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Abstract
The sequences of users’ behaviors generally indicate their preferences, and they can be used to improve next-item prediction
in sequential recommendation. Unfortunately, users’ behaviors may change over time, making it difficult to capture users’
dynamic preferences directly from recent sequences of behaviors. Traditional methods such as Markov Chains (MC),
Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks only consider the relative order of
items in a sequence and ignore important time information such as the time interval and duration in the sequence. In this
paper, we propose a novel sequential recommendation model, named Interval- and Duration-aware LSTM with Embedding
layer and Coupled input and forget gate (IDLSTM-EC), which leverages time interval and duration information to accurately
capture users’ long-term and short-term preferences. In particular, the model incorporates global context information about
sequences in the input layer to make better use of long-term memory. Furthermore, the model introduces the coupled input
and forget gate and embedding layer to further improve efficiency and effectiveness. Experiments on real-world datasets
show that the proposed approaches outperform the state-of-the-art baselines and can handle the problem of data sparsity
effectively.
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1 Introduction

Nowadays, people are influenced to a large extent by the
massive (and overwhelming) quantity of information that
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has become available due to rapid development of the Inter-
net and Information Technology (IT), which is known as
the information overload problem [3]. Consequently, it is
becoming increasingly difficult for users to find the infor-
mation they really need. Therefore, recommender systems
have been proposed to help users find the contents that
they want, such as research articles [8], point-of-interest
[20, 33], questions [4] and music [23, 24]. Existing rec-
ommendation methods include collaborative filtering-based
recommendations [12, 30], content-based recommendations
[16], social network-based recommendations [1, 13] and
hybrid recommendation [7].

For many real-world applications, such as listening to
music and game playing, users usually perform a series of
actions within a period of time, forming behavior sequences.
Such behavior sequences can be used to discover users’
sequential patterns and to predict users’ next new action
(or item), which is called sequential recommendation, one
of the typical applications of recommender systems. Tradi-
tional sequential recommendation models are mainly based
on sequential pattern mining [32] and Markov Chain (MC)
models [5]. The advent of deep learning has significantly
boosted the performance of sequential recommendation [22,
31]. For example, Recurrent Neural Network (RNN) has
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been successfully applied in sequence modeling and next-
item prediction/recommendation [9]. Furthermore, as a vari-
ant of RNN, Long Short-Term Memory (LSTM) network
solves the problem of gradient disappearance in RNN and
it provides better recommendation results. However, RNN
and LSTM only focus on relative order information relat-
ing to items in sequence, and they ignore some important
sequential information. In particular, items (or actions) that
are close to one another in behavior sequence have strong
correlations (although, in reality, this rule is not always
true in sequential recommendation because users may have
some haphazard behaviors which do not indicate their actual
preferences).

In this paper, we propose to model the sequences of item
information, interval information and duration information
in users’ behavior sequences in order to predict their next
new items (or actions). Specifically, the next item refers to
a new item that appears in other users’ historical records,
rather than the behavior sequence of target users. For
example, for a user’s event sequence {A, B, A, C}, we
will use {A, B, A} to predict “C” instead of {A, B} to
predict “A”. This is because “A” has already appeared in
the sequence, and repeated predictions are meaningless. In
this sequence, “C” is a new item. Obviously, in sequential
recommender systems, it is more meaningful (and also more
difficult) to recommend items that users may be interested
in but which they have not yet interacted with, which are
called new items for users. The scenario of this work is
shown in Fig. 1. The length of time (time interval) between
two adjacent items indicates the correlation between them.
In other words, time information, in addition to order
information, provides rich context for modeling users’
dynamic preferences. Furthermore, the duration of users’
actions or behaviors is also related to their preferences
for corresponding items. For example, a user may be very
interested in a game (or similar games) if he/she plays it for
a very long time (duration).

In order to make better use of sequential patterns as well
as time information, we present a novel recommendation
model, namely the Interval- and Duration-aware LSTM

with Embedding layer and Coupled input and forget gate
(IDLSTM-EC). Specifically, an interval gate and a duration
gate are firstly introduced to preserve users’ short-term
and long-term preferences. Time information from the two
gates is then seamlessly combined to improve next-new-
item recommendation. An embedding layer is used after
the input layer to incorporate more important information,
such as the global context and long-term memory. The main
contributions of this paper are listed as follows:

– We propose a novel next-item recommendation model,
which can make better use of important time informa-
tion (such as interval and duration) in time sequences;

– We further improve the model’s effectiveness and
efficiency by adding the embedding layer and coupled
input and forget gate;

– Experimental results on real-world datasets show that
the proposed model outperforms the state-of-the-art
baselines and can handle the problem of data sparsity
effectively.

The rest of this paper is structured as follows: related
works are introduced in Section 2. We then illustrate the
motivation for this work with data statics and analysis in
Section 3. Section 4 discusses the proposed methods in
detail, and Section 5 demonstrates the experimental results
and analysis. Finally, Section 6 concludes the paper and
outlines future work.

