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Abstract
Moth-Flame Optimization (MFO) algorithm is a new population-based meta-heuristic algorithm for solving global
optimization problems. Flames generation and spiral search are two key components that affect the performance of MFO.
To improve the diversity of flames and the searching ability of moths, an improved Moth-Flame Optimization (IMFO)
algorithm is proposed. The main features of the IMFO are: the flames are generated by orthogonal opposition-based learning
(OOBL); the modified position updating mechanism of moths with linear search and mutation operator. To evaluate the
performance of IMFO, the IMFO algorithm is compared with other 20 algorithms on 23 benchmark functions and IEEE
(Institute of Electrical and Electronics Engineers) CEC (Congress on Evolutionary Computation) 2014 benchmark test
set. The comparative results show that the IMFO is effective and has good performance in terms of jumping out of local
optimum, balancing exploitation ability and exploration ability. Moreover, the IMFO is also used to solve three engineering
optimization problems, and it is compared with other well-known algorithms. The comparison results show that the IMFO
algorithm can improve the global search ability of MFO and effectively solve the practical engineering optimization
problems.

Keywords Moth-Flame optimization algorithm · Orthogonal experiment design · Opposition-based learning ·
Mutation operator · Engineering optimization problems

1 Introduction

Global optimization is important in various scientific prob-
lems and engineering applications. In some literatures,
traditional mathematical methods are used to solve global
optimization problems in various fields [1–3]. But they meet
great challenges in solving complex optimization problems,
such as multimodal, discontinuous and non-convex prob-
lems. Therefore, the meta-heuristic algorithms are proposed
by imitating biological evolution and insect/bird behaviors,
and applied to solve complex optimization problems.
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In recent decades, the population-based meta-heuristic
algorithms have been widely concerned by scholars, which
are simple and easy to apply in various fields. Some of
the population-based algorithms are proposed, for example,
Particle Swarm Optimization (PSO) [4], Bees Algorithm
(BA) [5], Artificial Bee Colony (ABC) [6] algorithm, Dif-
ferential Evolution (DE) [7], Krill Herd (KH) [8], Coyote
Optimization Algorithm (COA) [9], Bat Algorithm (BA)
[10],Bacterial Foraging Optimization (BFO) [11] algorithm,
Fruit Fly Optimization Algorithm (FOA) [12], Sine Cosine
Algorithm (SCA) [13], Grey Wolf Optimization (GWO)
[14], Flower Pollination Algorithm (FPA) [15], Spotted
Hyena Optimizer (SHO) [16], Barnacles Mating Optimizer
(BMO) [17], Poor and rich optimization algorithm(PRO)
[18], Multi-Verse Optimizer (MVO) [19], Whale Optimiza-
tion Algorithm (WOA) [20] and Moth-Flame Optimization
(MFO) [21] algorithm.

Among the above algorithms, Moth-Flame Optimization
algorithm has received special attention because MFO
algorithm has good search ability, which is proposed
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by Seyedali Mirjalili based on flight behavior of moths
in nature [21]. The MFO algorithm is implemented by
updating the position of moths and generating flames. MFO
has been widely used because of its simple and easy to use
software. For example, in [22], MFO was used to optimize
the parameters of least squares support vector machine
(LSSVM), and the MFO-LSSVM forecasting model was
established. In [23], MFO was utilized to determine the
control parameters of blade pitch controllers. In [24], MFO
was used to solve the vehicular ad hoc networks clustering
problem. In [25], MFOwas used to design the antenna array.
In [26], MFO was utilized to realize the optimal link cost
in wireless router network. In order to improve the control
ability of multiarea hybrid interconnected power system,
MFO was used to optimize its controller [27]. Puja Singh
and Shashi Prakash have used MFO for multiple optical
network units placement [28]. In [29], MFO was utilized
to address the optimal reactive power dispatch (ORPD)
problem.

To solve specific problems, researchers have developed
some improved MFO algorithms. For example, in [30], to
improve the global searching ability and convergence speed
of MFO, the differential evolution was used to generate
flames and the mechanism of flames guided moths was
modified. To increase the diversity of the population, the
levy flight strategy was integrated into MFO [31]. In [32],
an Enhanced Moth-Flame Optimization was proposed to
improve the performance of MFO in balancing exploitation
and exploration. In [33], Opposition-based Moth Flame
Optimization (OMFO) was proposed to solve the global
optimization problem. In [34], MFO was hybridized with
mutation strategy to solve the complex optimization tasks.
In [35], a chaotic local search and Gaussian mutation have
been introduced into MFO to optimize KELM. In [36], an
improved Moth Flame Optimization (IMFO) algorithm was
proposed to solve real-world optimization problems. In [37],
two spiral search mechanisms were proposed to improve the
search ability of MFO.

Although improved MFO algorithms proposed in the
above literature enhance the global convergence of MFO
algorithm to a certain extent, these enhanced MFO
algorithms still face the problem of falling into local
optimum in their results analysis. To further alleviate the
above problems and to improve MFO’s performance, in this
paper, an improved MFO algorithm (IMFO) is proposed.
The main contributions of this paper are summarized as
follows:

(1) The OOBL strategy is used to update the best and
worst flames in the iterative process, which can
generate effective flames to guide moths, so as to
enhance exploration ability of the MFO.

(2) A modified position updating mechanism of moths is
proposed by introducing linear search and mutation
operator. Linear search and spiral search are inte-
grated to improve convergence efficiency. Meanwhile,
Euclidean distance is used to select the search strat-
egy and mutation operators in the iterative process.
This mechanism can guarantee the diversity of popu-
lation under the condition of accelerating convergence
speed.

(3) The performance of the IMFO algorithm is evalu-
ated on 23 benchmark functions and IEEE CEC 2014
benchmark test set, which is compared with MFO,
LMFO, MFO3, CMFO, IMFO2020, COA, CMAES,
SSA, SCA, GSA, ABC, PSO, GWO,WOA, PSOGSA,
HCLPSO, MVO, HSCA, EWOA, IDA, SHO. Mean-
while, the IMFO is also used to solve three engineer-
ing optimization problems and the results are com-
pared with other well-known algorithms(such as SCA,
MMA and GCA).

The rest of the paper is organized as follows:
Section 2, introduces Moth-Flame Optimization algo-
rithm, Opposition-Based Learning (OBL) and Orthogonal
Experiment Design (OED). In Section 3, the improved
Moth-Flame Optimization algorithm is discussed in detail.
Section 4 uses the classical benchmark function and IEEE
CEC 2014 to estimate the performance of IMFO, and com-
pares with other algorithms. In Section 5, IMFO is used to
solve three engineering optimization problems. Section 6
presents the conclusions of this study.

2 Related works

2.1 Moth-flame optimization algorithm

MFO is a population-based optimization algorithm, which
is proposed by Seyedali Mirjalili based on flight behavior
of moths in nature [21]. In the search mechanism of
MFO, flames and moths can exchange information quickly,
and balance exploitation and exploration performance. The
following is a brief review of MFO.

The moths population is expressed as:

M =

⎡
⎢⎢⎢⎣

M1

M2
...

Mn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

m11 m12 . . . . . . m1d

m21 m22 . . . . . . m2d
...

...
...

...
...

mn1 mn2 . . . . . . mnd

⎤
⎥⎥⎥⎦ (1)

where the number of moths/flames is n, the vari-
ables(dimension) number of per moth individual is d .
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At the same time, the fitness values of moths is expressed
as:

OM =

⎡
⎢⎢⎢⎣

OM1

OM2
...

OMn

⎤
⎥⎥⎥⎦ (2)

where OMi means the fitness function value of the
corresponding moth Mi = [mi1, mi2, · · · , mid ] , i =
1, 2, · · · , n, the fitness function is determined according
to the actual situation. MFO initializes the population as
follows:

Mij = lbi + uj (ubi − lbi) (3)

where j = 1, 2, · · · , d; uj is a random constant between 0
and 1; ubi and lbi indicate the upper and lower bounds of
the i-th variables as follows:

ub = [ub1, ub2, . . . , ubn] (4)

lb = [lb1, lb2, . . . , lbn] (5)

where the values of ub and lb are determined by the actual
situation.

Correspondingly, the flames and their fitness values are
expressed as

F =

⎡
⎢⎢⎢⎣

F1

F2
...

Fn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f11 f12 . . . . . . f1d
f21 f22 . . . . . . f2d
...

...
...

...
...

fn1 fn2 . . . . . . fnd

⎤
⎥⎥⎥⎦ (6)

OF =

⎡
⎢⎢⎢⎣

OF1

OF2
...

OFn

⎤
⎥⎥⎥⎦ (7)

The logarithmic spiral is the main form of moths position
update in MFO, which is defined as follows:

Mi(l + 1) =
{

Di · ebt · cos(2πt) + Fi(l), i ≤ fno

Di · ebt · cos(2πt) + Ffno(l), i > fno
(8)

where l represents the current number of iterations; Mi(l +
1) means the ith moth in l + 1 iteration; b is a constant, and
the value here is 1; the value range of t is set to [r , 1], in
which r = −1 + l ∗ (−1/L), the moth can converge to any
point around the flame by changing t ; L is the maximum
number of iterations; Di represents the distance between the
i-th moth and the flame corresponding to the moth. Di can
be calculated as follows:

Di =
{ |Fi − Mi |, i ≤ fno

|Ffno − Mi |, i > fno
(9)

where fno denotes the number of adaptive flames and is
calculated:

fno = round(n − l

L
(n − 1)) (10)

where round denotes rounding in the nearest direction. This
mechanism of adaptive flame number, which can reduce the
number of flames adaptively during iteration, can balance
the exploration ability and development ability of the MFO.
The pseudo code of the MFO are given in Algorithm 1.

2.2 Opposition-based learning

OBL is to evaluate the current point and its reverse point at
the same time, and then select the best to use. See Definition
1 for the basic definition of OBL.

Definition 1 (Opposite number) [38] Let x ∈ [a, b] be a
real number. Its opposite, x̆, is defined as follow:

x̆ = a + b − x (11)

Extend Definition 1 to high dimensional space.

Definition 2 (Opposite point in the d space) [38] Let x =
(x1, . . . , xd) be a point in d-dimensional space and xi ∈
[ai, bi] , i = 1, 2, . . . , d. The opposite of x is defined by
x̆ = (x̆1, . . . , x̆d ) as follow:

x̆i = ai + bi − xi (12)
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2.3 Orthogonal experiment design

OED is to select some representative points from the
comprehensive test for the test. It is widely used in
optimization algorithms to improve their performance, such
as GA [39], because of its characteristics of uniform
dispersion and strong comparability.

An orthogonal table LM(QK) for K factors at Q levels,
the number of combinations is M [39]. Table 1 is an
example of L8(27).

3 Improvedmoth-flame optimization
algorithm

In this section, the improved Moth-Flame Optimization
(IMFO) algorithm is described. The detailed introduction
and discussion of the IMFO are as follows:

3.1 Motivation of improvingMFO algorithm

Although, the MFO is effective in solving the problem with
unknown constrained search space, it sometimes faces the
lack of diversity. For MFO, the flames of the next iteration
are generated by selecting the best individuals from the
current iterative moths and flames. This method can realize
the rapid exchange of information among the flames and
the moths, but it may also lose the diversity of flames. It
is difficult for the moths to jump out of the local optimal
state if the flames fall into the local optimal state and are far
from the global optimal state. At the same time, the flames
adaptive guiding moths position updating mechanism can
adaptively reduce the numbers of flames, and improve
local search ability to a certain extent. Furthermore, the
exploration ability and exploitation ability cannot be well
balanced in the early and late stages of the iteration process.

Therefore, in order to improve the above problems in
MFO algorithm, IMFO algorithm is proposed. The strate-
gies in the IMFO are indicated in the following two sections.

