local search is O(LSiter), and finally the fitness func-
tion is O(Ne

2Ns). Hence, the time complexity of IPGALS

Table 9 Comparison between IGA, IGALS and IPGALS methods on BenPaechter instances

Methods Instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L1 L2

IGA 0 4 0 1 2 116 119 176 98 166 767 687

IGALS 0 0 0 0 0 87 107 146 83 117 590 574

IPGALS 0 0 0 0 0 84 99 142 84 112 516 557

t-test (Vs. IGA) – 0.107 – 0.088 0.110 0.181 0.576 0.243 0.074 0.290 0.826 0.0573

t-test (Vs. IGALS) – – – – – 0.074 0.121 0.057 0.008 0.085 0.532 0.130

485A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

Ta
bl
e
10

C
om

pa
ri
so
n
be
tw
ee
n
IG

A
,I
G
A
L
S
an
d
IP
G
A
L
S
m
et
ho
ds

on
IT
C
-2
00
7
in
st
an
ce
s

A
M

In
st
an
ce
s

C
01

C
02

C
03

C
04

C
05

C
06

C
07

C
08

C
09

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

IG
A

42
3

43
6

18
7

22
1

0
21

8
7

2
50
1

14
7

17
4

3
9

7
0

17
11

19
9

30
2

0
61
6

10
21

31
3

IG
A
L
S

41
7

47
3

17
8

20
3

0
7

0
0

0
48
9

12
4

16
6

0
0

0
0

4
0

18
2

30
2

0
54
2

86
7

28
1

IP
G
A
L
S

40
9

38
1

19
5

21
1

0
0

0
0

0
47
6

13
5

15
3

0
0

0
0

0
0

75
29
5

0
53
3

85
6

26
6

t-t
es
t(
V
s.
IG

A
)

.3
27

.8
78

.0
17

.0
51

–
.0
66

.0
52

.1
10

.0
01

.0
88

.1
07

.2
41

.0
07

.0
58

.0
66

–
.2
41

.1
19

.8
74

.0
0

–
.0
97

.6
35

.2
37

t-t
es
t(
V
s.
IG

A
L
S)

.0
97

.6
05

.0
01

.0
05

–
–

–
–

–
.0
66

.0
47

.4
46

–
–

–
–

.0
02

–
.3
75

.0
01

–
.5
88

.0
63

.0
74

486 A. Rezaeipanah et al.

algorithm for UCTP is O(GmaxNpop(Ne
2Ns + LSiter)). Where,

Gmax is the number of generations, Npop is the population size
and LSiter is the number of LS iterations.

However, most GAs are inherently chaotic [50]. So, calcu-
lating the time complexity could not be useful and even might
be misleading. A better way to measure the time complexity is
to actually measuring the run-time and averaging. The per-
formed studies related to the run-time of the compared hybrid
methods for UCTP reveal that the algorithms A15, A24 and A38

have less average run-time compared to other methods. The
run-time of A15 and A38 algorithms is 825 s and 780 s respec-
tively in the BenPaechter benchmark and the run-time of A24

and A38 algorithms is 482 s and 546 s in the ITC-2007 bench-
mark (average for all instances). Since many algorithms have
not been investigated the run-time factor in their studies, this
comparison has been conducted only among some of the
algorithms.

6 Conclusion and future work

In this study, a new method has been presented for solving
UCTP based on a hybrid approach. We have presented an
enhanced variant of GA and called it IPGALS. This algorithm
is an improved PGA combined with LS. In IPGALS, the hard
and soft constraints have been applied for determining the
feasible solutions. In addition, the DF criterion has been ap-
plied to identify the distance to the feasibility of solutions. DF
criterion reduces the number of violated hard constraints and
improves the quality of solutions. GA is an efficient solution
for the UCTP due to its multi-directional search characteristic.
Since GA focuses more on the extraction, it might be failed by
getting stuck in the local optimum. In this paper, LS and the
elitism operator are implemented after applying crossover and
mutation operators in GA to enhance its performance and
prevent getting stuck in the local optimum trap. The use of

Table 11 Comparison of IPGALS performance with other methods on the BenPaechter instances, all solutions are possible, and i.e. the hard
constraints are 0

