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Abstract

Faced with a large amount of data and high-dimensional data information in a database, the existing exact nearest neighbor
retrieval methods cannot obtain ideal retrieval results within an acceptable retrieval time. Therefore, researchers have begun
to focus on approximate nearest neighbor retrieval. Recently, the hashing-based approximate nearest neighbor retrieval
method has attracted increasing attention because of its small storage space and high retrieval efficiency. The development
of neural networks has also promoted progress in hash learning. However, these methods are mostly supervised. In practical
applications, annotating large amounts of data is a very time-consuming and laborious task. Furthermore, efficiently using
a large amount of unlabeled data for hash learning is challenging. In this paper, we create a new autoencoder variant to
efficiently capture the features of high-dimensional data, and propose an unsupervised deep hashing method for large-scale
data retrieval, named as Autoencoder-based Unsupervised Clustering and Hashing (AUCH). By constructing a hashing layer
as a hidden layer of the autoencoder, hash learning is performed together with unsupervised clustering by minimizing the
overall loss. AUCH can unify unsupervised clustering and retrieval tasks into a single learning model. In addition, the method
can use a deep neural network to simultaneously learn feature representations, hashing functions and cluster assignments.
Experimental results on standard datasets indicate that AUCH achieves competitive results compared to state-of-the-art
models for retrieval and clustering tasks.
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1 Introduction

In the era of big data, content-based multimedia data retrie-
val has become increasingly difficult. Simultaneously, effi-
cient indexing and search algorithms are receiving increas-
ing attention [6, 8, 29, 37, 55, 58]. However, when the
amount of data is very large, the speed of exact nearest
neighbor searches will drop dramatically. To balance retrie-
val performance and computational cost, approximate near-
est neighbor (ANN) [1] approach has begun to gain consi-
derable attention. The representative ANN solutions include
two kinds of methods: tree-based [18] and hashing-based
methods [16, 34, 55]. From an application perspective, images
or texts can often be represented by high-dimensional
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features, such as SIFT-based bag-of-words features [35] and
deep features. It is well known that traditional tree-based
methods have high feature space dimensions, and in many
cases, their performance has been theoretically shown to be
comparable to that of linear scans [45]. Therefore, hashing-
based large-scale ANN search methods have become a focus
of research.

Hashing, which is a method of transforming high-
dimensional feature vectors into compact and informa-
tive binary codes using mapping functions, has achieved
remarkable success in quickly retrieving data [15, 19].
Recently, the rapid development in convolutional neural net-
works (CNNs) has contributed to significant progress in
ANN research [30-32, 50]. In particular, compared to super-
vised hashing methods, since unsupervised hashing meth-
ods do not require labeled training data, they have received
increasing attention, which has broadened their application
prospects. Stacked restricted Boltzmann machines (RBMs)
were first used to encode hash codes for unsupervised hash-
ing [31, 42]. However, the shortcomings of high complexity
and the need for pretraining make RBMs fundamentally
difficult to implement. More recently, many studies have
made remarkable achievements in hash learning using deep
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learning frameworks, especially generative adversarial net-
works [2, 36, 44, 55]. However, most of these methods can
perform hash learning only for retrieval tasks, which are
relatively simple. As we know, combining similar data can
greatly improve the efficiency of data retrieval, especially in
big data systems. Hence, our goal is to unify unsupervised
clustering and retrieval tasks into a single learning model
without degradation of performance.

In this paper, we propose a novel unsupervised deep
hashing method, named Autoencoder-based Unsupervised
Clustering and Hashing (AUCH). Specifically, we construct
the hashing function as a latent layer with K units between
the encoder and decoder in an autoencoder. We first pretrain
a stacked denoising autoencoder and then perform feature
representation extraction, hashing learning and cluster assign-
ment simultaneously based on an overall loss function.
Finally, we remove the decoder and keep the encoder. By
feeding visual data into the network, we can obtain compact
hash codes that preserve the structural similarity between
input data. The main contributions are outlined as follows:

— AUCH is an unsupervised hashing approach that makes
full use of the characteristics of autoencoders, unifies
clustering and retrieval tasks in a single learning model,
and jointly learns feature representations, hashing func-
tions and clustering assignments from input data.

— For the retrieval and clustering tasks, we design an
overall loss function. By optimizing this loss function,
we can obtain efficient feature representations, compact
hash codes and outstanding clustering performance.

— Extensive experiments on general datasets, including
several image datasets, verify that AUCH can achieve
better performance than other unsupervised hashing and
clustering methods.