Table 1 An orthogonal table L8(27)

M K

1 2 3 4 5 6 7

1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

3.2 Flames generation by OOBL strategy

In order to overcome the dimension degradation of the
reverse solution, the OOBL is proposed, which is made
up of OBL and OED. Assuming that Table 1 is used for
orthogonal design, the d-dimensional space defines two
levels for flame individual Fi = [fi1, fi2, · · · , fid ] and

its reverse individual F̆i =
[
f̆i1, f̆i2, · · · , f̆id

]
. Owing

to the fact that individual dimension d is generally larger
than factor K , orthogonal tables cannot be used directly.
According to literature [39], the individual dimension is
divided into K subvectors.⎧⎪⎪⎨
⎪⎪⎩

Fi1 = [
fi1, fi2, · · · , fi r1

]
Fi2 = [

fi r1+1, fi r1+2, · · · , fi r2

]
· · ·
Fi K = [

fi rK−1, fi rK , · · · , fi d

]
(13)

Fi = [
Fi1 Fi2 . . . FiK

]
(14)

where 1 ≤ r1 < r2 < · · · < rK − 1 ≤ d .
To improve the diversity of the population and enhance

the exploring ability of the MFO algorithm, the optimal
flame and the worst flame are selected to generate the
OOBL flames. Among them, the best flame is selected to
improve the local search ability, and the worst flame is
selected to improve the ability to jump out of the local
optimum. The OOBL flames FM is as follows:

Fbestnew = lbbest · ones(1, d)

+(ubbest · ones(1, d) − Fbest ) (15)

Fworstnew = lbworst · ones(1, d) + rand

·(ubworst · ones(1, d) − Fworst ) (16)

FM = [Fbestnew; Fworstnew] (17)

where Fbest and Fworst represent the optimal flame and
the worst flame; Fbestnew and Fworstnew represent OOBL
solutions of the optimal flame and the worst flame;
ones(1, d) represents a vector of 1 × d and its elements are
all 1; rand is a random number in [0,1], which is chosen to
increase randomness and the possibility of jumping out of
local optimum; ubbest , lbbest , ubworst and lbworst represent
the upper and lower bounds of the optimal flame and the
worst flame, respectively.

3.3Modified position updatingmechanism ofmoths

To further improve the convergence speed and the global
search ability of the MFO algorithm, modified position
updating mechanism of moths based on hybrid search
strategy and mutation operator is proposed. The modified
position updating mechanism of moths, which is introduced
into IMFO, is divided into two parts through Euclidean
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distance. When the moth is near the best flame, the spiral
and linear search mechanism is used to enhance the local
search ability; when the moth is far away from the best
flame, the mutation operator is used to enhance the global
search ability. The maximum Euclidean distance in search
space is as follows:

DE =
√√√√

d∑
j=1

(ubj − lbj )2 (18)

The Euclidean distance between i-th moth and optimal
flame in current iteration is as follows:

di =
√√√√

d∑
j=1

(Mij − Fbestj )2 (19)

The modified position updating mechanism of moths is
elaborated as follows:

(1) In the iterative search process, when di ≤ w · DE ,
linear search mechanism is introduced. The position of
moths is updated as follows:

Mi(l + 1) =
{

Fi − A · D′
i , i ≤ fno

Di · ebt · cos(2πt) + Ffno (l), i > fno
(20)

D′
i = |C · Fi − Mi |

Di = ∣∣Ffno − Mi

∣∣ (21)

where w is the weight coefficient and the value is
selected as 0.1 in this paper; A = 2a ·R−a; C = 2 ·R;
a = −1+ l ∗ (−1/L); R is a random constant in [0,1].
Different places around the flame can be reached with
respect to the current position by adjusting the value of
A and C.

(2) In the iterative search process, when di > w · DE ,
mutation operator is used to update moth position to
improve the diversity of the population. The mutation
operator is defined as [40]

Mi(l + 1) = Mg1(l) + Rm ⊗ (
Mg2(l) − Mg3(l)

)
(22)

where Mg1 , Mg2 and Mg3 are randomly selected from
M , g1, g2 and g3 are random value that is not equal
to i in [1,n]. Rm = [q1, q2, · · · , qd ] is a randomly
position vector, qj (j = 1, 2, · · · , d) is a uniformly
distributed random number in [0,1]; ⊗ represents
hadamard product.

Based on the above explanation, the pseudo code of
IMFO algorithm is shown in Algorithm 2 and the steps of
IMFO are illustrated as follows:

Step 1 Parameter initialization

Initialize the number of moths/flames n, the maximum
number of iterations L; the variables (dimension) number of
per moth d and parameters a, t, A, C, w.

Step 2 Initialize the positions of moths using (3).
Step 3 Calculate the number of flames using (10) and the

fitness function values of moths.
Step 4 Update flames

The moths of the current iteration, the flames of the
previous iteration, and the flames generated by orthogonal
opposition-based learning are sorted, and the best n

individuals are selected to form the flame population of the
current iteration.

Step 5 Update moths

Update the positions of moths using (20)–(22).

Step 6 Orthogonal opposition-based learning

In the search process, the best flame and the worst flame
of each iteration are chosen as the base flame, and the
orthogonal reverse flames are formed using (15)–(17).
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Step 7 Stop or continue the iterative process.

Repeat step 3 to step 6 until the number of iterations l

has reached the L or the desired fitness function value is
reached.

3.4 Computational complexity of IMFO

The computational complexity of the algorithm represents
the resources consumed by the algorithm. The compu-
tational complexity of the MFO algorithm depends on

Table 2 Classical benchmark functions

Function Dim Range Global optima

Unimodal benchmark problems

F1(x) = ∑d
i=1 x2

i 30 [–100,100] 0

F2(x) = ∑d
i=1 |xi | + ∏d

i=1 |xi | 30 [–10,10] 0

F3(x) = ∑d
i=1(

∑i
j=1 xj )

2 30 [–100,100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ d} 30 [–100,100] 0

F5(x) = ∑d−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [–30,30] 0

F6(x) = ∑d
i=1([xi + 5])2 30 [–100,100] 0

F7(x) = ∑d
i=1 i · x4

i + rand[0, 1) 30 [–1.28,1.28] 0

Multi-modal benchmark problems

F8(x) = ∑d
i=1 −xi sin

(√|xi |
)

30 [–500,500] −418.9829 × d

F9(x) = ∑d
i=1[x2

i − 10 cos(2xiπ) + 10] 30 [–5.12,5.12] 0

F10(x) = −20exp(−0.2
√

1
d

∑d
i=1 x2

i ) − exp[ 1
d

∑d
i=1 cos(2xiπ)] + 20 + e 30 [–32,32] 0

F11(x) = 1
4000

∑d
i=1 x2

i − ∏d
i=1 cos(

xi√
i
) + 1 30 [–600,600] 0

F12(x) = π
d
{10 sin(πy1) + ∑d−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1 + 1)] + (yd − 1)2} + ∑d
i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

30 [–50,50] 0

F13(x) = 0.1 ×{
sin2 (3πx1) + ∑d

i=1 (xi − 1)2
[
1 + sin2 (1 + 3πxi)

]

+ (xd − 1)2
[
1 + sin2 (2πxn)

]}+∑d
i=1 u (xi , 5, 100, 4)

30 [–50,50] 0

Fixed-dimension multimodal benchmark problems

F14(x) =
[
0.002 + ∑25

j=1
1

j+∑2
i=1(xi−xij )

6

]−1

2 [–65,65] 1

F15(x) = ∑11
i=1

[
ai − x1

(
b2i +bix2

)
b2i +bix3+x4

]2
4 [–5,5] 0.0003

F16(x) = 4x2
1 − 2.1x4

1 + 0.33x6
110 + x1x2 − 4x2

2 + 4x4
2 2 [-5,5] −1.0316

F17(x) = 10 + 10 ×
(
1 − 0.125

π

)
cos (x1) +

(
x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)2
2 [–5,5] 0.398

F18(x) =[
1 + (1 + x1 + x2)

2 (
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
× [

30 + (2x1 − 3x2)2 × (
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
2 [–2,2] 3

F19(x) = −∑4
i=1 ci exp

(
− ∑3

j=1 aij

(
xj − pij

)2) 3 [1,3] −3.86

F20(x) = −∑4
i=1 ci exp

(
− ∑6

j=1 aij

(
xj − pij

)2) 6 [0,1] −3.32

F21(x) = −∑5
i=1

[
(x − ai) (x − ai)

T + ci

]−1
4 [0,10] −10.1532

F22(x) = −∑7
i=1

[
(x − ai) (x − ai)

T + ci

]−1
4 [0,10] −10.4028

F23(x) = −∑10
i=1

[
(x − ai) (x − ai)

T + ci

]−1
4 [0,10] −10.5363
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population initialization, position updating, population indi-
vidual position evaluation and sorting mechanism. The
computational complexity of initial population is O(n×D);
the computational complexity of population position updat-
ing is O(L × n × D); the complexity of position evaluation
is O(L × n × D); and the sorting mechanism adopts the
fast sorting method, considering the worst case in the sort-
ing process, the computational complexity is O(L × n2).
The computational complexity of MFO is O(n × D) +
O(L × (n2 + 2n × D)). The orthogonal opposition-based
learning strategy is used to update the optimal and worst
flames, so the complexity of IMFO position updating is
O(L × (n + 14) × D), and the complexity of positions
evaluation is O(L × (n + 14) × D). Therefore, the final
computational complexity of IMFO is O(n × D) + O(L ×
(n2 + 2(n + 14) × D)). The computational complexity
of IMFO is the same as that of MFO and all of them
are O(n2).

4 Simulation study and discussion

Compared with MFO algorithm, the IMFO algorithm
proposed in this paper is more effective in exploring global
optimal solutions and exploiting the promising regions in
search space. In this section, to verify the performance

and advantages of IMFO algorithm, the 23 benchmark
functions and the CEC 2014 benchmark set have been
taken. All simulation experiments are conducted on a
Windows10 Professional system with Intel(R) Core(TM)
i3-6100 CPU(3.70GHz), 4.0 GB of RAM and language is
MATLAB R2014a.

4.1 Experimental comparisons on classical
benchmark set

The 23 classical benchmark problems, which are used to test
the performance of the IMFO, are divided to three parts: uni-
modal problems(F1-F7), multi-modal problems(F8-F13),
fixed dimension multi-modal problems(F14-F23). The
details described of the classical benchmark set is given
in Table 2. In addition, the performance of IMFO algo-
rithm is compared with other algorithms: MFO [21], LMFO
[31], MFO3 [37], CMFO [41], IMFO2020 [42], COA [9],
CMAES [43], SSA [40], SCA [13], GSA [44], ABC [6],
PSO [4], GWO [14], PSOGSA [45], HCLPSO [46], WOA
[20], HSCA [47], EWOA [48], IDA [49], SHO [16]. The
parameter settings of the 20 optimization algorithms are
given in Table 3 and each algorithm runs 30 times inde-
pendently on each test problem. The results of the 23
benchmark problems are given in Tables 4, 5, 6, 7, 8, 9, 10
and 11.

