
https://doi.org/10.1007/s10489-020-01791-4

HFADE-FMD: a hybrid approach of fireworks algorithm
and differential evolution strategies for functional module
detection in protein-protein interaction networks

Junzhong Ji1,2 ·Hanghang Xiao1,2 · Cuicui Yang1,2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Functional module detection in protein-protein interaction (PPI) network is one important content of the proteomics research
in the post-genomic era. Nowadays the swarm intelligence and evolutionary based approaches have become effective ways
for detecting functional modules. This paper proposes a novel hybrid approach of fireworks algorithm and differential
evolution strategies for functional module detection in PPI networks (called HFADE-FMD). HFADE-FMD first initializes
each firework individual into a candidate functional module partition based on label propagation according to the topological
and functional information between protein nodes. Then HFADE-FMD uses the explosion operator of firework algorithm,
and mutation, crossover and selection strategies of differential evolution algorithm to iteratively search for better functional
module partitions. To verify the performance of HFADE-FMD, this paper compared it with ten competitive methods on four
public PPI datasets. The experimental results show that HFADE-FMD achieves prominent performance with respective to
Recall, Sn, PPV, and ACC metrics while performing well in terms of Precision and F-measure metrics. Thus, it is able to
more accurately detect functional modules and help biologists to find some novel biological insights.

Keywords Protein-protein interaction network · Functional module detection · Fireworks algorithm · Explosion operation ·
Differential evolution strategies

1 Introduction

With the completion of human genome project, proteomics
has become the frontier of life science and natural science
research in the post-genome time. Proteins are the main
undertakers of the life activity where they rarely perform

� Cuicui Yang
yangcc@bjut.edu.cn

Junzhong Ji
jjz01@bjut.edu.cn

Hanghang Xiao
xiaohh70@qq.com

1 Beijing College of Computer Science, Faculty of Information
Technology, Beijing University of Technology,
Beijing, China

2 Municipal Key Laboratory of Multimedia and Intelligent
Software Technology, Beijing Artificial Intelligence Institute,
Beijing, China

a function in an individual way, but do it by interacting
with other proteins [1]. All the interactions between
proteins in an organism form a kind of molecular networks
called protein-protein interaction (PPI) network. The set
of proteins that interact with each other to perform a
specific biological function in a PPI network is a functional
module. Identifying functional modules in PPI networks
is an important part of proteomics, which not only helps
people understand the mechanism of life at the molecular
level, but also has great significance for the diagnosis of
diseases and the development of new drugs [2].

The biological experiments, as the original methods of
detecting functional modules in PPI networks, often take
a lot of time, manpower and material resources, which
appears to be quite helpless when facing the explosive
growth of PPI data and can not meet the urgent need of
life science research in the post-genome time [3]. Fortu-
nately, computational approaches based on clustering obtain
a rapid development due to the advantages of short time
and low cost, and have become more important means of
detecting functional modules in recent years. In general,
these computational approaches based on clustering first
represent a PPI network by an undirected graph G(V, E),

Published online: 16 September 2020

Applied Intelligence (2021) 51:1118–1132

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01791-4&domain=pdf
http://orcid.org/0000-0002-4471-7447
mailto: yangcc@bjut.edu.cn
mailto: jjz01@bjut.edu.cn
mailto: xiaohh70@qq.com

where V is the set of nodes with each node denotes a
protein and E is the set of edges with each edge denotes
an interaction (link). Then they uses various clustering
technologies to divide the network and get corresponding
functional modules [2]. So far there have been many kinds
of clustering approaches which adopt different ideas and
schemes to detect functional modules such as density based
clustering approaches [4–6], hierarchy based clustering
approaches [7, 8], partition based clustering approaches [9–
11], flow simulation approaches [12, 13], spectral clustering
based approaches [14, 15], core attachment approaches [16,
17], and supervised approaches [18, 19]. Besides swarm
intelligence and evolutionary algorithms which simulate
certain behavioral activities and evolutionary mechanisms
of natural organisms have been widely applied into clus-
tering analysis of different fields [20–26]. It is noted that
although functional module detection is a clustering prob-
lem in essence, different application fields have their own
unique characteristics. It is just for the unique characteris-
tics which make the implementation of swarm intelligence
and evolutionary algorithms different. To release poten-
tial of swarm intelligence and evolutionary algorithms for
functional module detection, some researchers study the
individual solution representation and realization of opti-
mization mechanisms. Now swarm intelligence and evo-
lutionary algorithms have also become the new spot in
detecting functional modules from PPI networks. For exam-
ple, Sallim et al. introduced ant colony optimization (ACO)
into functional module detection by taking it as the opti-
mization problem of solving traveling salesman problem,
which started a new page for detecting functional modules
using swarm intelligence and evolutionary based meth-
ods [27]. Pizzuti et al. made use of genetic algorithm
to mine functional modules (called as GA-FMD) [28]. Ji
et al. combined ACO with multi-agent evolution to identify
functional modules [29]. Subsequently, they again presented
an algorithm based on ant colony clustering for functional
module detection (called as ACC-FMD) [30]. Recently,
Yang et al. developed an method based on bacterial forag-
ing optimization for detecting functional modules (called as
BFO-FMD) [31]. Although many effective swarm intelli-
gence and evolutionary based approaches (as listed above)
have been proposed for detecting functional modules, this
kind of approaches are still evolving with efforts aimed at
detecting functional modules more effectively in face of the
explosive growth of PPI data nowadays.

