
https://doi.org/10.1007/s10489-020-01806-0

Amulti-valued and sequential-labeled decision tree method
for recommending sequential patterns in cold-start situations

Chang-Ling Hsu1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We plan to recommend some initial suitable single-itemed sequences like a flight itinerary based on a preference pattern
in the form of personalized sequential pattern to each cold-start user. However, sequential pattern mining has never treated
a conventional sequential pattern as a personalized pattern. Besides, as a cold-start user lacks the personalized sequential
pattern, collaborative filtering cannot recommend one any single-itemed sequences. Thus, we first design such a preference
pattern, namely representative sequential pattern, which reflects one’s main frequently recurring buying behavior mined from
the item-sequences during a time period. After sampling a training-set from non-cold-start users who prefer similar items,
we propose an auxiliary algorithm to mine the representative sequential pattern as the sequential class labels of each training
instance. A multi-label classifier seems therefore be trained to predict the sequential-label for each cold-start user based on
one’s features. However, most multi-label classification methods are designed to classify data whose class labels are non-
sequential. Besides, some of the predictor attributes would be multi-valued in the real world. Aiming to handle such data, we
have developed a novel algorithm, named MSDT (Multi-valued and Sequential-labeled Decision Tree). Experimental results
indicate it outperforms all the baseline multi-label algorithms in accuracy even if three of them are deep learning algorithms.

Keywords Classification · Sequential pattern mining · Personalized recommendation · Data mining · Machine learning

1 Introduction

Businesses have popularly used recommender systems to
identify interesting product/service items for their cus-
tomers [28]. Related recommender technologies such as
sequential pattern mining and classification methods also
have been widely applied to analyze sequence data.
Sequence data can be a chronological list of product/service
items. A sequential pattern can be an item-set pattern, a
string pattern (e.g., words or DNA) [8], or a trajectory pat-
tern [44]. Although each element of an item-set pattern
usually contains more than a single item in sequential pat-
tern mining, each element of a string pattern and a trajectory
pattern is only a single item. Some applications intend to
handle some spatial-temporal or state-temporal sequence
data, which reflect that a user cannot visit more than one
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location or one course at the same time. A single-itemed
sequence (hereinafter referred to as item-sequence) can thus
be a sequence of locations like a flight/tour itinerary or
states like a customer purchasing/engagement trend.

Furthermore, some researches have focused on the
study of the cold-start user problem in the personalized
recommendation. Cold-start users are those who have
bought nothing or not enough items so that recommender
systems cannot recommend them any items or item-
sequences online or offline. To tackle the cold-start problem
of the item-sequences, one approach is to recommend an
initial few item-sequences to a cold-start user and use the
feedback to learn a user profile with a preference pattern.
The learned profile can then be used to recommend some
item-sequences to the cold user. The consequence as the
item recommendation that [3] commented: in the absence of
a good user profile, the recommendations are like random
probes, but if not chosen judiciously, bad or too many
recommendations may turn off a user.

Therefore, the priority is to recommend initial suitable
item-sequences to each cold-user. Related recommender
technologies concern about how to elicit a user’s preference
patterns from item-sequences. Two types of approaches
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might be considered. One is sequential pattern mining, and
the other is collaborative filtering (CF). Sequential pattern
mining can be used to mine baskets of buying sequential
pattern from item-sequences of non-cold-users. However,
the subject of aggregation for the supports of the learned
patterns are not aimed to calculate for each individual user;
i.e. they are not user-centric. The aggregation is for the
users, who bought items appeared in a basket across baskets
sequentially. It neglects who the user is and what one’s
preferences are. Contrarily, the subject whom CF aims to
predict (filter) by analyzing preferences of items for is each
individual user; i.e. they are user-centric. It predicts items
of one user using the opinions in the form of items of others
[31]. However, CF neglects whether items were rated or
bought sequentially.

Although a conventional sequential pattern is not user-
centric, we still can represent a preference pattern in the
form of personalized sequential pattern for the following
reasons. First, we knew that individual user’s purchasing
behavior sometimes shows personalized sequential patterns,
i.e. frequently recurring sub-sequences, which can be
discovered from one’s item-sequences. Second, [11] deem
that the maximal sequential patterns are representative of
all the corresponding sequential patterns. It is because
the maximal sequential pattern is a sequential pattern
not included in another sequential pattern [12]. However,
each user often has more than one maximal sequential
pattern. Thus, we design such a preference pattern, namely
representative sequential pattern, which represents all the
maximal sequential patterns of the user, to reflect one’s main
frequently recurring buying behavior. For instance, a tourist
has a representative sequential pattern, <Taipei Bangkok
Zurich Hongkong Taipei>, mined from one’s three flight
itineraries.

Now, we propose to predict a representative sequential
pattern based on the features of a cold-start user. We sample
a training dataset with features and item-sequences from
the non-cold-start users who prefer similar items; and, the
item-sequences are collected in non-real-time data streams.
Our strategy is to combine the technologies of sequential
pattern mining and classifying as follows. First, for each
training data instance, we use a maximal sequential pattern
analyzer to mine a personal representative sequential pattern
for each non-cold-start user from its past behavior during
a user-specified time period. Second, given some features
of each user can cause one’s item-sequences, we use a
supervised classification method to learn a classifier from
the training-set, each of which has the mined representative
sequential pattern, labeled as a sequence of class labels
(namely a sequential-label). Third, the classifier is then
used to predict each cold-start user an initial representative
sequential pattern based on one’s features. Finally, the
predicted patterns are used for the recommendation.

However, the question then arises on how to get such
a supervised classification method. We can see that a
sequential-label is not only sequential but also multi-
labeled. A multi-label classification method can handle
data with a multiple-classed label [5], but they assume the
representative sequential pattern as a class label to be non-
sequential. Thus, a requirement arises immediately is how
to design a new classification algorithm that can handle
each data instance with a sequential-label. In addition, the
data’s predictor attributes would be multi-valued in the
real world. Besides, some applications require the classifier
to be interpretable. One example is for marketing plan.
managements sometimes require profiling what common
features of some non-cold-start users show which pattern
of a flight itinerary, a tour itinerary or a logistic delivery
route. As a decision tree classifier has the interpretability,
we propose to learn such a classifier from a multi-valued
and sequential-labeled training set. An example of the
training set is illustrated in Table 1. The training set
has four predictor attributes, one attribute with multiple
item-sequences, and one class-label attribute containing
a sequential-label. Except the predictor attribute, hobby,
is multi-valued, the other predictor attributes are single-
valued.

Aiming to handle such data, this research first has
used a maximal sequential pattern algorithm to acquire the
sequential-label of each training instance from the item-
sequences. The item-sequences were collected in advance
from non-cold-start users within some successive sliding
windows during a user-specified time period. Second, we
have developed a novel multi-valued decision tree method,
which has a sequential pattern analyzer used in each tree-
node growing, named MSDT (Multi-valued and Sequential-
labeled Decision Tree).

The remainder of this paper is organized as follows.
Section 2 reviews the related research work. Section 3
gives notations and preliminaries. Section 4 describes the
algorithms. Section 5 designs experiments. Section 6 gives
the detailed experimental results and discussion. Finally,
Section 7 draws conclusions.

2 Related work

The current work relates to approaches of sequential
pattern analyzers, decision tree classification and sequence
classification. We review them selectively in this section to
provide a context for this work.

2.1 Approaches of sequential pattern analyzers

Most of the current sequential pattern algorithms can
discover frequent sequential patterns, SPAM [2] especially,
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Table 1 A training set with 15 customers

User Education level Income Gender Hobby Sequences Sequential

id −label∗

1 A 100 Female arts < 123 >, < 1253 > 123

2 B 880 Male arts < 423 >, < 231 > 23

3 A 370 Female arts, shopping < 12 >, < 13 > 1
...

...
...

...
...

...
...

15 B 520 Female arts, sports, shopping < 31 >, < 3 > 3

The sequential-label attribute contains the representative sequential pattern, mined from the “sequences” attribute under the constraint of the
minimum support count, 2

and the maximal sequential patterns, VMSP [12, 13]
especially. They both can save memory space and get time
efficiency. An experimental study on five real datasets
shows that VMSP is up to two orders of magnitude faster
than the MaxSP algorithm [11]. Both of them are the type
of vertical format-based algorithm, the vertical structure of
which has been used to store each item-set of a transaction
database in the SPADE algorithm [42]. This approach
makes the storage and searching space smaller, and the
mining process more quickly in memory.