Algorithms Instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L1 L2

Med/Best M B M B M B M B M B M B M B M B M B M B M B M B

A1 0 0 0 0 0 0 0 0 0 0 245 242 263 161 268 265 184 181 153 151 – – – –

A2 – 6 – 7 – 3 – 3 – 3 – 419 – 359 – 348 – 171 – 1068 – – – –

A3 – 0 – 0 – 0 – 0 – 0 – 221 – 147 – 246 – 165 – 135 – 529 – –

A4 – 3 – 4 – 6 – 6 – 0 – 140 – 130 – 189 – 112 – 141 – 876 – –

A5 0 0 0 0 0 0 0 0 0 0 229 227 185 180 238 235 155 142 203 200 – – – –

A6 – 0 – 0 – 0 – 0 – 0 – 317 – 313 – 357 – 247 – 292 – – – –

A7 – 1 – 2 – 0 – 1 – 0 – 146 – 173 – 267 – 169 – 303 – – – –

A8 8 – 11 – 8 – 7 – 5 – 199 – 202 – – – 177 – – – – – – –

A9 – 0 – 3 – 0 – 0 – 0 – 280 – 188 – 249 – 247 – 232 – – – –

A10 1 – 3 – 1 – 1 – 0 – 195 – 184 – 248 – 164 – 219 – 851 – – –

A11 – 10 – 9 – 7 – 17 – 7 – 243 – 325 – 249 – 285 – 112 – 1138 – –

A12 0 0 0 0 0 0 0 0 0 0 143 139 69 62 124 122 101 98 119 116 622 615 – –

A13 – 2 – 4 – 2 – 0 – 4 – 254 – 258 – 251 – 321 – 276 – 1027 – –

A14 – 0 – 3 – 0 – 0 – 0 – 280 – 188 – 249 – 247 – 232 – – – –

A15 – 0 – 0 – 0 – 0 – 0 – 180 – 176 – 219 – 150 – 196 – – – –

A16 – 0 – 0 – 0 – 0 – 0 – 242 – 161 – 265 – 181 – 151 – – – –

A17 – 0 – 0 – 0 – 0 – 0 – 221 – 147 – 246 – 165 – 130 – – – –

A18 – 6 – 7 – 3 – 3 – 4 – 372 – 419 – 359 – 348 – 171 – – – –

A19 – 0 – 0 – 0 – 0 – 0 – 317 – 313 – 357 – 247 – 292 – – – –

A20 – 1 – 2 – 0 – 1 – 0 – 146 – 173 – 267 – 169 – 303 – – – –

A21 – 10 – 9 – 7 – 17 – 7 – 243 – 325 – 249 – 285 – 132 – – – –

A22 0 0 0 0 0 0 0 0 0 0 242 240 258 160 245 242 161 158 126 124 822 801 – –

A23 0 0 0 0 0 0 0 0 0 0 131 106 131 107 151 132 93 72 125 107 555 505 524 486

A38 0 0 0 0 0 0 0 0 0 0 93 84 111 99 154 142 90 84 132 112 603 516 833 557

487A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

Ta
bl
e
12

C
om

pa
ri
so
n
of

IP
G
A
L
S
pe
rf
or
m
an
ce

w
ith

ot
he
r
m
et
ho
ds

on
th
e
IT
C
-2
00
7
in
st
an
ce
s,
al
ls
ol
ut
io
ns

ar
e
po
ss
ib
le
,a
nd

i.e
.t
he

ha
rd

co
ns
tr
ai
nt
s
ar
e
0

A
lg
or
ith

m
s

In
st
an
ce
s

C
01

C
02

C
03

C
04

C
05

C
06

C
07

C
08

C
09

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

A
2
4

50
1

34
2

37
7

23
4

0
0

0
0

98
9

49
9

24
6

17
2

0
0

0
0

0
0

84
29
7

0
11
42

96
3

27
4

A
2
5

57
1

99
3

16
4

31
0

5
0

6
0

15
60

21
63

17
8

14
6

0
1

0
2

0
0

18
24

44
5

0
29

23
8

21

A
2
6

14
82

16
35

28
8

38
5

55
9

85
1

10
0

19
47

17
41

24
0

47
5

67
5

80
4

0
1

5
3

18
68

39
6

60
2

13
64

68
8

82
2

A
2
7

15
0

39
1

23
9

34
87

0
4

0
0

54
7

32
16
6

0
0

41
68

26
22

27
35

33
0

12
75

30

A
2
8

18
61

21
74

27
2

42
5

8
28

13
6

27
33

27
97

26
3

80
4

28
5

11
0

5
13
2

72
70

22
68

87
8

40
88
9

43
6

37
2

A
2
9

63
0

45
0

30
0

60
2

6
0

0
0

64
0

66
3

34
4

19
8

0
35

0
14
0

0
0

40
0

15
0

0
32

23
8

64
0

A
3
0

52
3

34
2

37
9

23
4

0
0

0
0

11
02

51
5

24
6

24
1

0
0

0
0

0
0

12
1

30
4

36
11
54

96
3

27
4

A
3
1

11
66

16
65

25
1

42
4

47
41
2

6
65

18
19

20
91

28
8

47
4

29
8

12
7

10
8

13
8

0
25

21
46

62
5

30
8

78
7

31
01

84
1

A
3
2

59
0

14
8

25
0

0
0

0
0

3
14
2

26
7

1
0

0
0

0
0

0
54
3

5
5

12
92

0

A
3
3

65
0

47
0

29
0

60
0

35
20

30
0

63
0

23
49

35
0

48
0

46
80

0
0

0
20

36
0

15
0

0
33

10
07

0

A
3
4

61
54
7

38
2

52
9

5
0

0
0

0
0

54
8

86
9

0
0

37
9

19
1

1
0

78
6

12
15

0
0

43
8

72
0

A
3
5

19
33
8

23
8

49
81

25
3

60
3

55
21
5

28
5

0
11
35

27
6

67
37
9

78
4

39
1

22
8

28
3

10
98

21
5

–
–

–

A
3
6

82
48

15
5

25
4

0
0

4
0

59
6

14
0

33
0

0
0

2
0

1
61
7

48
2

0
35

10
83

1

A
3
7

20
9

10
18
8

32
1

3
55

15
2

15
31

20
2

30
4

90
26

13
46

1
8

11
66
4

26
6

71
4

78

A
3
8

40
9

38
1

19
5

21
1

0
0

0
0

0
47
6

13
5

15
3

0
0

0
0

0
0

75
29
5

0
53
3

85
6

26
6

488 A. Rezaeipanah et al.

parallel structure also significantly accelerates GA conver-
gence and diversifies the genetic populations. Experimental
results reveal that the proposed IPGALS algorithm provides
higher-quality solutions compared to other similar methods.