Inspired by explosion of fireworks, Tan and Zhu pro-
posed a new swarm intelligence algorithm called fireworks
algorithm (FA) in 2010 [32]. This algorithm takes each
firework as a candidate solution in the search space. Each
firework would explode and generate a set of sparks. The
fireworks and sparks with better fitness values are selected
to form the fireworks of the next generation. This explo-

sion process continues until a desired solution is found,
or the stopping criterion is met. Although FA does not
come early, it have been widely used in many fields due to
being able to self-tune local search and global search [33–
40]. This good problem-solving capability inspire us to
develop its potential to detect functional modules from
PPI networks. However, references [41–44] have found
that FA lacks of information communication among fire-
work individuals which easily cause the algorithm to fall
into local optima. At the same time, these studies find
differential evolution (DE) algorithm can help to enhance
information communication among firework individuals.
Among them, references [41–43] used the hybrid method
of FA and DE to solve function optimization problems
while reference [44] applied the hybrid method of FA and
DE into the design of fuzzy classification system. That is, a
hybrid of FA and DE algorithm can enhance their optimiza-
tion ability on different application areas. In fact, many other
studies also agree that a hybrid of different swarm intelli-
gence and evolutionary algorithms can learn from each other
and have the advantages that single method do not have
[45–52]. Thus, to find a more effective way to detect func-
tional modules, this paper propose a novel hybrid approach
of firework algorithm and differential evolution algo-
rithm for functional module detection in PPI networks
(called HFADE-FMD). The main contributions of HFADE-
FMD are summarized as follows: (1) This paper presents
a novel approach which takes advantage of FA and DE
for functional module detection. (2) Aimed at the problem of
detecting functional modules, HFADE-FMD uses a new
individual initialization methods and new implementation
method of optimization mechanisms. (3) Systematic exper-
iments have not been only conducted on the Saccha-
romyces cerevisiae datasets but also on the Homo sapi-
ens datasets. The experimental results show that HFADE-
FMD has prominent performance in term of Recall, Sn,
PPV, and ACC metrics while performing well on Pre-
cision and F-measure metrics. Therefore, this method is
highly competent to detect functional modules in PPI
networks.

This paper is structured as follows: Section 2 presents
the proposed HFADE-FMD algorithm in detail. Section 3
carries out comparative experiments to validate the perfor-
mance of HFADE-FMD. Finally, Section 4 concludes this
paper and outlines some future research directions.

2 The proposed HFADE-FMD algorithm

2.1 Basic idea

The proposed HFADE-FMD algorithm takes functional
module detection (i.e., clustering on protein nodes) as an

1119J. Ji et al.

optimization problem. To solve this optimization problem,
HFADE-FMD first initialized each firework individual into
a candidate functional module partition based on label
propagation. Then it optimizes iteratively each firework
individual by the explosion operation (the core optimization
mechanism of FA), mutation, crossover, and selection
operations (three DE strategies). During the optimization
process, each firework individual (a firework or a spark) is
evaluated according to the modularity density (the fitness
function) that is commonly used in the partition of a network
into modules [53], and is given below:

f (X) =
m∑

i=1

2li − l̄i

ni

, (1)

where X is a candidate module partition represented by a
individual solution (a firework or a spark), m is the number
of modules, li is the number of edges between nodes in
module i, l̄i is the number of edges between one node in
module i and the other node outside it, and ni is the number
of nodes in module i. The higher the modularity density,
the better the detected functional module partition (i.e., the
better the corresponding individual). In the following, the
key parts including the explosion operator of FA, and three
differential evolution strategies will be explained in detail.

2.2 Initialization of firework individuals

Each firework individual corresponds to a candidate
functional module partition, and is encoded as a string of
length n where n is the number of protein nodes in a PPI
network and the character at each location is the label of
the corresponding protein node. Each firework individual is
initialized based on label propagation. First, HFADE-FMD
numbers all the protein nodes in a PPI network and builds
a neighbor order list for each protein node. Then, each
firework individual probabilistically selects a neighbor node
for each protein node. Now the authors assume a firework
individual selects a neighbor node h for a protein node k

from its neighbor nodes, then two nodes k and h will be
assigned same label according to the following three rules
of label propagation:

(1) If both protein nodes k and h are not assigned labels
yet, then assign them a same and new label.

(2) If one of protein nodes k and h is assigned a label, then
propagate this label to the other node.

(3) If both protein nodes k and h are assigned labels, then
do nothing in case of that they have same labels, and
otherwise, propagate the label of node k to those nodes
that have the same label with node h.

In the above initialization process, the probability that
each firework individual selects a neighbor node h for a
node k is given as follows:

P h
k = Skh∑

r∈�(k)

Skr

, (2)

where �(k) is the neighbor node set of node k, Skh is the
similarity between nodes k and h. Here, Skh combines the
structural similarity and functional similarity between nodes
k and h, and is defined as below:

Skh = skh + fkh

2
, (3)

where skh and fkh are the structural similarity and functional
similarity between nodes k and h, respectively.

Given two protein nodes k and h, the structural similarity
formula is given as follows [54]:

skh = |�(k)
⋂

�(h)|√|�(k)||�(h)| , (4)

where |�(k)| is the size of the set �(k).
Based on the annotation information of gene ontology

(GO), the function similarity is expressed as follow [55]:

fkh = |gk
⋂

gh|
|gk

⋃
gh| , (5)

where gk and gh are GO term sets of nodes k and h,
respectively.

To clearly show the solution representation and initial-
ization process, Fig. 1 illustrates an example in a simplified
PPI network with 8 nodes. Figure 1a is a PPI network con-
taining 8 nodes marked from 1 to 8. Figure 1b gives the
neighbor order lists of 8 nodes. Figure 1c shows a firework
individual solution obtained by the above label propagation
process. Figure 1d is the functional modules corresponding
to the firework individual shown in Fig. 1c.

2.3 Explosion operator

The explosion operator is the core mechanism of FA.
Each firework explodes and produces a certain number of
sparks. One explosion can be viewed as a search around a
firework. The explosion operator is able to self-tune local
search and global search. The better the firework individual,
the more the sparks and the smaller the amplitude of
explosion. The more sparks can make a careful search
around the corresponding firework individual in a smaller
range, which reflects the local search process. The worse
the firework individual, the less the sparks and the bigger
the amplitude of explosion. The less sparks will make a
extensive exploration in a bigger range, which embodies the

1120 HFADE-FMD: a hybrid approach of fireworks algorithm...

Fig. 1 Firework individual representation and initialization process: a PPI network, b neighbor order lists, c firework individual solution, and d a
functional module partition

global search process. In general, the number of sparks and
the amplitude of explosion for firework individual Xi are
respectively defined as below:

Bi = B̌ × f (Xi) − fmin + ε

N∑
i=1

(f (Xi) − fmin) + ε

, (6)

Ri = Ř × f (Xi) − fmax + ε

N∑
i=1

(f (Xi) − fmax) + ε

, (7)

where N is the size of the firework population, fmin and
fmax are respectively the highest and lowest modularity
density among all the firework individuals, Ř and B̌ are two
parameters that respectively control the explosion amplitude
and the number of sparks generated, and ε is a small
constant to avoid zero-division-error.