Our work differs from the existing studies in two aspects:
(1) Initially, we have applied VMSP to mining some
maximal sequential patterns for each user. However, as there
could be several maximal sequential patterns, which should
be further pre-processed to choose only one representative
sequential pattern for MSDT. (2) While growing each node
of a decision tree, MSDT needs to discover both of frequent
and infrequent sequential patterns among sequential-labels
in order to get distinguishable among various sequential-
labels. VMSP removes infrequent items in advance from
the sequences during the early stage of the growing phase.
Fortunately, SPAM does not remove infrequent items during
the tree-growing phase. However, SPAM can only calculate
the support count rather than support. We therefore need to
revise it to enable the calculation.

2.2 Approaches of decision tree classification

Given a decision tree classifier, C : x → l, where x is
a sequence of feature-conditions of internal nodes, and l

is the class label of a leaf node. According to the type of
data, we review the current classification methods through
the three categories as: (a) x’s features are single-valued
and l is single-labeled: The methods are such as ID3 [23,
24], IC [1], C4.5 [25], CART [32], ExtraTree [14], Random-
Forest [4] and ExtraTrees [14]. The measures for selecting
the single-valued splitting attribute are such as information
gain [23], gain ratio [24] and gini [32]. They are based
on entropy/impurity and scoring only among single-labels.

(b) x’s features can be multi-valued and l is multi-labeled:
The methods are such as our previous works, MMC [5]
and MMDT [7]. MMC proposed each multi-label as a
label-set initially. The measures for selecting the multi-
valued splitting attribute are such as weighted-similarity of
MMC [5] and similarity ratio of MMDT [7]. Addition-
ally, the combination of the discretization algorithm, MMD
[36], with MMDT (namely MMD+MMDT here) handling
multi-intervals discretization of continuous attributes can
refine MMDT. However, the setting of MMD only focused
on the associations between the attributes and the non-
sequential-labels. (c) x’s features are single-valued and l

is multi-labeled: The methods such as iSOUP-Tree [20]
and the other methods implemented by the Scikit-learn
Python package [21, 30] include DecisionTreeClassifier
(namely CART-ML here) extending CART, ExtraTreeClas-
sifier (namely ExtraTree-ML here) extending Extra-
Tree, RandomForestClassifier (namely RandomForest-ML
here) extending RandomForest and ExtraTreesClassi-
fier (namely ExtraTrees-ML here) extending ExtraTrees.
The iSOUP-Tree method uses the measure, the mix of the
ICVarR heuristic and the Hoeffding bound. All the other
methods use the measures of information gain or gini.

Different from the existing studies, the selecting measure
for splitting attributes of our work needs to be redesigned.
We state the reason as follows. The calculations of all the
measures are mainly based on the support of each class
label l in each growing node. However, the counting for
its support counts is different from that by both of the
single-labeled methods and the multi-labeled methods. As
the single-labeled methods consider each multi-label or
sequential-label as a label identity, they would treat the
various but similar labels as totally different and mutual
exclusive labels. However, there exists similarity among
the various labels because they may have common sub-
sequences. As the multi-labeled methods consider each
sequential-label as a label-set without any chronological
order meaning, they would treat two sequential-labels like
“123” and “321” as the same.
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2.3 Approaches of sequence classification

Sequence classification handling data with a sequence of
labels is termed sequence labeling or labeling sequence
[41]. In the following, we will show two limits of current
sequence labeling approaches while solving the classifica-
tion problem of this study.

First, the current methods neglect classifying data accord-
ing to an actor’s explicit features and consulting this actor’s
sequence of labels caused by those features. [41] deem
that sequence classification is different from the conven-
tional classification task on feature vectors. It is because
the sequences handled by the former do not have explicit
features, extracted from the nature of an actor. For exam-
ple, in the field of technical analysis of stock trends, the
price of a stock is predicted according to its implicit fea-
tures (e.g. annual price trend), extracted from historical
price sequences, using an extrapolation of the price pattern
[15] or using correlations between time series in techni-
cal analysis [29]. Both do not consider the explicit features
such as the general or the financial attributes of the stock
company.

Second, the definition of the labels are different from
that of our sequential-label in the following two points. The
first point is that the labels of the former do not denote a
representative sequential pattern. The second point is that
the labels of the former are not a strong sequence of class
labels. A strong sequence of class labels is denoted as
l+ ∈ L+; where L+ is the set of all non-null sequences
of elements of L, and L is a set of class labels [18].
In other words, a strong sequence of class labels is any
one of the set of all the possible sequences of the class
labels in L. A sequential-label in this study is also a strong
sequence of class labels. Nevertheless, the current sequence
labeling methods have only focused on handling a non-
strong sequence decomposition, which only takes account
of contiguous sub-sequences and thus neglects parts of
all the possible sub-sequences. For instance, given that a
sequence,< 123 >, has total of 7 sub-sequences, containing
< 1 >, < 2 >, < 3 >, < 12 >, < 13 >, < 23 >

and < 123 >. Since event “1” and “3” are not neighbors, a
non-strong sequence decomposition only takes six of the 7
sub-sequences containing < 1 >, < 2 >, < 3 >, < 12 >,
< 23 > and < 123 > and neglects < 13 >.

3 Preliminaries

Before describing the MSDT algorithm, we will formally
define some preliminaries related to the classification life-
cycle, including some notations, an auxiliary function and
an auxiliary algorithm. The details are described according

to the context of the classification lifecycle, the data prepar-
ing phase and the training phase respectively as follows.

3.1 The context of classification lifecycle

Initially, we plan to acquire the data source, R, which has
each user data from both of non-cold-start users and cold-
start users. And each data instance of R represents a data
state of the user j , Rj = (j , xj , Sj ), where xj is the feature
vector; Sj is the set of item-sequences acquired within
user-specified ω successive sliding windows in a non-real-
time data stream of items during a user-specified time
period. Additionally, the length of Sj always have an upper
bound requirement specified by users in some applications.
For instance, a tourist has three flight itineraries, each of
which is collected within a sliding window with size six to
constrain six airports at most during the most recent quarter.
As the successive sliding windows are non-overlapped one
another, each sliding window, Wi , is defined as a window
with a user-specified upper bound of the window size, α,
where i = 1..ω.

Definition 1 A set of item-sequences of the user j within
ω successive sliding windows during a user-specified time
period is defined as: Sj = {Sji |i = 1..p, where Sji is an
item-sequence}. The maximal length of all Sj in the data
source, R, within a sliding window is equal to the upper
bound of window size, α. Each Sji =< e1 · · · ei · · · ek >,
is a chronological list elements, where each element is a
transaction containing only a single-item, ei ∈ E = {Et |Et

is a single-item, where t = 1..v}. The length of each Sji

is the number of single-items. In R, each transaction record
of the user j consists of the vector, (user-id, time-stamp
and a single event), done by the user. An event here is
defined as a single-item or a transaction location happened
at the time-stamp. We should collect each Sji of Sj from a
non-real-time data stream of the user transactions, streamj ,
within each sliding window, Wi .

Example 1 An example with two users is shown in Fig. 1.
Let each single-item belongs to E = {1, 2, 3, 4, 5}, and
α = 4. As α = 4, the maximal length of all item-sequences
for each user is 4. The first user, buyer1, has four transaction
records ordered by time-stamp: (buyer1, t1, 1), (buyer1, t2,
2), (buyer1, t3, 3) and (buyer1, t4, 2), so that buyer1 has
an item-sequence, < 1232 > within the sliding window,
W1. As for the other user, buyer2 has three such transaction
records: (buyer2, t1, 2), (buyer2, t2, 4) and (buyer2, t4, 5)
that buyer2 has < 245 > in the sliding window, W1. To
acquire the set of item-sequences, let ω = 3 to collect
the transaction records in three successive sliding windows.
Besides < 1232 >, we can see buyer1 has two subsequent
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item-sequences, < 2435 > and < 3214 >. Finally, we have
gotten the set of item-sequences, {< 1232 >, < 2435 >, <

3214 >}, for buyer1.

To clarify the ambiguity among different type of users,
we further define the following terms.

Definition 2 A user here is defined as a seller or a buyer.
A seller is a user who operates the algorithms in this paper.
A buyer is a website user who initially registers one’s
profile for membership online. And then, the buyer can buy
items online, offline or both in the field of O2O (Online
to Offline) e-commerce [40]. Therefore, to collect those
transaction data of each user completely, we further name
them as online buyers, offline buyers and online&offline
buyers. They can be recommended online, offline and
online&offline respectively. Buyers can be categorized into
two user types: cold-start users and non-cold-start users.

Definition 3 A representative sequential pattern, RSj , of
user j is defined as: the maximal sequential pattern that
contains single-items with the largest support in a set of
the maximal sequential patterns, MPj . If there are more
than one pattern with the same largest support, choose
the pattern with the longest item-sequence; otherwise, just
randomly choose one of the patterns with the same longest
item-sequences.