2 Related work
2.1 Hash learning

Based on whether the process of hash learning focuses
on the data themselves, hashing methods can be divided
into data-independent hashing methods and data-dependent
hashing methods. At the same time, based on whether deep
learning is employed for hash learning, hashing methods
can be divided into traditional unsupervised hashing
methods and deep unsupervised hashing methods.

2.1.1 Data-Independent hashing
The seminal LSH method presented in [1] represents

groundbreaking work on locality-sensitive hashing; it maps
similar data to similar hash codes in Hamming space. LSH
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usually requires longer hash bits to achieve better retrieval
performance since it is a data-independent method. By
contrast, data-dependent hashing methods [6, 15] can learn
the distribution of the data themselves, and usually, shorter
hash codes are needed to achieve better performance. In
practice, data-dependent hashing is more valuable.

2.1.2 Data-Dependent hashing

For data-dependent hashing methods, several studies [16,
54] have been performed in a supervised manner, which
usually relies on label information. The process of hash
learning is guided by extracting the semantic information
of the labels, which can usually lead to good retrieval
performance. However, manually annotating data is a time-
consuming and labor-intensive task, which prevents these
methods from being widely used. To improve the utilization
of unlabeled data, the study of unsupervised hashing
methods is important.

2.1.3 Traditional unsupervised hashing methods

Most traditional unsupervised hashing methods usually con-
sist of two independent processes: feature learning and hash
learning. Representative unsupervised traditional hashing
methods include spectral hashing (SH) [49], anchor graph
hashing (AGH) [33], iterative quantization (ITQ) [15], and
stochastic generative hashing (SGH) [6]. In SH, spectral
analysis is first performed on the original high-dimensional
dataset, and the constraints are then relaxed to convert
the problem into a dimension reduction problem for the
Laplacian feature graph. SH introduces the concept of fea-
ture functions to address the problem of data outside the
training dataset. Inspired by SH, AGH addresses the same
optimization problem as SH but offers a novel process
for solving the objective function, breaking away from the
assumption that the data were sampled from a multidimen-
sional uniform distribution to obtain the prior hypothesis.
Using an approximate adjacency matrix instead of the adja-
cency matrix reduces the time complexity and gives the
method broader applicability. In ITQ, PCA-based dimen-
sion reduction is first performed on the dataset, and the
rotation matrix with the smallest quantization error is then
found to obtain the binary code of the feature vector corre-
sponding to the optimal rotation matrix. SGH is essentially
a generation method. It uses the principle of the mini-
mum description length to map data to compact hash codes
while retainings the structural similarity of the original data.
The learned hash codes can in turn, be used to regenerate
the input data. However, these methods have an obvious
weakness. They cannot learn hash codes and features at
the same time, which prevents their further development in
practice.
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2.1.4 Deep unsupervised hashing methods

Recently, the rapid development of deep neural networks
has led to significant developments in various areas, such
as computer vision and pattern recognition [59]. Deep
unsupervised hashing methods have also been proposed,
which adopt deep architectures to extract features and
perform hash mapping. Representative unsupervised deep
hashing methods include deep binary descriptors (DeepBit)
[32], semantic structure-based unsupervised deep hashing
(SSDH) [55], binary generative adversarial networks
(BGANSs) [44], deep hashing (DH) [36] and DeepQuan
[2]. DeepBit jointly performs feature learning and hash
learning, and the learned hash codes preserve the similarity
between the visual data. DH utilizes a deep neural network
to seek multiple hierarchical nonlinear transformations
to learn binary codes so that the nonlinear relationship
among the samples can be well exploited. SSDH is based
on the empirical study of deep feature statistics and the
construction of a semantic structure to guide hash learning.
In a BGAN, the input noise variable of a generative
adversarial network (GAN) is restricted to be binary, and
conditions are imposed on the features of each image. A
BGAN can learn to obtain a hash code for each image
and generate an image similar to the original image.
Moreover, the DeepQuan model is essentially a deep
autoencoder network, including an encoder to generate
efficient hash codes and a decoder to reconstruct visual
data.

2.2 Clustering algorithms

In recent years, the advent of the era of big data has led
to the rapid development of machine learning technology.
Cluster analysis, as a commonly used method in traditional
machine learning algorithms, is widely favored due to
its practicality, simplicity and efficiency. It has been
successfully applied in many fields [3, 13, 14, 24, 39, 43,
46, 52, 56, 57, 60], such as document clustering, market
segmentation, image segmentation, and feature learning.
Clustering is also an important concept in data mining,
where its core purpose is to find valuable information
hidden in data objects. Recently, multiview clustering and
subspace clustering methods have also undergone rapid
development. Representative methods include GBS-KO
[47], L3E-M2VC [61], and LRLER [9]. GBS-KO is based
on the clustering of multiview data and an extension of
the graph-based approach to multiview clustering. L3E-
M2VC is a new multitask multiview clustering algorithm
proposed to overcome certain limitations in real-world
applications. LRLER is a locally linear embedding low-rank
representation model proposed for the subspace clustering
of data that achieves superior performance.