For each firework individual Xi , the method of gener-
ating a spark individual Xsp is described as follows. First,
produce a random number q uniformly distributed in (0, 1)

for each protein node k. If this random number is not less
than sigmoid(Ri), the label of node k in the spark individ-
ual Xsp is the same as that in the firework individual Xi .
Otherwise, the label of node k in the spark individual Xsp is
the same as that of the neighbor node which has the largest
influence on node k.

The influence that a neighbor node h on node k is defined
as follows:

Ih
k = α × numk

|�(k)| + (1 − α) × Skh∑
j∈�(k)

Skj

, (8)

where numk is the number of neighbor nodes which have
the same label with node k, α is a parameter that controls
the importance of similarity nodes and nodes with the same
labels. From this definition, the explosion operation not
only considers the number of nodes with same labels, but
also the similarity between nodes, which makes full use of
interrelationships between nodes in PPI networks.

After each firework individual Xi explodes and produces
Bi spark individuals at each iteration, all the firework
individuals and the spark individuals form a big population.
The best individual (whether firework or spark) with the
highest modularity density is chosen to be a firework
individual of the next generation. Then N − 1 firework
individuals are selected from the remaining big population
using the roulette strategy. In this way, HFADE-FMD
realizes the explosion operator and produces a new
generation of firework population.

2.4 Differential evolution operators

Although the explosion operator combines local search
and global search, there is little communication and
cooperation among firework individuals, which is very
detrimental to find a global optimal functional module
partition. Introduced by Storn and Price, DE algorithm
has much interaction among individual solutions [56].
Thus, to compensate the disadvantage of explosion operator
in FA, three DE operators are used to help firework
individuals to search better module partitions. The specific
implementation of three DE strategies are as follows.

1121J. Ji et al.

2.4.1 Mutation operator

According to the mutation probability Pm, each firework
individual Xi mutates into a variation individual Vi by
the random single point variation in HFADE-FMD. The
concrete steps are as follows. First, randomly select a node
k for firework individual Xi . Then, probabilistically choose
a neighbor node h from neighbor nodes of node k according
to (2), and pass the label of node h to node k based on the
mutation probability Pm. After the above process is repeated
n times (n is the number of nodes in the PPI network), the
mutation operator is completed. Figure 2 shows the method
of updating the label for one node in the mutation operator.
In Fig. 2, the firework individual Xi chooses neighbor node
3 for node 4 according to probability formula (2). The label
of node 3 is 2. If a random number in (0,1) is smaller than
the mutation probability Pm, pass the label 2 to node 4.

2.4.2 Crossover operator

HFADE-FMD makes use of one-way mergence crossover
operator to produce a trial individual Ui for the variation
individual Vi of firework individual Xi . The detailed
procedures are given below. Firstly, randomly select a
firework individual as one source individual Y1 and take
Vi as the other source individual. Secondly, randomly
choose a crossover position k. Let DY1(k) denotes the node
set of the functional module that node k belongs to in
source individual Y1, and DY2(k) represents the node set
of the functional module that node k belongs to in source
individual Y2. At last, change the labels of nodes that are in
DY1(k) and do not belong to DY2(k) into the label of node k

in source individual Y2, and generate a trail individual Ui .
To be more clear, Fig. 3 gives the sketch map of one-

way mergence crossover operator. As shown in Fig. 3,
randomly select a crossover position on node 7. DY1(k),
i.e., the node set of functional module that node 7 belongs
to in source individual Y1, is {7, 8}. DY2(k), i.e., the node

Fig. 2 The method of updating the label for one node in mutation
operator

Fig. 3 The sketch map of the crossover operator

set of functional module that node 7 belongs to in source
individual Y2, is {5, 7}. The node 8 is in DY1(k) and do not
belong to DY2(k). So change the label of node 8 into the
label of node 7 in source individual Y2, and obtain a trial
individual Ui .

2.4.3 Selection operator

After performing the crossover operator, HFADE-FMD
makes evaluation on firework individual Xi and its trial
individual Ui , and keeps the one with higher modularity
density according to the following formula:

Xi =
{

Ui, if f (Ui > f (Xi)

Xi, otherwise
. (9)

2.5 Algorithm description

According to the previously detailed introduction, the
pseudocode of HFADE-FMD is given in Algorithm 1. This
algorithm first starts with an initial firework population,
each of which represents a module partition and is
constructed based on label propagation. Next, it iteratively
executes explosion, mutation, crossover, and selection
operators to search better modularity partitions with higher
modularity density.

Based on the description of Algorithm 1, the complexity
of HFADE-FMD can be analyzed simply as follows. Let
the maximum number of the node degree be dmax. The time
complexity of the initialization process is O(N ×n×dmax).
The time complexity of the explosion operator is O(T ×
N ×n×dmax ×B̌). The time complexity of three differential
evolution operators is O(T × N × dmax × (N + dmax)).
Therefore, the time complexity of the proposed HFADE-
FMD algorithm is O(T × N × dmax × (B̌ × n + n +
dmax)).

1122 HFADE-FMD: a hybrid approach of fireworks algorithm...

3 Evaluation

In this section, extensive experiments will be taken to
evaluate the performance of the proposed HFADE-FMD
algorithm. The experimental platform is a PC with Intel
Core i5-6500 3.20GHz CPU, 12.0GB RAM and Windows
8.1, and HFADE-FMD is implemented by Java language.