Definition 4 A cold-start user is a previously-unseen,
rarely-doing or rarely-buying user, who still has not
owned sufficient item-sequences for the VMSP4MSDT
algorithm to generate a representative sequential pattern.
A previously-unseen user is defined as that whose item-
sequences, Sj = ∅. A rarely-doing or rarely-buying user is
defined as that whose Sj �= ∅ but representative sequential
pattern, RSj = ∅.

3.2 The data preparing phase

Definition 5 A sequential-label, Lj , of user j is defined
as a sequence of class labels, used to denote a repre-
sentative sequential pattern with a string format. Lj =
“ej1 · · · eji · · · ejk”, where each item eji ∈ E; E = {Ei |Ei

is an item as well as a class label, where i = 1..v}; and,
Lj ∈ L, where L is a set of all non-empty sequential-labels,
and L = {Lj |j = 1..n} − {“”}.

To prepare a training set and a test set from the data
stream of items of each data instance, we design the data-
prepare function as shown in Function data-prepare(R, α,
ω). In this function, Steps 3-4 are critical points. Step 3 calls

the VMSP4MSDT algorithm as shown in Algorithm 1 to
acquire a representative sequential pattern, RSj , for each
data instance. RSj is then transformed into a sequential-
label, Lj , in Step 4 to label each data instance. Before
describing VMSP4MSDT, we first define a set of sequential
patterns, SPj = {SPij |i = 1..m, where SPij is defined as
a sequential pattern, discovered from Sj }. Next, we define a
set of the maximal sequential patterns, MPj = {MPij |i =
1..n, where MPij is defined as the maximal sequential
pattern, which is a sequential pattern in SPj not included in
any other sequential patterns in SPj }.

Algorithm 1 specifies how the VMSP4MSDT algorithm
mines a representative sequential pattern for the data
instance of each user. It starts by calling the VMSP
algorithm to return a set of the maximal sequential patterns,
MPj , for each user j . As there could be several maximal
sequential patterns in MPj , which have then be processed
according to Definition 3 to choose one of them to represent
MPj as the representative sequential pattern, RSj .
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To classify the representative sequential patterns of each
user j , RSj , based on one’s feature vector, xj , we next
examine whether RSj could be caused by xj by the
following proposition.

Proposition 1 Suppose the training data instance of each
user j , Dj = (j , xj , Sj , RSj , Lj ), chosen from a sample
dataset of non-cold start users; xj is the feature vector;
Lj is the sequential-label, which denotes the representative
sequential pattern, RSj , mined by the VMSP4MSDT
algorithm from a set of single-itemed sequences, Sj . If ∃
x′
j ,sub-dimensional or equal to xj , and Sj is caused by x′

j ,
then x′

j → RSj .

Proof As each Dj is chosen from the data instances of
non-cold-start users in the sample dataset, according to
Definition 4, such that all the values of xj , x′

j , Sj and RSj

are not null. In addition, as Sj is caused by x′
j , we can say

that x′
j → Sj . Furthermore, in Algorithm 1, VMSP4MSDT

discovers RSj to represent all the item-sequences in Sj of
each user j , so that Sj determines RSj . Moreover, both of
Steps 2-3 and Steps 5-9 can assure that the value of RSj is
only one representative sequential pattern. In other words,
there is only one non-null RSj value associated with each
non-null Sj . It is clear that Sj → RSj . Therefore, we can
conclude by the following inference: ((x′

j → Sj ) ∧ (Sj →
RSj )) → (x′

j → RSj ).

3.3 The training phase

Definition 6 A multi-valued and sequential-labeled deci-
sion tree, T (V, B) is a rooted decision tree with multiple
degrees, where V is a set of nodes and B is a set of branches.
Each internal node of T contains a continuous or a cat-
egorical attribute. And, each leaf node of T contains a
sequential-label. Each branch of the continuous attribute
corresponds to an interval and each branch of the cate-
gorical attribute corresponds to a value. As a categorical
attribute can be multi-valued, an internal node with a multi-
valued attribute has the same data belonging to multiple
branches.

Definition 7 A upper bound of tree branch, ub, is defined
to restrict the size of the tree as a user-specified and degree-
restricted parameter, such that 2 ≤ Degree(vi) ≤ ub,
where the internal node, vi ∈ V , contains a continuous
attribute, and Degree(vi) is the degree of vi .

Example 2 An example of a decision tree for Definition 6
and Definition 7 as shown in Fig. 2 is learned by MSDT
from the training set of 15 customers in Table 1. We set
the upper bound of the tree branch, ub, to be 10. The tree
has 3 internal nodes and 12 leaf nodes. Each branch of
the continuous attribute, income, corresponds to an interval
and each branch of the two categorical attributes, hobby
and gender, corresponds to a value. The attribute, hobby,
is multi-valued, and the attribute, gender, is single-valued.

Fig. 1 Two examples for the
successive sliding windows over
two stream of item-sequences
with α = 4 during the three
phases in the classification
lifecycle
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While growing the tree, each training instance with the
“hobby” attribute being multi-valued is split at the “hobby”
internal node into multiple branches.

4 The algorithms

The whole procedure to learn a decision tree classifier
to predict a sequential-label is outlined in Algorithm 2
according to the three phases in a classification lifecycle.
Initially, at Step 1, a user gives the user-specified parameters
to start the lifecycle. Step 2 calls the data-prepare function,
which has been explained beforehand in Section 3.2. We
further clarify some of the other main steps. At Step 3,
the MSDT algorithm with its two auxiliary algorithms as
shown in Algorithm 3 through Algorithm 5 are presented
in Section 4.1. At Step 6, the predict-data method as shown
in Algorithm 6 is described in Section 4.2. Finally, the time
complexity analysis of the MSDT algorithm is discussed in
Section 4.3.

4.1 TheMSDT algorithm

The MSDT algorithm is a process of growing nodes of
a decision tree on depth-first recursively. It follows the
standard framework adopted by the classical classification

methods such as ID3, C4.5, IC, MMC and MMDT.
Algorithm 3 explains how MSDT goes.

Initially, MSDT inputs DCN with its attribute set, A,
whose values are presorted, for coming analysis. In the
above framework, Steps 4-11 are critical points, in which
Steps 4-6 determine a leaf node; Steps 7-11 determine the
internal node with branches for a tree. We will further
explain the framework in the following three subsections.
While determining a leaf node, MSDT needs to discover
both of frequent and infrequent sequential patterns among
sequential-labels in DCN in order to get distinguishable
among various sequential-labels. Thus, Steps 4-6, explained
in Section 4.1.1, in which calls the SPAM4MSDT algorithm
as shown in Algorithm 4 to determine whether the growing
node is a leaf node; if not, Steps 7-11, explained in
Section 4.1.2, determine the internal node with branches for
the tree, in which calls the split-attribute function as shown
in Algorithm 5.
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Fig. 2 A multi-valued and sequential-labeled tree built from the
training set of Table 1

4.1.1 Determination of leaf node

We first explain as follows how SPAM4MSDT goes in
Algorithm 4 and then how MSDT determines a leaf node,
which depends on the stop conditions.

Let DCN = {d1, · · · , di, · · · , dr} be the training set, D,
in the current growing node, CN, and {L1, · · · , Li, · · · , Lr}
be their respective sequential labels. Then, the term, support
of Li , can be defined as: support(Li) = Li .count /

|DCN |, where Li .count is the support count of Li ; and

|DCN | is the number of records. If the support of Li is
greater than or equal to the user-specified minimum support
of the frequent sequential pattern (i.e., minsup), Li is
termed large sequential-label. Otherwise, it is termed small
sequential-label. Therefore, all of the sequential-labels in
DCN can be classified into two sets; largeset(DCN ) and
smallset(DCN ), where largeset(DCN ) contains all of the
large sequential-labels, also frequent sequential patterns
in DCN , and smallset(DCN ) contains all of the small
sequential-labels, not frequent sequential patterns in DCN .
However, the algorithms, SPAM and VMSP, do not discover
the infrequent sequential patterns in this phase. Especially,
the VMSP algorithm removes infrequent items in advance
from the sequences during the early stage of the growing
phase because they will not appear in any further frequent
sequential patterns discovering. This also get rid of the
source of the infrequent sequential patterns and led to
discover the infrequent sequential patterns impossible.
Fortunately, SPAM does not remove infrequent items during
the tree-growing phase. Additionally, SPAM can only
calculate the support count rather than support of each Li ,
we revised it to enable calculation of the support first. Thus,
we have revised SPAM into the revision, SPAM’, as shown
in Step 2 to get both of the frequent and the infrequent
sequential patterns. Finally, SPAM4MSDT transforms both
the sets of patterns into largeset(DCN ) and smallset(DCN ).

