Applied Intelligence (2020) 50:4412-4433
https://doi.org/10.1007/510489-020-01782-5

1')

Check for
updates

Prioritizing positive feature values: a new hierarchical feature
selection method

Pablo Nascimento da Silva' © . Alexandre Plastino’ - Alex A. Freitas?

Published online: 20 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this work we address the problem of feature selection for the classification task in hierarchical and sparse feature spaces,
which characterize many real-world applications nowadays. A binary feature space is deemed hierarchical when its binary
features are related via generalization-specialization relationships, and is considered sparse when in general the instances
contain much fewer “positive” than “negative” feature values. In any given instance, a feature value is deemed positive
(negative) when the property associated with the feature has been (has not been) observed for that instance. Although there
are many methods for the traditional feature selection problem in the literature, the proper treatment to hierarchical feature
structures is still a challenge. Hence, we introduce a novel hierarchical feature selection method that follows the lazy learning
paradigm—selecting a feature subset tailored for each instance in the test set. Our strategy prioritizes the selection of features
with positive values, since they tend to be more informative—the presence of a relatively rare property is usually a piece of
more relevant information than the absence of that property. Experiments on different application domains have shown that
the proposed method outperforms previous hierarchical feature selection methods and also traditional methods in terms of
predictive accuracy, selecting smaller feature subsets in general.

Keywords Hierarchical feature spaces - Feature selection - Classification

1 Introduction

The classification task is one of the most relevant
types of supervised learning in the knowledge discovery
scenario [8]. A previously trained classification model
automatically assigns a class label to an instance, based
on the values of its features. In many important real-world
problems, each instance in the dataset can be described as
a binary feature vector, such that each feature takes either a

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10489-020-01782-5) contains
supplementary material, which is available to authorized users.

< Pablo Nascimento da Silva
pablosilva@id.uff.br

Alexandre Plastino
plastino@ic.uff.br

Alex A. Freitas

a.a.freitas@kent.ac.uk

Institute of Computing, Fluminense Federal University (UFF),
Niter6i RJ, Brazil

School of Computing, University of Kent, Canterbury, UK

@ Springer

“positive” or a “negative” value, indicating the presence or
the absence of a property, respectively, in the object being
classified. It should be noted that in this scenario, intuitively
positive values are more informative than negative values
in general. After all, a positive feature value has a clear
and well-defined meaning, whilst the negative value of a
feature represents very vague information, in the sense that
it just tell us that the object being classified does not have
a certain property, without providing any clue about the
object’s properties. Therefore, in this work we prioritize the
selection of positive feature values over negative feature
values, when learning classification models.

More specifically, this work addresses hierarchical
feature spaces, where binary features are related via
generalization-specialization relationships. In addition, the
addressed feature spaces are sparse, i.e., in general the
instances contain much fewer positive than negative feature
values. In a generalization-specialization hierarchy, also
known as “IS-A” hierarchy, for any given instance ¢, if a
feature x has positive value in ¢, denoted (x = 1), then all
ancestors of x in the feature hierarchy also have positive
value in ¢. In contrast, if a feature x has negative value in
t, denoted (x = 0), then all descendants of x in the feature
hierarchy also have negative value in .

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01782-5&domain=pdf
http://orcid.org/0000-0002-4245-2959
https://doi.org/10.1007/s10489-020-01782-5
mailto: pablosilva@id.uff.br
mailto: plastino@ic.uff.br
mailto: a.a.freitas@kent.ac.uk

Prioritizing positive feature values: a new hierarchical...

4413

Some examples of data commonly characterized by hierar-
chical and sparse feature spaces, where positive feature values
are in general more informative than negative values, are
text [11] and biological data [29, 31], which are two of the
most investigated types of machine learning applications.

For example, in the text classification problem, an article
may be characterized by a set of tags describing its content.
In this case, one general feature (e.g., News) may be
associated with one or more specialized features (e.g.,
Economy, Politics and Sports). In addition, knowing that a
document contains a certain word like Economics (positive
feature value) provides us with clear information about the
document’s contents, whilst knowing that the document
does not contain a certain word like Economics (negative
feature value) provides us with much less information about
the document’s contents.