3.1 Datasets

Four public PPI datasets including two Saccharomyces
cerevisiae datasets and two Homo sapiens datasets are
used in the experiments. Table 1 shows a summary of the

datasets, where the 3th and 4th columns provide the number
of proteins and the number of interactions respectively.
To evaluate the functional modules discovered by a
computational method, two set of gold standard functional
modules for each species are used as the benchmark. Two
benchmarks of Saccharomyces cerevisiae are SGD [57] and
CYC2008 [58], while two benchmarks of Homo sapiens are
PCDq [59] and CORUM [60]. Table 2 gives a summary
of the four benchmarks, where the 3th and 4th columns
provide the number of functional modules and the web links
respectively.

3.2 Evaluationmetrics

Two types of popular evaluation metrics are used to evaluate
the quality of the detected modules [3].

3.2.1 Precision, Recall, F-measure

Precision, Recall, and F-measure are three common
evaluation metrics in information retrieval and machine
learning. Using the three metrics, it is necessary to define
how well a detected module h = (Vh, Eh) matches a
standard module s = (Vs, Es). Many researches use a
Neighborhood Affinity score (NA) to assess the matching
degree, which is given as follows:

NA(h, s) = |Vh

⋂
Vs |2

|Vh| × |Vs | . (10)

If NA(h, s) ≥ ω, two modules h and s are considered
to be matched (generally, ω = 0.2). Let H be the set
of detected modules and S be the set of gold standard
functional modules. The number of the detected modules
in H which at least matches one standard module in S is
denoted by Nch = |{h|h ∈ H, ∃s ∈ S, NA(h, s) ≥ ω}|,
while the number of the standard modules in S which at
least matches one detected module in H is indicated by
Ncs = |{s|s ∈ S, ∃h ∈ H, NA(h, s) ≥ ω}|. Thus, Precision
and Recall is given below:

Precision = Nch

|H | , (11)

Table 1 Datasets used in
experiments Species Datasets Number of proteins Number of interactions

Saccharomyces cerevisiae Gavin 1855 7669

KroganCore 2701 7118

Homo sapiens DIPCore 4356 6586

DIPFull 4561 6990

1123J. Ji et al.

Table 2 Set of gold standard functional modules used in experiments

Species Set of gold standard functional modules Number of functional modules Http address

Saccharomyces cerevisiae SGD 372 http://www.yeastgenome.org/

CYC 2008 408 http://wodaklab.org/cyc2008/

Homo sapiens PCDq 1261 http://h-invitational.jp/hinv/pcdq/

CORUM 1738 https://mips.helmholtz-muenchen.de/

and

Recall = Ncs

|S| . (12)

F-measure is a harmonic mean of Precision and Recall. So
it can be used to evaluate the overall performance, and is
expressed as:

F − measure = 2 × Precision × Recall

P recision + Recall
. (13)

3.2.2 Sensitivity, positive predictive value and accuracy

Sensitivity (Sn), Positive Predictive Value (PPV) and
Accuracy (Acc) are three usual metrics to evaluate the
performance of a detection method. Let Tij be the number
of the common proteins in ith standard module and j th
detected module, then Sn and PPV are defined as:

Sn =

|S|∑
i=1

max
j

{Tij }
|S|∑
i=1

Ni

, (14)

and

PPV =

|H |∑
j=1

max
i

{Tij }
|H |∑
j=1

T·j
, (15)

where Ni is the number of the proteins in the ith standard

module, and T·j =
|S|∑
i

Tij .

In general, high Sn means that the detected results have a
good coverage of the proteins in the gold standard modules,
while high PPV represents the detected modules are likely
to be the standard modules. Acc is a comprehensive metric,
and is defined as the geometric mean of Sn and PPV:

Acc = (Sn × PPV)1/2. (16)

3.3 Effects of DE strategies

In this section, the authors investigated the effects of
DE strategies by comparing HFADE-FMD with FA-FMD
(without using the DE strategies). In the experiments,
the authors chose a set of parameters after doing some
preliminary experimentations, and set N = 40, T = 100,
Ř = 90, B̌ = 50, α = 0.4, Pm = 0.1, Pc = 0.8.
Table 3 provides the basic information of the detection
results for the two algorithms on the four datasets. For each
algorithm, the authors have listed the number of detected
modules (Number of modules), the average number of
proteins in each module (Average size of modules), the
number of detected modules which match at least one gold
standard module (Nch) and the number of gold standard
modules that match at least one detected module (Ncs).
Taking HFADE-FMD on Gavin dataset as an example, it
has detected 194 modules, and the average size of the

Table 3 The basic results of FA-FMD and HFADE-FMD on four datasets

Dataset Algorithm Number Average size SGD CYC2008

of modules of modules Nch ≥ 0.2 Ncs ≥ 0.2 Nch ≥ 0.2 Ncs ≥ 0.2

Gavin FA-FMD 196 9.46 85 131 101 128

HFADE-FMD 194 9.56 86 134 101 132

KroganCore FA-FMD 341 7.92 120 162 146 173

HFADE-FMD 315 8.57 114 151 139 162

DIPCore FA-FMD 675 6.45 91 91 123 241

HFADE-FMD 671 6.49 92 93 121 245

DIPFull FA-FMD 695 6.56 92 92 121 237

HFADE-FMD 689 6.62 93 94 120 238

1124 HFADE-FMD: a hybrid approach of fireworks algorithm...

http://www.yeastgenome.org/
http://wodaklab.org/cyc2008/
http://h-invitational.jp/hinv/pcdq/
https://mips.helmholtz-muenchen.de/

Fig. 4 Comparative results of HFADE-FMD and FA-FMD in terms of various evaluation metrics on Gavin dataset

194 detected modules is about nine proteins. Among the
194 detected modules, there are 86 modules matching 134
standard modules using SGD as benchmark, while there are
101 detected modules matching 131 standard modules using
CYC2008 as benchmark.