2 Related works

2.1 Traditional sequencemodels

Traditional sequential models can be further divided into
sequential pattern mining [32] and Markov Chain (MC)
models [5]. Recommender systems based on sequential pat-
tern mining firstly mine frequent patterns of sequence data
and then recommend via sequential pattern matching. For the
sake of efficiency, these models may filter some infrequent
but important patterns, which limits the recommendation

Fig. 1 Sequential behaviors with intervals and durations. ik represents the kth item in the sequence; �tk represents the interval between ik and
ik+1; and dk represents the duration of ik
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performance, especially in terms of coverage. Markov Chains
(MC) methods are also used for sequence modeling. The
main idea of such sequential recommendation models is to
use the MC to model the probability of users’ interaction
events in the sequence and then predict the next event based
on probability. Specifically, the MC model assumes that the
current user’s interaction depends on one or more recent
interaction events. Therefore, it can only capture local infor-
mation on the sequence, and it ignores global information
relating to the sequence. Rendle et al. proposed a Factor-
ized Personalized Markov Chains (FPMC) model [19] and
introduced an adaption of the Bayesian Personalized Rank-
ing (BPR) [18] framework for sequential data modeling and
recommendation. However, the MC model mainly focuses
on the relationships between items in the short term, and
it is not able to incorporate important information in long
sequences.

2.2 Latent representation-based sequential models

Latent representation models learn the potential representa-
tions of users or items, which contain some latent depen-
dencies and features. The main categories in the latent
representation model are the factorization machine [10]
and the embedding model [26]. Sequential recommenda-
tion methods based on the factorization machine usually
use matrix factorization to factorize the observed user-item
interaction matrix into potential vectors of users and items.
Nisha et al. [14] used network representation learning meth-
ods to capture implicit semantic social information and
improve the performance of recommender systems. Wang
et al. [25] proposed a Hierarchical Representation Model
(HRM) based on users’ overall interests and final behaviors.
Pan et al. [15] combined factorization and neighborhood-
based methods, and proposed a novel method called matrix
factorization with multiclass preference context (MF-MPC).
Shi et al. [20] used the factorization machine to construct
a recommendation model, which effectively reduces model
parameters and improves the recommendation performance.
Yu et al. [33] used information based on users’ context
behavior semantics with the Point-of-Interest (POI) rec-
ommendation model to solve the data sparsity problem.
However, sequential recommendation methods based on
factorization are easily affected by sparse observation data.
The sequential recommendation model based on the embed-
ded model usually maps all user interactions in the sequence
into a potential low-dimensional space through a new cod-
ing method. The embedding model is used in many fields,
such as word2vec and GloVe (global vectors) [17]. Among
these, the vector obtained by embedding the model is usu-
ally used for the input of neural networks. It should be
noted that the representation vector is obtained by the order
of interaction between users or items, which is completely

different from the vector in collaborative filtering. Embed-
ding models make the models tend to use global information
rather than local information.

2.3 Deep learning-based sequential models

In recent years, the most commonly used deep learning
method in sequential recommendation has been that based
on Recurrent Neural Networks (RNN). These are well suited
for modeling complex dynamics in sequences due to their
special structure [11, 21, 35]. Zhang et al. [35] proposed
a novel framework based on RNN which can model user
sequence information through click events. Twardowski
et al. [21] combined context information to propose a rec-
ommender that can handle the long-term and short-term inte-
rests of users in the news domain. Hu et al. [11] proposed
a neural networks model using item context to better model
the purchasing behaviors of users. In order to improve
the session-based recommender system, Wang et al. [27]
designed effective Mixture-Channel Purpose Routing Net-
work (MCPRN) and improved the accuracy and diversity
of recommendations. Yu et al. [34] proposed a new sequen-
tial recommendation model, namely SLi-Rec, by combining
the traditional RNN structure and matrix factorization tech-
niques. However, SLi-Rec does not incorporate the long-
term interests of users in the neural network model. Wu
et al. [28] proposed a long- and short-term preference learn-
ing model (LSPL) that considers both long-term and short-
term interests. Specifically, LSPL uses LSTM to capture
sequential patterns and learn sequence context information.
We have compared traditional methods in details, and their
strengths and weaknesses are listed in Table 1.

3 Data analysis andmotivation

Some studies [28, 36] play an important role in user
preferences modeling and can effectively improve the
recommendation performance. In this section, we will
introduce the time information in the experimental data and
further analyze the time information. We will present a case
using a game dataset to explain the role of time interval
and duration information, and we will then present some
samples of game-playing data in Table 2. For example,
Record 1 in Table 2 indicates that user ID No.386576
played “League of Legends” on 2016-09-01 at 01:00:47
(timestamp) for 8700 seconds (duration).