Back to the stop conditions in Algorithm 3 to determine
a leaf node, we define difference(DCN) =

min{support (Li)|Li ∈ largeset (DCN)}
−max{support (Lj )|Lj ∈ smallset (DCN)} (1)

If difference of DCN is greater than or equal to a user-
specified minimum difference (termed mindiff ), then DCN

is termed clear node. Otherwise, it is termed unclear node.
DCN continues to grow, until one of the following stop
conditions is fulfilled:

(1) If node DCN is clear, then the MSDT algorithm
assigns the sequential-label whose maximal sequential
pattern with the maximum support in largeset(DCN )
as its result class label. Furthermore, if there are
more than one maximal sequential pattern with the
same maximum support, then MSDT assigns all the
sequential-labels with the same maximum support to
the node DCN .

(2) Otherwise, if all the attributes have been used up
in the path from root down to DCN , and the size
of DCN is larger than or equal to a user-specified
minimum quantity (termed minqty), then (2.1) If
largeset(DCN ) is not empty, then the MSDT algorithm
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assigns the sequential-label whose maximal sequential
pattern with the maximum support in largeset(DCN )
as its result class label. Furthermore, if there are
more than one maximal sequential pattern with the
same maximum support, then MSDT assigns all the
sequential-labels with the same maximum support
to the node DCN . (2.2) If largeset(DCN ) is empty,
then the MSDT algorithm assigns the sequential-label
whose maximal sequential pattern with the maximum
support in smallset(DCN ) as its result class label.
Furthermore, if there are more than one maximal
sequential pattern with the same maximum support,
then MSDT assigns all the sequential-labels with the
same maximum support to the node DCN .

(3) Otherwise, if all the attributes have been used up, and
the number of data instances is less than minqty, then
drop off DCN .

Example 3 Let minsup = 45%, and mindiff = 15%.
DCN has six data instances and their sequential-labels are
“243”, “321”, “315”, “31”, “243” and “542” respectively.
The SPAM4MSDT algorithm calculates the supports of all
the frequent sub-sequence candidates on iterations from 1-
sequence until having gotten frequent sequential patterns.
At the final iteration, the supports of all the candidates are
< 21 >: 1/6, < 23 >: 2/6, < 24 >: 2/6, < 31 >:
3/6, < 32 >: 1/6, < 42 >: 1/6 and < 43 >: 2/6.
As minsup = 45%, we get largeset (DCN) = {“31”} and
smallset (DCN) = {“21”, “23”, “24”, “32”, “42”, “43”}.
According to (1), we get difference(DCN ) = 50% −
33.33% = 16.67%. Since difference(DCN ) > mindiff, DCN

is clear. Finally, as “31” is the maximal sequential pattern
with the maximum support in largeset (DCN), its result
class label is “31”.

4.1.2 Determining internal node with branches

To grow internal nodes, MSDT tests the goodness of
spitting for each attribute with a measure. Thus, we have
tried to design two measures, sequentialGainRatio and
sequential-weighted-similarity. Both of the measures can
handle discrete, continuous and multi-valued attributes. We
modified two well-known measures. SequentialGainRatio
has modified the gain ratio measure [24], and sequential-
weighted-similarity has modified the weighted-similarity
measure [5]. However, the accuracies of the MSDT
algorithm based on sequentialGainRatio is averagely better
than the accuracies of MSDT based on sequential-weighted-
similarity (will be discussed further in Section 6.1.2 and
Section 6.1.4). Therefore, we adopt sequentialGainRatio as

our measuring strategy. We describe sequentialGainRatio
first and sequential-weighted-similarity next.

To determine the internal node with branches, Step
7 in Algorithm 3 focuses on the split-attribute function.
Algorithm 5 explains how split-attribute selects the best
splitting attribute with branches. Step 4 and Step 6 calculate
the sequentialGainRatio measure separately. It depends on
the type of the splitting attribute. SequentialGainRatio is
defined by the following equation.

sequentialGainRatio(DCN, Ai, k)

= sInf oGain(DCN, Ai, k)/I (DCN, Ai, k), (2)

where sInf oGain(DCN, Ai, k) and I (DCN, Ai, k) is the
information gain and the entropy of the splitting of attribute
Ai into k intervals on node CN . The information gain in (2)
is defined as:

sInfoGain(DCN, Ai, k) = I (DCN) − E(DCN, Ai, k), (3)

where I (DCN) = ∑m
j=1 −pj logpj is the entropy of DCN ,

and pj = |pj |/|DCN | is the percentage of a sequential-label
Lj in DCN . E(DCN, Ai, k) in (3) is defined as:

E(DCN, Ai, k) =
k∑

j=1

−pij I (D
Ai,k
CN (j)), (4)

where Pij = nj/
∑k

j=1 nj = nj/n′ is the percentage
of a sequential-label Lj in DCN after splitting the
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attribute Ai ; D
Ai,k
CN (j) denotes the j-th sub-set based on

Ai after partitioning DCN into k sub-sets; and the entropy,
I (D

Ai,k
CN (j)) is

∑m
t=1 −pt logpt , where the percentage of a

sequential-label Lt in I (D
Ai,k
CN (j)) is pt = |pt |/nj . Finally,

we define I (DCN, Ai, k) as:

I (DCN, Ai, k) =
k∑

j=1

−pij logpij , (5)

where the percentage, pij is the same as pij of (4).

Example 4 Let us demonstrate the choice of the best split-
ting attribute. If Table 2 represents the data stored in node,
CN , which has 10 training instances and two classifying
attributes; gender and hobby, then the attribute gender is first
considered and the sequentialGainRatio of the attribute,
gender, is computed as: sInf oGain(DCN, Ai, k) =
2.0253 − 1.6296 = 0.3957, I (DCN, Ai, k) = 0.67301, and
thus sequentialGainRatio(DCN, Ai, k) = 0.5880. The
sequentialGainRatio of the attribute, hobby, is computed as
0.2608. Since the sequentialGainRatio of the attribute, gen-
der, is larger than that of the attribute, hobby, the attribute,
gender, is selected as the next splitting attribute.

Next, we define sequential-weighted-similarity as a
measure of the splitting of attribute Ai with k branches on
node CN as:

sequential-weighted-similarity(DCN, Ai, k)

=
∑k

p=1 nodeSimilarity(Lp) × np

n′ , (6)

where the similarity of a child node Lp, nodeSimilarity
(Lp), is the similarity of a node calculated based on the

Table 2 An example with 10 training instances and 2 classifying
attributes

User id Gender Hobby Sequential-label

1 2 02 321

2 2 03,04 315

3 1 02 31

4 2 02,03 542

5 2 02,03,04 3

6 1 02,03,04 321

7 2 02,03,04 243

8 1 02,03 23

9 2 02 5

10 1 02 243

similarity measure between two sequential-labels based on
the Jaro-Winkler metric [17, 39] is defined as:

nodeSimilarity(Lp)

=
∑r

i=1 C
couni

2 +∑
i<j counti ×countj ×JaroWinkler(SLi , SLj )

m(m − 1)/2
,

(7)

where |Lp| = r, |L| = r, m �= 1, Ccounti
1 = counti and

C
countj
1 = countj .

Example 5 Suppose L = {L1, L2, · · · , L7}, where
L1 = L2 = SL1 = “12”, L3 = L4 =
L5 = SL2 = “13” and L6 = L7 = SL3 =
“123”. Therefore, m = 7 and r = 3, count1 =
2, count2 = 3 and count3 = 2. We get that JaroWin-
kler(SL1, SL2) = 0.7, J aroWinkler(SL1, SL3) =
0.9111 and JaroWinkler(SL2, SL3) = 0.9. Using these
values in (7) yields nodeSimilarity(L) = 0.964.

If the attribute is continuous, both of the functions, split-
attribute and partition-continuous-intervals, require that the
dataset DCN be sorted beforehand in each internal node.
This requires much sorting time. For each internal node,
CN , sorting is executed O(r) times, where r is the number
of continuous attributes. To address this problem, we pre-
sort and index continuous attributes only once at the initial
state of the MSDT algorithm. At the same time, we keep
the sorted and indexed data columns in data cache stored in
main memory during the tree growth phase. The indexing
method uses B-tree, which allows searches in logarithmic
time. Thus, this avoids lengthy sorting and re-sorting at each
node.

4.2 The predict-data algorithm

Predict-data is designed to predict the sequential-label of
a data instance as shown in Algorithm 6. It predicts for
each instance by traversing the decision tree: starting from
the root node, finding a path to the leaf node and using
the sequential-label of the leaf node as the prediction
result. When an instance has a multi-valued attribute, the
prediction may reach several leaf nodes. MSDT takes the
union of all of these sequential-labels as the prediction
result. In other words, multiple sequential-labels can be the
prediction result for each instance. It can predict the result
to be multiple sequential-labels (namely result1) as well as
a single sequential-label (namely result2). To get result2,
Steps 7-8 first call the VMSP4MSDT algorithm to return
a representative sequential pattern by transforming result1
into a set of item-sequences as the input of VMSP4MSDT.
And then, Steps 9-10 transform the representative sequential
pattern into a single sequential-label as the prediction result;
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or readers may choose both of result1 and result2 as the
prediction results to compare the accuracies each other,
which will be discussed in the experimental section.