Figures 4, 5, 6, and 7 show the comparison results of
HFADE-FMD and FA-FMD on the four datasets in terms
of various evaluation metrics including Precision, Recall,
F-measure, Sensitivity, PPV, and Accuracy. From these
figures, it is easy to see that no matter which benchmark is
used, HFADE-FMD performs better than FA-FMD in terms
of nearly all metrics on three out of four datasets (Gavin,
DIPCore and DIPFull). As for the one remaining dataset
(KroganCore), HFADE-FMD and FA-FMD play equally
well using SGD as benchmark, and they both get the best
results on three metrics. Only in the case of using CYC2008

as benchmark for KroganCore dataset, HFADE-FMD is
slightly worse than FA-FMD. HFADE-FMD obtains the
best results on two out of six metrics while FA-FMD gets
the best results on four out of six metrics. On the whole,
the above experimental results fully proved that the DE
strategies are helpful for searching better functional module
partitions.

3.4 Comparing with competitivemethods

To demonstrate the performance of HFADE-FMD, the
authors compared it with ten competitive methods:
MCODE [4], CFinder [5], DCAFP [6], NeMo [7], FAG-
EC [9], MTGO [11], GA-PPI [28], ClusterEPs [18], ACC-
FMD [30] and BFO-FMD [31]. Among them, GA-PPI,
ACC-FMD and BFO-FMD are three swarm intelligence and

Fig. 5 Comparative results of HFADE-FMD and FA-FMD in terms of various evaluation metrics on KroganCore dataset

1125J. Ji et al.

Fig. 6 Comparative results of HFADE-FMD and FA-FMD in terms of various evaluation metrics on DIPCore dataset

evolution based algorithms. MCODE, CFinder and DCAFP
are three density-based algorithms. According to the node’s
neighbor local density, MCODE fist picks out seed nodes
for initial clusters, and then further augments these clus-
ters to form the final clusters. CFinder first identifies the
k-cliques using clique percolation, and then combines the
adjacent k-cliques to get the functional modules. DCAFP
integrates functional preferences of proteins and the graph
topology of PPI network for detecting functional mod-
ules. NeMO combines a unique neighbor sharing score
with the hierarchical agglomerative clustering to identify
functional modules. FAG-EC is a fast agglomerate algo-
rithm based on the edge clustering coefficients. MTGO
directly exploits GO terms during the module assembling
process, and labels each module with its best fit Go term.
ClusterEPs is different from the above methods and is a

supervised technology. Its key idea is to discover emerg-
ing patterns, which can clearly distinguish true complexes
from random subgraphs in a PPI network. In the exper-
iments, GA-PPI, ACC-FMD and BFO-FMD adopted the
same parameters as [28, 30] and [31], respectively. For
MCODE, CFinder, DCAFP, NeMo, FAG-EC, MTGO, and
ClsterEPs, the authors obtained their software implemen-
tations, and used the default values for their parameters.
The parameters of the proposed HFADE-FMD algorithm is
given in the last section.

Table 4 provides the basic information of the detection
results for the eleven algorithms on the four datasets. From
the table, it is clear that whichever set of gold standard
functional modules using, MCODE always obtains the least
number of modules (Number of modules), and ACC-FMD
and BFO-FMD get the biggest module and the smallest

Fig. 7 Comparative results of HFADE-FMD and FA-FMD in terms of various evaluation metrics on DIPFull dataset

1126 HFADE-FMD: a hybrid approach of fireworks algorithm...

Table 4 The basic results of eight algorithms on four datasets

Dataset Algorithm Number Average size SGD CYC2008

of modules of modules Nch ≥ 0.2 Ncs ≥ 0.2 Nch ≥ 0.2 Ncs ≥ 0.2

Gavin MCODE 122 8.14 60 94 73 87

CFinder 184 9.16 66 93 85 102

DCAFP 204 9.08 100 120 112 122

NeMo 259 8.64 117 100 152 99

FAG-EC 158 10.39 75 124 86 114

MTGO 205 9.12 95 111 113 112

ClusterEPs 286 7.58 146 114 168 126

GA-PPI 155 11.98 51 77 66 80

ACC-FMD 644 12.78 157 71 205 80

BFO-FMD 213 7.16 89 141 108 145

HFADE-FMD 194 9.56 87 132 101 128

KroganCore MCODE 77 7.23 54 83 58 69

CFinder 115 10.91 60 86 71 83

DCAFP 186 11.78 101 157 92 156

NeMO 302 7.99 104 86 117 77

FAG-EC 245 8.65 83 117 99 122

MTGO 192 8.12 66 112 85 121

ClusterEPs 398 7.45 238 93 248 96

GA-PPI 237 11.41 54 68 66 76

ACC-FMD 328 20.89 155 102 178 95

BFO-FMD 230 7.22 95 146 121 157

HFADE-FMD 315 8.57 113 153 139 162

DIPCore MCODE 90 5.32 29 32 35 101

CFinder 243 5.93 61 63 88 214

DCAFP 289 6.31 90 53 108 179

NeMo 409 10.31 55 51 71 158

FAG-EC 427 8.33 57 60 73 159

MTGO 504 7.93 94 91 90 182

ClusterEPs 582 7.17 48 40 127 108

GA-PPI 570 7.64 42 45 74 131

ACC-FMD 427 23.86 54 29 135 151

BFO-FMD 554 5.98 70 69 110 263

HFADE-FMD 671 6.49 92 93 121 245

DIPFull MCODE 91 5.35 28 31 35 100

CFinder 241 6.04 61 63 89 212

DCAFP 296 6.34 81 30 106 215

NeMO 431 9.38 54 50 69 155

FAG-EC 440 8.41 60 63 75 165

MTGO 402 7.96 65 44 84 158

ClusterEPs 612 5.43 112 40 135 103

GA-PPI 586 7.78 44 46 74 137

ACC-FMD 417 24.62 59 36 129 160

BFO-FMD 580 5.67 87 89 111 249

HFADE-FMD 671 6.49 92 93 121 245

1127J. Ji et al.

Fig. 8 Comparative results of eleven methods in terms of various evaluation metrics on Gavin dataset

module (Average Size of modules), respectively. HFADE-
FMD usually generates more and smaller modules. Besides,
the authors find that the number of gold standard modules
matching at least one detected module (Ncs) is more than
all the other algorithms in most cases, and the number of
detected module matching at least one gold standard module
(Nch) stands the top two ranks in most situations.