Table 3 Parameter settings

Method Year Population size(n) Max Iteration(L) Other

IMFO - 30 500 t ∈ [−1, 1], b = 1, R = rand

MFO [21] 2015 30 500 t ∈ [−1, 1], b = 1

LMFO [31] 2016 30 500 t ∈ [−1, 1], b = 1, β = 3/2

MFO3 [37] 2016 30 500 t ∈ [−1, 1], b = 1

CMFO [41] 2017 30 500 μ = 4, t ∈ [−1, 1], b = 1

IMFO2020 [42] 2020 30 500 wmax = 0.8, wmin = 0.3, t ∈ [−1, 1], b = 1

COA [9] 2018 30 500 Np = 6, Nc = 5

CMAES [43] 2001 30 500 σ = 1

SSA [40] 2017 30 500 c2 = rand, c3 = rand

SCA [13] 2016 30 500 a=2, r2 = 2 · π · rand, r3 = 2 · rand, r4 = rand

GSA [44] 2009 30 500 elitistcheck = 1, rpower = 1

ABC [6] 2007 30 500 limit = 100

PSO [4] 2002 30 500 c1 = 2, c2 = 2, Vmax = 0.5, Vmin = −0.5

GWO [14] 2014 30 500 r1 = rand, r2 = rand

WOA [20] 2016 30 500 r1 = rand, r2 = rand, p = rand

MVO [19] 2016 30 500 r1 = rand, r2 = rand, r3 = rand, r4 = rand, max = 1, min = 0.2

PSOGSA [45] 2010 30 500 elitistcheck = 1; rpower = 1;w = 0.3; c1 = 0.5; c2 = 1.5

HCLPSO [46] 2015 30 500 w = 0.99 − 0.2; c1 = 2.5 − 0.5; c2 = 0.5 − 2.5

HSCA [47] 2019 30 500 a=2, r2 = 2 · π · rand, r3 = 2 · rand, r4 = rand

EWOA [48] 2020 30 500 r1 = rand, r2 = rand, p = rand

IDA [49] 2020 30 500 r1 = rand, r2 = rand, beta = 1.5

SHO [16] 2017 30 500 r1 = rand, r2 = rand
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Table 4 Comparison results of various mechanisms on the classic benchmark functions

Mean Std Mean Std Mean Std Mean Std

Function IMFO MFO MLMFO OOBLMFO

F1 0.000E+00 0.000E+00 2.672E+03 7.072E+03 1.376E-69 2.918E-68 1.211E-05 5.553E-05

F2 0.000E+00 0.000E+00 3.878E+01 3.531E+01 2.717E-38 3.092E-37 2.740E-05 3.239E-05

F3 7.022E-24 5.477E-23 2.509E+04 2.271E+04 1.587E-24 2.755E-23 9.097E+03 1.583E+04

F4 0.000E+00 0.000E+00 7.266E+01 1.763E+01 3.295E-33 6.882E-32 1.641E+00 2.273E+00

F5 2.602E+01 4.736E-01 2.690E+06 5.662E+07 2.635E+01 1.203E+00 1.131E+03 5.342E+03

F6 6.052E-05 1.326E-04 3.360E+03 1.414E+04 6.785E-03 1.339E-01 5.071E-02 1.335E-01

F7 8.629E-05 1.494E-04 6.942E+00 2.865E+01 3.067E-04 8.300E-04 5.181E-02 4.017E-02

F8 -1.086E+04 1.829E+03 -8.244E+03 1.478E+03 -9.847E+03 2.513E+03 -9.209E+03 2.188E+03

F9 0.000E+00 0.000E+00 1.909E+02 8.186E+01 0.000E+00 0.000E+00 6.121E+01 5.828E+01

F10 8.882E-16 0.000E+00 1.951E+01 1.118E+00 2.191E-15 2.512E-15 4.329E-04 1.115E-03

F11 0.000E+00 0.000E+00 4.004E+01 1.272E+02 0.000E+00 0.000E+00 7.105E-02 8.989E-02

F12 1.084E-06 1.452E-06 1.150E+02 2.199E+03 2.775E-04 4.073E-03 4.107E-01 2.712E+00

F13 3.911E-02 8.368E-02 1.786E+05 3.789E+06 4.105E-02 1.076E-01 6.322E-01 4.583E+00

F14 1.395E+00 1.403E+00 2.976E+00 3.487E+00 4.107E+00 7.551E+00 2.117E+00 4.176E+00

F15 4.612E-04 2.650E-04 1.474E-03 5.339E-03 6.457E-04 2.903E-04 1.139E-03 6.448E-04

F16 -1.032E+00 5.282E-12 -1.032E+00 0.000E+00 -1.032E+00 4.786E-10 -1.032E+00 0.000E+00

F17 3.979E-01 2.759E-14 3.979E-01 0.000E+00 3.979E-01 1.423E-08 3.979E-01 0.000E+00

F18 3.000E+00 7.229E-15 3.000E+00 6.908E-15 3.000E+00 1.739E-04 3.000E+00 6.908E-15

F19 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00 -3.861E+00 2.588E-02 -3.863E+00 0.000E+00

F20 -3.294E+00 8.407E-02 -3.202E+00 1.304E-01 -3.251E+00 1.683E-01 -3.232E+00 1.664E-01

F21 -1.015E+01 0.000E+00 -4.880E+00 5.319E+00 -1.015E+01 7.851E-03 -5.055E+00 0.000E+00

F22 -1.040E+01 0.000E+00 -6.608E+00 6.057E+00 -9.926E+00 5.400E+00 -5.042E+00 9.640E-01

F23 -1.054E+01 0.000E+00 -6.011E+00 6.136E+00 -9.634E+00 5.738E+00 -5.128E+00 0.000E+00

Function LMFO MMFO OOBLLMFO OOBLMMFO

F1 2.674E+03 1.414E+04 2.672E+03 7.072E+03 1.116E-05 4.432E-05 1.594E-08 5.315E-08

F2 4.418E+01 4.239E+01 3.878E+01 3.531E+01 4.094E-05 1.048E-04 1.568E-07 4.973E-07

F3 2.791E+04 2.437E+04 2.509E+04 2.271E+04 1.351E+04 2.186E+04 4.623E+02 2.370E+03

F4 7.156E+01 1.718E+01 7.266E+01 1.763E+01 1.401E+00 2.595E+00 1.730E-01 4.853E-01

F5 5.365E+06 5.659E+07 2.690E+06 5.662E+07 1.100E+03 3.332E+03 1.397E+02 3.320E+02

F6 3.351E+03 1.428E+04 3.360E+03 1.414E+04 3.610E-02 7.343E-02 3.971E-04 2.447E-03

F7 6.330E+00 3.037E+01 6.942E+00 2.865E+01 5.182E-02 6.131E-02 2.985E-02 4.871E-02

F8 -8.186E+03 2.525E+03 -8.244E+03 1.478E+03 -9.043E+03 2.633E+03 -8.424E+03 2.402E+03

F9 1.777E+02 7.054E+01 1.909E+02 8.186E+01 5.727E+01 7.437E+01 3.188E-11 3.546E-10

F10 1.837E+01 5.583E+00 1.951E+01 1.118E+00 3.598E-04 5.024E-04 7.866E-06 3.810E-05

F11 4.304E+01 1.909E+02 4.004E+01 1.272E+02 5.478E-02 1.315E-01 4.541E-02 1.398E-01

F12 6.022E+03 1.174E+05 1.150E+02 2.199E+03 2.170E-01 1.126E+00 1.385E-02 7.331E-02

F13 1.042E+02 1.476E+03 1.786E+05 3.789E+06 7.717E-01 5.297E+00 7.725E-02 6.431E-01

F14 2.905E+00 7.581E+00 2.976E+00 3.487E+00 2.647E+00 3.487E+00 1.988E+00 3.487E+00

F15 2.124E-03 1.385E-02 1.474E-03 5.339E-03 1.104E-03 6.338E-04 1.261E-03 5.379E-03

F16 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00

F17 3.979E-01 0.000E+00 3.979E-01 0.000E+00 3.979E-01 0.000E+00 3.979E-01 0.000E+00

F18 3.000E+00 0.000E+00 3.000E+00 6.908E-15 3.000E+00 6.908E-15 3.000E+00 6.908E-15

F19 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00

F20 -3.204E+00 1.304E-01 -3.202E+00 1.304E-01 -3.186E+00 3.618E-01 -3.219E+00 8.811E-02

F21 -5.887E+00 5.319E+00 -4.880E+00 5.319E+00 -5.055E+00 0.000E+00 -6.245E+00 3.605E+00

F22 -6.769E+00 5.410E+00 -6.608E+00 6.057E+00 -4.951E+00 9.640E-01 -4.906E+00 9.640E-01

F23 -6.865E+00 6.265E+00 -6.011E+00 6.136E+00 -5.128E+00 0.000E+00 -6.759E+00 4.738E+00
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Table 5 Test results of eight variant algorithms

IMFO MFO MLMFO OOBLMFO

Rank 1 8 2 4

1/0/-1 ˜ 19/4/0 11/10/2 18/5/0

Ave 1.56522 6.73913 3.30435 4.26087

LMFO MMFO OOBLLMFO OOBLMMFO

Rank 6 7 5 3

1/0/-1 19/4/0 19/4/0 19/4/0 17/6/0

Ave 5.43478 5.73913 4.95652 4.00000

4.1.1 The influence of improvingmechanism onMFO

In this section, the different mechanisms of the proposed
method are simulated and analyzed. Among them, MLMFO
means to improve MFO by mutation operator and linear
update mechanism; OOBLMFO means to improve MFO
by orthogonal opposition-based learning; LMFO means to
improve MFO by linear update mechanism; MMFO means
to improveMFO bymutation operator; OOBLLMFOmeans
to improve MFO by orthogonal opposition-based learning
and linear update mechanism; OOBLMMFO represents the
improvement of MFO with orthogonal opposition-based
learning and mutation operator. In the simulation of this
section, the number of population, dimension and number
of iterations are 30, 30, 500 respectively, and each algorithm
runs 30 times independently on each test function. The
simulation results are given in Table 4.

As can be seen from Table 4, MFO variants are superior
to MFO algorithm on most test functions in Mean and
Std indexes. In order to intuitively analyze the convergence
performance of the algorithm, Fig. 1 shows the convergence

graphs of eight algorithms on six test functions. It can
be seen from the figure that the IMFO algorithm has
advantages in convergence accuracy and convergence speed.
In conclusion, the IMFO selected in this paper is the best of
the above variant algorithms.

In order to further analyze the performance of IMFO,
Wilson sign rank test [50] is used to detect IMFO and
other variants. The test results are given in Table 5 and are
indicated by ‘1/0 /-1’. It can be seen from Table 5 that, in
23 test functions, IMFO is superior to MFO in 19 functions
and has the same performance with MFO in 4 functions.
Accordingly, IMFO has good results compared with other
variants. At the same time, Friedman test [34] is used to sort
the above eight algorithms. It can be seen in Table 5 that the
average ranking (Ave) of IMFO is the best.

To sum up, IMFO shows the best performance among all
variants.

4.1.2 Analysis on classical benchmark set

To verify the performance of IMFO, the IMFO algorithm
and MFO algorithm are simulated and analyzed on 23
classical test problems in this subsection. The simulation
results show that in Tables 6–9, the Best, Worst, Mean and
Stds of each algorithm running independently for 30 times
are given. On F1-F13, this section selects three dimensions
(10, 30, and 50) to evaluate the performance of IMFO and
MFO. Other parameters in the simulation are selected as
shown in Table 3.

In the unimodal problems (F1-F7), there is only one
global optimal solution and no local optimal solution.
Consequently, F1-F7 are used to estimate the convergence
rate and exploitation ability of the IMFO. The simulation

Table 6 Comparisons of MFO and IMFO algorithms on unimodal and multi-modal problems with dimension 10

dim=10 MFO IMFO

Best Mean Worst Std Best Mean Worst Std

F1 1.066E-14 2.629E-13 1.512E-12 3.619E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F2 2.753E-10 5.950E-09 3.402E-08 8.598E-09 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F3 6.850E-04 6.667E+02 1.000E+04 2.171E+03 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F4 3.366E-03 1.517E+00 1.129E+01 2.573E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F5 6.386E+00 6.911E+00 7.687E+00 2.693E-01 5.423E+00 5.836E+00 6.832E+00 2.707E-01

F6 4.171E-15 4.407E-13 3.634E-12 7.887E-13 7.470E-18 2.114E-14 1.850E-13 4.839E-14

F7 1.418E-03 9.346E-03 2.019E-02 5.601E-03 3.050E-05 2.951E-04 1.779E-03 3.349E-04

F8 -4.071E+03 -3.253E+03 -2.545E+03 3.529E+02 -4.190E+03 -3.962E+03 -2.768E+03 3.544E+02

F9 5.970E+00 2.568E+01 5.771E+01 1.581E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F10 1.901E-08 1.409E-01 2.580E+00 5.499E-01 8.880E-16 8.880E-16 8.880E-16 1.004E-31

F11 9.857E-03 1.812E-01 6.028E-01 1.323E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F12 1.438E-16 1.037E-01 2.179E+00 4.032E-01 1.680E-18 2.347E-11 4.920E-10 9.332E-11

F13 3.421E-16 3.662E-03 1.099E-02 5.268E-03 1.200E-17 5.635E-08 1.690E-06 3.138E-07
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Table 7 Comparisons of MFO and IMFO algorithms on unimodal and multi-modal problems with dimension 30

dim=30 MFO IMFO

Best Mean Worst Std Best Mean Worst Std

F1 5.175E-01 1.339E+03 2.000E+04 4.341E+03 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F2 1.008E+01 3.873E+01 8.001E+01 1.941E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F3 3.157E+03 2.067E+04 4.581E+04 1.076E+04 0.000E+00 3.076E-19 8.980E-18 1.638E-18

