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Abstract
When a robot picks green fruit under natural light, the color of the fruit is similar to the background; uneven lighting and fruit and
leaf occlusion often affect the performance of the detection method. We take green mangoes as an experimental object. A
lightweight green mangoes detection method based on YOLOv3 is proposed here. To improve the detection speed of the method,
we first combine the color, texture, and shape features of green mango to design a lightweight network unit to replace the residual
units in YOLOv3. Second, the improved Multiscale context aggregation (MSCA) module is used to concatenate multilayer
features and make predictions, solving the problem of insufficient position information and semantic information on the predic-
tion feature map in YOLOv3; this approach effectively improves the detection effect for the green mangoes. To address the
overlap of green mangoes, soft non-maximum suppression (Soft-NMS) is used to replace non-maximum suppression (NMS),
thereby reducing the missing of predicted boxes due to green mango overlaps. Finally, an auxiliary inspection green mango
image enhancement algorithm (CLAHE-Mango) is proposed, is suitable for low-brightness detection environments and im-
proves the accuracy of the green mango detection method. The experimental results show that the F1% of Light-YOLOv3 in the
test set is 97.7%. To verify the performance of Light-YOLOv3 under the embedded platform, we embed one-stage methods into
the Adreno 640 and Mali-G76 platforms. Compared with YOLOv3, the F1% of Light-YOLOv3 is increased by 4.5%, and the
running speed is increased by 5 times, which can meet the real-time running requirements for picking robots. Through three sets
of comparative experiments, we could determine that our method has the best detection results in terms of dense, backlit, direct
light, night, long distance, and special angle scenes under complex lighting.
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1 Introduction

The application of machine vision to the early yield estimation
of fruit trees and object recognition performed by agricultural
robots have become a popular research area in recent years
[1]. Fruit-and-vegetable-picking robots realize picking mech-
anization and automation, reduces labor and time costs, and
greatly improve the picking efficiency. The target of early

yield estimation is usually applied to immature green fruits.
The picking objects of picking robots are also usually green
mangoes, green apples, fragrant pears, and other green fruits.
Accurate identification and positioning of the fruits are the key
for robots to pick fruits. Therefore, it is very important to study
efficient detection methods for of green fruits.

The fruit images collected in the natural environment have
many problems, such as uneven illumination, shadows, reflec-
tion of leaves, occlusion of branches and leaves and mutual
occlusion between fruits [2]. The green fruit itself is green,
which is similar to the color of leaves and weeds, and it cannot
be distinguished by color characteristics alone [3]. The detec-
tion of green fruits based on machine vision is a major chal-
lenge. Even with visual inspection by humans, it is sometimes
difficult to clearly distinguish the green fruits hidden in a
green scene. In fact, the surface feature information of green
fruits is always different from the green branches and leaves.
Computers equipped with machine vision can often detect this
nuance better human eyes. At present, domestic and foreign
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related literature has proposed a variety of solutions to the
above problems. Rajneesh B et al. [4] proposed a detection
method based on fast Fourier transform (FFT) leakage to iden-
tify green citrus images collected under natural lighting con-
ditions, with a recognition accuracy rate of 82.2%. Lu J et al.
[5] proposed to use the contour features of the surface of the
fruit with a circular light distribution, combined with the
Hough transform for circle fitting. The recall rate of the algo-
rithm in 20 citrus orchard scene images reached 81.2%. After
using local binary pattern (LBP) texture features, the accuracy
of the test on 25 images could reach 82.3%, but the image
acquisition process requires manual configuration of the light
source. SteinM et al. [6] used a multiviewmethod to solve the
mango occlusion problem, and they correlated and tracked the
fruit through multiple image sequences from multiple view-
points; however, this method required complex auxiliary
equipment and had poor real-time performance. From the per-
spective of deep learning, in the images of green fruits, the
pixel values of the fruit and the background are very similar.
The boundary gradient between the fruit and the background
is too small, which makes the network model insensitive to
green fruits when extracting features. Thus, in the detection
stage, the network could not distinguish the boundary between
the green fruit and the background very well. This limitation
has led to difficulties in detecting and positioning green
mangoes. We take green mangoes as the experimental object
here, and more importantly, we explore the detection method
for green fruits. The color of mature green mangoes is highly
similar to that of leaves. The shape is not a standard circle or
ellipse, and even the fruits are covered by leaves and branches
or are overlapping with each other. These factors have brought
great difficulties to the detection of green mangoes. The
convolutional neural network (CNN) is a deep feedforward
neural network with characteristics of local connection and
weight sharing. The CNN is the cornerstone of breakthrough
achievements in the field of computer vision in recent years
and is widely used in natural language processing, recommen-
dation systems, and speech recognition. Compared with clas-
sical methods, deep convolutional neural networks (DCNN)
[7] have shown great advantages in the field of target detection
in recent years [8]. Because of its high-level extraction of
high-dimensional features, the DCNN makes it possible to
accurately identify green mangoes in complex situations. It
is mainly divided into two methods; one is two-stage object
detection, which is a detection method that is based on region
generation; the core idea is to first generate region proposal,
and then to classify them. Representative methods are RCNN
[9], Fast RCNN [10], Faster RCNN [11], RFCN [12], and
Mask R-CNN [13]. Sa et al. [14] used RGB and NIR image
information to train the multimodal Faster RCNN model, and
they detected mangoes using the early and late fusion
methods, respectively. However, this method cannot detect
the objects well in the case of large areas of occlusion.

Because the region suggestion step consumes a large amount
of computing resources and the detection time is long, it can-
not meet real-time requirements. Another method is one-stage
object detection, which is based on regression. The core idea
is to use a single CNN to process the entire image directly to
achieve object detection and predict the object’s category. Its
speed is usually faster than the two-stage method, for which
the representative methods are SSD [15], YOLO [16],
YOLOv2 [17], YOLOv3 [18] and RetinaNet [19]. Due to
the limited memory and computing resources of embedded
devices, even the one-stage method is difficult to apply to
embedded devices. At the beginning of the thesis, we studied
the current more advanced object detection methods.
Although the lightweight algorithm that can be applied to
the embedded side is sufficiently fast, the detection accuracy
is too poor to meet the actual picking of the robot in the
orchard. In the current one-stage methods, the lightweight
YOLOv3-tiny can be applied to embedded platforms.
However, its shallow network layer results in poor feature
extraction ability and low detection accuracy. YOLOv3 has
shown excellent performance because of the design of
darknet53 and the predictive network. However, the amount
of computation and the model size of YOLOv3 exceed the
affordability of the embedded side. Thus, we believe that im-
provement based on YOLOv3 is the best choice.