Figures 8, 9, 10, and 11 show the overall comparison
results of eleven algorithms on four datasets in terms of six
evaluation metrics including Precision, Recall, F-measure,
Sensitivity, PPV, and Accuracy. For the Gavin dataset shown
in Fig. 8, it is can be seen that according to the SGD
benchmark, HFADE-FMD ranks second in terms of Recall,
F-measure, and PPV, takes third places for Sn and ACC,
and is in the fifth place on the Precision metric. Using
CYC2008 as benchmark, HFADE-FMD achieves the best
results on the Sn and ACC statistics, respectively takes the
third and fourth places on the Recall and PPV statistics, and
obtains the fourth positions on the Precision and F-measure
statistics.

On KroganCore dataset in Fig. 9, One can easily finds
that when using SGD as benchmark, HFADE-FMD has

the best performance in terms of PPV and ACC, has the
second-highest top level in term of Recall, F-measure and
Sn, and ranks seventh with respect to the precision metric.
Using CYC2008 as benchmark, HFADE-FMD is in the first
place for Sn and ACC, and respectively ranks second, third,
sixth, eighth place in terms of Recall, F-measure, PPV and
Precision.

Figure 10 displays the results of the DIPCore dataset.
Taking PCDq as the benchmark, HFADE-FMD is first in
terms of three out of six metrics: Recall, Sn and ACC,
receives the second places with respect to PPV and F-
measure measures, and takes fifth place for the Precision
metric. Taking CORUM as benchmark, HFADE-FMD ranks
number one in regard to ACC metric, ranks second in terms
of Recall, Sn and PPV, and respectively takes the third and
seventh places on F-measure and Precision metrics.

As for the remaining one dataset in Fig. 11, using
PCDq as benchmark, HFADE-FMD stands first on half of
metrics: Recall, F-measure and Sn, gets the next best results
on PPV and ACC statistics, and ranks ninth with respect
to the Precision metric. Using CORUM as benchmark,
HFADE-FMD obtains the best performance on ACC metric,

Fig. 9 Comparative results of eleven methods in terms of various evaluation metrics on KroganCore dataset

1128 HFADE-FMD: a hybrid approach of fireworks algorithm...

Fig. 10 Comparative results of eleven methods in terms of various evaluation metrics on DIPCore dataset

receives the second place in terms of Recall, Sn and PPV,
and respectively ranks third and eighth in regard to the
F-measure and Precision metrics.

According to the above analysis, no matter what PPI
datasets and benchmark being used, HFADE-FMD always
obtains the superior results in most evaluation metrics.
Only on the Precision metric, HFADE-FMD usually does
not perform well. However, as previously mentioned,
the number of detected modules matching at least one
gold standard module (Nch) stands the top two ranks in
most situations. So the reason for the bad performance
with respect to Precision metric is because HFADE-FMD
usually generates more functional modules according to
formula (11). Besides, regardless of which PPI datasets
and benchmark being used, HFADE-FMD plays better
than the other three swarm intelligence and evolution
based algorithms (GA-PPI, ACC-FMD and BFO-FMD)
on overwhelming majority of metrics. Therefore, these
experimental results fully demonstrate that HFADE-FMD
is a very promising swarm intelligence and evolution based
approach for functional module detection in PPI networks.

4 Conclusions

The identification of functional modules in PPI networks is
important for biological knowledge discovery since many
important biological processes in the cell are carried out
through the formation of protein modules. Nowadays,
swarm intelligence and evolutionary based approaches have
been a kind of effective way to detect functional modules.
In this paper, a novel hybrid approach of FA and differential
evolution strategies is proposed for detecting functional
modules in PPI networks (called HFADE-FMD). HFADE-
FMD uses a new individual initialization method and new
implementation methods of optimization mechanisms. To
demonstrate the performance of HFADE-FMD, the authors
have carried out a series of experiments on four datasets
in terms of various evaluation metrics. The empirical
results illustrate that HFADE-FMD achieves prominent
performance with respective to Recall, Sn, PPV, and
ACC while performing well on other metrics. Therefore,
the proposed HFADE-FMD algorithm can effectively
detect functional modules from PPI networks and can be

Fig. 11 Comparative results of eleven methods in terms of various evaluation metrics on DIPFull dataset

1129J. Ji et al.

considered as a complement to help biologists to discover
some biological insights.

In spite of HFADE-FMD having superior performance,
there are the following two serious limitations that require
further study in the future: (1) HFADE-FMD as a swarm intel-
ligence algorithm is an iterative algorithm based on population
evolution, which is time consuming. Due to parallel
mechanisms are effective in reducing time complexity, thus
the systematical research of the parallel algorithms will be a
major task to enhance the efficiency of detecting functional
modules. (2) At present most studies including this paper
consider PPI networks as static graphs and overlook the
inherent dynamics of PPI networks. So it it very essential to
make clustering analysis on dynamics PPI networks.

Acknowledgments This work is partly supported by the NSFC
Research Program (61672065, 61906010), Beijing Municipal Educa-
tion Research Plan Project (KM202010005032), China Postdoctoral
Science Foundation funded project (71007011201801), Beijing Post-
doctoral Research Foundation (2017-ZZ-024), and Chaoyang Postdoc-
toral Research Foundation (2018ZZ-01-05).