Unfortunately, our IPGALS has not always been able to
form a feasible timetable for the some large instances.
Therefore, the major shortcoming of IPGALS is that it is un-
able to assure the offering a feasible timetable in large in-
stances. However, the proposed hybrid algorithm has yielded
acceptable results in creating the feasible timetable for UCTP.
Further analyzing the contribution of individual components
(local search and guided search) for enhancing the perfor-
mance of IPGALS is considered as a future direction.
Additionally, improvement of genetic operators and new
neighborhood techniques based on different constraints can
be investigated. It is demonstrated that the performance of
GA for UCTP would be improved by applying advanced ge-
netic and heuristic operators. The correct relationship between
these techniques and their proper arrangement in a GA might
lead to higher performance.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Appendix

Full names of applied algorithms (Ai) in Tables 11, 12 and 13.
A1: (RIICN: Randomize Iterative Improvement with
Composite Nears [52]), A2: (GBHH: Graph Based Hyper
Heuristic [53]), A3: (HEA: Hybrid Evolutionary Algorithm
[54]), A4: (NLGD: Non-Linear Great Deluge [55]), A5: (MA:
Memetic Algorithm [56]), A6: (VNS: Variable Neighborhood
Search [52]), A7: (THH: Taboo based Hyper Heuristics [44]),
A8: (LS: Local Search [57]), A9: (EA: Evolutionary Algorithm
[58]), A10: (ACO: Ant Colony Optimization [59]), A11: (FA:
Fuzzy Approach [60]), A12: (EGSGA: Extended Guided
Search with Genetic Algorithm [20]), A13: (GA w LS:
Genetic Algorithm with Local Search [61]), A14: (GA:
Genetic Algorithm [25]), A15: (HGA: Hybrid Genetic

Algorithm [62]), A16: (RIIA: Randomised Iterative
Improvement Algorithm [44]), A17: (HEA: Hybrid
Evolutionary Approach [63]), A18: (GHH: Graph-based
Hyper Heuristic [53]), A19: (VNS: Variable Neighborhood
Search [64]), A20: (TSH: Tabu-Search Hyperheuristic [65]),
A21: (FMH: Fuzzy Multiple Heuristic [66]), A22: (GSGA:
Guided Search Genetic Algorithm [48]), A23: (HA: Hybrid
Algorithm [67]), A24: (HGATS: Hybrid Genetic Algorithm
and Tabu Search [68]), A25: (MMH: Mixed Meta-Heuristic
[69]), A26: (HA: Hybrid Algorithm [24]), A27: (ACO w ILS:
Ant Colony Optimization with Iterative Local Search [59]),
A28: (LS: Local Search [26]), A29: (HHADL: Hyper-Heuristic
with Add Delete Lists [43]), A30: (GAGLS: Genetic
Algorithms with Guided and Local Search [20]), A31:
(TDMH: Time-Dependent Meta-Heuristic [70]), A32: (SA:
Simulated Annealing [71]), A33: (HH: Hyper-Heuristics
[72]), A34: (TS-ILS: Tabu Search And Iterated Local Search
[73]), A36: (CB-CTT: Curriculum-Based Course TimeTabling
[74]), A37: (RPNS: Random Partial Neighborhood Search
[75]), A38: (SAIRL: Simulated Annealing with Improved
Reheating and Learning [32]), A39: (IPGALS: Improved
Parallel Genetic Algorithm and Local Search (Proposed
Algorithm)).

References

1. Hambali AM, Olasupo YA, Dalhatu M (2020) Automated univer-
sity lecture timetable using heuristic approach. Niger J Technol
39(1):1–14. https://doi.org/10.4314/njt.v39i1.1

2. Abuhamdah A, Ayob M, Kendall G, Sabar NR (2014) Population
based local search for university course timetabling problems. Appl
Intell 40(1):44–53. https://doi.org/10.1007/s10489-013-0444-6

3. Thepphakorn T, Pongcharoen P (2019) Variants and parameters
investigations of particle swarm optimisation for solving course
timetabling problems. In: International conference on swarm intel-
ligence. Springer, Cham, pp 177–187. https://doi.org/10.1007/978-
3-030-26369-0_17

4. Bashab A, Ibrahim AO, AbedElgabar EE, Ismail MA, Elsafi A,
Ahmed A, Abraham A (2020) A systematic mapping study on
solving university timetabling problems using meta-heuristic algo-
rithms. Neural Comput & Applic 32(11):1–36. https://doi.org/10.
1007/s00521-020-05110-3

Table 13 Summary of the results to evaluate the performance of the IPGALS algorithm compared to other methods

Benchmarks Superiority Algorithms

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23
BenPaechter Constraints 48 187 37 52 46 100 54 – 68 – 124 10 124 67 40 47 38 117 100 54 76 63 –7