To realize the detection and positioning of green
mangoes by picking robots in a complex environment, a
method based on deep learning is proposed. First, we design
a lightweight unit to replace the residual units in YOLOv3
based on the features of green mangoes. While ensuring
high precision, this approach greatly reduces the amount
of computation needed and achieves a good balance be-
tween green mango detection and real-time performance.
Second, in order to overcome problems such as fruit and leaf
occlusion, the MSCA [20] is used to perform feature fusion
on feature maps of three scales to further correlate the se-
mantic and detailed information of the object from shallow
to deep. The above operation enables our method to detect
green mangoes at different distances and is suitable for var-
ious types of picking equipment. To address the overlapping
of green mangoes, Soft-NMS [21] is used to replace NMS
[22], thereby reducing the missing of predicted boxes due to
green mangoes overlapping. Finally, to help solve the prob-
lem of green mango detection under backlighting, darkness
and other lighting conditions, the CLAHE-Mango for the
auxiliary detection of greenmangoes is proposed to improve
the accuracy of the green mango detection algorithm. We
have transplanted this method to two advanced embedded
platforms, Adreno 640 and Mali-G76, and designed three
sets of comparative experiments to prove that the method is
suitable for green mango detection in various complex sce-
narios. Our method provides new ideas for green fruit de-
tection based on machine vision (Fig. 1).
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2 Related work

2.1 YOLOv3

YOLO is an end-to-end object detection method that is
based on deep learning. It has the advantages of fast run-
ning speed and real-time effects in the GPU environment.
YOLOv3 evolved from YOLO and YOLOv2. It uses
darknet-53 for feature extraction and multiscale training.
Compared with YOLO and YOLOv2, YOLOv3 improves
the detection accuracy and increases the model complexity.
The parameters of YOLOv3–416 reach 65.86 Bn, its mod-
el size is approximately 237 MB, and its detection speed is
36 FPS on GTX1080 graphics. The YOLOv3 network is
shown in Fig. 2.

As shown in Fig. 2, YOLOv3 is a fully convolutional net-
work whose backbone is darknet-53. Darknet-53 contains 4
types of residual units, each of which consists of a series of
1 × 1 and 3 × 3 convolutional layers (each convolutional layer
contains a BN layer and a Leaky ReLU layer). There is no
pooling layer in the YOLOv3 network. During its forward
propagation, the tensor size is changed by changing the step

size of the convolution kernel (stride = 2), which will be up
reduced at most 5 times (feature maps reduced to 1/25 of the
original input size, or 1/32). YOLOv3 uses three feature maps
of different scales for object detection. It can be seen from Fig.
2 that after the 79th layer of the convolutional network, after a
Convolutional Set, standard 3 × 3 convolution and Conv2d
1 × 1, the detection result of the first scale (13 × 13) is obtain-
ed. To achieve detection of fine-grained features, the feature
maps of the 79st layer are upsampled, and then, they are
concatenated with the 61st layer feature maps to obtain the
91st finer-grained feature maps, and next, after a few
convolutional layers, obtain the second scale feature map
(26 × 26). It has a medium-scale receptive field and is suitable
for detecting medium-scale objects; The 91th layer feature
map is upsampled and concatenated with the 36th layer fea-
ture map. Finally, a third-scale feature map (52 × 52) is ob-
tained. It has the smallest receptive field and is suitable for
detecting small-sized objects.

The original intention of designing a residual unit is to
solve the problem of gradient disappearance and gradient ex-
plosion [23]. Therefore, many excellent networks currently
use residual units to solve the gradient problem, which further

Fig. 2 YOLOv3 network

Fig. 1 The performance of
YOLO series detection methods
on the green mango dataset
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improves the performance of the network. However, the stan-
dard 3 × 3 convolution contained in the residual unit still has a
relatively large amount of computation. YOLOv3 uses 21 sets
of residual units (a total of 46 layers) and the prediction net-
work uses many Convolutional Set combinations, which con-
tain a large number of 3 × 3 standard convolutions, resulting
in larger FLOPs and a larger model for the entire network. For
this reason, why YOLOv3 has better accuracy but cannot be
applied to embedded platforms.

3 Green mangoes detection framework

3.1 Green mangoes detection network

At present, the high computing resources of advanced object
detection methods exceed the capabilities of embedded or
mobile devices [8]. For this reason, we have designed Light-
YOLOv3 with the premise resource constraints, thus ensuring
higher accuracy and speed. Based on the YOLOv3 network,
Light-YOLOv3 improves the backbone and prediction net-
work. At the same time, Light-YOLOv3 retains the advan-
tages of YOLOv3, such as multiscale prediction, anchor
mechanism and so on. The network of Light-YOLOv3 is
shown in Fig. 3.

In Fig. 3, Light-YOLOv3’s network contains two parts:
the backbone and the prediction network. The backbone
uses two convolutions on the input image to obtain high-
dimensional features, and then, it uses 5 groups (a total of
14) of LightNet v1 to build a deep feature network. This
structure has very strong feature extraction ability and very
low computation. The prediction network is input into a
multiscale context aggregation (MSCA) module from three
different levels of features. The MSCA module can realize
the multiplexing and fusion of shallow to deep features,
and it can solve the problem of fruit and leaf occlusion
and achieve long-range target detection. We will introduce
the backbone and prediction network of Light-YOLOv3 in
detail.

3.1.1 Backbone network

To improve the efficiency of the model and simplify the mod-
el size, we redesigned the network unit. In this process, this
paper refers to the design ideas of lightweight network units
such as deep separable convolutions [24], ShuffleNet v1 [25],
and ShuffleNet v2 [26]. Combined with the characteristics of
green mangoes, a lightweight network unit LightNet v1 was
designed. The network units in Fig. 4 are all excellent light-
weight network elements, whose design goal is to achieve the
best model accuracy by using limited computing resources.