4.3 Time complexity of MSDT

We first examine the time complexity of MSDT by the
following lemma and then discuss the time complexity.

Lemma 1 Let there be m attributes, n training instances,
v events, α: the maximal length of all the sequences, and
ub: the upper bound of tree branch, the MSDT algorithm
grows a multi-valued and sequential-labeled decision tree
in O(αmn2 + ubkvαm2n) time.

Proof Initially, MSDT is given the training set, D, with the
values of continuous attributes sorted for analysis. The time
complexity of the tree induction is O(mn);the sorting is
O(n log n) and executed only once. The time complexities
of the following functions: SPAM4MSDT(sequential-labels
of D) is O(αn); split-attribute(A, DCN) is O(m(k + ub +
ub((k+1)vα+k))) using sequentialGainRatio(DCN, Ai, k),
O((k + 1)vα + k)), to choose the best attribute, Ai , where
∃ Ai with the most branches, k;no matter whether Ai is
categorical or continuous, both of the functions, partition-
discrete-categories and partition-continuous-intervals, are
O(k), which partition the intervals of the continuous attribute
Ai into k intervals. As for assigning label to represent a leaf
node, MSDT assigns a sequential-label (i.e. a representative
sequential pattern) or multiple sequential-labels with the

same maximum support (i.e. multiple maximal sequential
patterns) to represent the leaf node, O(maximum(l, s)),
where l is the count of the largeset, and s is the count
of the smallset. Finally, the time complexity of MSDT is
O(n lg n+mn(αn+maximum(l, s)+m(k +ub+ub((k +
1)vα + k)) + k)) = O(αmn2 + ubkvαm2n).

Although vα in O(αmn2 + ubkvαm2n) seems to be an
influencing factor to the time complexity, it can still be
reduced by setting both of the upper bound values of v and
α under two respective application settings of MSDT. As
for v part, the application setting is to sample a training-
set from non-cold-start users who prefer similar v items,
and let v = p. This results in a precondition that v has
the upper bound value, p, to keep it from going too big.
As v is also seen as the number of classes, we can further
reduce the value of v using concept hierarchy climbing by
merging more sub-classes into less super classes. As for
α part, the application setting is to use the technology of
sliding window to constrain the upper bound value of α,
which also means constraining the maximum length of all
the sequences. The setting is applicable to analyzing spatial-
temporal or state-temporal item-sequences. Fortunately, the
lengths of such item-sequences always have an upper bound
requirement in such an application using a user-specified
size-constrained sliding window. For example, suppose v =
10 and α = 6, such that a training-set with features and
consumed sequences is sampled from non-cold-start users
who prefer 10 airports similarly; and each item-sequence is
a flight itinerary with six airports at most during the most
recent 90 days. As the values of v and α will not be too
big under our application settings, vα is not the influencing
factor.

5 Experimental setup

In this section, we first present the experimental questions.
Next, we describe the datasets and design the experiments.
Finally, we discuss the evaluation measures used in the
experiments.

5.1 Experimental questions and strategy

Before comparing MSDT with some baseline algorithms,
it raises the other two experimental questions. One is how
to choose benchmarking training-sets from some candidate
datasets with feasible size for comparisons. The other is how
to acquire the optimal hyperparameters of both of MSDT
and the baseline algorithms on the benchmarking training-
sets that achieve their own best accuracies. To solve these
questions, we plan three experiments: Experiment I and
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Experiment II at the pretraining stage as well as Experiment
III at the training stage. Further, Experiment I has two sub-
experiments: Exp. I.1 and Exp. I.2; and, Experiment III has
two sub-experiments: Exp. III.1 and Exp. III.2.

The overall strategy of the three experiments are
described as follows. At the pretraining stage, to control
the influence of some hyperparameters, in Experiment I,
we initially test the performances of MSDT on two small
datasets based on all the reasonable configurations of the
hyperparameters, from which we will get some control
variable candidates for Experiment II. Inevitably, training-
sets from the small datasets cause a model under-fitting
problem. The problem occurs because the training-set is not
large enough; so that the model is too simple to learn the
true structure of the data [35]. Therefore, in Experiment
II, we start by looking for a benchmarking training-set
with a feasible size from a large dataset, validated by
checking whether it is large enough to reduce the model
under-fitting problem. Meanwhile, we also validate whether
MSDT on the large training-set based on those control
variable candidates really reduce the problem. The way of
the validation is to operate those candidates to examine
whether the trend of the accuracies based on the large
training-set vary with them. During the validation, as we
can get the control variables from those candidates, we can
operate the variables to acquire the optimal hyperparameter
configuration of MSDT that achieves the best accuracy.
At the train stage, in Experiment III, using the same large
training-set and test-set, we compare the performances of
MSDT based on the optimal hyperparameter configuration
with the performances of some baseline algorithms based
on their own optimal ones.

5.2 Datasets

For the three main experiments, we have selected a total
of 4 datasets. A summary of the datasets and their proper-
ties is shown in Table 3. All the datasets, further grouped
into five database archive files with a metadata descrip-
tion used in the corresponding experiments can be down-
loaded from our data repository over theHarvard Dataverse
repository at https://dataverse.harvard.edu/privateurl.xhtml?
token=a8b969ae-96da-483a-b0ef-21c6b5f29cfd. A train-
ing set and a test set were generated from the dataset of each
experiment. The “sequences” attribute of all the datasets
contain a set of item-sequences, represented as itineraries
of a tourist. And, each item of an itinerary is a scenic spot
or district, numbered from 1 to 5. Thus, the value of the
sequential-label attribute could be a sequence of 1 to 5.

The Tourist dataset is one of the two small real-life
datasets. It contains 100 offline buyers who registered their
profiles in any online websites first and then consumed

tour itinerary services in brick-and-mortar stores offline.
The item-sequences were surveyed and sampled from their
purchased itinerary services across five districts of Taiwan
during the year of 2014. The number of various sequential-
labels is 40. To reduce the bias caused by selecting the
attributes un-related with sequential-labels, we measure the
correlation between the predictor attributes (single-valued
and multi-valued) and sequential-label using sequential-
weighted-similarity, mentioned in Section 4.1.2. Sequential-
weighted-similarity is between 0 and 1. If it is more than
0.5, the correlation is correlative. Since all the attributes are
greater than 0.5, we choose all of them as the candidate
attributes for the MSDT algorithm.

The CDNow-RFM dataset is the other of the two
small real-life datasets. Its features and the sequences are
extracted and summarized from the CDNow sample dataset
[9] containing 2,357 online buyers about their purchasing
records from Jan. 1997 to June 1998, which can be accessed
at http://www.brucehardie.com/datasets/. The number of
various sequential-labels is 12 when the windows size = 2;
and it is 33 when the windows size = 3. After calculating
sequential-weighted-similarity of each attribute, three non-
correlative attributes are removed.

The msdt2-multi-valued dataset is a group of large
multi-valued and sequential-labeled datasets of tourists.
To learn classifiers from training instances with item-
sequences collected within sliding windows, we set the
sliding window sizes, α = 3..5 for three classification
lifecycles. Therefore, the value of the “sequences” attribute
is a set of item-sequences with lengths from 3 to 5,
which correspond three most recent sliding windows
respectively with the incrementally-added sizes. We thus
have three large datasets of 3-sequence, 4-sequence and 5-
sequence. The item-sequences of each record are generated
by the combination of the five functions, which can be
accessed at our data repository over the Harvard Dataverse
repository mentioned above. Besides, the number of various
sequential-labels is 10 while α = 3; 13 while α = 4; and 10
while α = 5.

Likewise, the msdt2-single-valued dataset has three
large single-valued and sequential-labeled datasets with
α = 3..5. Since these baseline algorithms cannot handle
data with multi-valued features, we remove all the multi-
valued features of the large dataset in Experiment III.1.
Besides, we should further revise the five functions
mentioned in the msdt2-multi-valued dataset because the
multi-valued features constitute some of the conditions of
those functions. The revised functions can be accessed
at our data repository over the Harvard Dataverse
repository mentioned above. Moreover, the number of
various sequential-labels is 47 while α = 3; 243 while
α = 4; and 878 while α = 5.
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5.3 Design of experiments

In this section, we will describe the experimental method-
ology and the hyperparameters of each experiment respec-
tively. All the experiments were conducted on an Intel Core
i7-4700HQ cpu-2.40 GHz computer with 8 gigabytes of
main memory. All the algorithms, written in Java, were pro-
cessed according to the steps as shown in Algorithm 2 in
each experiment. Each of the results are compared in each
experiment by fixing four of the following five parameters:
size of training set = 90 for Experiment I.1, size of train-
ing set = 235 or 236 on the size of sliding window for
Experiment I.2, and size of training set = 10,000 for Exper-
iment II and Experiment III.2, minsup = 45%, mindiff
= 15%, minqty = 10 and ub = 6, in order to analyze
their influences. Both of Experiment II and III use 5,000
records as the test set. The values of the parameters for each
experiment are specified as follows: Size of training set is
increased from 6,000 to 14,000 in increments of 2,000 only
for Experiment II; minsup is increased from 35% to 55%
in increments of 5%; mindiff is increased from 5% to 25%
in increments of 5%; minqty is increased from 2 to 18 in
increments of 4 and ub is increased from 2 to 10 in incre-
ments of 2. Next, we describe the three experiments in detail
respectively as follows.