Instances 5 10 6 10 5 5 8 – 6 – 10 2 10 6 5 5 5 10 5 8 10 5 –3

Algorithms

A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37

ITC-2007 Constraints 88 194 535 73 539 61 102 551 –62 150 111 190 348 –39

Instances 11 7 20 6 22 10 12 23 –2 13 8 11 2 8

489A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

https://doi.org/10.4314/njt.v39i1.1
https://doi.org/10.1007/s10489-013-0444-6
https://doi.org/10.1007/978-3-030-26369-0_17
https://doi.org/10.1007/978-3-030-26369-0_17
https://doi.org/10.1007/s00521-020-05110-3
https://doi.org/10.1007/s00521-020-05110-3

5. Pintér M, Dávid B (2019) A two-stage heuristic for the university
course timetabling problem. In: Proceedings of the 2019 6th student
computer science research conference-StuCoSReC. Univerza na
Primorskem, Inštitut Andrej Marušič, pp 27–30. https://doi.org/
10.26493/978-961-7055-82-5.27-30

6. Akkan C, Gülcü A (2018) A bi-criteria hybrid genetic algorithm
with robustness objective for the course timetabling problem.
Comput Oper Res 90:22–32. https://doi.org/10.1016/j.cor.2017.
09.007

7. Kostuch P (2003) Timetabling competition-SA-based heuristic.
International Timetabling Competition. http://www.idsia.ch/
ttcomp2002/docs

8. Pillay N (2014) A survey of school timetabling research. Ann Oper
Res 218(1):261–293. https://doi.org/10.1007/s10479-013-1321-8

9. Saviniec L, Santos MO, Costa AM (2018) Parallel local search
algorithms for high school timetabling problems. Eur J Oper Res
265(1):81–98. https://doi.org/10.1016/j.ejor.2017.07.029

10. Rezaeipanah A, Abshirini Z, Zade MB (2019) Solving University
course timetabling problem using parallel genetic algorithm.
International Journal of Scientific Research in Computer Science
and Engineering 7(5):5–13

11. Fajrin AM, Fatichah C (2020) Multi-parent order crossover mech-
anism of genetic algorithm for minimizing violation of soft con-
straint on course timetabling problem. Register: Jurnal Ilmiah
Teknologi Sistem Informasi 6(1):43–51. https://doi.org/10.26594/
register.v6i1.1663

12. Soghier A, Qu R (2013) Adaptive selection of heuristics for
assigning time slots and rooms in exam timetables. Appl Intell
39(2):438–450. https://doi.org/10.1007/s10489-013-0422-z

13. Mansour N, Isahakian V, Ghalayini I (2011) Scatter search tech-
nique for exam timetabling. Appl Intell 34(2):299–310. https://doi.
org/10.1007/s10489-009-0196-5

14. Assi M, Halawi B, Haraty RA (2018) Genetic algorithm analysis
using the graph coloringmethod for solving the university timetable
problem. Procedia Computer Science 126:899–906. https://doi.org/
10.1016/j.procs.2018.08.024

15. Babaei H, Karimpour J, Hadidi A (2018) Applying hybrid fuzzy
multi-criteria decision-making approach to find the best ranking for
the soft constraint weights of lecturers in UCTP. International
Journal of Fuzzy Systems 20(1):62–77. https://doi.org/10.1007/
s40815-017-0296-z

16. June TL, Obit JH, Leau YB, Bolongkikit J, Alfred R (2020)
Sequential constructive algorithm incorporate with fuzzy logic for
solving real world course timetabling problem. In: Computational
science and technology. Springer, Singapore, pp 257–267. https://
doi.org/10.1007/978-981-15-0058-9_25

17. Phillips AE, Walker CG, Ehrgott M, Ryan DM (2017) Integer
programming for minimal perturbation problems in university
course timetabling. Ann Oper Res 252(2):283–304. https://doi.
org/10.1007/s10479-015-2094-z

18. AlHadid I, Kaabneh K, Tarawneh H (2018) Hybrid simulated an-
nealing with meta-heuristic methods to solve UCT problem. Mod
Appl Sci 12(11):366–375. https://doi.org/10.5539/mas.
v12n11p366

19. Abdullah S, Burke EK, McCollum B (2007) A hybrid evolutionary
approach to the university course timetabling problem. In: 2007
IEEE congress on evolutionary computation, pp 1764–1768.
https://doi.org/10.1109/CEC.2007.4424686

20. Yang S, Jat SN (2010) Genetic algorithms with guided and local
search strategies for university course timetabling. IEEE Trans Syst
Man Cybern Part C Appl Rev 41(1):93–106. https://doi.org/10.
1109/TSMCC.2010.2049200

21. Landa-Silva D, Obit JH (2009) Evolutionary non-linear great del-
uge for university course timetabling. In: International conference
on hybrid artificial intelligence systems. Springer, Berlin, pp 269–
276. https://doi.org/10.1007/978-3-642-02319-4_32

22. Turabieh H, Abdullah S, Mccollum B (2009) Electromagnetism-
like mechanism with force decay rate great deluge for the course
timetabling problem. In: International conference on rough sets and
knowledge technology. Springer, Berlin, pp 497–504. https://doi.
org/10.1007/978-3-642-02962-2_63

23. Chen M, Tang X, Song T, Wu C, Liu S, Peng X (2020) A Tabu
search algorithm with controlled randomization for constructing
feasible university course timetables. Comput Oper Res
123(105007):1–31. https://doi.org/10.1016/j.cor.2020.105007