Figure 4 (a) is a residual that is module based on depth
separable convolution. In its main branch, it firstly uses a
1 × 1point convolution (PWConv) for dimension upgrading;
second, it uses the more efficient depth separable convolution
(DWConv) instead of the standard 3 × 3 convolution; and fi-
nally, it uses 1 × 1 points Convolution (PWConv) dimension-
ality reduction. A BN layer and ReLU6 are added after the
first two layers. DWConv uses different convolution kernels
for each input channel, and its effect is similar to that of a
standard convolution. The ratio of the depth separable convo-
lution to the standard convolution FLOPs is

Kh � Kw � Cin �W � H þ Cin � Cout �W � H
Kh � Kw � Cin � Cout �W � H

¼ 1

Cout
þ 1

K2
h;w

ð1Þ

In formula (1), KH ×KW is the convolution kernel size, Cin

is the number of input channels, and Cout is the number of
output channels. W and H are the width and height of the
output feature map respectively. From formula (1), when the
convolution kernel size is 3 × 3, the FLOPs of the deep sepa-
rable convolution is approximately 1/9 of the standard convo-
lution. Therefore, many lightweight networks use deep sepa-
rable convolution instead of standard convolution.

Figure 4 (b) is a ShuffleNet v1 network unit. The core of
ShuffleNet v1 is the use of two operations: pointwise group
convolution [27] and channel shuffle [25]. In lightweight net-
works, PWConv causes a limited number of channels to be

Fig. 3 The network of Light-YOLOv3
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filled with constraints, which will clearly lose the prediction
accuracy. However, multiple groups of convolutions stacked
together will have a side effect: the output of a certain channel
is derived from only a small part of the input channel, as
shown in Fig. 5 (a). Such attributes reduce the flow of infor-
mation between the channel groups and reduce the ability to
express information. To solve the above problems, as shown
in Fig. 5 (b), the author proposes channel shuffling: rearrange
the channels in such a way that the channels can communicate
their information with one another.

For packet convolution, when the number of packets in-
creases, the FLOPs can be reduced, but the memory access
cost (MAC) can also be increased. The FLOPs and MAC
formula of the group convolution are shown in formuls (2)
and (3):

Group convolution FLOPs ¼ B ¼ hwc1c2
g

ð2Þ

Group convolution MAC ¼ hwc1 þ Bg
c1

þ B
hw

ð3Þ

In formulas (2) and (3), w and h are the width and height of
the feature map, and c1 and c2 are the number of input

channels and output channels, respectively. Here, g is the
number of groups. It can be seen that when g increases, the
MAC will increase at the same time. Therefore, it is unwise to
use the pointwise group convolution in large numbers.

Figure 4 (c) is a ShuffleNet v2 network unit. Compared
with the structure of Fig. 4 (b), channel split [26] is added.
In the channel split operation, the input feature map is divided
into two branches in the channel dimension at the beginning:

the number of channels is c′and c − c′, respectively, and c
0 ¼ c

2

is actually implemented. In Fig. 4 (c), the left branch in the
structure is equivalently mapped, and the right branch con-
tains 3 consecutive convolutions, while the input and output
channels are the same. In the first and third layers, we replace
the pointwise group convolution in the structure of Fig. 4 (b)
with a 1 × 1point convolution. Since the two branches are
divided into two groups, the output of the two branches is
no longer an add operation but a concatenation operation.
Finally, we channel shuffle the concatenation result to ensure
the exchange of information between the two branches. Its
authors found that ShuffleNet v2 is the best in terms of speed
and accuracy under the same conditions on the classification
task using ImageNet.

Fig. 5 Channel shuffle with two
stacked group convolutions.
GConv stands for group
convolution. a) two stacked
convolution layers with the same
number of groups. Each output
channel relates to only the input
channels within the group. No
cross talk; b) an equivalent
implementation to a) using
channel shuffle

Fig. 4 Some excellent lightweight network units at present
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Figure 4 (d) is a lightweight network unit that we
designed called LightNet v1. There are two main im-
provements to Fig. 4 (c): First, we replace all Batch
No rma l i z a t i o n (BN) l a ye r s [ 28 ] w i t h G roup
Normalization (GN) layers [29]. The reason is that in
the model training stage, the size of the batch size often
affects the final training results. GN is an improved al-
gorithm for a higher error rate of BN when the batch size
is small, because the calculation result of the BN layer
depends on the current batch data. When the batch size
is small (such as 2, 4), the average sum of the batch data
variance is less representative, and therefore, it has a
greater impact on the final result. GN is basically not
affected by the batch size. Second, we replaced the orig-
inal third-layer RuLU activation function with a linear
activation function. Because the output dimension of
the DWConv layer is low (for low-dimensional space,
linear mapping will save features, while nonlinear map-
ping will destroy features), continued application of
ReLU will bring about the problem of information loss.
Therefore, the third layer uses Linear instead of ReLU to
ensure more complete output information. The structure
of Fig. 4 (e) is the downsampling module designed ac-
cording to Fig. 4 (d). We get rid of the previous channel
split, and we copy one input for each branch. Each
branch is a lower sample with a band = 2. Finally, we
do concatenate and channel shuffle to ensure information
exchange between the two branches. After the above op-
erations, the space of the feature map is halved, and the
number of channels is doubled. Finally, we redesigned
the backbone using the structure in Fig. 4 (d) and (e).
The details of the backbone are shown in Table 1.

The new backbone is equipped with LightNet v1, com-
pared to DarkNet-53 in YOLOv3, and it reduces the amount
of computation by 45.38 BN and contributes 1.3 to the F1% of
the final model, and the FPS increases by 107.

3.1.2 Prediction network

We believe that for the green mangoes detection tasks, effec-
tive features should need to have three characteristics: 1. The
feature maps contain detailed information of the green
mangoes. 2. Features are extracted through a sufficiently deep
network. 3. The features should need to contain the semantic
information of the green mangoes. Based on the above char-
acteristics, on the premise of ensuring a low amount of com-
putation, the MSCAmodule is used as the main component of
the prediction network. The schematic diagram of the MSCA
module is shown in Fig. 6.