Similarly, in bioinformatics problems where each
instance represents a gene, each gene may be associated
with terms derived from an ontology of biological processes
or functions. Hence, a general feature (e.g., biological pro-
cess) would be the ancestor of more specific features (e.g.,
reproduction or biological regulation). In addition, a gene
annotation indicating that the gene is involved in say DNA
repair (positive feature value) provides us with much more
information than a lack of DNA repair annotation (negative
feature value) for that gene.

Many important real-world datasets have a large number
of features, many of which are not crucial for predicting
the correct class. Some features can be redundant (highly
correlated with each other) or irrelevant for predicting
the class variable, decreasing the classifier’s predictive
accuracy, making the learning process slower, and reducing
the comprehensibility of the results.

Feature selection methods have been successfully
employed to cope with these problems. They aim at select-
ing a reduced subset of features to predict the target class,
yet increasing the predictive accuracy of the classifier [17].
Although many methods address this problem [6, 12, 15,
17, 18, 22, 32], only few of them explore the hierarchi-
cal information in order to improve their effectiveness [11,
20, 24, 29-31]. Existing hierarchical feature selection meth-
ods usually find a suitable subset of features by keeping
those features with higher values of relevance and removing
redundancy among hierarchically related features.

In this work, we focus on hierarchical and sparse feature
spaces from different domains that share a singular character-
istic; a positive feature value is always much more infor-
mative than a negative feature value, as briefly discussed
earlier and discussed in more detail later. Despite this inter-
esting characteristic of positive feature values, none of the pre-
viously proposed feature selection methods for hierarchical and
sparse feature spaces has prioritized the selection of posi-
tive feature values. Hence in this work, we hypothesize that

the selection of positive feature values tends to increase the
predictive accuracy of the classifier, and we propose feature
selection methods prioritizing positive feature values.

The main contribution of this work is the proposal of
a novel lazy feature selection method for hierarchical and
sparse feature spaces which relies on the higher relevance of
features with positive values for the classification task. The
basic idea of this method is to select, for each test instance,
a subset with the most specific positive feature values in
the hierarchy as well as its relevant ancestors. To assess the
quality of the subset of positive feature values, we introduce
a new lazy version of a relevance measure that evaluates the
predictive relevance of a feature value for the current test
instance.

The main related work involves two other lazy feature selec-
tion methods proposed in the literature, the HIP and MR methods
[31]. In essence, the proposed feature selection method—
called Select Relevant Positive Feature Values (RPV)—
differs from HIP and MR in three major ways: First, RPV
uses a new relevance measure, proposed in the current work.
Second, RPV selects only positive feature values for each
instance, whilst the HIP and MR methods select both pos-
itive and negative feature values for each instance. Third,
comparing RPV vs. HIP, HIP selects only the most specific
positive features, whilst RPV selects not only the most
specific features but also some of their relevant ancestors;
and comparing RPV vs. MR, RPV removes only features
which are hierarchically redundant, whilst MR in general
removes features that are not hierarchically redundant.
These differences are explained in more detail in Section 3
(Related Work), after a description of HIP, MR and other
hierarchical feature selection methods.

The proposed feature selection method prioritizing posi-
tive feature values is evaluated in 17 datasets. These datasets
are mainly from the area of bioinformatics, but they also include
other types of application domains, in particular two datasets
involving the classification of sports tweets, one dataset
involving the classification of news headings, one dataset
involving the classification of URLs, and finally one dataset
classifying cities into categories of “liveability”. The results
of experiments with these diverse application domains show
that the proposed hierarchical feature selection method
outperforms both traditional feature selection methods and
recent state-of-the-art hierarchical feature selection methods
regarding predictive accuracy, whilst also selecting smaller
feature subsets.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the hierarchical feature selection problem and
briefly discusses feature selection methods. Section 3 reviews
related work. Section 4 introduces the new relevance
measure and the novel lazy restrictive hierarchical feature
selection method. Section 5 presents experimental results.
Section 6 presents conclusions and research directions.

@ Springer

4414

P.N.da Silvaetal.

2 Hierarchical feature selection
for classification

The classification problem can be defined as follows. Let

X = {Xy,..., X4} be a set of d predictive features and
L = {l1,...,l4} be a set of g class labels, where g > 2.
Let D = {(x1,y1), (x2,y2),..., (xny, yn)} be a dataset

with N instances, where x; corresponds to a vector
(xi1, Xi2, ..., Xiq), for the i-th instance, which stores values
for the d features in X and each y; € L corresponds to a
single target class. The goal of the classification task is to
learn a classifier from D that, given an unlabelled instance
t = (x, ?), predicts its class label y.