The interval represents the difference between two
adjacent timestamp records for the same user. For example,
the interval between Record 2 and Record 1 in Table 2
is 63878 seconds. Zhu et al. [37] showed that the shorter
the interval, the greater the impact of the current item
on the next item. One reason for this is that users may
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Table 1 Strengths and weaknesses of traditional methods

Methods Strengths Weaknesses

Sequential pattern mining 1. effective for fixed sequential patterns 2.
very efficient;

1. losing some infrequent but important
modes 2. low coverage or diversity of
recommendation results

MC models Capturing local information on the
sequence very well

ignoring global information on the sequence

Factorization machine Good representation of inherent charac-
teristics of the event

Easily affected by data sparsity

Embedding model Reducing the dimension of event repre-
sentation and suitable for many tasks

Cannot model features of the sequence
adaptively

RNN Well suited for modeling complex dynam-
ics in sequences

1. relies on the sequence information 2.
cannot preserve the user’s interest for long

repeatedly play similar games for a short period of time,
which represents their short-term preferences. For example,
user ID No. 386576 frequently plays “League of Legends”
for a short period of time. Furthermore, the information
in Fig. 2a shows that the proportion of adjacent games
are different in the sequence increases overall when the
time interval is longer. In other words, a longer interval
indicates low correlation between adjacent items, which
also influences the modeling of users’ preferences.

Furthermore, duration is also an important
feature in sequence modeling and sequential predic-
tion/recommendation. As shown in Table 2, the duration
indicates how long users play a game for. Generally,
duration can reflect the degree of users’ preferences for
corresponding items. When a user plays a game for a longer
duration, he/she will play the game more frequently; in
other words, he/she is more interested in the correspond-
ing game. For example, in Table 2, the frequently played
games (“League of Legends” and “CrossFire”) have longer

durations. As shown in Fig. 2b, our data analysis further
illustrates the relationship between the average duration of
the game and the frequency with which the game is played.
The results show that a longer duration indicates that users
are interested in corresponding games and tend to play
them more frequently and spend more time playing them
(duration). In other words, users’ preferences for the game
are reflected in the duration.

In general, users have both long-term and short-term
preferences [29]. Specifically, long-term interest refers to
users’ long-term and static interest. For example, some users
only like role-playing games, so they may play this type
of game most of the time. However, users’ preferences can
change over time, and the next item or action is more likely
to depend on users’ recent behaviors (called short-term
interest). For example, although some users predominantly
like role-playing games, they may also try popular strategy
games. In order to better capture users’ long-term and
short-term interests, we need to make better use of

Table 2 Examples of
game-playing data Record# Timestamp UserId Game Duration(s)

1 2016-09-01 01:00:47 386576 League of Legends 8700

2 2016-09-01 18:45:25 386576 QQGame 600

3 2016-09-03 17:31:28 386576 League of Legends 1500

4 2016-09-03 20:22:21 386576 CrossFire 1200

5 2016-09-16 21:57:25 386576 QQ Speed 600

6 2016-09-16 22:52:33 386576 CrossFire 2400

7 2016-09-17 00:27:34 386576 League of Legends 12300

8 2016-09-17 18:37:48 386576 League of Legends 1740

9 2016-09-18 02:08:41 386576 CrossFire 6780

10 2016-09-19 01:17:36 386576 Call of Duty Online 900

11 2016-07-17 10:47:08 635033 DNF 3000

12 2016-07-18 09:57:07 635033 DNF 1800

13 2016-07-18 11:22:07 635033 DNF 4500

14 2016-07-18 14:47:08 635033 QQ Speed 3000

15 2016-07-19 10:37:07 635033 QQ Speed 2700
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Fig. 2 Statistics of game data sets

both time interval information and duration information.
Therefore, we propose a novel recommendation model
which incorporates interval and duration information into
next-new-item recommendation.

4 The proposedmethod (IDLSTM-EC)

The time information in this work includes both time
interval and duration. Specifically, the interval indicates the
correlation between the current item and next item in the
sequence, and the duration indicates the user’s preferences
for corresponding events (similar to the rating). Inspired by
the analysis and motivation in Section 3, we propose a novel
next-item recommendation method, namely Interval- and
Duration-aware LSTM with Embedding layer and Coupled
input and output gate (IDLSTM-EC).

Figure 3 shows how the proposed model performs pre-
diction and recommendation based on users’ sequences. In
the process, we firstly extract the interval �t , duration d and

x from the sequence {game1, game2, · · · , gamek}, where
x is the one-hot vector of the game. We then feed the
obtained information into the IDLSTM-EC cell. Finally, the
result output by the IDLSTM-EC cell is passed through the
softmax function to obtain the probability of each game to
be played next. Compared with RNN or LSTM, the pro-
posed model can incorporate three kinds of inputs (item,
time interval and duration) into sequence modeling and
recommendation in a unified way.

The architectures of the proposed model and LSTM
are shown in Fig. 4. Specifically, in order to illustrate the
advantages of the proposed model, we use different colored
lines to highlight the improvements made. In addition,
parameters that appear in Section 4 are explained in Table 3.
Next, we will describe the IDLSTM-EC model in detail.