F4 4.525E+01 6.940E+01 8.429E+01 9.495E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F5 2.118E+02 2.680E+06 7.995E+07 1.459E+07 2.576E+01 2.624E+01 2.691E+01 2.981E-01

F6 8.678E-01 2.678E+03 3.014E+04 6.420E+03 9.000E-06 1.778E-04 2.434E-03 4.371E-04

F7 6.659E-02 3.466E+00 2.443E+01 6.173E+00 4.020E-06 2.552E-04 1.232E-03 2.925E-04

F8 -1.013E+04 -8.671E+03 -6.713E+03 7.944E+02 -1.235E+04 -1.063E+04 -7.984E+03 1.123E+03

F9 1.005E+02 1.579E+02 2.592E+02 3.897E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F10 1.332E+00 1.481E+01 1.996E+01 7.111E+00 8.880E-16 8.880E-16 8.880E-16 1.003E-31

F11 5.942E-01 1.896E+01 9.107E+01 3.662E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F12 1.739E+00 6.400E+00 1.887E+01 4.383E+00 1.540E-07 1.248E-05 3.209E-04 5.828E-05

F13 1.887E+00 1.765E+03 5.029E+04 9.168E+03 3.600E-05 9.970E-02 6.017E-01 1.166E-01

Table 8 Comparisons of MFO and IMFO algorithms on unimodal and multi-modal problems with dimension 50

dim=50 MFO IMFO

Best Mean Worst Std Best Mean Worst Std

F1 2.538E+02 7.151E+03 3.367E+04 9.178E+03 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F2 2.594E+01 7.523E+01 1.136E+02 2.754E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F3 3.562E+04 7.029E+04 1.175E+05 2.315E+04 0.000E+00 7.505E-17 1.430E-15 2.910E-16

F4 7.266E+01 8.361E+01 9.307E+01 4.660E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F5 1.682E+05 2.017E+07 8.270E+07 3.413E+07 4.590E+01 4.657E+01 4.853E+01 7.558E-01

F6 3.379E+02 7.594E+03 3.072E+04 8.368E+03 4.050E-04 2.595E-03 1.178E-02 2.451E-03

F7 7.151E-01 2.553E+01 7.529E+01 2.369E+01 1.120E-05 2.807E-04 1.713E-03 3.302E-04

F8 -1.584E+04 -1.346E+04 -1.137E+04 1.267E+03 -2.073E+04 -1.723E+04 -1.071E+04 2.240E+03

F9 2.361E+02 3.199E+02 4.421E+02 4.903E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F10 1.648E+01 1.950E+01 1.997E+01 7.492E-01 8.880E-16 1.125E-15 4.440E-15 9.012E-16

F11 5.545E+00 1.003E+02 2.764E+02 8.185E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F12 7.920E+03 9.503E+06 2.560E+08 4.660E+07 7.150E-06 4.485E-05 9.330E-05 2.449E-05

F13 8.895E+04 4.453E+07 4.102E+08 1.241E+08 2.169E-02 4.414E-01 1.304E+00 3.030E-01

Table 9 Comparisons of MFO and IMFO algorithms on fixed dimension multi-modal problems

MFO IMFO

Best Mean Worst Std Best Mean Worst Std

F14 9.9800E-01 1.7572E+00 5.9288E+00 1.2894E+00 9.9800E-01 9.9802E-01 9.9830E-01 7.6115E-05

F15 6.9871E-04 1.6941E-03 2.0363E-02 3.5521E-03 3.0754E-04 5.8037E-04 1.2274E-03 2.0887E-04

F16 -1.03163 -1.03163 -1.03163 0 -1.03163 -1.03163 -1.03163 0

F17 0.39789 0.39789 0.39789 1.1292E-16 0.39789 0.39789 0.39789 1.12987E-16

F18 3.00000 3.00000 3.00000 0 3.00000 3.00000 3.00000 0

F19 -3.86278 -3.86278 -3.86278 0 -3.86278 -3.85971 -3.80033 0

F20 -3.32200 -3.23611 -3.13270 0.05858 -3.32200 -3.27041 -3.20130 0.06025

F21 -10.15320 -7.71967 -2.63047 3.12652 -10.15320 -10.15320 -10.15320 0

F22 -10.40294 -6.65437 -2.75193 3.41028 -10.40294 -10.40294 -10.40293 0

F23 -10.53641 -8.19712 -2.42173 3.41381 -10.53641 -10.53641 -10.53639 0
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Table 10 Comparisons of IMFO and other algorithms on classical benchmark functions

Mean Std Mean Std Mean Std Mean Std

Function IMFO MFO LMFO MFO3

F1 0.000E+00 0.000E+00 1.676E+03 3.787E+03 4.210E-92 2.222E-91 1.350E+03 3.452E+03

F2 0.000E+00 0.000E+00 2.579E+01 1.983E+01 1.972E-52 1.002E-51 3.314E+01 2.402E+01

F3 3.075E-19 1.638E-18 2.335E+04 1.307E+04 4.807E-90 1.949E-89 1.920E+04 1.051E+04

F4 0.000E+00 0.000E+00 6.888E+01 7.449E+00 1.338E-47 7.311E-47 6.726E+01 8.206E+00

F5 2.624E+01 2.981E-01 5.362E+06 2.030E+07 2.749E+01 3.493E-01 2.690E+06 1.459E+07

F6 1.778E-04 4.371E-04 1.027E+03 3.055E+03 2.388E+00 3.257E-01 2.664E+03 4.486E+03

F7 2.552E-04 2.925E-04 4.466E+00 6.597E+00 1.680E-04 1.510E-04 3.693E+00 4.838E+00

F8 -1.063E+04 1.123E+03 -8.602E+03 8.913E+02 -6.538E+03 8.959E+02 -8.702E+03 8.799E+02

F9 0.000E+00 0.000E+00 1.465E+02 2.923E+01 0.000E+00 0.000E+00 1.578E+02 4.111E+01

F10 8.882E-16 1.003E-31 1.669E+01 5.610E+00 8.882E-16 1.003E-31 1.681E+01 5.066E+00

F11 0.000E+00 0.000E+00 1.895E+01 4.350E+01 0.000E+00 0.000E+00 9.992E+00 2.744E+01

F12 1.248E-05 5.828E-05 8.534E+06 4.674E+07 1.864E-01 4.638E-02 1.011E+01 7.656E+00

F13 9.970E-02 1.166E-01 4.637E+01 1.035E+02 2.256E+00 3.144E-01 2.734E+07 1.040E+08

F14 9.980E-01 7.611E-05 1.558E+00 1.412E+00 4.723E+00 4.246E+00 1.985E+00 1.894E+00

F15 5.804E-04 2.116E-04 1.163E-03 5.207E-04 5.156E-04 3.030E-04 1.623E-03 3.558E-03

F16 -1.032E+00 4.791E-11 -1.032E+00 0.000E+00 -1.032E+00 2.049E-05 -1.032E+00 0.000E+00

F17 3.979E-01 6.861E-13 3.979E-01 1.129E-16 3.985E-01 5.548E-04 3.979E-01 1.129E-16

F18 3.000E+00 4.930E-15 3.000E+00 4.474E-15 3.000E+00 3.974E-04 3.000E+00 3.979E-15

F19 -3.860E+00 1.184E-02 -3.863E+00 2.710E-15 -3.858E+00 3.040E-03 -3.863E+00 1.439E-03

F20 -3.270E+00 6.000E-02 -3.208E+00 8.488E-02 -3.181E+00 4.887E-02 -3.222E+00 9.079E-02

F21 -1.015E+01 4.966E-12 -6.474E+00 3.398E+00 -4.945E+00 6.340E-02 -8.312E+00 2.938E+00

F22 -1.040E+01 1.271E-06 -8.143E+00 3.523E+00 -4.993E+00 4.701E-02 -6.833E+00 3.471E+00

F23 -1.027E+01 1.482E+00 -7.642E+00 3.683E+00 -5.075E+00 2.238E-01 -6.590E+00 3.825E+00

Function CMFO IMFO2020 COA CMAES

F1 7.262E+03 1.393E+04 1.221E-125 1.501E-152 3.344E+01 1.426E+01 5.821E-18 4.237E-18

F2 5.079E+01 1.413E+01 1.961E-66 6.083E-71 8.279E-01 4.312E-02 6.744E+00 6.906E-08

F3 3.503E+04 1.670E+04 2.652E-126 9.651E-147 7.469E+03 4.024E+03 5.133E+03 6.130E+02

F4 8.143E+01 5.593E+00 2.039E-61 1.769E-76 2.676E+01 3.540E+00 2.018E-04 4.400E-05

F5 2.200E+07 5.659E+07 2.841E+01 2.693E-02 4.932E+03 6.903E+02 5.881E+01 1.182E+02

F6 5.242E+03 7.080E+00 4.653E+00 1.950E-01 3.028E+01 2.944E+00 4.599E-18 1.525E-18

F7 1.126E+01 1.519E+01 5.436E-04 4.453E-05 1.387E-01 1.652E-02 1.385E-01 6.126E-02

F8 -8.612E+03 8.136E+02 -3.656E+03 3.476E+02 -1.210E+04 5.838E+01 -2.316E+03 1.294E+01

F9 2.268E+02 6.788E+01 0.000E+00 0.000E+00 2.420E+01 6.559E+00 9.263E+01 9.850E+00

F10 1.990E+01 2.554E-02 8.882E-16 0.000E+00 7.379E+00 8.154E-01 1.799E+01 3.470E-02

F11 5.500E+01 6.375E+01 0.000E+00 0.000E+00 1.336E+00 1.520E-01 4.315E-04 1.054E-08

F12 3.200E+07 1.165E+00 5.047E-01 2.184E-02 3.890E+00 3.221E+00 1.096E-04 1.272E-04

F13 2.051E+07 3.608E+02 2.596E+00 1.726E-01 2.901E+01 7.239E+00 1.210E-03 5.807E-05

F14 2.329E+00 2.092E+00 2.466E+00 2.054E-03 1.121E+00 0.000E+00 1.333E+01 2.656E+00

F15 2.999E-03 3.115E-04 4.068E-04 5.963E-05 1.031E-03 6.475E-04 5.587E-03 1.403E-02

F16 -1.032E+00 0.000E+00 -1.032E+00 3.093E-05 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00

F17 3.979E-01 0.000E+00 3.992E-01 3.202E-04 3.979E-01 0.000E+00 3.979E-01 0.000E+00

F18 3.000E+00 0.000E+00 3.000E+00 7.159E-05 3.000E+00 0.000E+00 5.700E+00 6.908E-15

F19 -3.863E+00 0.000E+00 -3.858E+00 2.824E-03 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00

F20 -3.209E+00 4.629E-02 -3.160E+00 6.776E-02 -3.316E+00 3.005E-12 -3.322E+00 0.000E+00

F21 -5.545E+00 1.715E+00 -5.714E+00 3.469E-01 -9.713E+00 7.161E-14 -4.795E+00 5.282E+00

F22 -5.896E+00 5.400E+00 -5.552E+00 2.930E-01 -1.040E+01 0.000E+00 -9.162E+00 0.000E+00

F23 -6.405E+00 4.562E-02 -5.785E+00 1.675E+00 -9.829E+00 0.000E+00 -9.355E+00 0.000E+00
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Table 10 (continued)