3 Proposed AUCH method

Specifically, our goal is to design an unsupervised
hashing algorithm that exploits an autoencoder, which can
efficiently capture the features of high-dimensional data,
to obtain compact hash codes. First, let X = {x,-}lN: h
denote N items of visual data. For the hash codes to
preserve the structural similarity of the input data, we need
to learn a mapping function F : X — {—1, +1}JN,
This function maps visual data to their K-bit hash codes
B = {b;} € {—1,+1}**N which reflects the structural
similarity between the input data. Similar data are mapped
to the same or similar hash codes.

3.1 Autoencoder with a hashing layer

The architecture of AUCH is illustrated in Fig. 1. The
fundamental structure of AUCH is essentially a stacked
denoising autoencoder.

The denoising autoencoder is based on an autoencoder.
To prevent overfitting problems, noise is added to the
input data (in the input layer of the network), which
makes the learned autoencoder more robust. As a result,
the generalization ability of the model is enhanced. The
network consists of two parts: an encoder function th) =

E(x;), and a decoder function x;’ = D(h;H)) that produces
a reconstruction. The denoising autoencoder minimizes the
following objective function:

N
L=Y|x - DEG); e))

i=1

where X; represents the data x; after noise has been added
in a specific way.

The original autoencoder has eight fully connected
layers. The first four layers (F|_4) form the encoder and
the last four layers (Fs_g) form the decoder. The ReLU
function is used as the activation function for the network
because it largely solves the vanishing gradient problem of
the BP algorithm when optimizing deep neural networks.
To incorporate hash learning into the autoencoder, we add
a latent layer H (i.e., the hashing layer) with K units after
layer Fy (i.e., the last layer of the encoder) as illustrated in
Fig. 1. This latent layer is fully connected to F4 and uses
tanh units, meaning that the activation values are between -1
and 1.

3.2 Pretraining a stacked denoising autoencoder
Given a sample x;, by feeding it into the network, we can
obtain the output of F4, denoted by “;4) € R9, where

d is the number of neurons in Fs. Let WWH) ¢ RdIxK
denote the weights between Fy4 and the hashing layer, and
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Fig. T An overview of our proposed Autoencoder-Based Unsuper-
vised Clustering and Hashing (AUCH) method. AUCH performs hash
learning by means of an additional hashing layer with K units, which
is equivalent to hash mapping, between the encoder and decoder of
an autoencoder. By optimizing an objective function defined over the
clustering loss, reconstruction loss and quantization loss for the hash

let ) denote the bias of the hashing layer. Then, the
activation values of the units in H can be computed as
h;H) tanh(ai(4)W(H) + b)), where hEH) is a K-
dimensional vector and tanh(.) is the hyperbolic tangent
function, defined as tanh(z) = (e* — e™%)/(e* + e7%), with
z being a real value. The hash code generation function is
given by
b; = sgn(tanh(al.(4)W(H) + b)) )
where sgn(v) = —1if v < 0 and +1 otherwise; for a matrix
or vector, sgn(.) is applied in an elementwise manner.
Before clustering, we first pretrain a stacked denoising
autoencoder for efficient feature extraction. After pretrain-
ing, all input data are embedded into the hashing space by
the encoder mapping hlgH) E(x;). We then apply the

hEH)}lN: | to obtain C initial cluster

k-means algorithm to {
centers {;Lj}Jc.zl.

4 Overall loss

The dataset X consists of N samples, and each sample x; €
R¢ can be represented by an e-dimensional vector. There are
a total of C cluster centers, where the value of C is known
a priori. After the features of each x; are clustered, the
assigned cluster indices are represented by s; € {1, 2, ..., C}.
Let us define the encoder mapping E : x; — hEH) and the

H
E ) x;’, where x;" represents the

decoder mapping D : h
reconstruction of x;.
For the clustering and hashing tasks, we need to find a
good encoder mapping E to map the data X = {x,-}lN: |
to the hashing space {th)}fV= |- With regard to this, the
overall loss function consists of three parts, namely, a
clustering loss, a reconstruction loss and a quantization loss.
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codes, AUCH jointly learns feature representations, hashing functions
and clustering assignments from input data. The learned hash codes
can preserve the structural relationship of visual data and enable effi-
cient image retrieval. The discriminative features extracted can also
enable superior clustering performance

The reconstruction loss guarantees that the autoencoder
can efficiently learn representations of the data in an
unsupervised manner. The clustering loss mainly operates
on the hashing space to disperse the embedded points.
The quantization loss causes the outputs of the hashing
layer neurons to be close to either +1 or -1 to avoid the
introduction of unnecessary errors when these outputs are
quantized into binary codes. The loss function is defined as

3)

where L., L, and Ly, are the clustering loss, reconstruction
loss and hashing quantization loss, respectively, and y > O,
a > 0 and B > 0 determine the relative importance of the
clustering loss, reconstruction loss and quantization loss.