5.3.1 Experiment I

This experiment is designed to initially test the perfor-
mances of MSDT on the two small datasets based on all
the reasonable configurations of the hyperparameters; next,
we select a baseline dataset from the two datasets; finally,
through examining the performances of MSDT on the base-
line dataset by controlling one specific parameter and fixing
the other parameters, we could get some control variable
candidates for Experiment II. As both the datasets are small,
this may result in bias in the estimate. Thus, we adopt
10-fold cross-validation, recommended by [19], to evaluate
MSDT on both the datasets in two sub-experiments respec-
tively. As shown in Table 3, Experiment I.1 evaluates on

the Tourist dataset, and Experiment I.2 evaluates on the
CDNow-RFM dataset.

By the way, to initialize the user-specified parameters of
the classification lifecycle, we set the sliding windows size,
α = 5 for Experiment I.1, and α = 2..3 for Experiment I.2;
the maximal number of sliding windows, ω = 3, for both
of the experiments; and the maximum quantity of predicted
instances in a prediction duration, θ = 10 for Experiment
I.1, and θ = 235 if α = 2, θ = 236 if α = 3 for Experiment
I.2.

5.3.2 Experiment II

This experiment is designed to acquire the optimal
hyperparameters of MSDT. Besides using the same
hyperparameters from Experiment I, Step 1 evaluates
MSDT on the msdt2-multi-valued dataset with all the
other reasonable configuration of hyperparameters. Step
2 chooses the selecting measure for splitting attributes
by comparing the performances between MSDT based on
the two measures. Step 3 looks for a feasible size of
training-sets with different α to reduce the model under-
fitting problem occurred in Experiment I. Step 4 validates
whether MSDT on the large enough training-sets based
on the control variable candidates from Experiment I
really reduce the problem. Otherwise, go back to Step
3. Step 5 finally gets the control variables from those
candidates and operates those variables to acquire the
optimal hyperparameters of MSDT.

By the way, to initialize the user-specified parameters of
the classification lifecycle, we set the initial sliding window
size, α = 3; the maximal number of sliding windows,
ω = 3; and the maximum quantity of predicted instances in
a prediction duration, θ = 5, 000.

5.3.3 Experiment III

To check the superiority of MSDT, we found some well-
known multi-labeled classification methods as baseline
methods to compare with MSDT. As there are two types of

Table 3 A summary of the datasets and their properties

Dataset N Input The The α Experiment

attr. sequences sequential-

attr. label attr.

Tourist 100 11 1 1 5 Exp. I.1

CDNow-RFM 2,357 7 1 1 2..3 Exp. I.2

msdt2-multi- 20,000 9 1 1 3..5 Exp. II, Exp. III.1

valued

msdt2-single- 20,000 6 1 1 3..5 Exp. III.2

valued
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multi-labeled methods, mentioned in Section 2.2, we will
conduct this experiment in the following sub-experiments
respectively.

Experiment III.1 is to compare MSDT with the
multi-valued and multi-labeled methods, MMC, MMDT
and MMD+MMDT, on handling the same datasets as
Experiment II did. As MSDT and those baseline methods
have the same hyperparameter variables, we can acquire
their respective optimal accuracies by the same way as
Experiment II did. Besides, to imitate MMD+MMDT, we
plan to check whether combining a discretization method
with MSDT could improve the accuracy of MSDT. After
knowing the combination of MMD with MSDT is not
feasible, we combine MSDT with the other well-known
heuristic multi-intervals discretization method (namely
MID here) by [10] instead. Therefore, we will compare the
performances of MSDT with MID+MSDT.

Experiment III.2 is to compare MSDT with the following
single-valued and multi-labeled methods including: (a)
Algorithm adaptation approaches: CART-ML, ExtraTree-
ML, RandomForest-ML, ExtraTrees-ML, ML-KNN [30,
43], MLTSVM [6] and iSOUP-Tree [20]. (b) The methods
of deep neural network (DNN) with multi-layer perceptron
(MLP): The Scikit-learn Python package has implemented
the MLPClassifier method (namely DNN-MLP-ML here)
[30], which extends DNN with MLP [26]. (c) Problem
transformation approaches: RAkEL [37], CDT [27] and
MajorityVotingClassifier (namely MVoting here) [33, 34].
In Experiment III.2, MSDT is conducted by the same way
as Experiment III.1 did except different datasets handled by
both of the experiments.

5.4 The evaluationmeasures

[16] stated that classification and prediction methods can be
compared and evaluated according to six criteria: predictive
accuracy, speed, robustness, scalability, interpretability
and goodness of rules. This paper focuses on predictive
accuracy (represented as accuracy), speed of growing a
tree (represented as the execution time) and the number
of rules. To evaluate the accuracy of the prediction for a
test-set, the accuracy of that for each test instance must be
determined first. Suppose each instance has a pair of Li and
Lj , where Li is the predicted sequential-label, and Lj is
the actual sequential-label. It is not appropriate to assign an
accuracy of 1 or 0 if Li and Lj are similar but not totally
the same or different. Therefore, we use the Jaro-Winkler
metric [17, 39] to measure the similarity between Li and
Lj to determine the accuracy. The predict-data algorithm as
mentioned above can predict the result of each instance to
be multiple sequential-labels as well as a single sequential-
label. The accuracy of the former, namely AccuracyF, is
calculated by averaging all the accuracies of the predicted

sequential-labels, each of which is measured with the actual
sequential-label of the instance by the Jaro-Winkler metric.
The accuracy of the latter, namely AccuracyL, is measured
between the pair of Li and Lj of the instance by the Jaro-
Winkler metric. Finally, it calculates the average accuracy
for all of the test instances to determine the accuracy of the
test set.

6 Experimental results and discussion

We will describe the results of the three experiments
according to the pretraining stage in Section 6.1, the
formal training stage in Section 6.2 and the discussion in
Section 6.3 respectively.

6.1 Results in the pretraining stage

6.1.1 Examination on different sizes of training set

We examine whether the performances of MSDT vary with
the sizes of training set. Table 4 shows that the time will
increase and the number of rules has an ascending tendency
as the size of the set increases. And, both of AccuracyF and
AccuracyL have ascending tendencies, which increase first
and then remain steady as the size increases. However, we
should not go too far in this direction. Otherwise, when the
size is increased 2,000 or 4,000 from 10,000, we can see
the number of rules is 1.7 times of the latter; but all the
accuracies increase first decline then. Besides, we should
consider the error rate of accuracy. It is a non-coverage
rate of rules in the test-set. It means the percentage of
test data in the test-set are not covered and predicted by
the rules. Notice that when the size of the training set
is 90, the accuracies and the number of rules are much
lower than the other training sets with larger size, and the
error rates of accuracy are higher than those with larger
size. This situation is known as model under-fitting. As
the number of rules increases, the tree will have higher
accuracies, therefore, this reduces the model under-fitting.
As the accuracies remain high enough and steady during the
size from 6,000 to 14,000, the training-set with size 10,000
has the lowest error rate of accuracy. Therefore, we choose
the benchmarking training set with size = 10,000 for further
comparisons.

6.1.2 Examination on data behavior between the datasets

Wewill describe the examination in the following three steps.

First. Select the baseline small dataset We review the
results of Experiment I as shown in Table 5. It shows
that the MSDT algorithm with selecting measures of
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Table 4 The performances of MSDT vary with the sizes of training sets using the parameters, minsup = 45%, mindiff = 15%, minqty = 10, ub =
6 and α = 3..5

Training set size AccuracyF AccuracyL Time(ms.) Number of rules Error rate of

accuracy

90∗1 52.09% 50.25% 224 29.3 27.00%

90∗2 64.38% 58.81% 120 23.7 10.19%∗3

1,000 67.36% 66.88% 1,235 112.3 8.72%

4,000 67.66% 67.02% 12,916 445.0 5.69%

6,000 68.33% 67.94% 27,576 558.0 5.57%

8,000 68.16% 67.61% 43,544 677.3 4.46%

10,000 68.15% 67.59% 60,999 667.3 2.71%

12,000 68.21% 67.82% 149,876 1,126.0 4.62%

14,000 67.96% 67.63% 182,654 1,129.3 3.91%

(1) The training set size, 90, is sampling from the small dataset, Tourist. (2) The training set size, 90, is sampling from the large dataset. (3) Error
rate of accuracy = average number of null-labeled records / size of test set = 509.3 / 5,000 = 10.19%

attribute, datasets, whether the dataset include non-
correlative attributes and the four experimenting parameters
produce different accuracies, time, number of rules and
error rate of accuracies. In Table 5, you can see all these
results except MSDT based on sequentialGainRatio han-
dling the CDNow-RFM dataset with correlative attribute
because it has failed to build a classifier.