Mean Std Mean Std Mean Std Mean Std

Function SSA GSA ABC PSO

F1 1.514E-07 1.535E-07 6.572E-04 3.539E-03 7.045E-05 8.830E-05 5.684E-01 2.376E-01

F2 2.339E+00 1.551E+00 3.874E-02 1.322E-01 4.945E-03 2.254E-03 2.188E+00 9.217E-01

F3 1.192E+03 6.212E+02 9.716E+02 4.107E+02 1.956E+04 3.548E+03 1.729E+03 1.696E+03

F4 1.167E+01 4.122E+00 7.555E+00 2.252E+00 5.180E+01 6.728E+00 3.828E+00 1.299E+00

F5 1.659E+02 2.447E+02 6.928E+01 6.703E+01 5.876E+01 6.893E+01 1.364E+02 9.869E+01

F6 2.512E-07 4.885E-07 2.063E-02 1.111E-01 7.639E-05 1.143E-04 6.509E-01 3.331E-01

F7 1.854E-01 7.908E-02 8.577E-02 5.091E-02 3.349E-01 7.994E-02 6.563E-01 9.707E-02

F8 -7.732E+03 6.304E+02 -2.591E+03 4.473E+02 -1.145E+04 2.078E+02 -3.670E+02 2.302E+02

F9 5.161E+01 1.704E+01 3.071E+01 5.873E+00 6.659E+00 2.254E+00 4.234E+01 1.299E+01

F10 2.439E+00 5.718E-01 6.429E-02 2.401E-01 2.296E-01 1.954E-01 5.812E+00 1.195E+00

F11 1.463E-02 1.328E-02 3.009E+01 5.607E+00 2.462E-02 2.940E-02 2.837E+02 1.999E+01

F12 7.226E+00 4.081E+00 1.792E+00 1.145E+00 2.640E-05 6.900E-05 2.286E+00 1.176E+00

F13 1.813E+01 1.499E+01 9.444E+00 5.659E+00 3.600E-04 7.206E-04 1.574E+01 8.365E+00

F14 1.097E+00 3.033E-01 4.749E+00 3.372E+00 9.980E-01 3.390E-16 4.304E+02 3.455E+01

F15 1.541E-03 3.567E-03 4.980E-03 3.917E-03 9.025E-04 3.291E-04 5.740E-02 2.091E-01

F16 -1.032E+00 3.640E-14 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00 -1.024E+00 1.856E-02

F17 3.979E-01 2.023E-14 3.979E-01 1.130E-16 3.979E-01 1.130E-16 3.862E+00 3.574E+00

F18 3.000E+00 1.313E-13 3.000E+00 5.342E-15 3.002E+00 8.765E-03 3.000E+00 4.856E-12

F19 -3.863E+00 1.258E-11 -3.863E+00 2.712E-15 -3.863E+00 3.173E-15 -3.861E+00 2.857E-03

F20 -3.214E+00 5.007E-02 -3.322E+00 1.356E-15 -3.322E+00 2.332E-15 -2.598E+00 9.581E-01

F21 -7.219E+00 3.301E+00 -5.904E+00 3.665E+00 -1.015E+01 7.423E-03 -5.048E+00 3.095E+00

F22 -8.664E+00 2.983E+00 -9.570E+00 1.911E+00 -1.037E+01 1.852E-01 -6.391E+00 3.524E+00

F23 -8.478E+00 3.480E+00 -1.054E+01 9.039E-15 -1.048E+01 2.286E-01 -4.714E+00 3.133E+00

Function GWO SCA PSOGSA HCLPSO

F1 2.500E-27 6.265E-27 1.661E+01 3.372E+01 1.543E+03 7.562E+01 3.613E-02 5.768E-02

F2 9.922E-17 1.107E-16 1.222E-02 1.381E-02 2.122E+01 6.017E+00 4.727E-02 3.362E-02

F3 7.854E-06 1.537E-05 9.968E+03 5.242E+03 1.652E+04 3.695E+03 1.005E+03 7.876E+02

F4 7.444E-07 7.013E-07 3.572E+01 1.255E+01 6.355E+01 2.815E+01 4.903E+00 1.757E+00

F5 2.682E+01 6.338E-01 4.463E+04 1.004E+05 4.002E+06 3.810E+02 1.029E+02 1.122E+02

F6 8.010E-01 3.202E-01 1.972E+01 2.138E+01 2.270E+03 2.410E+01 3.767E-02 3.806E-02

F7 1.756E-03 1.058E-03 8.266E-02 1.111E-01 1.782E-01 1.071E-02 3.510E-02 1.682E-02

F8 -5.904E+03 8.329E+02 -3.764E+03 2.196E+02 -7.323E+03 1.315E+03 -8.420E+03 4.836E+02

F9 2.274E+00 3.055E+00 3.103E+01 3.016E+01 1.460E+02 6.121E+01 3.120E+01 2.007E+00

F10 9.644E-14 1.604E-14 1.325E+01 8.911E+00 1.625E+01 4.304E+00 3.178E-01 9.229E-01

F11 4.220E-03 7.450E-03 1.380E+00 1.797E+00 3.529E+01 9.347E-02 7.769E-02 5.345E-02

F12 5.137E-02 2.518E-02 2.608E+04 8.763E+04 1.784E+01 3.806E+00 1.505E-01 2.802E-03

F13 6.838E-01 2.987E-01 1.177E+05 4.653E+05 1.025E+07 5.426E+01 3.550E-01 2.023E-01

F14 3.503E+00 3.495E+00 1.926E+00 1.004E+00 6.035E+00 0.000E+00 9.980E-01 0.000E+00

F15 5.910E-03 9.080E-03 1.080E-03 3.565E-04 5.532E-03 1.386E-02 5.740E-04 3.751E-05

F16 -1.032E+00 2.533E-08 -1.032E+00 7.243E-05 -1.032E+00 0.000E+00 -1.032E+00 0.000E+00

F17 3.979E-01 5.415E-07 3.992E-01 1.149E-03 3.979E-01 0.000E+00 3.979E-01 0.000E+00

F18 3.000E+00 9.036E-05 3.000E+00 1.594E-04 5.025E+00 0.000E+00 3.000E+00 0.000E+00

F19 -3.862E+00 1.620E-03 -3.854E+00 2.640E-03 -3.863E+00 0.000E+00 -3.863E+00 0.000E+00

F20 -3.261E+00 8.066E-02 -2.928E+00 2.926E-01 -3.268E+00 8.407E-02 -3.322E+00 3.282E-08

F21 -9.728E+00 1.608E+00 -2.504E+00 1.840E+00 -6.832E+00 3.573E+00 -1.015E+01 0.000E+00

F22 -9.771E+00 1.922E+00 -3.199E+00 1.727E+00 -5.337E+00 9.931E-01 -1.040E+01 0.000E+00

F23 -1.053E+01 9.259E-04 -4.268E+00 1.217E+00 -4.788E+00 5.466E+00 -1.054E+01 0.000E+00
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Table 10 (continued)

Mean Std Mean Std Mean Std Mean Std

Function WOA HSCA EWOA IDA

F1 1.620E-74 4.452E-76 1.129E-23 4.309E-26 3.401E-211 0.000E+00 4.986E-03 2.353E-05

F2 2.387E-49 6.612E-48 2.684E-15 2.613E-16 2.333E-143 8.601E-150 7.446E-02 1.006E-02

F3 4.291E+04 2.251E+04 2.097E+00 3.579E-02 1.006E+05 3.279E+04 1.428E+00 2.082E-01

F4 4.191E+01 4.264E+01 2.915E-01 2.837E-03 2.523E+01 2.766E+00 1.241E+01 4.429E+00

F5 2.785E+01 2.686E-01 2.713E+01 2.061E-02 4.547E-01 2.434E-01 4.364E+04 5.476E+04

F6 3.688E-01 2.569E-01 1.862E+00 9.990E-01 5.911E-02 1.418E-02 3.158E+02 1.806E+02

F7 3.671E-03 4.757E-04 3.339E-03 2.139E-03 1.616E-03 2.301E-03 2.951E-01 1.017E-01

F8 -1.018E+04 1.916E+03 -6.420E+03 3.042E+01 -1.257E+04 1.685E-02 -8.605E+03 1.953E+03

F9 0.000E+00 0.000E+00 7.260E+00 4.920E+00 2.842E-15 4.019E-14 5.583E+01 5.301E+01

F10 4.352E-15 5.024E-15 1.467E+01 1.430E+01 1.243E-15 0.000E+00 6.248E+00 5.422E-01

F11 5.715E-03 0.000E+00 5.856E-03 0.000E+00 2.539E-02 0.000E+00 3.366E+00 4.465E-01

F12 2.799E-02 2.469E-02 1.388E-01 5.282E-02 1.017E-02 4.521E-03 3.569E+01 1.550E+01

F13 5.834E-01 1.004E-02 1.557E+00 1.552E-01 6.321E-02 1.104E-01 5.342E+03 3.964E+02

F14 3.036E+00 1.569E-08 1.546E+00 3.704E-05 2.049E+00 1.181E-04 9.980E-01 0.000E+00

F15 8.088E-04 5.168E-04 6.157E-04 1.392E-05 3.180E-03 1.040E-03 8.930E-04 3.467E-05

F16 -1.032E+00 1.248E-10 -1.032E+00 4.288E-09 -1.032E+00 6.817E-07 -1.032E+00 0.000E+00

F17 3.979E-01 3.044E-06 3.979E-01 1.233E-06 4.018E-01 2.845E-07 3.979E-01 0.000E+00

F18 3.675E+00 2.749E-05 3.000E+00 5.336E-06 9.542E+00 2.732E-06 3.000E+00 6.908E-15

F19 -3.854E+00 1.618E-02 -3.857E+00 5.570E-03 -3.688E+00 4.161E-02 -3.862E+00 1.125E-05

F20 -3.241E+00 1.019E-01 -2.979E+00 8.263E-02 -2.879E+00 7.899E-01 -3.227E+00 1.449E-01

F21 -8.026E+00 5.273E+00 -6.804E+00 3.573E+00 -9.680E+00 2.659E-01 -9.002E+00 3.603E+00

F22 -7.356E+00 3.556E+00 -8.956E+00 8.884E-04 -9.486E+00 4.417E-01 -9.464E+00 2.396E-05

F23 -7.371E+00 4.222E-03 -8.484E+00 3.822E+00 -9.959E+00 2.524E-01 -9.581E+00 3.039E-07

results of IMFO algorithm and MFO algorithm are given in
Tables 6–8. In these tables, it can be observed that IMFO
algorithm is better than MFO algorithm in the Best, Worst,
Mean and Std. Therefore, the test results from F1 to F7 show
that the development ability and convergence rate of IMFO
in search space are effective.

There are many local optimum solutions for multi-
modal problems (F8-F13), which are used to estimate the
exploration ability of the IMFO. The comparison results for

Table 11 Test results of the 20 algorithms

Rank 1/0/-1 Ave Rank 1/0/-1 Ave

IMFO 1 ˜ 4.08696 ABC 2 15/3/5 7.04348

MFO 15 20/3/0 12.95652 PSO 19 20/3/0 14.91304

LMFO 8 16/5/2 9.52174 GWO 4 19/4/0 8.00000

MFO3 16 20/3/0 13.21739 SCA 20 21/2/0 14.91304

CMFO 17 21/2/0 14.82609 PSOGSA 18 21/2/0 14.82609

IMFO2020 9 18/4/1 9.52174 HCLPSO 3 19/4/0 7.04348

COA 5 18/4/1 8.95652 WOA 11 18/5/0 9.91304

CMAES 12 19/3/1 10.26087 HSCA 10 22/1/0 9.69565

SSA 13 18/4/1 10.43478 EWOA 7 17/4/2 9.30435

GSA 6 17/1/5 9.26087 IDA 14 20/3/0 11.30435

F8 to F13 are given in Tables 6–8. For F9 and F11, IMFO
can search for the best solution with good stability. And for
F8, F10, F12 and F13, the comparison results of IMFO is
better than MFO in Mean and Std indexes. Therefore, the
results show that the exploration ability of IMFO is better
than that of MFO.

Fixed dimension multi-modal problems(F14-F23) have
fewer dimensions and fewer local optima. They are used
to detect the balance between the exploration ability and
exploitation ability of the IMFO. In Table 9, for F14, F15,
F21,F22, F23 IMFO is superior to MFO. For F20, the mean
value of IMFO is not as good as MFO, but the Std of IMFO
is small. For F16, F17, F18, F19, IMFO and MFO have
similar accuracy.

Therefore, by analyzing the comparison results in
Tables 6–9, it can be concluded that IMFO algorithm is
effective in searching global optimal solution.

To better illustrate the convergence performance of
IMFO algorithm, the convergence curve in dimension 30
is drawn as shown in Fig. 2. The Fig. 2 are convergence
curves of unimodal problems, multi-modal problems, fixed
dimension multi-modal problems, respectively. Among
them, the ordinates in the graph represent the mean
of objective function value of the algorithm running
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Fig. 1 Convergence corves on 6 functions

independently for 30 times, and the abscissa represents
the iteration times. From Fig. 2, it can be seen that the
convergence speed and accuracy of IMFO are better than
those of MFO in most test functions.