L=yL.+aL,+BLy

4.1 Clustering loss

The clustering loss is defined as

i

Le=KL(PIQ)=3_) pijlog *
- 1]
J

i

“

where KL is the KullbackLeibler divergence, which
measures the degree of matching between the two
probability distributions P and Q. The greater the
difference between these two distributions is, the larger the
K L divergence. We use Student’s ¢-distribution to measure
the distribution of soft labels, defined as Q. Student’s
t-distribution, proposed in [38], is used to measure the
similarity between an embedded hashing point hEH) and its
cluster center p ;. This similarity is expressed as

H 2\~!
(14w - w])

= (1 - f)

&)
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P is the target distribution generated by Q. p;; in (4) is
defined as

a7/ 4i
PICEIONT I
We can see that the target distribution P is generated by Q,

so we train the network in a self-training manner [40]. The
clustering loss was proposed in [52].

pij = (6)

4.2 Reconstruction loss

Following [17], after pretraining, we replace the stacked
denoising autoencoder with an undercomplete autoencoder
because the hashing space features of clean data are needed
to perform clustering, meaning that it is unnecessary to add
noise to the input data. Simultaneously, we must ensure that
the decoder is unaffected and apply the clustering loss to the
hashing space. In this way, the autoencoder can finally learn
the most significant features of the data. The reconstruction
loss is essentially the mean squared error (MSE):

N 2
L= |xi- pn™)| @

with h(H) E(x;), where E and D are the encoder and
decoder mappings, respectively.

4.3 Quantization loss

The hash codes need to preserve the similarity of the
original data. In addition, it is necessary to ensure that
the outputs of the hashing layer are close to +1 or -1 to
reduce the quantization loss when transforming the hashing
features into hash codes. Let h;fz)(k = 1,..., K) be the

k-th element of the output vector hlgH) from the hashing

layer. Because hl(llf) has already been activated by a tanh
function, it is a float value and within the range of [-1,
+1]. To make the output value as close as possible to the
quantized value +1 or -1 and reduce the error loss caused
by the quantization process, the quantization loss function
is expressed as follows:

1 N
x|

with k")

®)

= E(x;), where E is the encoder mapping.

5 Optimization

During the training process, there are three kinds of param-
eters that need to be updated: the autoencoder’s weights,
the cluster centers and the target distribution. Minibatch

stochastic gradient decent (SGD) and backpropagation are
used in the optimization of (3).

5.1 Updating the autoencoder’s weights
and cluster centers

First, the target distribution P needs to remain constant, and
the learning rate A and a mini batch with m samples are
given simultaneously. The cluster center w; is updated as
follows:

A OL,

mop;

Rj=HWj )

where u( is the gradient of L. with respect to the cluster
J

center p j, which can be computed as

L.
o —ZZ(HH”(H)_” H) (@ij — pij) ™ — )
J i=1

(10)

The gradient of L. with respect to the embedded hashing
point h( ) , denoted by ( 47> is computed as follows:

a

oL, Z(

o™~

—Mj H ) (pij _q:j)(h _’LJ)

(1)

The decoder’s weights are updated as follows:

wo—w Z oL, (12)
W’

i=1
The encoder’s weights are updated as follows:

m

A oL, L. oL,
W=W-—- — — 13
mg(”aw+“aw+ﬁaw> (13

5.2 Updating the target distribution

If we update the target distribution P in every iteration,
this may lead to instability during the training process. In
practice, we use all embedded hashing points to update P
every T iterations. See (5) and (6) for the update rules.
Once the target distribution P has been updated, the labels
assigned to x; will be updated accordingly as follows:

§; = argmax q;; (14)
J

where g;; is computed using (5). After two consecutive
updates of the target distribution, if the percentage change in
the label assignments for the image is less than a threshold
¢, we will terminate training.
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Fig.2 Generation of hash codes
for retrieval. After training, the
query image and the images in
the database are fed to the
network, and the corresponding
hash codes are obtained by
quantizing the output of the
hashing layer. For image
retrieval, we calculate the
Hamming distance between the
hash codes of the query image
and each image in the database
and then return the images with
the smallest Hamming distances

Latent layer (H) Hash code

§&® 006000\

as retrieval results

11-11...1-1-11

g

query image

5.3 Generating binary codes

Figure 2 shows how to obtain the hash code of an image
and use that hash code to retrieve similar images from a
database. After training the autoencoder, we remove the
decoder and keep the encoder. First, we send an image to

Algorithm 1 AUCH.