As shown in Fig. 4b, the IDLSTM-EC introduces an
interval gate I and a duration gate D into the LSTM model.
As shown in the figure, we use purple lines to highlight
processing of time interval and duration with the time
interval gate and duration gate. Specifically, the interval
gate models the impact of the current event on the next event
on the basis of time interval information, while the duration
gate is used to model users’ long-term interest in various
items on the basis of duration information.

The equations for the interval gate Ik and the duration
gate Dk are formally defined as follows:

Ik = σti

(
Wti xk + σ ′

ti

(
Sti �tk

) + bti

)
, (1)

Dk = σtd

(
Wtd xk + σ ′

td

(
Std dk

) + btd

)
. (2)

Furthermore, the interval gate Ik and the duration gate Dk

are added to the LSTM in Fig. 4a, which is defined as
follows:

ik = σi(Wixk + Uihk−1 + Pi ◦ ĉk−1 + bi), (3)

fk = σf (Wf xk + Uf hk−1 + Pf ◦ ĉk−1 + bf ), (4)

ck = ik ◦ σc(Wcxk + Uchk−1 + bc), (5)

ĉk = fk ◦ ĉk−1 + Dk ◦ ck, (6)

c̃k = ĉk + Ik ◦ ck, (7)

ok = σo(Woxk + Vo�tk + Uohk−1 + Po ◦ c̃k + bo), (8)

hk = ok ◦ σh(̃ck). (9)

Input from the duration gate Dk is added to ĉk to associate
the input vector xk with both the input gate and the duration
gate. We then add the interval gate Ik to c̃k so that c̃k

incorporates information from both the interval gate Ik and
the duration gate Dk .
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Fig. 3 The architecture of the
proposed model in sequential
recommendation. In
architecture, a game sequence is
taken as an example, where
{game1, game2, · · · , gamek} is
the sequence; x is the one-hot
vector of the game; �t is the
time interval; and d is the
duration.IDLSTM-EC is the
proposed model in this paper

The cell ĉk is used to further model the user’s interest
by adding information from the duration gate Dk . We also
add cell c̃k to combine duration and interval information for
recommendation.

Specifically, a small interval (large time-interval gate Ik)
means that the current item has a significant influence on
the next item. Correspondingly, ĉk−1 will be relatively
small, and the next item is influenced to an even greater
extent. In this way, the IDLSTM-EC can combine duration
and interval information to perform a more precise recom-
mendation. On the other hand, c̃k is directly connected to
the output gate and is used to control the output, together
with the output gate. In addition, �t is added to the out-
put gate to control the output better, with other parameters
in the output gate, and Vo is the weight coefficient of the
input gate. The IDLSTM-EC combines information on time
interval and duration well, and use of the interval gate and
duration gate enables the two kinds of time information to
be preserved for a longer period of time.

In order to further improve the effectiveness and
efficiency of the proposed model, the model introduces the
embedding layer to utilize more sequence information and
the coupled input and forget gate.

– Adding the embedding layer: In the IDLSTM-EC
model, all inputs are converted into one-hot vectors,

which may result in some important information being
lost, such as the correlation between different items.
In fact, the co-occurrence and context relationships
between the inputs play important roles in sequen-
tial recommendation. However, the IDLSTM-EC only
employs part of the context information but fails to uti-
lize the global context. In order to incorporate more
contextual information, an embedding layer is added
after the input to transform the original one-hot vec-
tors into low-dimensional real-valued vectors (embed-
dings), which can effectively capture important features
of items and their relationships in the training data.
Specifically, the GloVe [17] method is used to train
the embedding vector. The GloVe model is a popu-
lar embedding method, which obtains vectors through
unsupervised learning. Unlike other embedding meth-
ods, the GloVe model incorporates global information
and contextto capture more important information.

– coupling input and forget gates: The parameters of
the proposed model are reduced by the coupled input
and forget gate. Thus, (4) will be removed and (6) is
modified as follows:

ĉk = (1 − Ik ◦ ik) ◦ ĉk−1 + Dk ◦ ck . (10)

Specifically, ĉk is the main cell, and the input is affected
by both Ik and the input gate; fk is replaced with

911D. Wang et al.



Fig. 4 Architectures of models:
a LSTM and b IDLSTM-EC.
The IDLSTM-EC has a time
gate Ik and a duration gate Dk .
Specifically, Ik is designed to
model time interval �t in order
to gauge the impact of the
current event on the next event,
and Dk is designed to model
duration d to indicate users’
interests. Furthermore, the
IDLSTM-EC uses the coupled
input and forget gate, and input
x has been converted to x̂ by the
embedding layer. We use red
lines to highlight the improved
features of the IDLSTM-EC in
comparison with traditional
LSTM

(1 − Ik ◦ ik) in ĉk . The IDLSTM-EC with coupled
input and forget gate increases the model’s efficiency
by reducing the model parameters. At the same time,
reduction of the parameters prevents the model from
overfitting to some extent.