24. Al-Betar MA, Khader AT, Zaman M (2012) University course
timetabling using a hybrid harmony searchmetaheuristic algorithm.
IEEE Trans Syst Man Cybern Part C Appl Rev 42(5):664–681.
https://doi.org/10.1109/TSMCC.2011.2174356

25. Paechter B (2002) A local search for the timetabling problem. In:
Proceedings of the 4th international conference on the practice and
theory of automated timetabling. PATAT, pp 21–23

26. Müller T (2009) ITC2007 solver description: a hybrid approach.
Ann Oper Res 172(1):429–446. https://doi.org/10.1007/s10479-
009-0644-y

27. Wahid J (2017) Hybridizing harmony search with local search
based metaheuristic for solving curriculum based university course
timetabling. In: The doctoral research abstracts, Institute of
Graduate Studies, UiTM, Shah Alam 11(11). http://ir.uitm.edu.
my/id/eprint/19762

28. Mazlan M, Makhtar M, Khairi AFKA, Mohamed MA (2019)
University course timetabling model using ant colony optimization
algorithm approach. Indonesian Journal of Electrical Engineering
and Computer Science 13(1):72–76. https://doi.org/10.11591/
ijeecs.v13.i1.pp72-76

29. Hossain SI, Akhand MAH, Shuvo MIR, Siddique N, Adeli H
(2019) Optimization of university course scheduling problem using
particle swarm optimization with selective search. Expert Syst Appl
127:9–24. https://doi.org/10.1016/j.eswa.2019.02.026

30. Gozali AA, Kurniawan B, Weng W, Fujimura S (2020) Solving
university course timetabling problem using localized island model
genetic algorithm with dual dynamic migration policy. IEEJ Trans
Electr Electron Eng 15(3):389–400. https://doi.org/10.1002/tee.
23067

31. Junn KY, Obit JH, Alfred R (2017) Comparison of simulated an-
nealing and great deluge algorithms for university course
timetabling problems (UCTP). Adv Sci Lett 23(11):11413–11417.
https://doi.org/10.1166/asl.2017.10295

32. Goh SL, Kendall G, Sabar NR (2019) Simulated annealing with
improved reheating and learning for the post enrolment course
timetabling problem. J Oper Res Soc 70(6):873–888. https://doi.
org/10.1080/01605682.2018.1468862

33. Yusoff M, Roslan N (2019) Evaluation of genetic algorithm and
hybrid genetic Algorithm-Hill climbing with elitist for Lecturer
University timetabling problem. In: International conference on
swarm intelligence. Springer, Cham, pp 363–373. https://doi.org/
10.1007/978-3-030-26369-0_34

34. Islam T, Shahriar Z, Perves MA, Hasan M (2016) University time-
table generator using tabu search. Journal of Computer and
Communications 4(16):28–37. https://doi.org/10.4236/jcc.2016.
416003

35. Susan S, Bhutani A (2018) Data mining with association rules for
scheduling open elective courses using optimization algorithms. In:
International conference on intelligent systems design and applica-
tions, Springer, Cham, pp 770–778. https://doi.org/10.1007/978-3-
030-16660-1_75

36. Goh SL, Kendall G, Sabar NR, Abdullah S (2020) An effective
hybrid local search approach for the post enrolment course
timetabling problem. Opsearch 57(3):1–33. https://doi.org/10.
1007/s12597-020-00444-x

37. Muklason A, Irianti RG, Marom A (2019) Automated course
timetabling optimization using Tabu-variable neighborhood search

490 A. Rezaeipanah et al.

https://doi.org/10.26493/978-961-7055-82-5.27-30
https://doi.org/10.26493/978-961-7055-82-5.27-30
https://doi.org/10.1016/j.cor.2017.09.007
https://doi.org/10.1016/j.cor.2017.09.007
http://www.idsia.ch/ttcomp2002/docs
http://www.idsia.ch/ttcomp2002/docs
https://doi.org/10.1007/s10479-013-1321-8
https://doi.org/10.1016/j.ejor.2017.07.029
https://doi.org/10.26594/register.v6i1.1663
https://doi.org/10.26594/register.v6i1.1663
https://doi.org/10.1007/s10489-013-0422-z
https://doi.org/10.1007/s10489-009-0196-5
https://doi.org/10.1007/s10489-009-0196-5
https://doi.org/10.1016/j.procs.2018.08.024
https://doi.org/10.1016/j.procs.2018.08.024
https://doi.org/10.1007/s40815-017-0296-z
https://doi.org/10.1007/s40815-017-0296-z
https://doi.org/10.1007/978-981-15-0058-9_25
https://doi.org/10.1007/978-981-15-0058-9_25
https://doi.org/10.1007/s10479-015-2094-z
https://doi.org/10.1007/s10479-015-2094-z
https://doi.org/10.5539/mas.v12n11p366
https://doi.org/10.5539/mas.v12n11p366
https://doi.org/10.1109/CEC.2007.4424686
https://doi.org/10.1109/TSMCC.2010.2049200
https://doi.org/10.1109/TSMCC.2010.2049200
https://doi.org/10.1007/978-3-642-02319-4_32
https://doi.org/10.1007/978-3-642-02962-2_63
https://doi.org/10.1007/978-3-642-02962-2_63
https://doi.org/10.1016/j.cor.2020.105007
https://doi.org/10.1109/TSMCC.2011.2174356
https://doi.org/10.1007/s10479-009-0644-y
https://doi.org/10.1007/s10479-009-0644-y
http://ir.uitm.edu.my/id/eprint/19762
http://ir.uitm.edu.my/id/eprint/19762
https://doi.org/10.11591/ijeecs.v13.i1.pp72-76
https://doi.org/10.11591/ijeecs.v13.i1.pp72-76
https://doi.org/10.1016/j.eswa.2019.02.026
https://doi.org/10.1002/tee.23067
https://doi.org/10.1002/tee.23067
https://doi.org/10.1166/asl.2017.10295
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1007/978-3-030-26369-0_34
https://doi.org/10.1007/978-3-030-26369-0_34
https://doi.org/10.4236/jcc.2016.416003
https://doi.org/10.4236/jcc.2016.416003
https://doi.org/10.1007/978-3-030-16660-1_75
https://doi.org/10.1007/978-3-030-16660-1_75
https://doi.org/10.1007/s12597-020-00444-x
https://doi.org/10.1007/s12597-020-00444-x