Figure 6 shows the calculation process of the prediction
result for P1. The feature maps input into the prediction net-
work by the backbone are combined into FH and contain three
scale feature maps (13 × 13, 26 × 26, 52 × 52). CH is the

number of channels of the feature map f 1ð Þ
H (26 × 26). First,

f 1ð Þ
H is passed through a bottleneck operation to obtain the

f 1ð Þ
H of the CL channel number. In general, CL ¼ CH

2 .
Second, we perform the concatenate operation on S2 after

the bottleneck and 1obji after downsampling and 1obji after
upsampling. From the above, the MSCA module can concat-
enate feature maps from the three scales of the backbone.
Compared with the two-scale fusion of YOLOv3, the
MSCA module contains more location information and se-
mantic information on the green mangoes. Because MSCA
uses LightNet v1 for feature extraction, the calculation of
MSCA is much lower than that of YOLOv3’s prediction net-
work. Finally, the concatenated feature maps are subjected to
a series of LightNet v1 operations to obtain the prediction
resultP1. The calculation process of P0 and P2 is similar to
that ofP1. Compared with the prediction network in
YOLOv3, the newMSCA equipped with LightNet v1 reduces
the amount of computation by 10.65 BN and contributes 1.2%
to F1% of the final model, and the FPS increases by 55.

Table 1 The details of the backbone network

Type Filter Channel Stride Featuremap

Convolutional 3 × 3 32 1 416 × 416

Convolutional 3 × 3 16 2 208 × 208

Conv PW 1 × 1 64 1

1 Conv DW 3 × 3 64 1

Conv PW 1 × 1 16 1 208 × 208

Conv DW 3 × 3 32 2 104 × 104

Conv PW 3 × 3 32 1 104 × 104

Conv PW 1 × 1 128 1

2 Conv DW 3 × 3 128 1

Conv PW 1 × 1 32 1 104 × 104

Conv DW 3 × 3 64 2 52 × 52

Conv PW 3 × 3 64 1 52 × 52

Conv PW 1 × 1 256 1

5 Conv DW 3 × 3 256 1

Conv PW 1 × 1 64 1 52 × 52

Conv DW 3 × 3 128 2 26 × 26

Conv PW 3 × 3 128 1 26 × 26

Conv PW 1 × 1 512 1

5 Conv DW 3 × 3 512 1

Conv PW 1 × 1 128 1 26 × 26

Conv DW 3 × 3 256 2 13 × 13

Conv PW 3 × 3 256 1 13 × 13

Conv PW 1 × 1 1024 1

1 Conv DW 3 × 3 1024 1

Conv PW 1 × 1 256 1 13 × 13

Conv PW 1 × 1 1024 1 13 × 13
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Taking the prediction output of P1 (13 × 13 × 18) as an exam-
ple, the prediction information contained in P1 is shown in
Fig. 7.

We used k-means clustering to calculate 9 anchors of the
green mango dataset: (14 × 27), (23 × 36), (40 × 52), (89×
151), (91 × 174), (113× 198), (157 × 243), (220 × 284), and
(327 × 389). K-means uses the Euclidean distance. The
(13 × 13), (26 × 26), and (52 × 52) size feature maps use three
anchors in turn, and each grid predicts three boxes. For the
above three scales of feature maps, the parameters of each box
include x, y,w, h, the category probability Pi of a green mango
and the confidence PC.

3.1.3 Filter of bounding boxes

Our prediction network generates multiple prediction boxes.
Therefore, a non-maximum suppression (NMS) algorithm is
used to suppress those redundant prediction boxes.
Suppression is an iterative-traversal-elimination process. The
NMS algorithm is shown in Table 2. The process can be best
described in one sentence: First, it sorts all detection boxes on
the basis of their scores. It selects the detection box M with the
highest score and suppresses all of the other detection boxes
whose IOU calculated with M is greater than a certain thresh-
old. This process is recursively applied on the remaining boxes.

It can be seen that using the NMS algorithm makes if
slightly difficult to detect green mangoes when there are
dense, occlusions of green mangoes and leaves, and so on. If
the IOU of bi and M is greater than a certain threshold, the
NMS algorithm resets the score of bito zero and deletesbi. This
operation could cause the prediction boxes of the overlapping
fruits to be deleted by NMS, which affects the accuracy of the
model. To solve the above problems, we use the Soft-NMS
algorithm to replace the NMS algorithm in YOLOv3. Soft-
NMS has a modification to the traditional greedy NMS algo-
rithm in which we overlap instead of setting the score to zero
as in NMS. The algorithm is shown in Table 3:

In Table 3, Bis the list of initial detection boxes; S contains
the corresponding detection scores, and the function
f(IOU(M, bi)) is defined as follows:

f IOU M ; bið Þð Þ ¼
1; IOU M ; bið Þ < Nt

e−
IOU M ;bið Þ2

σ ; IOU M ; bið Þ≥Nt

(
ð4Þ

where bi is the box number; M is the highest score,Nt is the set
threshold and σ is a hyper parameter. It can be seen that the
Soft-NMS algorithm adds a penalty function compared to the
NMS algorithm. Intuitively, if the IOU calculated by a predic-
tion box andM exceeds a certain threshold, the prediction box
will not be deleted, but its score will be reduced accordingly.
The following experiments that the F1% of the model using
soft-NMS is 0.4 higher than the performance of NMS.Fig. 7 Prediction for a 13 × 13 feature map

Fig. 6 Multiscale context
aggregation (MSCA) module
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3.2 Loss function design

The loss function of the training network for green mango
detection consists of four parts: the first part is about the pre-
diction of the green mango center coordinates, as shown in eq.
(5); the second part is the prediction about the green mango
boundary box, as shown in eq. (6); the third part is about the
prediction of the confidence in green mango, as shown in eq.
(7); and the fourth part is the prediction of the category of
green mango, as shown in eq. (8).