5 Experiments

In this section, we will evaluate the proposed model as well
as state-of-the-art baselines on two real-world datasets. The
first dataset comprises game-playing records collected from

912 Time-aware sequence model for next-item recommendation



Table 3 Parameter description
Parameter Description

xk one-hot vector of gamek

x̂k embedding of gamek

�tk time interval between gamek and gamek+1

dk duration of gamek

Ik time interval gate which incorporates time interval information

Wti weight of input xk in Ik

Sti weight of interval �tk

bti bias of interval gate Ik

Dk duration gate which incorporates time duration information

Wtd weight of input xk in Dk

Std weight of duration gate Dk

btd bias of interval gate Dk

σti , σtd sigmoid function

σ ′
ti
, σ ′

td
hyperbolic tangent (tanh) function

ik input gate vector that controls the extent to which new information flows into ck

fk forget gate vector that controls the extent to which old information remains in ck

ok output gate vector which controls the output information from c̃k to hk

ck cell state vector with history information

ĉk new cell state vector which captures time duration information

c̃k new cell state vector which captures time interval information

hk hidden state vector, which is also the output vector of the IDLSTM-EC unit

Wi weight of input gate ik

Wf weight of forget gate fk

Wc weight of cell state vector ck

Wo weight of output gate ok

Ui weight of hidden state vector hk for input gate ik

Uf weight of hidden state vector hk for forget gate fk

Uo weight of hidden state vector hk for output gate ok

bi bias of input gate ik

bf bias of forget gate fk

bo bias of output gate ok

bc bias of cell state vector ck

σi , σf , σo sigmoid function

σc, σh hyperbolic tangent (tanh) function

◦ element-wise product (Hadamard product) operator

the world-leading internet bar which has the largest number
of game players in China. The second one is a public music
listening dataset: LastFM-1K1, which includes all the music
listening sequences and timestamps of nearly 1,000 listeners
up to May 5, 2009. We preprocessed the two datasets and
deleted users and items with only a few records. Statistical
information on the final datasets is shown in Table 4, where
#(∗) indicates the number of ∗, and Average (Item) indicates
the average number of interactions for all users.

1http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html

5.1 Comparedmethods

In this section, the proposed model is compared with state-
of-the-art recommendation methods, including traditional

Table 4 Statistics for the two datasets

#(Records) #(Users) #(Item) Average(Item)

Game dataset 955,377 2,153 1,003 952.5

LastFM 769,674 967 5,000 795.9

913D. Wang et al.

http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html


recommendation methods and the variants of LSTM
mentioned above.

5.1.1 Baselines

Two kinds of recommendation methods have been adopted
as baselines, including general recommendation models
and sequence-based recommendation models. Specifically,
general models mainly perform traditional, non-sequential
recommendation, while sequence-based models can per-
form next-item recommendation via machine learning or
neural networks. We also compare different versions of the
proposed model to show the effectiveness of each improved
component.

General recommendation models:

– POP: Popularity predictor which recommends the most
popular items to users.

– UBCF: User-Based Collaborative Filtering.
– BPR: Bayesian personalized ranking [18].

Sequence-based next-item recommendation models:

– FPMC: Factorizing Personalized Markov Chains [19].
– Session-RNN: A variant of traditional RNN which can

capture the user’s short-term interest.
– Peephole-LSTM: A variant of LSTM which adds a

“peephole connection” to allow all gates to accept input
from the state [6].

– Peephole-LSTM with time: This model adds time
information to the Peephole-LSTM for a fair compari-
son.

– Time-LSTM: A variant of LSTM that adds two time
gates to the traditional LSTM [37].

5.1.2 The proposedmethods2

As three variants of the proposed IDLSTM-EC model,
IDLSTM-E, IDLSTM-C and IDLSTM are included in
the ablation experiments. In particularly, they are used as
baselines to show the effectiveness of two key components
in IDLSTM-EC (i.e., the embedding layer and the coupled
input and forget gate). All methods are described as follows:

– IDLSTM-EC: Interval- and Duration-aware LSTM
with Embedding layer and Coupled input and forget
gate.

– IDLSTM-E: IDLSTM-EC model with only the embed-
ding layer.

– IDLSTM-C: IDLSTM-EC model with only the cou-
pled input and forget gate.

– IDLSTM: IDLSTM-EC model without the embedding
layer and the coupled input and forget gate.

2https://github.com/vallzey/IDLSTM

Specifically, IDLSTM-C and IDLSTM-E are used as base-
lines to evaluate the effectiveness of the embedding layer
component and the coupled input and forget gate component
in IDLSTM-EC, respectively. Besides, IDLSTM is used as a
baseline to evaluate the effectiveness of combining the two
key components in IDLSTM-EC.