4.1.3 Comparison with other algorithms

To further evaluate the performance of the IMFO, 20
optimization algorithms have been selected and compared
with IMFO. The parameter settings of these algorithms

used in this paper are shown in Table 3. Table 10 gives
the comparative results between IMFO algorithm and
MFO, LMFO, MFO3, CMFO, IMFO2020, COA, CMAES,
SSA, SCA, GSA, ABC, PSO, GWO, PSOGSA, HCLPSO,
WOA, HSCA, EWOA, IDA algorithms. In the table, each
algorithm still runs 30 times independently in each classical
test problem.

For F1, F2, F4, F9, F11, the IMFO can obtain the best
solution. For F3, the IMFO can get better results than other
algorithms. Among other test problems, IMFO has better
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Fig. 2 Convergence corves on 6 functions

simulation results in most problems. At the same time,
Fig. 3 shows the convergence curve of 20 algorithm in 6 test
problems. It can be seen in this figure that IMFO has better
convergence accuracy and speed on these six test problems
compared with other algorithms.

Meanwhile, Wilcoxon signed rank test and Friedman
test are introduced to analyze the proposed algorithm. In
Table 11, the results of Wilcoxon signed rank test and

Friedman test are given. In Table 11, the results of IMFO are
better than that of other 19 algorithms in most test problems.
It can be seen in Table 11 that the average ranking (Ave) of
IMFO is the best.

Therefore, compared with other algorithms, IMFO
algorithm has good competitiveness and better performance
in convergence speed, search accuracy, robustness and
jumping out of local optimum.
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Fig. 3 Convergence corves on 6 functions

4.2 Experimental comparisons on CEC 2014

To further test the performance of IMFO algorithm,
the CEC 2014 test set [51] is the second set of test

problems to estimate the effectiveness of the IMFO. The
CEC 2014 test problems are more difficult than the
classical test problems. It consists of four groups: (1)
Unimodal (f1-f3); (2) Multimodal (f4-f16); (3) hybrid
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Table 12 Comparisons of MFO and IMFO algorithms on CEC 2014 test problems

MFO IMFO

Best Mean Worst Std Best Mean Worst Std

f1 1.5067E+07 1.0980E+08 3.9422E+08 1.0064E+08 2.4337E+05 5.5861E+05 1.0091E+06 2.3509E+05

f2 7.4989E+09 1.9241E+10 3.8039E+10 8.5826E+09 3.1231E+02 6.6115E+03 8.9588E+03 1.9861E+03

f3 5.4870E+04 1.2820E+05 2.6121E+05 4.5480E+04 3.3057E+02 4.4013E+03 7.3543E+03 2.1651E+03

f4 9.0317E+02 1.8381E+03 4.3985E+03 9.1619E+02 4.0020E+02 4.4811E+02 4.7482E+02 3.3039E+01

f5 5.2016E+02 5.2036E+02 5.2064E+02 1.1357E-01 5.2000E+02 5.2000E+02 5.2002E+02 3.7384E-03

f6 6.2529E+02 6.3301E+02 6.3941E+02 3.7467E+00 6.2119E+02 6.2472E+02 6.3463E+02 3.0036E+00

f7 7.5678E+02 8.0996E+02 8.9579E+02 3.9328E+01 7.0000E+02 7.0003E+02 7.0009E+02 2.7976E-02

f8 9.2214E+02 9.5556E+02 1.0192E+03 2.7433E+01 8.8457E+02 9.1140E+02 9.4725E+02 1.7507E+01

f9 1.0936E+03 1.1473E+03 1.2558E+03 4.2945E+01 9.7507E+02 9.9344E+02 1.0701E+03 2.4103E+01

f10 3.9215E+03 4.9171E+03 6.0614E+03 6.0284E+02 2.9613E+03 3.9729E+03 4.8383E+03 5.1280E+02

f11 4.7729E+03 5.6681E+03 7.2360E+03 6.5860E+02 4.3274E+03 5.0562E+03 5.7532E+03 3.9282E+02

f12 1.2005E+03 1.2011E+03 1.2016E+03 3.3339E-01 1.2003E+03 1.2006E+03 1.2019E+03 3.2778E-01

f13 1.3007E+03 1.3021E+03 1.3044E+03 1.2051E+00 1.3003E+03 1.3005E+03 1.3006E+03 9.4485E-02

f14 1.4171E+03 1.4406E+03 1.4933E+03 2.1108E+01 1.4002E+03 1.4003E+03 1.4003E+03 4.3289E-02

f15 1.9934E+03 1.9957E+05 1.2431E+06 3.3070E+05 1.5256E+03 1.6332E+03 1.7892E+03 7.9868E+01

f16 1.6125E+03 1.6129E+03 1.6136E+03 2.7606E-01 1.6107E+03 1.6120E+03 1.6127E+03 4.2765E-01

f17 2.0648E+05 3.4252E+06 3.5141E+07 6.4536E+06 4.6121E+04 1.9435E+05 3.9038E+05 1.1436E+05

f18 5.2410E+03 2.5432E+07 5.0308E+08 1.0178E+08 2.0865E+03 3.5419E+03 5.8966E+03 1.2476E+03

f19 1.9166E+03 1.9960E+03 2.1961E+03 6.3791E+01 1.9098E+03 1.9136E+03 1.9169E+03 1.7814E+00

f20 3.1616E+04 7.8926E+04 1.9873E+05 4.9304E+04 4.6226E+03 1.5865E+04 2.0344E+04 3.7983E+03

f21 1.8796E+05 9.4611E+05 4.6657E+06 1.1088E+06 4.2262E+03 4.7363E+04 8.2040E+04 1.9815E+04

f22 2.8483E+03 3.1294E+03 3.8289E+03 2.6155E+02 2.5484E+03 2.8823E+03 3.0287E+03 1.3239E+02

f23 2.6505E+03 2.6798E+03 2.7697E+03 3.0043E+01 2.5000E+03 2.5000E+03 2.5000E+03 0.0000E+00

f24 2.6501E+03 2.6889E+03 2.7554E+03 2.9527E+01 2.6000E+03 2.6000E+03 2.6000E+03 9.2183E-05

f25 2.7092E+03 2.7184E+03 2.7389E+03 7.6355E+00 2.7000E+03 2.7000E+03 2.7000E+03 0.0000E+00

f26 2.7009E+03 2.7029E+03 2.7046E+03 9.1726E-01 2.7003E+03 2.7006E+03 2.7009E+03 1.3497E-01

f27 3.6157E+03 3.7254E+03 3.8674E+03 7.3522E+01 2.9000E+03 2.9000E+03 2.9000E+03 0.0000E+00

f28 3.8190E+03 3.9908E+03 4.5422E+03 1.8623E+02 3.0000E+03 3.0000E+03 3.0000E+03 0.0000E+00

f29 4.5568E+04 4.1996E+06 9.6170E+06 3.8194E+06 3.1000E+03 3.8930E+03 7.4882E+03 1.3820E+03

f30 2.7692E+04 6.8250E+04 1.6619E+05 3.9901E+04 4.7931E+03 6.7879E+03 1.1019E+04 1.4692E+03

(f17-f22); (4) composite (f23-30) problems. In this exper-
iment, the individual dimension is 30, the population
size is 30 and the maximum iteration times is 10000.
The results of these test questions have been given in
Tables 12, 13 and 14.

4.2.1 Analysis on CEC 2014

f1-f3 are the unimodal problems. Table 12 shows that
IMFO can effectively exploiting search space. In Table 12,
the performance of IMFO is better than that of MFO in
four indicators. Therefore, the improved position updating
strategy and orthogonal reverse flame generation of moths
have been proved to be effective in the search space of
development problems.

f4 to f16 are multimodal problems. As can be seen
in Table 12, the other indicators except Std of f16 are
that IMFO strategy is superior to MFO. For f16, although
the Std of IMFO is larger than that of MFO, the mean,
best and worst indices of IMFO are better than that of
MFO. This shows that IMFO has better exploration ability
than MFO. The results show that the mutation operator
and the Euclidean distance are used to modify the moth
position update mechanism, which is helpful to improve the
exploration ability of the MFO. Therefore, IMFO is more
effective than MFO in exploration capability.

f17-f22 and f23-30 are hybrid and composite test
problems in CEC 2014 test set, respectively. As can be seen
from Table 12 that IMFO performs better than MFO on test
problems f17 to f30, and has better global search ability.
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Table 13 Comparisons of IMFO and other algorithms on CEC 2014 problems