based hyper-heuristic algorithm. Procedia Computer Science 161:
656–664. https://doi.org/10.1016/j.procs.2019.11.169

38. Matias JB, Fajardo AC, Medina RM (2018) Examining genetic
algorithm with guided search and self-adaptive neighborhood strat-
egies for curriculum-based course timetable problem. In: IEEE
fourth international conference on advances in computing, commu-
nication & automation, pp 1–6. https://doi.org/10.1109/ICACCAF.
2018.8776728

39. Gozali AA, Fujimura S (2020) Solving University course
timetabling problem using multi-depth genetic algorithm-solving
UCTP using MDGA. In: SHS web of conferences. EDP
Sciences, pp 1–18. https://doi.org/10.1051/shsconf/20207701001

40. Vianna DS, Martins CB, Lima TJ, Vianna MDFD, Meza EBM
(2020) Hybrid VNS-TS heuristics for university course timetabling
problem. Brazilian Journal of Operations & Production
Management 17(2):1–20. https://doi.org/10.14488/BJOPM.2020.
014

41. Gülcü A, Akkan C (2020) Robust university course timetabling
problem subject to single and multiple disruptions. Eur J Oper
Res 283(2):630–646. https://doi.org/10.1016/j.ejor.2019.11.024

42. Susan S, Bhutani A (2019) A novel memetic algorithm incorporat-
ing greedy stochastic local search mutation for Course scheduling.
In: 2019 IEEE international conference on computational science
and engineering, pp 254–259. https://doi.org/10.1109/CSE/EUC.
2019.00056

43. Habashi SS, Salama C, Yousef AH, Fahmy HM (2018) Adaptive
diversifying hyper-Heuristic based approach for timetabling prob-
lems. In: 2018 IEEE 9th annual information technology, electronics
and mobile communication conference, pp 259–266. https://doi.
org/10.1109/IEMCON.2018.8615035

44. Babaei H, Karimpour J, Hadidi A (2015) A survey of approaches
for university course timetabling problem. Comput Ind Eng 86:43–
59. https://doi.org/10.1016/j.cie.2014.11.010

45. Civicioglu P (2013) Backtracking search optimization algorithm for
numerical optimization problems. Appl Math Comput 219(15):
8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

46. Saruhan H, Rouch KE, Roso CA (2004) Design optimization of
tilting-pad journal bearing using a genetic algorithm. International
Journal of Rotating Machinery 10(4):301–307. https://doi.org/10.
1155/S1023621X04000314

47. Karami AH, Hasanzadeh M (2012) University course timetabling
using a new hybrid genetic algorithm. Computer and Knowledge
Engineering, IEEE, pp 144–149. https://doi.org/10.1109/ICCKE.
2012.6395368

48. Jat SN, Yang S (2009) A guided search genetic algorithm for the
university course timetabling problem. In: The 4th multidisciplin-
ary international scheduling conference: theory and applications, pp
180–191. http://bura.brunel.ac.uk/handle/2438/5880

49. Shaker K, Abdullah S, Hatem A (2012) A differential evolution
algorithm for the university course timetabling problem. In: 2012
IEEE 4th conference on data mining and optimization, pp 99–102.
https://doi.org/10.1109/DMO.2012.6329805

50. Azadeh A, Elahi S, Farahani MH, Nasirian B (2017) A genetic
algorithm-Taguchi based approach to inventory routing problem
of a single perishable product with transshipment. Comput Ind
Eng 104:124–133. https://doi.org/10.1016/j.cie.2016.12.019

51. Studenovský J (2009) Polynomial reduction of time–space sched-
uling to time scheduling. Discret Appl Math 157(7):1364–1378.
https://doi.org/10.1016/j.dam.2008.10.014

52. Aladag CH, Hocaoglu G, Basaran MA (2009) The effect of neigh-
borhood structures on tabu search algorithm in solving course
timetabling problem. Expert Syst Appl 36(10):12349–12356.
https://doi.org/10.1016/j.eswa.2009.04.051

53. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A
graph-based hyper-heuristic for educational timetabling problems.