5.2 Experimental setup

In the experiment, the task is to predict the next new item
that users will be most likely to interact with according
to existing behavior sequences. During the training phase,
an improved stochastic gradient descent method called
Adagrad [2] was used, which can adapt the learning rate
to the parameters. Specifically, Adagrad can improve the
convergence ability of the model by increasing the learning
rate of sparse parameters. In addition, cross-entropy was
chosen as the loss function, defined as follows:

Loss = − 1
M

∑
(posi × yi log ŷi ), (11)

where M is the number of training samples; yi is the value
of the real item; ŷi is the value of the predicted item; and
posi is the new-item indicator. When yi corresponds to a
new item, posi = 1; otherwise, posi = 0.

All experiments were conducted on a PC with Intel(R)
Core(TM) i9-7900X @ 3.30GHz and GeForce GTX 1080
Ti, 64GB memory and Ubuntu 16.04.

5.3 Evaluationmetrics

The proposed model was evaluated with two metrics,
including Recall and MRR.

– Recall: Recall (aka sensitivity) is defined as follows:

Recall@n = #(n,hit)
#(all)

, (12)

where #(n, hit) is the number of predicted results
in the top-n of the recommended list, and #(all) is
the number of all test samples. Recall is a common
evaluation criterion and is usually used to evaluate if the
recommendation lists contain the target item.

– MRR: MRR (Mean Reciprocal Rank) is a ranking
evaluation metric which indicates the average of the
reciprocal ranks of the target items in a recommendation
list. Formally, it is defined as follows:

MRR@n = 1
#(all)

× ∑ 1
ranki

, (13)

where ranki denotes the ranking of the i-th test target
item in the recommendation list. If ranki > n, 1

ranki
=

0. The MRR is the average of the reciprocal levels of
the target items. When the Recall@n of several models
are similar (different models have a similar proportion
of target items appearing in the recommendation list),

914 Time-aware sequence model for next-item recommendation

https://github.com/vallzey/IDLSTM


we can use MRR to further evaluate them. In particular,
MRR@n is the same with Recall@n when n = 1.

5.4 Comparison with baselines

The comparisons between the proposed model and base-
line models are presented in Table 5. The results show that
the proposed model has the best performance in sequential
recommendation. Furthermore, models with a neural net-
work structure perform better than models without con-
sidering sequence factors. Specifically, the performance of
the IDLSTM-EC is 11.1% and 32.5% better than the best
baseline method in terms of Recall@10 and MRR@10,
respectively, on game datasets. Furthermore, the level of
improvement achieved by the IDLSTM-EC on LastFM
datasets is 65.8% (Recall@10) and 18.3% (MRR@10),
respectively. Next, we will analyze the performance of each
model in detail.

– POP, UBCF, BPR and FPMC: The POP method
only recommends items with high popularity, which
results in low coverage. UBCF and BPR ignore the

dependence of items in sequences and cannot model
users’ short-term preferences. However, in sequential
recommendation, recent items usually play a large
part in decision-making. The FPMC method achieves
better performance than the POP and UBCF because
it combines matrix factorization and Markov chains to
model users’ behavior sequences. However, FPMC has
some limitations when it comes to retaining information
in the sequence for a long time, and it does not fit well
with long sequences.

– Session-RNN: Session-RNN mainly captures users’
short-term interests but does not consider their long-
term interests, which limits its performance. However,
in sequential recommendation and users’ long- and
short-term preferences both play an important role in
sequential recommendation.

– Peephole-LSTM and Peephole-LSTM with time:
The Peephole-LSTM does not work well due to the
lack of time information. Compared to Peephole-
LSTM, the Peephole-LSTM with time incorporates
time information into the input and achieves slightly
better performance in most cases. However, adding time

Table 5 Recall and MRR of
the proposed methods and
baselines (best results are
highlighted in bold)