Input: Input data: X; Hashing bits: K; Number of clus-
ters: C; Target distribution update interval: 7'; Termi-
nation threshold: ¢; Maximum number of iterations:
MaxlIter.

Output: Autoencoder weights W and W’ ; Hash codes B;
Cluster centers u and labels s.

1: Initialize o , W’ and W as described in Section 3.2.
2: foriter € {0, 1, ..., MaxIter}do
3: ifiter%T == 0 then
4 Compute all embedded hashing points {th) =
fw @,
: Update P using (5), (6) and {hEH)}zN=1'

5
6: Save last label assignment:s,;g = s.
7: Compute new label assignments s via (14).
8 if sum(so1qa #5)/N < ¢ then
9: Terminate training.
10 end if
11: end if

12: Choose a batch of samples S € X.

13: Update p , W and W via (10), (12) and (13).

14: end for

15: Remove the decoder and generate binary codes B via

).

11-11..11-11
-111-1..11-1-1

1-111...1-1-1-1 1 “

database returned images

the network, obtain the output of the hashing layer, and
then quantize the output to obtain the hash code via (2).
By calculating the Hamming distance between the hash
codes of the query image and each data in the database,
we select images from the database with small Hamming
distances as the retrieval results. Our method is summarized
in Algorithm 1.

6 Experiments

To evaluate the performance of AUCH, we performed
several experiments involving image retrieval and clustering
tasks on multiple datasets.

6.1 Datasets

We compare our method with other unsupervised hashing
methods for the image retrieval task on MNIST [28] and
CIFAR-10 [26]. Furthermore, we compare the performance
of AUCH and other clustering methods for the clustering
task on the MNIST, CIFAR-10, USPS[23], STL-10 [5]
and Fashion-MNIST [51] datasets. Table 1 shows the des-
criptions of all datasets used.

Table 1 Dataset descriptions

Dataset #Samples #Classes #Dimensions
MNIST 70,000 10 1x28x28
USPS 9,298 10 1x16x16
CIFAR-10 60,000 10 3x32x32
STL-10 13,000 10 3x96x96
FASHION-10 70,000 10 1x28x%28
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Table 2 Optimal hyperparameters on different datasets

Coefficients y o B

MNIST 1072 1 10~*
CIFAR-10-GIST 1073 1 1073
USPS 10~! 1 102
STL-10 1073 1 10~*
FASHION-MNIST 1072 1 1073

6.2 Implementation details

Specifically, when performing experiments on the CIFAR-
10 dataset, we used the methods considered for comparison
to extract 512-D GIST [41] features of the raw images
as inputs for training. These methods include ITQ [15],
KMH [20], Spherical [22], SH [49], PCAH [48], LSH [7],
AGH [33], DH [12, 36], UH-BNN [10], DeepQuan [2],
and KNNH [21]. Let CIFAR-10-GIST denote the CIFAR-
10 dataset after feature extraction. Then, following [2], we
randomly selected 1,000 images (100 images per class) as
the query image set, and the remaining 59,000 images as the
training set.

The autoencoder is essentially composed of two fully
connected multilayer perceptrons (MLPs), i.e., an encoder
and a decoder. The dimensions of the encoder were d-
500-500-2000-10-/ for all datasets, where d and h are
the dimensions of the input layer and the hashing layer,
respectively. The decoder network is a mirror of the encoder.

For the input and output layers, we do not use an activation
function. The activation function used in the hashing layer
is the tanh activation function. The other layers are activated
with the nonlinear ReLU function. The autoencoder
pretraining settings were the same as those in [52]. After
pretraining, the batch size was set to 256 for all datasets.
The coefficients of the clustering loss, reconstruction loss
and hashing loss were set differently for different datasets.
We first set « = 1 and determined y and [ through a
grid search of {107,107, 1074, 1073, 1072, 107!, 1} by
comparing the retrieval performance. Table 2 shows the
values of y, o and B corresponding to the optimal retrieval
performance as determined by comparing the mean average
precision (mAP) on the different datasets. We divided each
dataset into three parts. The first part was the training
set used to train the model. The second part was used
to determine the optimal hyperparameters of the model
by calculating and comparing the mAPs of models with
different hyperparameters. The third part was the test set,
which was used to evaluate the performance of the model
for comparison with other algorithms. For the MNIST,
CIFAR-10-GIST and FASHION-MNIST datasets, we used
the Adam optimizer [25] with an initial learning rate of A =
0.001, 61 = 0.9, and 6, = 0.999. For the other datasets, we
use SGD with a learning rate of A = 0.1 and a momentum of
0 =0.99. The update intervals 7 were 140, 30, 100, 30, and
140 iterations for MNIST, USPS, CIFAR-10-GIST, STL-
10 and FASHION-MNIST, respectively. We used Python
and Keras [4] to write our code and ran the algorithm on a
machine with one GeForce RTX 2080 Ti GPU.