Eur J Oper Res 176(1):177–192. https://doi.org/10.1016/j.ejor.
2005.08.012

54. Rogalska M, Bożejko W, Hejducki Z (2008) Time/cost optimiza-
tion using hybrid evolutionary algorithm in construction project
scheduling. Autom Constr 18(1):24–31. https://doi.org/10.1016/j.
autcon.2008.04.002

55. Kifah S, Abdullah S (2015) An adaptive non-linear great deluge
algorithm for the patient-admission problem. Inf Sci 295:573–585.
https://doi.org/10.1016/j.ins.2014.10.004

56. Lei Y, Gong M, Jiao L, Zuo Y (2015) A memetic algorithm based
on hyper-heuristics for examination timetabling problems.
International Journal of Intelligent Computing and Cybernetics
8(2):139–151. https://doi.org/10.1108/IJICC-02-2015-0005

57. Soria-Alcaraz JA, Özcan E, Swan J, Kendall G, Carpio M (2016)
Iterated local search using an add and delete hyper-heuristic for
university course timetabling. Appl Soft Comput 40(13):581–593.
https://doi.org/10.1016/j.asoc.2015.11.043

58. Beligiannis GN, Moschopoulos CN, Kaperonis GP, Likothanassis
SD (2008) Applying evolutionary computation to the school
timetabling problem: the Greek case. Comput Oper Res 35(4):
1265–1280. https://doi.org/10.1016/j.cor.2006.08.010

59. Nothegger C, Mayer A, Chwatal A, Raidl GR (2012) Solving the
post enrolment course timetabling problem by ant colony optimi-
zation. Ann Oper Res 194(1):325–339. https://doi.org/10.1007/
s10479-012-1078-5

60. Cavdur F, Kose M (2016) A fuzzy logic and binary-goal program-
ming-based approach for solving the exam timetabling problem to
create a balanced-exam schedule. International Journal of Fuzzy
Systems 18(1):119–129. https://doi.org/10.1007/s40815-015-
0046-z

61. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):
204–223. https://doi.org/10.1109/TEVC.2003.810752

62. Feng X, Lee Y, Moon I (2017) An integer program and a hybrid
genetic algorithm for the university timetabling problem.
Optimization Methods and Software 32(3):625–649. https://doi.
org/10.1080/10556788.2016.1233970

63. Abdullah S, Turabieh H, McCollum B, McMullan P (2012) A
hybrid metaheuristic approach to the university course timetabling
problem. J Heuristics 18(1):1–23. https://doi.org/10.1007/s10732-
010-9154-y

64. Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M
(2008) General variable neighborhood search for the continuous
optimization. Eur J Oper Res 191(3):753–770. https://doi.org/10.
1016/j.ejor.2006.12.064

65. Burke EK, Kendall G, Soubeiga E (2003) A tabu-search
hyperheuristic for timetabling and rostering. J Heuristics 9(6):
451–470. https://doi.org/10.1023/B:HEUR.0000012446.94732.b6

66. Asmuni H, Burke EK, Garibaldi JM, McCollum B, Parkes AJ
(2009) An investigation of fuzzy multiple heuristic orderings in
the construction of university examination timetables. Comput
Oper Res 36(4):981–1001. https://doi.org/10.1016/j.cor.2007.12.
007

67. Badoni RP, Gupta DK, Mishra P (2014) A new hybrid algorithm
for university course timetabling problem using events based on
groupings of students. Comput Ind Eng 78:12–25. https://doi.org/
10.1016/j.cie.2014.09.020

68. Jat SN, Yang S (2011) A hybrid genetic algorithm and tabu search
approach for post enrolment course timetabling. J Sched 14(6):617–
637. https://doi.org/10.1007/s10951-010-0202-0

69. Cambazard H, Hebrard E, O’Sullivan B, Papadopoulos A (2012)
Local search and constraint programming for the post enrolment-
based course timetabling problem. Ann Oper Res 194(1):111–135.
https://doi.org/10.1007/s10479-010-0737-7

491A hybrid algorithm for the university course timetabling problem using the improved parallel genetic...

https://doi.org/10.1016/j.procs.2019.11.169
https://doi.org/10.1109/ICACCAF.2018.8776728
https://doi.org/10.1109/ICACCAF.2018.8776728
https://doi.org/10.1051/shsconf/20207701001
https://doi.org/10.14488/BJOPM.2020.014
https://doi.org/10.14488/BJOPM.2020.014
https://doi.org/10.1016/j.ejor.2019.11.024
https://doi.org/10.1109/CSE/EUC.2019.00056
https://doi.org/10.1109/CSE/EUC.2019.00056
https://doi.org/10.1109/IEMCON.2018.8615035
https://doi.org/10.1109/IEMCON.2018.8615035
https://doi.org/10.1016/j.cie.2014.11.010
https://doi.org/10.1016/j.amc.2013.02.017
https://doi.org/10.1155/S1023621X04000314
https://doi.org/10.1155/S1023621X04000314
https://doi.org/10.1109/ICCKE.2012.6395368
https://doi.org/10.1109/ICCKE.2012.6395368
http://bura.brunel.ac.uk/handle/2438/5880
https://doi.org/10.1109/DMO.2012.6329805
https://doi.org/10.1016/j.cie.2016.12.019
https://doi.org/10.1016/j.dam.2008.10.014
https://doi.org/10.1016/j.eswa.2009.04.051
https://doi.org/10.1016/j.ejor.2005.08.012
https://doi.org/10.1016/j.ejor.2005.08.012
https://doi.org/10.1016/j.autcon.2008.04.002
https://doi.org/10.1016/j.autcon.2008.04.002
https://doi.org/10.1016/j.ins.2014.10.004
https://doi.org/10.1108/IJICC-02-2015-0005
https://doi.org/10.1016/j.asoc.2015.11.043
https://doi.org/10.1016/j.cor.2006.08.010
https://doi.org/10.1007/s10479-012-1078-5
https://doi.org/10.1007/s10479-012-1078-5
https://doi.org/10.1007/s40815-015-0046-z
https://doi.org/10.1007/s40815-015-0046-z
https://doi.org/10.1109/TEVC.2003.810752
https://doi.org/10.1080/10556788.2016.1233970
https://doi.org/10.1080/10556788.2016.1233970
https://doi.org/10.1007/s10732-010-9154-y
https://doi.org/10.1007/s10732-010-9154-y
https://doi.org/10.1016/j.ejor.2006.12.064
https://doi.org/10.1016/j.ejor.2006.12.064
https://doi.org/10.1023/B:HEUR.0000012446.94732.b6
https://doi.org/10.1016/j.cor.2007.12.007
https://doi.org/10.1016/j.cor.2007.12.007
https://doi.org/10.1016/j.cie.2014.09.020
https://doi.org/10.1016/j.cie.2014.09.020
https://doi.org/10.1007/s10951-010-0202-0
https://doi.org/10.1007/s10479-010-0737-7