Table 5 shows that all the average accuracies of MSDT
handling CDNow-RFM are better than those of MSDT
handling Tourist; however, the error rate of accuracies
of the former are all above 70% and worse than the

latter. During predicting, this results in many records
of all the test-sets of CDNow-RFM being null values.
Therefore, we take the Tourist dataset as the only baseline
small dataset (hereinafter referred to as the small dataset),
with which for the following Experiment II and III
to compare. Furthermore, based on the Tourist dataset,
Table 5 shows that the average accuracy of MSDT based
on sequentialGainRatio is better than that of MSDT
based on sequential-weighted-similarity. Therefore, we
only use the sequentialGainRatio measure rather than the
sequential-weighted-similarity measure in all the following

Table 5 Testing the performances of MSDT on two small datasets in Experiment I to get a baseline dataset for comparing with the large dataset
in Experiment II

Measure for Dataset Include non- Average Average Time(ms.) Number Error rate

selecting the correlative accuracy baseline of of

attribute attributes? accuracy rules accuracy

sequential Tourist No 51.42% 11.00% 62.5 29.0 27.89%

GainRatio

sequential- Tourist No 49.90% 11.00% 52.8 58.8 20.90%

weighted-

similarity

sequential- CDNow- No 72.38% 41.00% 220.6 68.4 72.64%

weighted- RFM

similarity

sequential CDNow- Yes 52.91% 41.00% 570.8 81.5 88.66%

GainRatio RFM

sequential- CDNow- Yes 64.85% 41.00% 1,705.4 227.6 73.96%

weighted- RFM

similarity

Each performance is calculated averagely on all the results of MSDT by fixing three of the following four parameters: minsup = 45%, mindiff =
15%, minqty = 10 and ub = 6, under their ranges: minsup = {35%..55% in increments of 5%}, mindiff = {5%..25% in increments of 5%}, minqty
={2..18 in increments of 4}, and ub = {2..10 in increments of 2}
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analyses of the experimental results. This has explained the
mention in Section 4.1.2. Besides, Table 5 shows that the
average accuracy of all the experimental results are better
than all their average baseline accuracies. Here, we define
that the baseline accuracy means how often we would
be correct if we always predict the majority class, the
so-called accuracy paradox [45].

Second. Select the control variable candidates Table 6
shows the performances vary with the four parameters on
both of the small dataset and the large dataset. We have
found two control variable candidates, i.e. hyperparameters,
mindiff and minsup, of MSDT, while examining their data
behavior. To get a more detailed understanding, we explain
them with Fig. 3 as follows.

As for the candidate, mindiff, Fig. 3a shows that
both of the time of the two datasets will increase as
mindiff increases; Fig. 3b shows that both of the number of
rules of the two datasets will also increase as mindiff
increases. However, Fig. 3c shows that both AccuracyF and
AccuracyL of the small dataset decrease first as mindiff
increases (named accuracy-reduction effect); and then, they
increase as mindiff increases and exceeds the turning
points, 15% for AccuracyF and 10% for AccuracyL (named
accuracy-raise effect). Different from the small dataset,
Fig. 3c shows that both of AccuracyF and AccuracyL
of the large dataset have ascending tendencies as mindiff
increases.

As for the candidate, minsup, Fig. 3d shows that both
of time of the two datasets have an ascending tendency as
minsup increases; Fig. 3e shows that both of the number
of rules of the two datasets have an ascending tendency
too. However, Fig. 3f shows that both AccuracyF and Accu-
racyL decrease first as minsup increases (the accuracy-
reduction effect); and then, they increase after the first
turning point, 40%, as minsup increases (the accuracy-
raise effect). Finally, they decrease as minsup increases
until reaching the second turning point, 50% (the accuracy-
reduction effect). Different from the small dataset, Fig. 3f
shows that both of AccuracyF and AccuracyL of the large
dataset have ascending tendencies as minsup increases.

Those accuracy-reduction effects of both the candidates
reflect a model under-fitting problem because all the
training-sets are small.

Third. Reducing the under-fitting problem We further
explain why MSDT handling the large enough training-
sets based on those control variable candidates can reduce
the under-fitting problem as follows. As shown in Fig. 3c
and f, while the size of training set is large enough, the
tree generates much more leaf nodes (rules) with more
data quantity and useful generalized information or higher
support than that of the small dataset during the increasing
of mindiff or minsup. As for mindiff, the large dataset one
increases 307.92 rules on average; but the small dataset
one increases only 1.03 rules on average. As for minsup,
the former increases 193.9 rules on average; but the latter

Table 6 The comparisons of
the performances between
MSDT on the small dataset and
MSDT on the large dataset
among different parameters

Average error rate of accuracy of the small dataset = 27.80%, and average error rate of accuracy of the large
dataset = 3.48%
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Fig. 3 Comparisons of data
behavior between the two sets
on the two control variables

(a) Time vs. mindiffon the two sets

(c) Accuracies vs. mindiff on the two sets

(e) The number of rules vs. minsup on the two sets

(b) The number of rules vs. mindiff on the two sets

(d) Time vs. minsup on the two sets

(f) Accuracies vs. minsup on the two sets

increases -0.1 rules on average. In other words, the former
increases much more rules than the latter to improve the
accuracy. Each leaf node (rule) can be applied to more
test data than that with lower mindiff or minsup. This

causes the accuracy-raise possibility of the former to be
higher than that of the latter; contrarily, this causes the
accuracy-reduction possibility of the former to be lower
than that of the latter. Thus, the higher accuracy-raise
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effect minuses the lower accuracy-reduction effect that
increases more accuracy than that of the small dataset at
each mindiff or minsup. As the effect of the reduction of the
accuracy is overridden, we can see that both of AccuracyF
and AccuracyL of the large dataset have the ascending
tendencies as mindiff or minsup increases.

6.1.3 Summary of the data behavior between the two
datasets

From the above experimental results, we can summarize
that the model under-fitting problem has been reduced if the
size of a training set is large enough. Additionally, the time
and the number of rules of the two datasets are consistent
approximately and positively correlated against mindiff and
minsup. We can say both the variables are control variables
while examining in the large datasets. Therefore, we can use
the performance of the large dataset to represent the final
performance of the MSDT algorithm. Finally, as shown in
Table 6, we can operate the control variable, mindiff, to
acquire best accuracy of MSDT handling the large dataset
based on the optimal hyperparameters, mindiff = 0.25,
minsup = 45%, minqty = 10 and ub = 6.

6.1.4 Comparisons of performance among the datasets
based on sequences in different sizes of the sliding window

In Table 7, we show the breakdowns of the accuracies, the
time and the numbers of rules of MSDT based on each
of the both selecting measures vary with window size, α.
Table 7(1) and (2) show that the overall average accuracy,
time and numbers of rules of MSDT based on sequen-
tialGainRatio are averagely better than those of MSDT
based on sequential-weighted-similarity. This has explained
the mention in Section 4.1.2. They also show that all the accu-
racies are all better than the baseline accuracies (defined in
Section 6.1.2) of their corresponding α from 3 to 5.

To examine whether α is an influence factor to
the accuracy, we use Pearson correlation coefficient
(represented as ρ) to evaluate the correlation between all
the values of α and the accuracies in both of Table 7(1) and
(2). As we calculate that ρ = −0.031668, we can conclude
that the sliding window size has no correlation with the
accuracy during the three classification lifecycles, of which
sliding windows are the most recent with incrementally-
added sizes. Furthermore, both of Table 7(1) and (2) show
that α is not an influence factor to the execution time and
the numbers of rules either.

6.2 Results in the formal training stage

The results of Exp. III are presented in Table 8. We
compare the performances between MSDT and the baseline

algorithms. Table 8(1) and (2) show the performances
of all the algorithms based on their respective optimal
hyperparameter configurations in Experiment III.1 and
Experiment III.2 respectively. Some results are worth
being highly noticed. First, both the MSDT experiments
perform better accuracies than all the baseline algorithms.
Second, in Table 8(2), we note that MSDT outperforms
all the three deep learning multi-label algorithms in
accuracy. Third, in Table 8(1), MID+MSDT has better
accuracy than all the baseline algorithms. However, MSDT
still has better accuracies than MID+MSDT. The latter
declines the accuracies because the discretization metric
of the discretization method, MID, can only measure the
strength of dependence between intervals of each attribute
and single-labels rather than sequential-labels; so that it
considers each sequential-label as a single-label identity and
neglects the similarities among various sequential-labels.