The quality of the feature set has a huge impact on
the predictive performance of classification algorithms [17].
Feature selection methods aim at improving the predictive
performance of the classifier by selecting a subset
containing relevant and non-redundant features. Relevant
features are those that are useful for predicting the target
class variable, and non-redundant features are those that are
not highly correlated with other features.

Feature selection methods can be categorized into
embedded, wrapper and filter methods [17]. Embedded
methods are incorporated into the classification algorithm,
selecting features during the learning of a classification
model. Wrapper and filter methods are instead used in a
data pre-processing step. Wrapper methods measure the
relevance of a feature subset by evaluating the predictive
accuracy of a classifier built using that subset. Hence,
they select features tailored for the target classification
algorithm, but they tend to be very time-consuming. By
contrast, filter methods evaluate the predictive power of
features in a generic way, by using a relevance measure that
is independent of the target algorithm. Filter methods tend
to be much faster and more scalable than wrapper methods.
We focus on filter methods in this work. For an example of
a wrapper approach see [3].

In some scenarios, the i-th instance is defined as a d-
dimensional binary feature vector (x;1, X2, ..., Xiq) With
xij € {0,1} for all 1 < j < d. When the feature set X
is hierarchically structured, we call it a hierarchical feature
space, which can be represented as a Direct Acyclic Graph
(DAG). In this DAG a vertex (node) represents a feature
and an edge represents a generalization-specialization
relationship between features. In this sense, an edge (X, —
Xp) indicates that X, is a parent of X, and X} is a child of
X 4. More generally, a feature X, is an ancestor (descendant)
of a different feature X, if and only if there is a sequence
of edges leading from X, to X; (from X, to X,) in the
feature DAG—or feature tree, in some scenarios. The root
node is the most general feature, while the leaf nodes are
the most specific ones. Note that this structure produces
a hierarchical redundancy among features, since a specific

@ Springer

feature value logically implies the values of all its ancestors
or descendants: all ancestors of positive-valued features
have positive values and all descendants of negative-valued
features have negative values.

For example, to classify an instance where the feature
set is formed of Gene Ontology (GO) terms, if the instance
is annotated with the GO term “multicellular organism
reproduction”, then that instance is considered annotated
with the more general GO terms ‘“reproduction” and
“multicellular organism process”. Conversely, if an instance
is not annotated with the GO term “reproduction” (i.e.,
the feature “reproduction” has a negative value), then the
instance is considered not to be annotated with the GO term
“multicellular organism reproduction” (i.e., the child feature
is guaranteed to have a negative value too, in that instance).

Hierarchical feature selection methods exploit character-
istics of the feature DAG to improve the predictive accuracy.
This is typically done by removing hierarchically redundant
features [24, 31]. Note that, even though we are dealing
with hierarchical features, the information about the hier-
archical structure (represented by a feature DAG) is only
used by the hierarchical feature selection methods. L.e., the
hierarchical structure is used to enhance the feature selec-
tion process, helping to identify a better set of features to be
selected. After the feature selection step, the data is treated
as a “flat” dataset (the hierarchical structure is not consid-
ered anymore), then we can use traditional classification
methods to make predictions.

Feature selection methods (as well as classification methods)
are categorized as eager or lazy. Eager methods select a subset
of features based on the training instances. Then, a model
trained with the selected features is used to predict the
class of any test instance. By contrast, lazy methods select
a feature subset tailored for each test instance [1, 22], by
observing the feature values (but not the class, of course)
in that test instance. In this work, the main motivation to
adopt the lazy learning approach is the ability to select a set
of relevant positive feature values specifically tailored for
each testing instance.

Based on these definitions, our proposed hierarchical
method can be categorized as a filter feature selection
method which follows the lazy learning paradigm.

3 Related work

Traditional (non-hierarchical) feature selection methods, like
the well-known eager Correlation-based Feature Selection
(CFS) [6] and ReliefF [12] methods, can be used in hierar-
chical feature spaces by ignoring the hierarchical relations-
hips among features. However, this is intuitively a sub-opti-
mal approach. Hence, a few methods that directly exploit
such hierarchical relationships to improve performance have
been recently proposed, as follows.