70. Lewis R (2012) A time-dependent metaheuristic algorithm for post
enrolment-based course timetabling. Ann Oper Res 194(1):273–
289. https://doi.org/10.1007/s10479-010-0696-z

71. Ceschia S, Di Gaspero L, Schaerf A (2012) Design, engineering,
and experimental analysis of a simulated annealing approach to the
post-enrolment course timetabling problem. Comput Oper Res
39(7):1615–1624. https://doi.org/10.1016/j.cor.2011.09.014

72. Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H, Burke EK
(2014) Effective learning hyper-heuristics for the course
timetabling problem. Eur J Oper Res 238(1):77–86. https://doi.
org/10.1016/j.ejor.2014.03.046

73. Lü Z, Hao JK (2010) Adaptive tabu search for course timetabling.
Eur J Oper Res 200(1):235–244. https://doi.org/10.1016/j.ejor.
2008.12.007

74. Banbara M, Inoue K, Kaufmann B, Okimoto T, Schaub T, Soh T,
Wanko P (2019) teaspoon: solving the curriculum-based course
timetabling problems with answer set programming. Ann Oper
Res 275(1):3–37. https://doi.org/10.1007/s10479-018-2757-7

75. Nagata Y (2018) Random partial neighborhood search for the post-
enrollment course timetabling problem. Comput Oper Res 90:84–
96. https://doi.org/10.1016/j.cor.2017.09.014

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Amin Rezaeipanah received his
B.E. in Computer Science &
Engineering from Faculty of
E n g i n e e r i n g a t F e r d ow s
University, Mashhad, Iran in
2010 and M.E. in Artificial intel-
ligence from Shiraz University,
Shiraz, Iran in 2013. He is cur-
rently researcher and lecturere at
Rahjuyan Danesh University,
Borazjan, Iran. His main research
interests consist of recommender
systems, social network analysis,
wireless sensor networks and
large-scale data mining.

Samaneh Sechin Matoori ob-
tained her B.E in Information
Technology from Payame Noor
University, Abadan, Iran in
2015. She received her M.E in
Information Technology from the
Islamic Azad University of
Bushehr, Iran in 2018. She is cur-
rently a Ph.D. student at the
Islamic Azad University of
Najafabad. She is now working
as a lecturer at Islamic Azad
University of Abadan, Abadan,
Iran. She is working on topics re-
lated to mobile networks, ma-

chine learning and data mining.

Gholamreza Ahmadi received
his Bs degree in computer engi-
neering from the University of
Tehran, fanni faculty in 2000,
and has received his M.Sc. degree
in information technology engi-
n e e r i ng f r om Ami r kab i r
University 2010. He is working
in Persia Gulf university(jam
branch) now. He has taught in
the areas of computer and net-
work and his research interests in-
clude data mining, optimization
algorithms, network security and
genetic algorithm.

492 A. Rezaeipanah et al.

https://doi.org/10.1007/s10479-010-0696-z
https://doi.org/10.1016/j.cor.2011.09.014
https://doi.org/10.1016/j.ejor.2014.03.046
https://doi.org/10.1016/j.ejor.2014.03.046
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1016/j.cor.2017.09.014

	A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search
	Abstract
	Introduction
	The university course timetabling problem
	Constraints
	Hard constraints
	Soft constraints

	Benchmarks

	Literature review
	IPGALS algorithm for UCTP
	Genetic algorithm
	Chromosome representation
	Initial population
	Fitness function
	Selection operator
	Crossover operator
	Mutation operator
	Improvement operator
	Elitism operator
	New population for next generation

	Local search
	Shared memory
	Structure of the PGA
	Pseudo-code for the proposed IPGALS algorithm

	Results and discussion
	Parameters setting
	The IPGALS algorithm results
	Observing the convergence of IPGALS
	Observing the effectiveness of operators
	Comparing IPGALS with IGA and IGALS
	Comparing IPGALS with other methods
	Time complexity for IPGALS

	Conclusion and future work
	Appendix
	References