References

1. Eisenberg D, Marcotte EM, Xenarios I et al (2000) Protein
function in the post-genomic era. Nature 405(6788):823–826

2. Ji J, Zhang A, Liu C et al (2014) Survey: functional module
detection from protein-protein interaction networks. IEEE Trans
Knowl Data Eng 26(2):261–277

3. Li X, Wu M, Kwoh CK, Ng SK (2010) Computational approaches
for detecting protein complexes from protein interaction networks:
a survey. BMC Genom 11(1):S3

4. Bader GD, Hogue CWV (2003) An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinform 4(1):1

5. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006)
CFinder: locating cliques and overlapping modules in biological
networks. Bioinformatics 22(8):1021–1023

6. Hu L, Chan KCC (2015) A density-based clustering approach
for identifying overlapping protein complexes with functional
preferences. BMC Bioinform 16:174

7. Rivera CG, Vakil R, Bader JS (2010) NeMo: network module
identification in cytoscape. BMC Bioinform 11(Suppl 1):S61

8. Li M, Wang J, Chen J (2008) A fast agglomerate algorithm for
mining functional modules in protein interaction networks. In:
Proceedings of the 1st international conference on biomedical
engineering and informatics, pp 3–7

9. King AD, Pržulj N, Jurisica I (2004) Protein complex prediction
via cost-based clustering. Bioinformatics 20(17):3013–3020

10. Abdullah A, Deris S, Hashim SZM, Jamil HM (2009) Graph
partitioning method for functional module detections of protein
interaction network. In: Proceedings of the international con-
ference on computer technology and development (ICCTD’09),
pp 230–234

11. Vella D, Marini S, Vitali F, Silvestre DD, Mauri G, Bellazzi
R (2018) MTGO: PPI network analysis via topological and
functional module identification. Sci Rep 8(1):5499

12. Cho YR, Hwang W, Ramanathan M, Zhang A (2007) Semantic
integration to identify overlapping functional modules in protein
interaction networks. BMC Bioinform 8(1):265

13. Feng J, Jiang R, Jiang T (2011) A max-flow-based approach to
the identification of protein complexes using protein interaction
and microarray data. IEEE/ACM Trans Comput Biol Bioinform
8(3):621–634

14. Qin G, Gao L (2010) Spectral clustering for detecting protein
complexes in protein-protein interaction (PPI) networks. Math
Comput Model 52(11):2066–2074

15. Inoue K, Li W, Kurata H (2010) Diffusion model based spectral
clustering for protein-protein interaction networks. Plos One
5(9):e12623

16. Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment
based method to detect protein complexes in PPI networks. BMC
Bioinform 10(1):169

17. Ma X, Gao L (2012) Predicting protein complexes in protein
interaction networks using a core-attachment algorithm based on
graph communicability. Inf Sci 189:233–254

18. Liu Q, Song J, Li J (1223) Using contrast patterns between true
complexes and random subgraphs in PPI networks to predict
unknown protein complexes. Sci Rep 6(2):2016

19. Yu FY, Yang ZH, Tang N, Lin HF, Wang J, Yang ZW (2014)
Predicting protein complex in protein interaction network-a
supervised learning based method. BMC Syst Biol 8(3):S4

20. Abualigah LMQ (2019) Feature selection and enhanced krill herd
algorithm for text document clustering. Studies in Computational
Intelligence. https://doi.org/10.1007/978-3-030-10674-4

21. Fahy C, Yang S, Gongora M (2019) Ant colony stream clustering:
a fast density clustering algorithm for dynamic data streams. IEEE
Trans Cybern 49(6):2215–2228

22. Abualigah L, Khader A, Hanandeh E (2018) Hybrid clustering
analysis using improved krill herd algorithm. Appl Intell
48(11):4047–4071

23. Maulik U, Saha I (2010) Automatic fuzzy clustering using
modified differential evolution for image classification. IEEE
Trans Geosci Remote Sens 48(9):3503–3510

24. Abualigah LM, Khader AT, Hanandeh ES (2018) A combination
of objective functions and hybrid krill herd algorithm for text
document clustering analysis. Eng Appl Artif Intell 73:111–125

25. Revathi J, Eswaramurthy VP, Padmavathi P (2019) Bacterial
colony optimization for data clustering. In: IEEE international
conference on electrical, computer and communication technolo-
gies (ICECCT)

26. Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017)
A novel hybridization strategy for krill herd algorithm applied to
clustering techniques. Appl Soft Comput 60:423–435

27. Sallim J, Abdullah R, Khader AT (2008) ACOPIN: an ACO
algorithm with TSP approach for clustering proteins from protein
interaction network. In: Proceedings of second UKSIM European
symposium on computer modeling and simulation, pp 203–208

28. Pizzuti C, Rombo S (2012) Experimental evaluation of
topological-based fitness functions to detect complexes in PPI net-
works. In: Proceedings of the 14th annual conference on genetic
and evolutionary computation. ACM, New York, pp 193–200

29. Ji J, Liu Z, Zhang A, Yang C, Liu C (2013) HAM-FMD: mining
functional modules in protein-protein interaction networks using
ant colony optimization and multi-agent evolution. Neurocomput-
ing 121:453–469

30. Ji J, Liu H, Zhang A, Liu C (2015) ACC-FMD: ant colony
clustering for functional module detection in protein-protein
interaction networks. Int J Data Min Bioinform 11(3):331–
363

31. Yang C, Ji J, Zhang A (2018) BFO-FMD: bacterial foraging
optimization for functional module detection in protein-protein
interaction networks. Soft Comput 22(10):3395–3416

32. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In:
Proceedings of the 1st international conference on advances in
swarm intelligence. Springer, Berlin, pp 355–364

1130 HFADE-FMD: a hybrid approach of fireworks algorithm...

https://doi.org/10.1007/978-3-030-10674-4

33. Bacanin N, Tuba M (2015) Fireworks algorithm applied to
constrained portfolio optimization problem. In: 2015 IEEE
congress on evolutionary computation (CEC), pp 1242–1249

34. Babu TS, Ram JP, Sangeetha K, Laudani A, Rajasekar N (2016)
Parameter extraction of two diode solar PV model using fireworks
algorithm. Solar Energy 140:265–276

35. Reddy KS, Panwar LK, Kumar R, Panigrahi BK (2016) Binary
fireworks algorithm for profit based unit commitment (PBUC)
problem. Int J Electr Power Energy Syst 83:270–282

36. Xue Y, Zhao B, Ma T, Pang W (2018) A self-adaptive fireworks
algorithm for classification problems. IEEE Access 6:44406–44416

37. Messaoudi I, Kamel N (2019) Community detection using
fireworks optimization algorithm. Int J Artif Intell Tools
28(3):1950010