Recall@1 Recall@5 Recall@10 MRR@1 MRR@5 MRR@10

Game dataset

POP 0.0170 0.1246 0.1756 0.0170 0.0526 0.0594

UBCF 0.0170 0.0652 0.1160 0.0170 0.0323 0.0387

BPR 0.0595 0.1501 0.3116 0.0595 0.0916 0.1121

FPMC 0.0142 0.1246 0.2040 0.0142 0.0493 0.0597

Session-RNN 0.0312 0.1983 0.3683 0.0312 0.0873 0.1298

Peephole-LSTM 0.1246 0.3654 0.5127 0.1246 0.2085 0.2278

Peephole-LSTM with time 0.1417 0.3768 0.5270 0.1416 0.2266 0.2463

Time-LSTM 0.1671 0.4165 0.5581 0.1671 0.2634 0.2831

IDLSTM 0.2323 0.4844 0.6034 0.2323 0.3232 0.3484

IDLSTM-C 0.2351 0.4844 0.5836 0.2351 0.3291 0.3427

IDLSTM-E 0.2720 0.5099 0.6176 0.2720 0.3576 0.3720

IDLSTM-EC 0.2663 0.5071 0.6204 0.2663 0.3604 0.3752

LastFM

POP 0.0103 0.0182 0.0213 0.0103 0.0117 0.0193

UBCF 0.0121 0.0187 0.0226 0.0121 0.0149 0.0216

BPR 0.0297 0.0452 0.0554 0.0297 0.0335 0.0489

FPMC 0.0153 0.0228 0.0282 0.0153 0.0182 0.0254

Session-RNN 0.0292 0.0448 0.0529 0.0292 0.0322 0.0482

Peephole-LSTM 0.0680 0.0831 0.0871 0.0680 0.0781 0.0802

Peephole-LSTM with time 0.0691 0.0769 0.0926 0.0691 0.0702 0.0809

Time-LSTM 0.0810 0.1040 0.1259 0.0810 0.1161 0.1209

IDLSTM 0.0943 0.1635 0.1642 0.0943 0.1290 0.1327

IDLSTM-C 0.0931 0.1622 0.1658 0.0931 0.1210 0.1389

IDLSTM-E 0.1099 0.1648 0.1978 0.1099 0.1328 0.1428

IDLSTM-EC 0.1124 0.1758 0.2088 0.1124 0.1350 0.1431
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information directly to the input is not entirely effective.
In addition, these two approaches cannot capture or
preserve users’ long-term preferences accurately.

– Time-LSTM: Time-LSTM incorporates time infor-
mation into the sequence modeling process in a more
effective way, so it achieves better performance than
Peephole-LSTM and Peephole-LSTM with time. In
particular, the lack of duration information in Time-
LSTM decreases its ability to fully utilize time infor-
mation or capture users’ preferences accurately, which
limits its performance.

– IDLSTM and IDLSTM-E: The IDLSTM and
IDLSTM-E perform better than all baselines in Recall
and MRR. This shows that it is better to use the dura-
tion gate and the interval gate at the same time to
perform recommendation. Besides, the performance of
the IDLSTM-E is much better than that of the IDL-
STM. The reason for this is that the proposed methods
can utilize time interval and duration information with
gate mechanisms effectively in order to perform better
recommendation. Furthermore, the results also show
that time interval and duration data are both important
in sequence modeling, as well as for capturing users’
long- and short-term preferences. The performance of
the IDLSTM-E is better than that of the IDLSTM. The
reason for this is that the embedding layer based on
the GloVe method can effectively capture global infor-
mation in users’ behavior sequences, which enables
the proposed methods to achieve better performance in
sequential recommendation.

– IDLSTM, IDLSTM-C and IDLSTM-EC: Extensive
experiments have shown that the IDLSTM-C does
not significantly improve upon the IDLSTM in terms
of accuracy evaluation. Efficiency comparisons of
each model’s ability to run an epoch are listed
in Table 6, which shows that the IDLSTM-C and
IDLSTM-EC are approximately 6% faster than the
IDLSTM and IDLSTM-E. Therefore, the efficiency
of the proposed model is improved via the coupled
input and forget gate, reducing the parameters that
need to be trained. Traditional methods cannot achieve
accurate results, although they require much less time
due to their concise structure. In addition, in actual
applications, recommendation models are generally
pre-trained offline, so the comparison test time is more
meaningful. Specifically, all recommendation methods
can perform recommendation during the test phase
within close and reasonable time.

In conclusion, traditional recommendation methods
(such as UBCF and BPR) do not consider dynamic changes
in user interests, which leads to poor results. Sequence-
based methods (such as Session-RNN, Peephole-LSTM,

Table 6 Time taken for each model to run an epoch

Training time (s/epoch) Testing time (s)

Game dataset

POP Memory-based 0.01

UBCF Memory-based 0.31

BPR 0.10 0.97

FPMC 0.43 0.40

Session -RNN 45.23 1.91

Peephole-LSTM 51.65 1.93

Peephole-LSTM with time 53.72 1.94

Time-LSTM 65.82 1.95

IDLSTM 65.37 1.98

IDLSTM-E 65.29 1.97

IDLSTM-C 56.84 1.96

IDLSTM-EC 59.90 1.97

LastFM

POP Memory-based 0.01

UBCF Memory-based 0.15

BPR 0.08 0.58

FPMC 0.34 0.23

Session -RNN 42.24 0.93

Peephole-LSTM 44.95 1.10

Peephole-LSTM with time 45.04 1.11

Time-LSTM 53.22 1.15

IDLSTM 54.45 1.11

IDLSTM-E 51.47 1.03

IDLSTM-C 54.47 1.16

IDLSTM-EC 51.54 1.09

Peephole- LSTM with time, Time-LSTM and IDLSTM(-
EC)) achieve better performance than traditional recom-
mendation methods due to the effectiveness of RNN when it
comes to modeling users’ behavior sequences. In particular,
the proposed model can make better use of time interval and
duration information, which is very important for sequence
modeling and sequential prediction/recommendation. In
addition, improvement of the IDLSTM-EC over the IDL-
STM shows that the global information (related to users’
long-term preferences) captured by IDLSTM-EC is quite
important in sequential recommendation.