Mean Std Mean Std Mean Std Mean Std

Function IMFO MFO LMFO MFO3

f1 5.5861E+05 2.3509E+05 1.0980E+08 1.0064E+08 6.0974E+07 1.2754E+07 6.9525E+06 9.0832E+06

f2 6.6115E+03 1.9861E+03 1.9241E+10 8.5826E+09 4.3695E+09 1.3449E+09 2.5212E+08 7.7979E+08

f3 4.4013E+03 2.1651E+03 1.2820E+05 4.5480E+04 2.7460E+04 5.7809E+03 3.6198E+04 1.3590E+04

f4 4.4811E+02 3.3039E+01 1.8381E+03 9.1619E+02 7.7425E+02 9.4777E+01 4.9847E+02 4.5535E+01

f5 5.2000E+02 3.7384E-03 5.2036E+02 1.1357E-01 5.2084E+02 8.4502E-02 5.2016E+02 7.8812E-02

f6 6.2472E+02 3.0036E+00 6.3301E+02 3.7467E+00 6.2267E+02 1.3509E+00 6.3082E+02 3.0440E+00

f7 7.0003E+02 2.7976E-02 8.0996E+02 3.9328E+01 7.3564E+02 7.1195E+00 7.0278E+02 1.1770E+01

f8 9.1140E+02 1.7507E+01 9.5556E+02 2.7433E+01 9.6840E+02 1.2336E+01 9.4828E+02 3.0425E+01

f9 9.9344E+02 2.4103E+01 1.1473E+03 4.2945E+01 1.1143E+03 8.3712E+00 1.0989E+03 3.3131E+01

f10 3.9729E+03 5.1280E+02 4.9171E+03 6.0284E+02 5.0314E+03 6.0916E+02 4.8651E+03 4.1786E+02

f11 5.0562E+03 3.9282E+02 5.6681E+03 6.5860E+02 5.5995E+03 5.5375E+02 5.7109E+03 3.6679E+02

f12 1.2006E+03 3.2778E-01 1.2011E+03 3.3339E-01 1.2012E+03 4.1271E-01 1.2012E+03 4.5938E-01

f13 1.3005E+03 9.4485E-02 1.3021E+03 1.2051E+00 1.3009E+03 7.2505E-02 1.3006E+03 8.4829E-02

f14 1.4003E+03 4.3289E-02 1.4406E+03 2.1108E+01 1.4093E+03 1.6406E+00 1.4005E+03 2.1016E-01

f15 1.6332E+03 7.9868E+01 1.9957E+05 3.3070E+05 1.8792E+03 7.0097E+02 1.9130E+03 5.0830E+02

f16 1.6120E+03 4.2765E-01 1.6129E+03 2.7606E-01 1.6120E+03 1.6636E-01 1.6134E+03 1.8661E-01

f17 1.9435E+05 1.1436E+05 3.4252E+06 6.4536E+06 2.4542E+06 1.0267E+06 7.4843E+05 8.3969E+05

f18 3.5419E+03 1.2476E+03 2.5432E+07 1.0178E+08 1.6263E+07 7.0135E+06 9.6445E+03 5.5681E+03

f19 1.9136E+03 1.7814E+00 1.9960E+03 6.3791E+01 1.9322E+03 8.9198E+00 1.9276E+03 2.2283E+01

f20 1.5865E+04 3.7983E+03 7.8926E+04 4.9304E+04 1.5266E+04 2.4152E+03 5.9965E+04 2.3786E+04

f21 4.7363E+04 1.9815E+04 9.4611E+05 1.1088E+06 6.4969E+05 2.7175E+05 3.8579E+05 1.9877E+05

f22 2.8823E+03 1.3239E+02 3.1294E+03 2.6155E+02 2.6685E+03 9.6169E+01 2.9680E+03 1.1449E+02

f23 2.5000E+03 0.0000E+00 2.6798E+03 3.0043E+01 2.5000E+03 0.0000E+00 2.6187E+03 4.1835E+00

f24 2.6000E+03 9.2183E-05 2.6889E+03 2.9527E+01 2.6000E+03 0.0000E+00 2.6588E+03 7.7370E+00

f25 2.7000E+03 0.0000E+00 2.7184E+03 7.6355E+00 2.7000E+03 0.0000E+00 2.7181E+03 5.4167E+00

f26 2.7006E+03 1.3497E-01 2.7029E+03 9.1726E-01 2.7240E+03 4.2653E+01 2.7309E+03 4.6219E+01

f27 2.9000E+03 0.0000E+00 3.7254E+03 7.3522E+01 2.9000E+03 0.0000E+00 3.6169E+03 2.2919E+02

f28 3.0000E+03 0.0000E+00 3.9908E+03 1.8623E+02 3.0000E+03 0.0000E+00 4.9162E+03 7.0138E+02

f29 3.8930E+03 1.3820E+03 4.1996E+06 3.8194E+06 1.4581E+06 3.1601E+06 1.3143E+06 3.4898E+06

f30 6.7879E+03 1.4692E+03 6.8250E+04 3.9901E+04 4.3881E+04 2.3079E+04 1.2639E+04 9.0285E+03

Function CMFO IMFO2020 GSA SSA

f1 1.437E+08 1.380E+08 3.175E+08 9.985E+07 1.2021E+06 2.3792E+06 2.2004E+06 7.5460E+05

f2 1.615E+10 7.327E+09 2.314E+10 5.062E+09 1.1679E+04 4.0310E+03 1.4029E+04 7.9611E+03

f3 1.244E+05 5.822E+04 4.866E+04 5.297E+03 8.5415E+03 2.4114E+03 1.3322E+03 3.3597E+02

f4 1.927E+03 1.236E+03 1.965E+03 1.092E+03 5.4984E+02 2.7969E+01 5.0032E+02 2.6310E+01

f5 5.203E+02 1.536E-01 5.209E+02 6.759E-02 5.2000E+02 1.4767E-04 5.2007E+02 9.6167E-02

f6 6.256E+02 4.178E+00 6.309E+02 2.184E+00 6.1768E+02 1.7952E+00 6.2009E+02 2.9839E+00

f7 8.456E+02 6.967E+01 8.914E+02 4.354E+01 7.0000E+02 2.7842E-03 7.0002E+02 1.7433E-02

f8 9.641E+02 4.506E+01 1.039E+03 2.704E+01 9.4894E+02 1.2065E+01 9.1111E+02 2.7107E+01

f9 1.127E+03 5.320E+01 1.161E+03 2.363E+01 1.0654E+03 1.7459E+01 1.0351E+03 2.1580E+01

f10 4.604E+03 7.953E+02 6.468E+03 5.397E+02 4.3639E+03 4.1568E+02 4.9038E+03 5.7651E+02

f11 5.613E+03 7.306E+02 7.426E+03 5.167E+02 4.8174E+03 4.2711E+02 5.0507E+03 6.3586E+02

f12 1.201E+03 2.702E-01 1.202E+03 2.935E-01 1.2000E+03 4.4034E-04 1.2005E+03 1.6415E-01

f13 1.302E+03 1.270E+00 1.304E+03 5.216E-01 1.3002E+03 3.0053E-02 1.3005E+03 7.9522E-02

f14 1.443E+03 2.466E+01 1.471E+03 1.863E+01 1.4003E+03 4.7936E-02 1.4004E+03 1.4711E-01

f15 4.203E+05 5.282E+05 1.151E+04 5.878E+03 1.5036E+03 5.8540E-01 1.5095E+03 2.4018E+00
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Table 13 (continued)

Mean Std Mean Std Mean Std Mean Std

f16 1.613E+03 4.765E-01 1.612E+03 2.756E-01 1.6136E+03 2.3397E-01 1.6119E+03 3.8188E-01

f17 4.568E+06 5.133E+06 7.071E+06 3.835E+06 3.2095E+05 2.3608E+05 1.3561E+05 8.8414E+04

f18 6.785E+07 1.742E+08 1.056E+08 5.608E+07 2.5678E+03 5.7725E+02 9.6699E+03 5.6538E+03

f19 1.992E+03 7.392E+01 2.024E+03 4.320E+01 1.9515E+03 3.2172E+01 1.9155E+03 1.9617E+00

f20 8.164E+04 8.066E+04 2.325E+04 6.406E+03 2.2409E+04 4.7204E+03 2.3833E+03 6.2337E+01

f21 1.739E+06 3.181E+06 1.019E+06 7.237E+05 1.2878E+05 4.9968E+04 7.2403E+04 2.5391E+04

f22 3.076E+03 2.602E+02 2.994E+03 1.735E+02 3.2691E+03 1.6955E+02 2.6443E+03 1.3557E+02

f23 2.691E+03 4.935E+01 2.500E+03 0.000E+00 2.6178E+03 1.0648E+00 2.6153E+03 1.8096E-01

f24 2.696E+03 4.167E+01 2.600E+03 0.000E+00 2.6001E+03 1.4679E-02 2.6447E+03 3.6932E+00

f25 2.723E+03 1.075E+01 2.700E+03 0.000E+00 2.7000E+03 0.0000E+00 2.7130E+03 3.7650E+00

f26 2.702E+03 1.133E+00 2.719E+03 3.675E+01 2.8000E+03 3.7393E-03 2.7005E+03 8.5209E-02

f27 3.678E+03 1.582E+02 2.900E+03 0.000E+00 4.7288E+03 4.2150E+02 3.5099E+03 1.0085E+02

f28 3.958E+03 2.145E+02 3.000E+03 0.000E+00 5.9772E+03 6.3727E+02 3.9394E+03 2.4160E+02

f29 3.085E+06 3.770E+06 3.100E+03 0.000E+00 7.1615E+03 1.5910E+03 1.8515E+06 4.1764E+06

f30 5.042E+04 3.477E+04 2.926E+04 8.504E+04 9.8951E+03 2.7384E+03 1.1919E+04 1.9668E+03

Function SCA PSO WOA HSCA

f1 2.8284E+08 6.7309E+07 4.1353E+07 3.3572E+07 2.7775E+07 3.2799E+06 3.1039E+07 2.5065E+07

f2 1.8412E+10 3.1818E+09 5.2319E+06 1.6583E+06 2.4454E+06 1.8632E+06 5.3302E+08 4.8038E+08

f3 3.9022E+04 4.7567E+03 3.1115E+04 1.1299E+04 2.8794E+04 1.9345E+04 7.5748E+03 4.0012E+03

f4 1.4800E+03 2.4624E+02 7.9329E+02 2.8944E+02 5.8018E+02 7.7683E+01 5.9642E+02 4.9540E+01

f5 5.2096E+02 2.9478E-02 5.2098E+02 3.8827E-02 5.2030E+02 2.0806E-02 5.2049E+02 1.3208E-01

f6 6.3472E+02 2.1775E+00 6.3782E+02 2.3761E+00 6.3585E+02 5.4828E+00 6.1858E+02 4.1905E+00

f7 8.4352E+02 2.4674E+01 7.0105E+02 1.3982E-02 7.0101E+02 1.1200E-01 7.0650E+02 3.8582E+00

f8 1.0461E+03 1.3183E+01 9.4325E+02 1.4649E+01 9.9051E+02 2.1792E+01 8.9068E+02 2.0586E+01

f9 1.1764E+03 1.4293E+01 1.0782E+03 2.2708E+01 1.1224E+03 4.6574E+01 1.0380E+03 3.6786E+01

f10 7.1357E+03 2.6681E+02 7.5270E+03 1.2559E+03 5.1219E+03 2.2790E+01 3.4095E+03 8.4734E+02

f11 8.3300E+03 1.6061E+02 8.8380E+03 5.0389E+02 5.8681E+03 1.6428E+03 4.5303E+03 6.7681E+02

f12 1.2026E+03 2.0717E-01 1.2032E+03 3.0465E-01 1.2018E+03 9.5782E-02 1.2006E+03 2.9481E-01

f13 1.3031E+03 2.6130E-01 1.3006E+03 8.9005E-02 1.3005E+03 1.1310E-01 1.3005E+03 1.1587E-01

f14 1.4479E+03 8.1046E+00 1.4003E+03 1.1860E-01 1.4003E+03 9.1875E-02 1.4005E+03 3.1495E-01

f15 5.4145E+03 3.2957E+03 1.6915E+03 7.2513E+01 1.5672E+03 8.0693E+00 1.5247E+03 3.2506E+01

f16 1.6130E+03 1.8527E-01 1.6129E+03 4.2092E-01 1.6126E+03 4.1530E-01 1.6120E+03 5.8618E-01

f17 6.9164E+06 3.5261E+06 1.4750E+06 4.0048E+06 5.1179E+06 1.3307E+06 1.0856E+06 7.9557E+05

f18 1.9853E+08 7.7924E+07 1.9634E+04 7.7708E+04 6.3151E+03 2.2734E+03 1.5651E+06 5.1783E+06

f19 1.9965E+03 2.2031E+01 1.9979E+03 3.5560E+01 1.9422E+03 4.2937E+00 1.9172E+03 5.0802E+00

f20 1.8043E+04 4.9540E+03 1.4499E+04 9.7187E+03 2.7384E+04 1.2683E+04 6.3540E+03 3.8955E+03

f21 1.3459E+06 3.1384E+05 1.2763E+06 6.5240E+06 7.8318E+05 7.6305E+04 2.8778E+05 2.9848E+05

f22 3.0456E+03 8.9609E+01 3.4116E+03 2.0596E+02 2.9057E+03 4.1526E+02 2.5273E+03 1.5830E+02

f23 2.6703E+03 1.0325E+01 2.6424E+03 1.5077E+01 2.6198E+03 1.4846E+00 2.6255E+03 5.2738E+00

f24 2.6001E+03 4.9113E-02 2.6399E+03 7.3006E+00 2.6262E+03 3.8080E-01 2.6000E+03 3.2118E-03

f25 2.7288E+03 4.7129E+00 2.7227E+03 5.6961E+00 2.7127E+03 1.1895E+01 2.7095E+03 4.4499E+00

f26 2.7026E+03 4.4742E-01 2.8001E+03 5.6336E-02 2.7004E+03 2.8676E-01 2.7006E+03 1.4557E-01

f27 3.4951E+03 3.0023E+02 4.4678E+03 2.2797E+02 3.9089E+03 1.5138E+02 3.4272E+03 1.3715E+02

f28 4.9332E+03 2.6794E+02 8.9952E+03 1.0766E+03 5.2256E+03 3.5458E+02 3.9118E+03 2.9316E+02

f29 1.4900E+07 7.4107E+06 2.3164E+08 1.4793E+08 7.3232E+06 1.6205E+04 1.2226E+06 3.4904E+06

f30 2.9879E+05 9.6167E+04 4.7430E+05 6.8853E+05 8.9582E+04 5.6783E+04 3.6233E+04 2.1150E+04
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Table 13 (continued)