Loss1 ¼ λcoord ∑
S2

i¼0
∑
B

j¼0
ℓobjij xi−bxi� �2

þ yi−byi� �2
� �

ð5Þ

In eq. (5), xiand yi are the coordinates of the predicted
object, and bxi and byi are the coordinates of the actual object.
Loss2 ¼ λcoord ∑

S2

i¼0
∑
B

j¼0
ℓobjij

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffibwi

q� �2

þ
ffiffiffiffi
hi

p
−

ffiffiffiffibhiq� �2
" #

ð6Þ

In eq. (6),wiand hi are the width and height of the predicted

object, and bwi,bhi are the width and height of the actual object.
Loss3 ¼ ∑

S2

i¼0
∑
B

j¼0
ℓobjij

bCilog Cið Þ þ 1−bCi

� �
log 1−bCi

� �h i
−λnoobj ∑

S2

i¼0
∑
B

j¼0
ℓnoobjij

bCilog Cið Þ þ 1−bCi

� �
log 1−bCi

� �h i
ð7Þ

In eq. (7), Ci is the confidence of the predicted object, andbCi is the confidence of the actual object;

Loss4 ¼ ∑
S2

i¼0
ℓobjij ∑

B

c∈classes
bpi cð Þlog pi cð Þð Þ þ 1−bpi cð Þ

� �
logbpi 1−pi cð Þð Þ

h i
ð8Þ

In eq. (8), Pi is the category probability of the predicted

object, and bPi is the category probability of the actual object;
The total loss is:

Total Loss Function ¼ ∑
4

i¼1
Lossi ð9Þ

where, λcoord and λnoobj are weights that are set to balance the
weight of each loss. We set λcoord= 5 and λnoobj = 0.5. S is a
grid cell, B is a bounding box, obj contains an object, and
noobj does not contains an object.

3.3 CLAHE-mango

Illumination is one of the important interference factors in the
detection of green mangoes. During the daytime, due to uneven
light exposure, green mangoes often appear backlit and smooth.
At night, due to the lack of light, the green mango is easily
integrated into the background. The green mango images ac-
quired in the above two situations greatly affect the accuracy of
the detection network. In view of this fact, based on the CLAHE
algorithm [30], we study the characteristics of green mangoes
and propose a green mango image enhancement algorithm
(CLAHE-Mango) under natural lighting conditions. First, the
pixel value is evenly distributed to solve the problem of high
local brightness of the green mango image, such as backlighting
and smoothing. Second, the contrast threshold is set to improve
the clarity of a night green mango and improve the detection
accuracy of the method. Since the green mango with too high
contrast will lose most of its features, which is not conducive to
detection, we set clipLimit = 3 (contrast threshold). The ratio of a
green mango individual to the image size in the green mango
data set tends to 1:54. Therefore, we set titleGridSize = (8, 8) as

Table 2 Non-maximum suppression

Table 3 Soft-NMS
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the grid size for pixel equalization. The enhanced result is shown
in Fig. 8.

Taking the night green mango image as an example, the con-
tent of Fig. 8 (a) is dark, which is not conducive to detection, and
its histogram also proves the following point: the gray value of
Fig. 8 (c) is clustered between 0 and 50. In Fig. 8 (b), the en-
hanced greenmango becomes clear and visible, and its histogram
in Fig. 8 (d) has gray values that are well distributed between 0
and 255. CHAHE-Mango is the same as the auxiliary lighting
source when the robot actually picks the greenmangoes. It is also
an auxiliary means, and it contributes 0.6% to the F1% of the
final trained model. Therefore, we believe that CLAHE-Mango
is one of the advantageous ways to solve the problem of green
mango detection.

3.4 Light-YOLOv3 training and detecting process

The basic process of the fast detection method of green mangoes
in complex scenes by the picking robots includes two parts:
model training and green mango detection. As shown in Fig. 9,
model training is to input the green mango data set and the
corresponding labels into Light-YOLOv3, perform iterative
training, and obtain a fully trainedmodel. Greenmango detection
is the step in which the picking robot obtains the image through
the camera and sends it to the trainedmodel to obtain the position
of the green mangoes in the image.

4 Experiments

4.1 Green mango dataset

The experimental orchard is located in the Changjiang mango
planting base in Hainan, China. The experimental mango va-
riety is green mango, and the fruit is oblong. In July 2019, we
used the Hikvision AI camera DS-2CD7T47DWD-IZ (sensor
type: 1/1.8 “Progressive Scan CMOS; lens: 4 mm ~ 9 mm,

F1.6; maximum image size: 2560 × 1440), and the distance
of each crown is 1 to 2 m at multiple angles for the image
collection. To ensure the diversity of the green mango dataset
and the balance of the training, we separately collected images
during the day and night, and the illumination of the green
mango images collected during the day was more complicat-
ed. Part of the green mango dataset is shown in Fig. 10.

In the experiments in this paper, a total of 1500 green
mango images from actual orchards and 500 green mango
images from Internet sources were collected in JPG format.
To shorten the model training time, we uniformly cropped and
reduced the images to 416 × 416 pixels. To improve the accu-
racy of the detection model, we accounted for the various
appearances and forms of green mangoes in the labeling pro-
cess, and we used Labelimg to manually label 8432 green
mangoes in 2000 images. The labeling information is saved
in the format of the PASCALVOC [31] dataset, which con-
tains the category and bounding box of the object. The param-
eter details of the green mango dataset are shown in Table 4.

In the orchard, under natural light, the greenmangoes block
each other or reflect against the light, which results in shadows
on the fruit surface. The shadow makes the color of the fruit
very different from the color of the diffuse reflection area
under normal light, which affects the quality of the green
mango images. We use the green mango image enhancement
algorithm on the green mango dataset to improve the image
quality and help to improve the network detection accuracy.

4.2 Experimental environment and evaluation index

4.2.1 Experimental environment

In this experiment, the operating system used for training
is Ubuntu 18.04, the test framework is TensorFlow, the
processor is i7 8700k 3.70 GHz, 16 GB RAM, and the
graphics card is Nvidia GeForce GTX1080. We used the
CUDA version 10.0 parallel computing frameworks and

Fig. 8 Contrast results of image
enhancement algorithms applied
to green mangoes. (a) Night green
mango image; (b) enhanced night
green mango image; (c) histo-
gram of (a) diagram; (d) histo-
gram of (b) diagram
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CUDNN version 7.3 deep neural network acceleration
library, and we used Python language programming to
implement the training and detecting in the green mango
detection network model.