5.5 Effect of the number of units

In this subsection, we evaluate the influence of the number
of cell units and number of embedding layer units using
results from two experiments. In the first experiment, the
effect of the number of cells was evaluated. The best
number of units in the first experiment was then used in the
second experiment to evaluate the effect of the number of
embedding layer units.

916 Time-aware sequence model for next-item recommendation



5.5.1 Effect of the number of cell units

We firstly set the number of cell units to (16, 32, 64,
128, 256 and 1024), and then evaluated the impact of the
number of cell units of the IDLSTM and IDLSTM-C in
terms of Recall and MRR. As shown in Fig. 5, two models
had similar performance in Recall@10 and MRR@10. In
addition, we found that the IDLSTM-C takes less time
than the IDLSTM as the number of cell units increases.
Meanwhile, the promotion of Recall@10 and MRR@10
gradually stabilizes. In particular, once the number of
cell units exceeds 128, the performance of Recall@10
and MRR@10 is not much improved. Thus, the optimum
number of cell units is 128, and this enables the proposed
model to capture most important information.

5.5.2 Effect of the number of embedding units

The effect of different numbers of embedding units was
further investigated with the number of cell units set to
128, and the results are shown in Fig. 6. In particular,
the results without an embedding layer are also added at
0-abscissa for comparison. Our results indicate that when
the number of cells in the embedding layer is less than
32, the performance of the proposed model is lower than
that without the embedding layer model. Therefore, it is
necessary to have enough units in the embedding layer to
ensure that sequence information is well preserved in the
recommendation model.

As shown in Fig. 6c and f, although the time varies,
the overall fluctuation is not large because the number
of embedding layer unit parameters only accounts for a
small part of the model. Therefore, different numbers of

embedding layer units do not have much impact on the
efficiency of the proposed approach.

Furthermore, as shown in Fig. 6a, b, d and e, when the
number of embedding layer units increases from 16 to 128,
Recall@10 and MRR@10 are also improved. However,
when the number of embedding units becomes larger than
128, Recall@10 and MRR@10 have no significant increase
and can even result in a downward trend. The reason for this
is that an excessive number of units may cause overfitting.
Therefore, the number of embedding layer units was set as
128.

5.6 Impact of data sparsity

We also evaluated the proposed methods against baselines
for datasets with different sparsity to verify their ability to
deal with sparse data. Specifically, items with a frequency
of less than d were removed from the dataset, where d was
set to (0, 5, 10, 15, 20, 30, 40 and 50), respectively, and the
sparsity of corresponding datasets was (97.04%, 94.50%,

93.38%, 92.65%, 91.87%, 90.73%, 90.15%, 89.61%) for
the game dataset and (99.72%, 98.68%, 97.87%, 96.15%,

94.74%, 88.89%, 86.23%, 85.71%) for LastFM. As shown
in Fig. 7, the performance of the various methods did not
significantly decrease as the sparsity increased because our
task was to recommend next new items that users might
have been interested in but had not yet interacted with. In
particular, some items with a low frequency were excluded
to change the sparsity of the dataset, which may also have
removed some key items or correlations. For example, if
“C” was removed from the sequence, the next-new-item
recommender system (our work) performed one prediction,
{A, A} →“B”. The performance decreased if “C” was

Fig. 5 The effect of different
numbers of cell units on
Recall@10, MRR@10 and
time of an epoch
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Fig. 6 The effect of different
numbers of embedding units on
Recall@10, MRR@10 and
time of an epoch

Fig. 7 Comparison of different
models using data with different
sparsity
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the key item for prediction of “B”. But even so, we found
that the proposed method performs better than baselines
in terms of Recall@10 and MRR@10. Therefore, we con-
clude that our methods can deal with data with different
sparsity effectively.

6 Conclusions

In this paper, we have proposed a novel time-aware
sequence modeling method and have applied it to next-new-
item recommendation. Specifically, the proposed method
introduces two gates, i.e., a duration gate for modeling user
preferences and an interval gate for modeling the impact of
the current item on the next item in sequences. In addition,
we adopted the GloVe method to take advantage of global
context information and further improve its efficiency with
a coupled input and forgot gate. Experiments on real-
world datasets show that the proposed model outperforms
state-of-the-art baselines, including LSTM and its variants.
Furthermore, the experimental results also demonstrate the
effectiveness of the proposed methods when handling sparse
data.

In the future, we will try utilizing an attention mechanism
to extract key features and their relevance from sequences. It
is generally agreed that users’ personalized interests play an
important role in recommendations. Therefore, we will try
enhancing the model’s ability to adapt to users with different
preferences. In addition, we will also consider incorporating
content information such as text and description to further
improve the performance of sequential recommendation.
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