Some of the other performance comparisons need further
discussions in order as follows.

First, the comparisons of the time: In Table 8(1), we
can see the average time of all the baseline algorithms are
shorter than both of MSDT and MID+MSDT. Meanwhile,
in Table 8(2), except the time of MLTSVM and RAkEL
are larger than MSDT, the other 11 baseline methods are
shorter than MSDT. However, both are not positive for
those methods because they save the training time without
spending any time to discover their sequential patterns from
sequential-labels at the cost of lower accuracies. Therefore,
we can say that the training time of MSDT is comparatively
moderate without sacrificing the accuracies.

Second, the comparisons of the number of rules: In
Table 8(1), we can see all the baseline algorithms generate
too few rules to predict at the cost of the lower accuracies.
They stop growing decision trees too early because they
consider lots of various sequential-labels as the same
multi-labels. For example, the multi-labeled methods would
treat “123”, “213” and “321” as the same. Meanwhile,
in Table 8(2), six of all the algorithms are decision
tree methods, including MSDT, CART-ML, ExtraTree-
ML, RandomForest-ML, ExtraTrees-ML and iSoup-tree. It
shows that CART-ML and ExtraTree-ML generate more
rules than MSDT, except iSoup-tree. Contrast to the tree
methods except MSDT, iSoup-tree spends more time to
build a tree, however, it grows a smaller tree, which
then generates too few rules to predict at the cost of the
lower accuracies. The reason is that it stops growing the
decision tree too early because they consider lots of various
sequential-labels as the same multi-labels. Furthermore,
we estimate the number of rules of both the ensemble
algorithms, ExtraTrees-ML and RandomForest-ML as
follows. ExtraTree-ML generated 1,268.7 rules through a
decision tree. And, ExtraTrees-ML grew a forest with 100
extra-trees, which thus generated roughly 126,870 rules.
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Table 7 Comparisons of the performances between MSDT based on the two measures among the three large datasets with sequences in different
sizes of the sliding window in Experiment II

The most AccuracyF AccuracyL Average Baseline Time Number Error rate

recent sliding accuracy accuracy (ms.) of of

window size rules accuracy

(1)

α = 3 64.86% 65.57% 65.22% 20.38% 97,513.9 646.7 6.16%

α = 4 71.83% 71.48% 71.66% 19.14% 57,832.8 675.8 3.45%

α = 5 66.03% 63.93% 64.98% 19.14% 60,312.8 794.1 3.46%

Average 67.57% 66.99% 67.29% 19.55% 71,886.5 705.5 4.36%

(2)

α = 3 64.76% 65.36% 65.06% 20.38% 120,925.8 1282.1 5.59%

α = 4 71.35% 70.34% 70.85% 19.14% 76,981.6 1047.1 2.63%

α = 5 65.03% 62.95% 63.99% 19.14% 65,902.8 1328.0 3.18%

Average 67.05% 66.22% 66.63% 19.55% 87,936.7 1219.1 3.80%

(1) The MSDT algorithm based on the sequentialGainRatio meaure. (2) The MSDT algorithm based on sequential-weighted-similarity measure

Table 8 Comparisons of the performances between MSDT and the baseline algorithms on the training set with size 10,000

Method Average Average time to Average number Average error rate

accuracy build model(ms) of rules of accuracy

(1)

MSDT 68.58% 149,021.0 1,368.7 5.35%

MID+MSDT 64.21% 279,283.7 4,692.7 6.05%

MMDT 57.89% 117.3 1.0 0%

MMC 58.35% 282.3 4.0 0%

MMD+MMDT 57.89% 748.0 4.0 0%

(2)

MSDT 67.29% 143,169.0 639.7 14.09%

CART-ML 56.60% 231.7 1,268.7 3.81%

ExtraTree-ML 56.60% 99.0 1,268.7 3.81%

RandomForest-ML 60.01% 6,861.7 n/a 6.53%

ExtraTrees-ML 59.88% 1,738.3 n/a 6.44%

ML-KNN 49.33% 14.7 n/a 2.32%

MLTSVM 49.86% 334,305.3 n/a 0.00%

iSOUP-Tree 59.01% 1,996.3 33.0 5.37%

DNN-MLP-ML-adam 61.60% 7,374.3 n/a 4.15%

DNN-MLP-ML-sgd 59.25% 19,167.0 n/a 1.08%

DNN-MLP-ML-lbfgs 61.22% 71,878.3 n/a 10.62%

RAkEL 58.53% 218,745.0 n/a 0.00%

CDT 57.92% 6,890.7 n/a 0.00%

MVoting 58.85% 18,441.3 n/a 0.06%

(1) All of MSDT, MID+MSDT and MMDT are conducted with α = 3..5 based on the optimal hyperparameters, minsup = 45%, mindiff =
25%, minqty = 10 and ub = 6; MMC is conducted with that based on the optimal hyperparameters, minsup = 55%, mindiff = 15%,
minqty = 10 and ub = 6; and MMD+MMDT is conducted with that based on the optimal hyperparameters, minsup = 50%, mindiff = 20%,
minqty = 6 and ub = 6. (2) All the above methods handle data preprocessed by the VMSP4MSDT algorithm
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Besides, both of ExtraTrees-ML and RandomForest-ML
grew several decision trees on various sub-samples of the
sample data-set. The sub-sample size in RandomForest-ML
is always the same as the data-set size while the samples are
drawn with replacement if the bootstrap samples were used.
As RandomForest-ML grew 100 decision trees, the same
reason as ExtraTrees-ML is also suitable for RandomForest-
ML. We found four of the baseline methods, CART-
ML, ExtraTree-ML, RandomForest-ML and ExtraTrees-
ML, prefer growing larger binary trees with the gini index
than MSDT does. Therefore, they generate more rules.
From the discussions mentioned above, we can say that
the number of rules of MSDT is comparatively moderate
without sacrificing the accuracies.

6.3 Discussion

All the results can be summarized as follows. First, we have
excluded the size of sliding window as an influence factor
to the accuracy, the time and the number of rules. Second,
we have acquired the two control variables, mindiff and
minsup, positively correlated with all the performances if
the size of a training set is large enough. And, we suggest
readers use the optimal parameters, mindiff = 25% and
minsup = 45%, as the default values while using MSDT
handling a large enough dataset. Third, no matter whether
the features of the datasets are single-valued or multi-
valued, MSDT outperforms all the baseline multi-label
classification algorithms in accuracy even if three of them
are deep learning multi-label algorithms. And, the time and
the number of rules of MSDT are comparatively moderate
without sacrificing the accuracies than all the baseline
methods. Fourth, MSDT has achieved the average accuracy
and the best accuracy: 67.29% and 73.36% respectively.
All these things make it clear that MSDT not only can
classify both of the large datasets, the multi-valued and
the single-valued, but also performs well in terms of the
accuracy.

7 Conclusions

This study starts with proposing a representative sequential
pattern, i.e. a personalized sequential pattern, as the
preference pattern of each non-cold-start user. This makes
sequential pattern mining possible to be user-centric. Given
some features of each user can cause one’s item-sequences,
we have shown that those features can also cause one’s
representative sequential pattern (denoted as a sequence-
label). This paper therefore has presented the MSDT
algorithm. It is to our knowledge the first algorithm that
can classify data whose class labels are sequential, and
some predictor attributes are multi-valued. And, the learned

classifier is then used to predict each cold-start user an
initial sequential-label (representative sequential pattern)
only based on one’s features. The rules generated can further
help businesses/scientists to interpret what factors cause
such behavior patterns of subjects. Finally, the predicted
representative sequential pattern of each cold-start user
is used to recommend one some initial matched item-
sequences.

While applying MSDT to the application like a study of
behavior of endangered or migration species, we suggest
to rename the types of cold-start users (i.e. the previously-
unseen, the rarely-doing or the rarely-buying) as the cold-
start species of the previously-untagged, the new-migrating
or rarely-migrating. As for future researches, combining the
discretization methods with MSDT still leaves a potential
improvement opportunity. MSDT is applicable to analyzing
the item-sequences which have an upper bound requirement
to constrain their maximal length using a user-specified
size-constrained sliding window during a time period. The
time complexity of MSDT has a potential improvement
opportunity when an application needs a larger sliding
window size. Besides, adapting and implementing our
algorithms in the big data platforms such as Spark or
Hadoop could address the problem about the real-time
processing of data streams.
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