38. Barraza J, Valdez F, Melin P, González C (2020) Optimal number
of clusters finding using the fireworks algorithm. In: Hybrid inte-
lligent systems in control, pattern recognition and medicine, pp 83–93

39. Barraza J, Melin P, Valdez F, Gonzalez CI (2017) Fuzzy fireworks
algorithm based on a sparks dispersion measure. Algorithms
10(3):83

40. Zhang T, Yue Q, Zhao X, Liu G (2019) An improved firework
algorithm for hardware/software partitioning. Appl Intell 49(3):950–
962

41. Yu C, Li J, Tan Y (2014) Improve enhanced fireworks algorithm
with differential mutation. In: 2014 IEEE international conference
on systems man, and cybernetics (SMC), pp 264–269

42. Zheng YJ, Xu XL, Ling HF, Chen SY (2015) A hybrid fire-
works optimization method with differential evolution operators.
Neurocomputing 148:75–82

43. Guo J, Liu W, Liu M, Zheng S (2019) Hybrid fireworks algorithm
with differential evolution operator. Int J Intell Inf Database Syst
12(1-2):47–64

44. Zhu X, Liu C, Guo Y (2015) Design of fuzzy classification
system based on fireworks optimization and differential evolution
algorithm. J Zhengzhou Univ (Eng Sci) 36(6):47–51

45. Ochoa P, Castillo O, Soria J (2020) Optimization of fuzzy
controller design using a differential evolution algorithm with
dynamic parameter adaptation based on Type-1 and Interval Type-
2 fuzzy systems. Soft Comput 24(1):193–214

46. Lien LC, Cheng MY (2012) A hybrid swarm intelligence based
particle-bee algorithm for construction site layout optimization.
Expert Syst Appl 39(10):9642–9650

47. Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza
C, Ochoa P (2019) Shadowed type-2 fuzzy systems for dynamic
parameter adaptation in harmony search and differential evolution
algorithms. Algorithms 12(1):17

48. Aydin ME, Kwan R, Leung C, Maple C, Zhang J (2013) A hybrid
swarm intelligence algorithm for multiuser scheduling in HSDPA.
Appl Soft Comput J 13(5):2990–2996

49. Chen CH, Su MT, Lin CJ, Lin CT (2014) A hybrid of bacterial
foraging optimization and particle swarm optimization for evo-
lutionary neural fuzzy classifier. Int J Fuzzy Syst 16(3):422–433

50. Castillo O, Valdez F, Soria J, Amador-Angulo L, Ochoa P, Peraza
C (2019) Comparative study in fuzzy controller optimization using
bee colony, differential evolution, and harmony search algorithms.
Algorithms 12(1):9

51. Grosan C, Abraham A, Han S, Gelbukh A (2005) Hybrid particle
swarm–evolutionary algorithm for search and optimization. Adv
Artif Intell 3789:623–632

52. Zuo L, Liu L, Wang H, Tan L (2018) A hybrid differential
evolution algorithm and particle swarm optimization with alter-
native replication strategy. Lect Notes Comput Sci 10941:487–
497

53. Zhang SH, Ning XM, Ding C, Zhang XS (2010) Determining
modular organization of protein interaction networks by maximiz-
ing modularity density. BMC Syst Biol 4(2):S10–S21

54. Mete M, Tang F, Xu X, Yuruk N (2008) A structural approach for
finding functional modules from large biological networks. BMC
Bioinform 9(9):S19

55. Schlicker A, Albrecht M (2008) FunSimMat: a comprehensive
functional similarity database. Nucleic Acids Res 36(suppl
1):D434–D439

56. Stroin R, Price K (1997) Differential evolution: a simple and
efficient heuristic for global optimization over continuous spaces.
Int J Glob Optim 11:341–369

57. Cherry JM, Adler C, Ball C et al (1998) SGD: saccharomyces
genome database. Nucleic Acids Res 26(1):73–79

58. Pu S, Wong J, Turner B et al (2009) Up-to-date catalogues of yeast
protein complexes. Nucleic Acids Res 37(3):825–831

59. Kikugawa S, Nishikata K, Murakami K et al (2012) PCDq: human
protein complex database with quality index which summarizes
different levels of evidences of protein complexes predicted from
H-Invitational protein-protein interactions integrative dataset.
BMC Syst Biol 6(S2):S7

60. Ruepp A, Waegele B, Lechner M et al (2010) CORUM: the
comprehensive resource of mammalian protein complexes-2009.
Nucleic Acids Res 38(1):D497–D501

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Junzhong Ji received the PhD
degree in computer science
and application technology
from the Beijing University of
Technology. He is a professor
and PhD supervisor in the
Computer Science college,
Beijing University of Tech-
nology, Member of Chinese
Association for Artificial
Intelligence, and Senior mem-
ber of the China Computer
Federation. He was a visiting
scholar at Norwegian Univer-
sity and the State University
of New York ab Buffalo. His

research interests include data mining, machine learning, swarm
intelligence and bioinformatics.

1131J. Ji et al.

Hanghang Xiao received the
master degree in computer
science and application tech-
nology from Beijing Univer-
sity of Technology in 2017.
His research interests include
swarm intelligence and bioin-
formatics.

Cuicui Yang Lecture at Bei-
jing University of Technology.
She received her doctor degree
in computer science and appli-
cation technology from Bei-
jing University of Technology
in 2017. Her research interest
covers machine learning, com-
putational intelligence, bioin-
formatics, and brain science.

1132 HFADE-FMD: a hybrid approach of fireworks algorithm...

	HFADE-FMD: a hybrid approach of fireworks algorithm...
	Abstract
	Introduction
	The proposed HFADE-FMD algorithm
	Basic idea
	Initialization of firework individuals
	Explosion operator
	Differential evolution operators
	Mutation operator
	Crossover operator
	Selection operator

	Algorithm description

	Evaluation
	Datasets
	Evaluation metrics
	Precision, Recall, F-measure
	Sensitivity, positive predictive value and accuracy

	Effects of DE strategies
	Comparing with competitive methods

	Conclusions
	References