4.2.2 Evaluation index

In this paper, F1%, FLOPs, volume, FPS and time (ms) are
used to evaluate Light-YOLOv3 and other methods. The cal-
culation formulas for the precision (P) and F1%(F1) are
shown in eq. (10).

p ¼ TP
TP þ FP

;R ¼ TP
TP þ FN

; F1 ¼ 2PR
P þ R

; ð10Þ

where P is the precision rate, R is the recall rate, TP is the
number of true positive samples, FP is the number of false.

positive samples, and FN is the number of false negative
samples.

4.3 Experiment results

4.3.1 Light-YOLOv3 detection results on the green mango
dataset

In Table 5, we compare Light-YOLOv3 and state-of-the-art
object detection methods. All of the methods are trained with
the green mango data set and optimal parameters. The com-
parison information involved in Table 5 includes F1%,
FLOPs, volume, FPS, and time (ms). The FPS and time of
the two-stage object detection methods are far lower than
those of one-stage detection methods result, and thus, so they
do not participate in the discussion. Finally, we embed Light-
YOLOv3 and the comparative one-stage detection methods
into the current two excellent mobile chips to study the per-
formance of Light-YOLOv3 on embedded platforms. Adreno
640 (672 MHz) and Mali-G76 (720 MHz) are the latest mo-
bile GPUs developed by Qualcomm and ARM, respectively.
The former is integrated into the Snapdragon 855plus CPU,

(a) (b) (c)

(d) (e) (f)

Fig. 10 Some of the images in the
green mango dataset (a) Side-lit
green mangoes; (b) green
mangoes under smooth light; (c)
backlit green mangoes; (d) green
mangoes under dark light; (e)
shaded green mangoes; (f) dense
green mangoes

Fig. 9 The training and detecting process of the green mango detection method

Light-YOLOv3: fast method for detecting green mangoes in complex scenes using picking robots 4679



and the latter is integrated into the Kirin 990 CPU. Table 5
shows the performance of Light-YOLOv3 and its comparison
methods on the above two embedded platforms.

It can be seen from Table 5 that the one-stage object detec-
tion methods are significantly faster than the two-stage detec-
tion methods. The five indicators of Light-YOLOv3 are clear-
ly better than YOLOv3. The detection time of Light-YOLOv3
is 1/5 of YOLOv3, and the FLOPs is 1/6 of YOLOv3. The
F1% of Light-YOLOv3 is not only better than that of Faster
R-CNN, R-FCN, and Mask R-CNN but also faster than the
two-stage methods. Light-YOLOv3 can achieve real-time ef-
fects on both the Adreno 640 and Mali-G76 platforms. In the
comparison method, only YOLOv3-tiny can achieve a real-
time effect, but its accuracy is too low to be applied to the
actual production environment. We use the fully trained mod-
el to test part of the green mango dataset, as shown in Fig. 11.

According to Fig. 11, it can be concluded that Light-
YOLOv3 can successfully detect green mangoes in side light,
direct light, backlight, dense, long distance, occlusion and
special angle scenes. To further verify the effectiveness of
the model, the efficiency of the method must be tested under
various practical conditions. YOLOv3 is the original method,
and YOLOv3-tiny is currently one of the most suitable
methods for embedded platforms. Therefore, the following
experiments use the number of green mangoes (single, multi-
ple, dense), light intensity (side light, direct light, backlight)

and extreme conditions (night, long distance, special angle) as
control variables. We compare the test results of Light-
YOLOv3, YOLOv3, and YOLOv3-tiny under the above con-
ditions, and we use F1% to evaluate the performance of the
three methods.

4.3.2 Experiment a: Comparison of the results of the detection
methods under different numbers of green mangoes

In the actual picking process of the robot, as the distance
between the camera and the green mango tree changes,
the number and size of the green mangoes in the ac-
quired image will also change accordingly. When the
number of green mangoes is small and the size is large,
the outline and texture are clearly visible, and thus, it is
easier to detect. However, in the multitarget detection
task, with the increase in the number of green mangoes
and the reduction in scale, there will be adhesion and
occlusion, which are difficult to identify. Therefore, we
set up comparative experiments for the detection of green
mangoes under different numbers. The control variables
were one green mango, multiple green mangoes and
dense green mangoes. The detection performances of
the three methods under different numbers of green
mangoes were compared. The detection results are shown
in Fig. 12.

Table 5 Comparison of the training results of Light-YOLOv3 and state-of-the-art methods on the green mango dataset

Method F1% FLOPs Volume GTX1080 Adreno 640 Mali-G76

FPS Time FPS Time FPS Time

Two-stage Faster R-CNN 93.8 132.86 BN 528 MB – – – – – –

R-FCN 96.4 69.27 BN 277 MB – – – – – –

Mask R-CNN 96.7 61.52 BN 244 MB – – – – – –

One-stage SSD512 90.1 68.75 BN 275 MB 8 125.0 1 1501.5 1 1388.8

RetinaNet400 93.2 63.92 BN 252 MB 14 71.4 1 862.1 2 787.4

YOLOv2 91.6 42.94 BN 192 MB 52 19.2 4 250.2 5 211.8

YOLOv3 94.2 65.86 BN 237 MB 36 27.8 3 333.3 3 305.3

YOLOv3-tiny 83.8 7.36 BN 34 MB 213 4.5 17 58.8 19 51.7

Mini-YOLOv3 [32] 92.1 14.81 BN 56 MB 78 12.8 6 153.8 7 141.0

Light-YOLOv3 97.7 10.12 BN 44 MB 192 5.2 16 62.5 17 57.3

Table 4 Details of the green mango dataset

Time Daytime Night Total

Side Light Direct Sunlight Back Light

Number of images 500 500 500 500 2000

Number of bounding boxes 2100 2165 2071 2096 8432
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In this experiment, we selected a total of 300 images
from the test set, which contained 1215 green mangoes.
According to the number of green mangoes in the image,

they were divided into one green mango image (100 im-
ages that contained 100 objects) and multiple green mango
images (150 images that contained 450 objects) and dense

Fig. 11 The results of green mango detection in complex scenes by Light-YOLOv3

(a)

(b)

(c)

Fig. 12 Three methods were used
to detect different amounts of
green mangoes. (a) Detection re-
sults of Light-YOLOv3; (b)
Detection results of YOLOv3; (c)
Detection results of YOLOv3-
tiny
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green mango images (50 images that contained 665 ob-
jects). We use Light-YOLOv3, YOLOv3, and YOLOv3-
tiny to detect the test set, and we obtained the positive
sample number, the total number of samples, the number
of undetected samples and the number of erroneously de-
tected samples, and we calculated the accuracy rate and
recall rate to yield the get F1% Value. We repeated the
above steps 3 times, taking the average value, and finally,
we averaged the three types of results to obtain the com-
prehensive effect. The final results are shown in Table 6.