Table 3 Comparison of the average retrieval results (mAP score, Precision@N with N = 1000, and Hamming look-up results with a Hamming

radius of » = 2) on MNIST

Method Hamming ranking (mAP@All, %) Precision (%) @ sample = 1000 Precision (%) @ r =2
16 32 64 16 32 64 16 32

PCA-ITQ 41.18 43.82 45.37 66.39 74.04 77.42 65.73 73.14
KMH 32.12 33.29 35.78 60.43 67.19 72.65 61.88 68.85
Spherical 25.81 30.77 34.75 49.48 61.27 69.85 51.71 64.26
SH 26.64 25.72 24.10 56.29 64.29 61.98 57.52 65.31
PCAH 27.33 24.85 21.47 56.56 59.99 57.97 36.36 65.54
LSH 20.88 25.83 31.71 37.77 50.16 61.73 25.10 55.61
AGH 39.92 33.39 28.64 70.75 73.93 74.79 64.69 74.64
DH 43.14 44.97 46.74 67.89 74.72 78.63 66.10 73.29
UH-BNN 45.38 47.21 - - - - - -

DeepQuan 60.30 55.50 52.54 - - - - -

KNNH 47.33 53.25 56.03 67.95 75.89 79.04 71.82 69.08
ClusterGAN - 88.70 89.93 - 90.83 91.60 - -

AUCH 84.61 92.43 92.14 8591 93.67 93.91 79.92 94.12

The best performance results are displayed in boldface
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Table 4 Comparison of the average retrieval results (mAP score, Precision@N with N = 1000 and Hamming look-up results with a Hamming

radius of r = 2) on CIFAR-10-GIST

Method Hamming ranking (mAP@ 1000, %) Precision (%) @ sample = 1000 Precision (%) @ r =2
16 32 64 16 32 64 16 32

PCA-ITQ 15.67 16.20 16.64 22.64 25.30 27.90 22.60 14.99
KMH 13.59 13.93 14.46 20.28 21.97 22.80 22.08 5.72
Spherical 13.98 14.58 15.38 20.13 22.33 25.19 20.96 12.50
SH 12.55 12.42 12.56 18.83 19.72 20.16 18.52 20.60
PCAH 12.91 12.60 12.10 18.89 19.35 18.73 21.29 2.68
LSH 12.55 13.76 15.07 16.21 19.10 22.25 16.73 7.07
AGH 13.64 13.61 13.54 22.61 23.28 25.48 21.25 24.53
DH 16.17 16.62 16.96 23.79 26.00 27.70 23.33 15.77
UH-BNN 17.83 18.52 - - - - - -
DeepQuan 18.19 18.20 18.74 - - - - -
KNNH 17.32 18.76 19.54 22.52 25.48 27.08 23.36 15.05
AUCH 25.65 28.53 27.54 24.49 27.24 25.88 26.04 39.69

The best performance results are displayed in boldface
6.3 Image retrieval
6.3.1 Alternative models

To evaluate the effectiveness of AUCH for the image
retrieval task, we performed experiments on the MNIST
and CIFAR-10-GIST datasets and compared the retrieval
performance with that of several state-of-the-art unsuper-
vised hashing methods, including ITQ, KMH, Spherical,
SH, PCAH, LSH, AGH, DH, UH-BNN, DeepQuan, KNNH,
ClusterGAN, and UDHSCA [11]. Note that because 512-D
GIST features were not used for training in the ClusterGAN
paper, our experimental results on CIFAR-10-GIST are not
compared with those of ClusterGAN.

6.3.2 Evaluation metrics

To evaluate the retrieval performance of AUCH compared
to the other methods, we rely on three popular metrics used

to evaluate retrieval: the mean average precision (mAP)
, the precision for the top N samples and the Hamming
look-up result when the Hamming radius is set to r. The
mAP is actually the area enclosed by the PR curve and
the coordinate axis. The larger the value of the mAP is,
the better the overall performance of the hashing algorithm.
The second metric is calculated as the percentage of true
neighbors among the top N retrieved samples. The premise
of the last metric is that the precision of a failed search is
zero; this metric measures the precision for all points in the
buckets that fall within a Hamming radius of r = 2.