Mean Std Mean Std Mean Std Mean Std

Function EWOA IDA MVO SHO

f1 9.1958E+08 3.3378E+08 6.2882E+06 5.2442E+06 3.4197E+06 6.7290E+05 1.990E+09 3.076E+08

f2 6.2010E+10 1.1244E+10 3.4497E+06 6.2230E+06 1.4400E+04 1.2876E+04 8.569E+10 6.888E+09

f3 1.5068E+05 7.7436E+04 1.2413E+04 6.5291E+03 4.1182E+02 6.7267E+01 1.371E+06 2.690E+06

f4 9.9483E+03 3.4294E+03 5.2632E+02 4.2566E+01 4.8248E+02 4.2008E+01 1.845E+04 2.526E+03

f5 5.2087E+02 1.0677E-01 5.2017E+02 7.2483E-02 5.2009E+02 8.7464E-02 5.209E+02 6.624E-02

f6 6.3972E+02 2.4648E+00 6.1984E+02 2.8138E+00 6.0911E+02 4.5909E+00 6.460E+02 2.398E+00

f7 1.1583E+03 1.2290E+02 7.0098E+02 2.2100E-01 7.0004E+02 8.6228E-03 1.542E+03 6.840E+01

f8 1.1035E+03 2.7821E+01 9.0952E+02 2.6313E+01 8.6696E+02 1.5002E+01 1.224E+03 3.628E+01

f9 1.2428E+03 3.4773E+01 1.0227E+03 3.1109E+01 9.9714E+02 5.8191E+00 1.321E+03 1.682E+01

f10 7.6958E+03 7.8090E+02 3.7352E+03 5.0836E+02 3.9657E+03 7.0330E+02 1.009E+04 4.509E+02

f11 8.2111E+03 5.3770E+02 4.7353E+03 9.0648E+02 4.2089E+03 5.9622E+02 1.057E+04 4.563E+02

f12 1.2019E+03 4.8304E-01 1.2005E+03 2.8112E-01 1.2002E+03 9.6251E-02 1.204E+03 1.509E+00

f13 1.3071E+03 8.9991E-01 1.3006E+03 1.9036E-01 1.3004E+03 7.2324E-03 1.308E+03 1.230E+00

f14 1.6062E+03 3.6382E+01 1.4007E+03 4.0338E-01 1.4004E+03 2.2684E-02 1.720E+03 3.453E+01

f15 1.1738E+05 6.8768E+04 1.5137E+03 4.1319E+00 1.5066E+03 1.0717E+00 5.749E+05 1.317E+05

f16 1.6127E+03 4.5894E-01 1.6119E+03 4.0294E-01 1.6115E+03 3.6013E-01 1.613E+03 3.925E-01

f17 1.2016E+08 9.4373E+07 6.2348E+05 4.9981E+05 1.6688E+05 8.8799E+04 2.904E+08 1.347E+08

f18 1.6962E+09 1.1595E+09 3.5465E+03 1.4767E+03 1.2174E+04 2.0961E+03 7.128E+09 2.297E+09

f19 2.2738E+03 1.1894E+02 1.9138E+03 2.9832E+00 1.9102E+03 2.7574E+00 2.518E+03 8.531E+01

f20 3.0864E+05 3.8692E+05 4.0470E+03 2.0948E+03 2.2881E+03 1.1085E+01 1.348E+07 1.360E+07

f21 3.6120E+07 2.6392E+07 1.8146E+05 1.6146E+05 6.5215E+04 2.8580E+04 1.532E+08 9.628E+07

f22 4.4285E+03 3.0962E+03 2.7483E+03 1.5564E+02 2.5792E+03 3.0021E+01 4.017E+04 9.505E+04

f23 2.7045E+03 2.3214E+02 2.5945E+03 4.7343E+01 2.6155E+03 5.8440E-02 2.500E+03 0.000E+00

f24 2.6054E+03 5.3345E+00 2.6203E+03 5.2065E+00 2.6302E+03 2.2937E+00 2.600E+03 0.000E+00

f25 2.7064E+03 1.9973E+01 2.7041E+03 3.2100E+00 2.7056E+03 5.3442E-01 2.700E+03 0.000E+00

f26 2.7814E+03 8.8124E+01 2.7006E+03 1.4882E-01 2.7424E+03 7.9179E+01 2.783E+03 3.418E+01

f27 4.0896E+03 3.3355E+02 3.1060E+03 6.9888E+00 3.2687E+03 2.6202E+01 2.900E+03 0.000E+00

f28 6.2221E+03 1.4502E+03 4.8119E+03 5.8441E+02 3.8304E+03 4.0095E+01 3.000E+03 0.000E+00

f29 9.1768E+07 1.1120E+08 9.0500E+06 8.1599E+06 1.4800E+06 7.3183E+06 3.100E+03 0.000E+00

f30 2.1048E+06 1.9569E+06 8.3891E+03 3.0898E+03 7.6525E+03 1.3848E+03 3.200E+03 0.000E+00

4.2.2 Comparison with other algorithms

In this subsection, IMFO algorithm has been compared
with MFO, LMFO, MFO3, CMFO, IMFO2020, SSA, SCA,
PSO, WOA, HSCA, EWOA, IDA, MVO, SHO algorithms

on the CEC2014 test problems. Table 13 shows the results
of 16 algorithms on the test functions, with 30 dimensions
and 10000 iterations. For Table 13, it can be observed
that the IMFO has a strong competitiveness compared with
other algorithms in Mean and Std indexes. The results show

Table 14 Test results of the 16
algorithms Rank 1/0/-1 Ave Rank 1/0/-1 Ave

IMFO 1 ˜ 2.53333 SCA 14 29/1/0 12.16667

MFO 13 29/0/1 11.20000 PSO 12 28/1/1 11.13333

LMFO 7 21/4/5 7.50000 WOA 9 28/2/0 8.73333

MFO3 8 29/0/1 8.46667 HSCA 5 22/3/5 5.96667

CMFO 11 28/0/2 11.13333 EWOA 16 29/1/0 13.96667

IMFO2020 10 22/5/3 10.13333 IDA 4 25/2/3 5.33333

GSA 6 22/4/4 6.00000 MVO 2 22/5/3 3.86667

SSA 3 22/4/4 5.03333 SHO 15 24/4/2 12.83333
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Fig. 4 Pressure vessel design
problem

that the IMFO can get competitive solution by introducing
OOBL and modified moth position update strategy.

To ensure the effectiveness of IMFO improvement,
Wilcoxon signed rank test and Friedman test are also
introduced, in which the parameter setting is consistent
with the classical benchmark problem set. The statistical
conclusions are shown in Table 14 and the symbols are the
same as those described in Section 4.1.1. In Table 14, the
results of IMFO are better than that of other algorithms
in most test problems. It can be seen in Table 14 that the
average ranking (Ave) of IMFO is the best.

5 Engineering optimization problems

In the above part, the performance of IMFO is simulated
on classical test set and standard CEC2014 test set. In this
section, to verify the ability of the IMFO to solve practical
problems, the IMFO is used to optimize three practical
engineering optimization problems.

5.1 Pressure vessel design problem

This problem is given in Fig. 4 [21]. Its purpose is to
obtain the lowest cost cylindrical pressure vessel as much
as possible. For this problem, there are four parameters to
be optimized in Fig. 4: thickness of head Th, thickness of

shell Ts , length of cylindrical shell L and inner radius R.
The mathematical expressions of this problem are as follows
[21, 52, 53]:

Min F1(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 19.84x2

1x3

+3.1661x2
1x4 (23)

x = (x1, x2, x3, x4) = (Ts, Th, R, L) (24)

s.t. g1(x) = 0.0193x3 − x1 ≤ 0
g2(x) = 0.00954x3 − x2 ≤ 0
g3(x) = 1296000 − 4

3πx3
3 − πx2

3x4 ≤ 0
g4(x) = x4 − 240 ≤ 0
1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625
10 ≤ x3, x4 ≤ 200

(25)

Table 15 shows the comparison results of the IMFO
algorithm and other heuristic optimization algorithms for
this problem, which includes the values of each variable
and its corresponding results. From Table 15, the results
show that IMFO can get the minimum cost than other
optimization algorithms.

5.2 Cantilever beam design problem

This problem is shown in Fig. 5 [21], and its purpose
is to get a set of values to minimize the weight of the
cantilever. There are five parameters to be optimized: the

Table 15 Comparison of
results on pressure vessel
design problem

Algorithm Optimal values for variables Optimum cost

Ts Th R L

IMFO 0.8307 0.4106 43.041800 165.287000 5981.3416

MFO [21] 0.8125 0.4375 42.098445 176.636596 6059.7143

SCA [52] 0.8125 0.4375 42.048610 177.707800 6076.3651

ES [54] 0.8125 0.4375 42.098087 176.640518 6059.7456

PSO [55] 0.8125 0.4375 42.091266 176.746500 6061.0777

ACO [53] 0.8125 0.4375 42.103624 176.572656 6059.0888

Branch-bound [56] 1.1250 0.6250 47.700000 117.701000 8129.1036
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Fig. 5 Cantilever beam design problem

side length xi (i = 1, 2, . . . , 5) of cross section (square) of
the five different beams. The mathematical expressions of
this problem are as follows [21, 47, 52]:

Min F2(x) = 0.0624 ×
5∑

i=1

xi (26)

s.t. g(x) = 61

x3
1

+ 37

x3
2

+ 19

x3
3

+ 7

x3
4

+ 1

x3
5

− 1 ≤ 0 (27)

Table 16 shows the comparison results of the IMFO
algorithm and other heuristic optimization algorithms for
this problem, which includes the values of each variable and
its corresponding results. From Table 16, the results show
that IMFO can get the minimum weight design than other
optimization algorithms.

5.3 Tension/compression spring design problem

This optimization problem is given in Fig. 6 [14]. Its
purpose is to achieve lower manufacturing cost as much as
possible. For this problem, there are three parameters to be
optimized in Fig. 6: d indicates wire diameter; D indicates

Fig. 6 Tension/compression spring design

mean coil diameter; N number of active coils. In addition,
the mathematical expressions of this problem are as follows
[21, 55, 59, 60]:

Min F3(x) = (x3 + 2) x2x
2
1 (28)

x = (x1, x2, x3) = (d, D, N) (29)

s.t. g1(x) = 1 − x3
2x3

71785x4
1

� 0

g2(x) = 4x2
2 − x1x2

12566
(
x2x

3
1 − x4

1

) + 1

5108x2
1

� 0

g3(x) = 1 − 140.45x1
x2
2x3

� 0

g4(x) = x1 + x2

1.5
− 1 � 0

(30)

where 0.05 � x1 � 2.00, 0.25 � x2 � 1.30, 2.00 � x3 �
15.0.

Table 17 shows the comparison results of the IMFO
algorithm and other heuristic optimization algorithms for
this problem, which includes the values of each variable and
its corresponding results. From Table 17, the results show
that IMFO can get the minimum weight design than other
optimization algorithms.

Table 16 Comparison of results on cantilever beam design problem

Algorithm Optimal values for variables Optimum weight

x1 x2 x3 x4 x5

IMFO 5.813053964 4.886960118 5.009894999 3.028885438 2.639184503 1.330565414

MFO [21] 5.984871773 5.316726924 4.497332586 3.513616468 2.161620293 1.339988086

HSCA [47] 6.0208 5.2978 4.4913 3.5115 2.1524 1.3399

CS [57] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

SCA [52] 6.3435 4.8755 4.1788 3.4916 2.1887 1.3400

GCA(I) [58] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

MMA [58] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
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Table 17 Comparison of results on tension/compression spring design

Algorithm Optimal values for variables Optimum

weight

d D N

IMFO 0.051912961 0.36212813 10.97868026 0.0126661

MFO [21] 0.051994457 0.36410932 10.86842186 0.0126669

GA [59] 0.05148 0.351661 11.632201 0.0127048

DE [60] 0.051609 0.354714 11.410831 0.0126702

PSO [55] 0.051728 0.357644 11.244543 0.0126747

6 Conclusions

In this paper, an improved Moth-Flame optimization algo-
rithm is proposed to solve global optimization problems.
The IMFO is mainly realized by flames generation strat-
egy and modified position update mechanism of moths.
The flames generation strategy is used to generate effec-
tive flames to guide moths by OOBL, which improves the
performance of the MFO algorithm to jump out of local
optimum and enhance exploration ability. Modified position
updating mechanism of moths is proposed based on spiral
search and mutation operator, which helps to increase con-
vergence speed of the IMFO. To verify the effectiveness of
IMFO, it has been compared with MFO, LMFO, MFO3,
CMFO, IMFO2020, SSA, SCA, GSA, ABC, PSO, GWO,
WOA, PSOGSA, HCLPSO, MVO, HSCA, EWOA, IDA,
SHO in 23 benchmark functions and the CEC 2014 bench-
mark test functions. The comparative results show that the
IMFO algorithm is effective, accurate and stable. In addi-
tion, the IMFO is also compared with other well-known
algorithms (such as SCA, MMA and GCA) on three prac-
tical engineering optimization problems. The comparative
results show that the IMFO algorithm can obtain competi-
tive solutions in solving practical engineering optimization
problems. Therefore, the comparative analysis results of this
paper show that the IMFO algorithm overcomes some short-
comings of MFO algorithm, and it can be used to deal with
the classical test problems and the practical engineering
optimization.
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