It can be seen from the combination of Fig. 12 and Table 6
that in the green mango detection experiment with different
densities, the F1% of Light-YOLOv3 is 4.6 percentage points
higher than that of YOLOv3, and YOLOv3-tiny performs the
worst. We found that the performance of the three methods
has a common trend: the smaller the number of green
mangoes, the higher the value of F1%. When the number
increases from 1 to less than 10, the F1% does not decrease
much. When the number of green mangoes in an image ex-
ceeds 10, the F1% will be greatly reduced. From the compre-
hensive results, Light-YOLOv3 is capable of detecting differ-
ent numbers of green mangoes.

4.3.3 Experiment B: Comparison of the results
of the detection methods under different illumination angles

In this experiment, we used the angle of light when shooting
green mangoes as a control variable, including side light (85
images that contained 412 objects), direct light (85 images that
contained 454 objects) and backlit (80 images that contained
401 objects). Because the complex illumination angle of the
dense green mango sample has a large influence on the

detection results, the dense green mango sample will not be
considered when selecting the image here. The detection re-
sults of the three methods are shown in Fig. 13, and the sta-
tistical results are shown in Table 7.

It can be seen from Fig. 13 that the common tendencies of
the three methods to detect green mangoes under different
illumination angles are as follows: the texture details of green
mangoes under side light are clearer, the surface light intensity
is uniform, and it is easier to detect. Part of the surface of the
green mangoes under direct light is enhanced in brightness,
giving it a bright white color with few texture features. When
backlighting, the brightness of the green mangoes, and
branches and leaves are significantly reduced, and the bound-
ary between the two is not obvious. In the latter two cases, the
detection of the green mangoes is difficult.

From Table 7, the F1% of Light-YOLOv3 is 10 percentage
points higher than that of YOLOv3 and 15 percentage points
higher than that of YOLOv3-tiny. The three methods have the
same F1% gradient in the three cases. The three methods
perform the worst when there is backlighting is back. The
reason is that the lack of brightness during the backlighting
causes the green mango to have an unclear contour, which
lowers the model’s F1%.

4.3.4 Experiment C: Comparison of the results
of the detection methods under extreme conditions

The experiments in this section mainly discuss the efficiency
of robots picking green mangoes under extreme conditions.
The three extreme situations are as follows: 1. Considering the
possibility of picking robots working around the clock, the
detection performance of green mango at night is also impor-
tant; 2. Considering the difference in the picking distance of
different models of robots, we must study methods to detect
the green mangoes remotely; 3. Considering the possibility of
the robot picking a green mango from various angles, we must
research methods to detect the performance on the green
mangoes from the upward and downward angles of the green
mango (the manipulator picks on the top or bottom of the
green mango). This experiment uses night time (100 images
that contain 405 targets), long distance (80 images that contain
539 targets) and special angles (80 images that contain 478
targets) as the test set. The calculation method is similar to the
previous section. The detection effect of this experiment is
shown in Fig. 14, and the statistical results are shown in
Table 8.

As seen from Fig. 14, Light-YOLOv3 can successfully
detect green mangoes under three extreme conditions;
YOLOv3 can detect only some of the green mangoes;
YOLOv3-tiny can detect only some of the green mangoes,
those closest to the camera. At night, due to the lack of light
sources, unlike the backlight of the daytime, there is also a
diffuse reflection of the green mangoes. Most parts of the

Table 6 Test results of the three methods for images with different
numbers of green mangoes

Number Method F1%

1 2 3 Average

1 YOLOv3 94.4 95.1 94.3 94.6

YOLOv3-tiny 83.6 84.2 83.9 83.9

Light-YOLOv3 98.8 98.3 98.7 98.6

>2 ~ 10 YOLOv3 94.1 94.3 94.2 94.2

YOLOv3-tiny 82.7 83.2 82.4 82.8

Light-YOLOv3 97.5 97.9 97.2 97.5

>10 YOLOv3 93.5 92.8 93.7 93.3

YOLOv3-tiny 81.3 80.2 81.7 81.1

Light-YOLOv3 96.9 97.3 96.8 97.0

Average YOLOv3 94.0 94.1 94.1 94.1

YOLOv3-tiny 82.5 82.5 82.6 82.6

Light-YOLOv3 97.7 97.8 97.6 97.7
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green mangoes appear black. In this case, the green mangoes
have almost the same color, nature, or texture characteristics.
The green mangoes in this case greatly affect the detection
accuracy of the methods. Due to the multiscale structure,
Light-YOLOv3 and YOLOv3 can detect long-distance green
mangoes better. Clearly, YOLOv3-tiny is unable to detect

green mangoes at long distances. The green mango’s top
and bottom angles are both elliptical, with a shadow in the
middle, and the shape is quite different from the normal angle
of view of the green mango. It can be seen from Table 8 that
Light-YOLOv3 has the highest F1% in three cases. At night,
Light-YOLOv3 is 4 percentage points higher than YOLOv3
and 29.9 percentage points higher than YOLOv3-tiny. Light-
YOLOv3 is 3.9 percentage points higher than YOLOv3 at
long distances. In particular, YOLOv3-tiny has almost no
ability to detect green mangoes at a long distance. Because
its backbone network has only 7 layers, it cannot extract
higher-level semantic features, and thus the detection F1% is
low. Under special angles, Light-YOLOv3 is 2.9 percentage
points higher than YOLOv3 and 20.9 percentage points
higher than YOLOv3-tiny.

In summary, with the YOLOv3-tiny method, it is more
difficult to detect green mangoes in dense, backlit, night, long
distance and other environments, and the F1% is usually low.
YOLOv3 can detect most green mangoes, but it requires the
most computation. In contrast, the detection results of Light-
YOLOv3 are better than those of YOLOv3 in various situa-
tions, and its computation amount is 1/5 of YOLOv3. Three
sets of comparative experiments prove that Light-YOLOv3
can detect green mangoes in complex scenes, making it pos-
sible for green mango picking robots equipped with this visual
method to work around the clock.