6.3.3 Performance comparison

Tables 3 and 4 show that our AUCH method significantly
outperforms the other state-of-the-art hashing methods
in general on the MNIST and CIFAR-10-GIST datasets,
except that when the number of hash bits is 64, the precision
for the top 1000 samples of AUCH is slightly lower than that

Precision
Precision

e
b

0.3

0.2

b

1.0
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Fig.3 Recall vs. precision curves on the MNIST dataset for unsupervised hashing methods at 16, 32 and 64 bits: a 16 bits. b 32 bits. ¢ 64 bits
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Table 5 Retrieval mAP@ 1000 results on MNIST. The notation XXX-
VGGEF is used to denote hashing methods built on top of the features
produced by the pretrained VGG-F network

Method 12 bits 24 bits 32 bits 48 bits
ITQ-VGGF 0.407 0.478 0.487 0.506
SH-VGGF 0.301 0.304 0.296 0.287
LSH-VGGF 0.176 0.191 0.220 0.305
ITQ 0.404 0.442 0.447 0.460
SH 0.270 0.278 0.260 0.254
LSH 0.162 0.236 0.222 0.276
UDHSCA 0.552 0.540 0.521 0.518
AUCH 0.741 0.911 0.934 0.947

The best performance results are displayed in boldface

of PCA-ITQ on the CIFAR-10-GIST dataset. In other cases,
whether the number of hash bits is 16, 32 or 64, AUCH is
superior to the other methods in terms of all three indicators.
Figure 3 shows the PR curve on the MNIST dataset for the
unsupervised hashing methods at 16, 32 and 64 bits. As seen
from this figure, AUCH is significantly better than the other
methods. It should be noted that for the MNIST dataset, we
computed the mAP value on the whole database, whereas
for the CIFAR-10-GIST dataset, the map was computed
only on the top 1000 returned samples (as done in [12]).
These two calculation methods are denoted by mAP@ALll
and mAP@1000, respectively.

In addition, to ensure the integrity and breadth of the
experiment, we further evaluated the retrieval performance
of AUCH on MNIST for different numbers of bits. Table 5
shows the retrieval mAP@1000 obtained with AUCH on
the MNIST dataset and compares it with those of other
state-of-the-art methods, including UDHSCA [11], ITQ,
SH, and LSH. The results of the compared methods were
taken from [11]. AUCH also significantly outperforms other
unsupervised hashing methods on these hash codes.

In short, we believe that because AUCH captures
efficient feature representations of the data, the results are
greatly improved.

6.4 Ablation study and parameter sensitivity
analysis

We also performed an ablation study to investigate the
effect of each component of the overall loss on the

retrieval task. We evaluated the retrieval performance across
yLe, yLe +aL,, yL.+BLy and y L, +aL, + BLj. We
changed the loss components one at a time, measuring the
difference in mAP@ 1000 on the CIFAR-10 dataset and in
mAP@AIl on the other datasets, with the number of hash
bits set to 32 (see Table 6). Note that y L. is required
during the training process, which guarantees that AUCH
can normally perform unsupervised clustering to guide
hash learning. When we keep only yL. or yL.+ BLp,
this means that after pretraining, we remove the decoder
and train only the encoder to minimize the loss. If oL,
participates in the training process, this means that we
retain the decoder after pretraining and train the entire
autoencoder.

From Table 6, the first observation is that all of
the terms contribute to improving the results. Moreover,
when we keep only y L. for training, AUCH can already
achieve reasonably satisfactory retrieval performance on
all five datasets. When we add BLj or «L,, the retrieval
performance is improved. oL, has a greater impact on the
mAP than BLj, does, especially on the MNIST dataset. This
shows that the clustering loss is the dominant part, and the
quantization loss or reconstruction loss can only provide
some improvement. In addition, L, can guide AUCH to
extract better features than L;,. AUCH achieves the best
retrieval performance on all datasets with the application of
all three partial losses.

Figure 4 shows the effects of varying the values of the
hyperparameters y and . The experiments were conducted
by varying one parameter at a time while keeping the others
fixed and setting « to 1. Note that the fixed hyperparameters
were set to their optimal values and the number of hash bits
was 32. To achieve competitive results, the settings for y
and [ are different on the different datasets. For example,
when we fix «, B and set the value of y to approximately
10-2, AUCH can achieve the best retrieval performance
on MNIST, while the optimal y is approximately 10~ on
USPS .