(a)

(b)

(c)

Fig. 13 Detection results of green
mangoes by three methods under
different illumination. (a)
Detection results of Light-
YOLOv3; (b) Detection results of
YOLOv3; (c) Detection results of
YOLOv3-tiny

Table 7 Detection results of the threemethods for different illumination
of green mango images

Illumination angles Method F1%

1 2 3 Average

Side Light YOLOv3 94.5 94.1 93.8 94.1

YOLOv3-tiny 83.8 84.2 83.7 83.9

Light-YOLOv3 98.2 97.6 98.1 98.0

Direct Light YOLOv3 93.7 93.0 92.9 93.2

YOLOv3-tiny 82.4 82.8 81.9 82.4

Light-YOLOv3 97.4 97.2 97.3 97.3

Back Light YOLOv3 92.0 93.1 91.8 92.3

YOLOv3-tiny 81.5 80.7 81.3 81.2

Light-YOLOv3 96.5 96.3 95.7 96.2

Average YOLOv3 93.4 93.4 92.8 93.2

YOLOv3-tiny 82.5 82.5 82.3 82.5

Light-YOLOv3 97.4 97.0 97.0 97.2
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4.4 Model analysis

This section discusses mainly the progressive performance
improvement from YOLOv3 to Light-YOLOv3. These oper-
ations include LightNet v1 (depth separable convolution,
Channel Shuffle, Group Normalization), MSCA module,
Soft-NMS and CLAHE-Mango. To prove that these opera-
tions are beneficial to the performance of our method, after
each operation, we calculated the corresponding FLOPs, F1%

and FPS, which are the performance results under Nvidia
GeForce GTX1080, as shown in Table 9.

From Table 9, in the design process of the backbone, first,
simply using the deep separable convolution for YOLOv3 can
reduce its model calculation by 25.72 BN. The core of the
deep separable convolution is DWConv, and the combined
structure of DWConv and PWConv is similar to the standard
effect. Therefore, the F1% of YOLOv3 with the deep separa-
tion convolution will not be significantly different, but its FPS
doubles. Channel split can divide the channel dimension of
the input feature map into two branches, and the two branches
are combined together through the concat operation after a
series of convolution operations. The concat results are sub-
jected to channle shuffle to ensure the full communication of
the two branches. Using this operation reduces the amount of
computation by almost half compared to the standard depth
separable convolution, and the F1% value is increased by
almost 1%, while the FPS is increased by 65. In the training
process, to avoid the impact of the batch size on the training
results, we replaced Group Normalization with Batch
Normalization, which increased the model F1% by 0.4.
DWConv, channel split and group normalization are the core
of LightNet v1. We replaced LightNet v1 with the residual
unit of YOLOv3, which reduced the calculation of the model
by 45.38 BN, while F1% increased by 1.3, and FPS increased
by 107.

Night Long distance detection Special angle

(a)

(b)

(c)

Fig. 14 Detection results on the
of three methods for green
mangoes under extreme
conditions. (a) Detection results
of Light-YOLOv3; (b) Detection
results of YOLOv3; (c) Detection
results of YOLOv3-tiny

Table 8 Three methods to detect images of green mangoes in extreme
conditions

Extreme condition Method F1%

1 2 3 Average

Night YOLOv3 92.2 91.6 91.9 91.9

YOLOv3-tiny 67.4 65.3 64.9 65.9

Light-YOLOv3 96.3 95.5 95.7 95.8

Long distance detection YOLOv3 90.3 91.2 90.7 90.7

YOLOv3-tiny 0.0 0.0 0.0 0.0

Light-YOLOv3 94.4 95.1 94.3 94.6

Special angle YOLOv3 89.9 90.6 89.6 90.0

YOLOv3-tiny 70.3 73.2 72.5 72.0

Light-YOLOv3 93.4 92.8 92.6 92.9
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To further improve the model’s ability to detect green
mangoes at long distances, we used the improved MSCA
module, which combines details and semantic information in
different layers of the network. This structure also helps to
detect green mangoes in the case of occlusion. LightNet v1
in the MSCA module was used to reduce the amount of com-
putation and improve the efficiency. Compared with the orig-
inal network, the calculation volume of the network model
using MSCA is reduced by half, F1% is greatly increased by
1.2%, and FPS is increased by 55. To improve the model’s
ability to detect overlapping green mangoes, we replaced Soft-
NMS with NMS to enables two green mangoes with larger
IOU values to also be detected. The F1% of the models using
Soft-NMS increased by 0.4. Illumination is one of the impor-
tant interference factors in green mango detection. From the
green mango dataset, we can use CLAHE-Mango to assist in
the detection of green mangoes at night. We used CLAHE-
Mango in both training and detection to help detect green
mangoes in low-light scenes. The F1% value of the model
using the CLAHE-Mango is increased by 0.6. In summary,
it is necessary to adopt the operations in Table 9 for YOLOv3.
The above three sets of comparative experiments also proved
the actual effect of the above improvements.

5 Conclusions

In this paper, we have proposed a fast detection method for
green mangoes, Light-YOLOv3.First, combining the charac-
teristics of green mangoes such as color, texture and shape, a
lightweight network unit was designed to replace the Res Net
unit in YOLOv3, which greatly improved the detection speed
of the method. Second, an MSCA module is used to concat-
enate multilayer features and make predictions, solving the
problem of insufficient position information and semantic in-
formation of the prediction feature map in YOLOv3, and it
effectively improves the detection effect of the green mango.
To solve the overlapping occlusion problem of green

mangoes, we used Soft-NMS instead of NMS. Finally, com-
bined with the characteristics of green mangoes, a green man-
go image enhancement (CLAHE-Mango) algorithm under
natural lighting conditions is proposed to improve the accura-
cy of the detection method. Experimental results show that
Light-YOLOv3 has the advantages of less memory occupa-
tion, high accuracy, and fast detection speed, and it can com-
plete the detection and positioning tasks of green mangoes in
complex scenarios. This method can provide a reference for
early yield estimation of fruit trees and automatic picking of
green fruits.
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