6.5 Image clustering
6.5.1 Alternative models

To evaluate the effectiveness of AUCH for the image
clustering task, we performed experiments on the MNIST,

Table 6 Ablation study results

in terms of the mean average Dateset MNIST CIFAR-10-GIST USPS STL-10 FASHION-10

precision (mAP, %) on

different datasets yL. 73.23 19.26 66.34 63.21 48.33
yL.+BLj 77.05 20.88 68.30 63.45 49.71
yLe+ oL, 91.74 26.85 70.26 64.65 51.61
yLe+aL, +BLy 92.43 28.53 71.41 64.72 52.24
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USPS, CIFAR-10, STL-10 and FASHION-MNIST datasets,
which are designed only for clustering, to compare the
clustering performance of AUCH with that of several state-
of-the-art unsupervised clustering methods, including K-
means [24], SC-Ncut [43], SC-LS [3], AC-PIC [60], SEC
[39], LDMGI [57], NMF-D [46], DEC [52], JULE [56],
DEPICT [14] and ClusterGAN.

6.5.2 Evaluation metrics

To evaluate the clustering performance of AUCH in compa-
rison to the other methods, we use two popular metrics for
clustering: the accuracy (ACC) and the normalized mutual
information (NMI). We need to find the best mapping
between the predicted clusters and the true labels to calcu-
late the ACC [27]. The NMI measures the similarity bet-
ween two data points with the same label. The lowest simi-
larity value is normalized to 0, and the highest is normalized
to 1 [53].

6.5.3 Performance comparison

Table 7 shows the clustering performance comparison
with the other clustering methods, all of which except
ClusterGAN are designed only for clustering, on the five
real datasets. From Table 7, we can see that AUCH is
superior to most other state-of-the-art clustering methods on
the MNIST, USPS and CIFAR-10 datasets in terms of the
ACC and NMI metrics. It is more straightforward to look
at the confusion matrix. Figure 5 presents the confusion
matrix of AUCH after clustering on MNIST with 32 bits. We
can also see that AUCH generally divides MNIST into 10
categories. Simultaneously, on the STL-10 and FASHION-
MNIST datasets, AUCH is obviously superior to the other
methods. Especially on the STL-10 dataset, AUCH shows
greatly improved clustering performance compared with the
other methods. In summary, this experiment demonstrates
that AUCH can extract discriminative features from images
and achieve superior clustering performance.

Table 7 Clustering performance comparison with other clustering methods, all of which except ClusterGAN are designed only for clustering, on

five real datasets

Method MNIST USPS CIFAR-10 STL-10 FASHION-10
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
K-means 0.500 0.534 0.450 0.460 0.102 0.239 0.209 0.284 0.512 0.474
SC-Ncut 0.411 0.327 0.675 0.314 - - - - 0.575 0.508
SC-LS 0.706 0.714 0.681 0.659 0.114 0.258 0.105 0.168 0.497 0.496
AC-PIC 0.017 0.115 0.840 0.855 0.118 0.264 0.235 0.329 - -
SEC 0.779 0.804 0.511 0.544 0.107 0.249 0.245 0.307 - -
LDMGI 0.802 0.842 0.563 0.580 0.109 0.253 0.260 0.331 — —
NMF-D 0.152 0.175 0.287 0.382 - - - - - -
DEC 0.816 0.844 0.586 0.619 0.267 0.312 0.284 0.359 0.546 0.518
JULE 0.913 0.964 0.913 0.950 0.194 0.275 0.204 0.288 0.608 0.563
DEPICT 0.917 0.965 0.927 0.964 0.274 0.326 0.303 0.371 0.392 0.392
ClusterGAN 0.921 0.964 0.931 0.970 0.323 0.412 0.335 0.423 - -
AUCH 0.909 0.960 0.787 0.775 0.188 0.318 0.709 0.734 0.634 0.617

The highest values of all metrics on the datasets are shown in bold

@ Springer



Autoencoder-based unsupervised clustering and hashing

503

Confusion matrix

o
6000
-
o
4500
m
T
o
[0}
Sin 3000
2
[(e)
= 1500
[o0]
(o)}
0

o 1 2 3 4 5 6 7 8 9

Clustering label

Fig. 5 Confusion matrix of the true labels and clustering labels on
MNIST

7 Conclusion

We have presented an unsupervised deep hashing method,
AUCH, that preserves the structural relationship between
visual data. AUCH performs hash learning by means of
an additional hashing layer, which is equivalent to hash
mapping, between the encoder and decoder of an autoen-
coder. By optimizing an objective function defined over the
clustering loss, reconstruction loss and quantization loss for
hash codes, AUCH jointly learns feature representations,
hashing functions and clustering assignments from input
data. Experimental results obtained on general datasets
show that AUCH achieves superior retrieval performance
and produces promising clustering results.
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