Prioritizing positive feature values: a new hierarchical...

4415

SHSEL [24] is a hierarchical feature selection method
that performs eager learning. SHSEL assumes that, if two
features are directly hierarchically related (one is a parent
of the other), they are usually highly correlated and tend to
be similarly relevant for classification. Hence, for each pair
of directly hierarchically related features, SHSEL removes
the most specific feature if the correlation between them is
higher than a user-defined threshold. Then, using only the
remaining features, it keeps for each path in the hierarchy
the features whose relevance is higher than the average
relevance of features in that path. Moreover, Lu et al.
proposed the Greedy Top-Down (GTD) search strategy [20],
which selects the most relevant features in each path from
each leaf to the root node in the hierarchy. Likewise,
an eager learning hierarchical method called Tree-Based
Feature Selection (TSEL) [11] has been used in the special
case of tree-structured features. Previous work showed that
SHSEL achieves better performance than TSEL and GTD
[24].

Some hierarchical methods proposed in the litera-
ture are based on the lazy learning paradigm, such as
the Select Hierarchical Information-Preserving Features
(HIP) method [31], the Select Most Relevant Features
(MR) method [31], and the hybrid Select Hierarchical
Information-Preserving and Most Relevant Features (HIP-
MR) method [31]. Since the hybrid HIP-MR obtained worse
results than its base methods HIP and MR in [31], it is no
longer considered. Next, we briefly describe HIP and MR.

The HIP method eliminates hierarchical redundancy
by selecting only the “core” features in the current test
instance—i.e., features whose values are non-redundant
since they cannot be inferred from the values of other
features. In other words, HIP selects the subset of the
most specific positive-valued features (which imply their
ancestors) and the most general negative-valued features
(which imply their descendants). The values of the features
selected by HIP for an instance imply the values of all other
features for that instance, so it ensures that hierarchical
redundancy is completely eliminated. However, HIP does
not take into account the relevance of the selected features.

In a similar vein, the MR method not only eliminates
hierarchical redundancy but also selects features with higher
relevance. For each feature in the DAG, MR considers all
paths between the feature and the root (for positive feature
values) or between the feature and the leaves (for negative
values). Then, the most relevant feature in each path is
kept. However, unlike HIP, in general MR does not select
all “core” features, i.e., it removes some hierarchically
non-redundant features.

The proposed RPV method (described in Section 4)
shares with HIP a certain focus on more specific positive
feature values, but there are three important differences
between these methods. First, HIP selects both positive and

negative feature values, whereas RPV only selects positive
feature values. Second, among positive feature values, HIP
selects only the most specific ones; whilst RPV selects not
only the most specific feature values, but also some of their
relevant ancestors in the feature hierarchy. Third, RPV uses
a new measure of feature value relevance (introduced in this
paper), whilst HIP does not use any such relevance measure.

In this work, we compare our proposed method against
the state-of-the-art hierarchical feature selection methods
HIP, MR and SHSEL, as well as against the traditional (non-
hierarchical) feature selection methods CFS and ReliefF.

Note there are also other types of hierarchical feature
selection methods, often discussed in the literature under the
name of structured feature selection, as reviewed in [5, 19].
However, in general those methods have been proposed for
the regression task (using a variation of the Lasso method
that produces a sparse linear model), rather than for the
classification task addressed in this paper.

It is important to highlight that the hierarchical feature
selection task addressed in this paper should not be confused
with the kind of hierarchical feature learning performed
in deep learning processes. Deep neural networks involve
hierarchical feature construction, where, during the training
of the neural net, features are hierarchically learnt across
the layers of the network [23]. On the other hand, in the
problem discussed in this work, the hierarchy of features
is predefined, and it is provided as an input to the feature
selection algorithm. The point is not to learn or construct
new features; the point is to select the best possible subset
of features, among the original feature set, exploiting
generalization-specialization information associated with
the predefined feature hierarchy.

4 The proposed hierarchical feature
selection method

This section presents our new relevance measure and the
new feature selection method for hierarchical and sparse
feature spaces.

4.1 Lazy feature relevance measure

In general, how to assess the relevance (or predictive power)
of a feature plays an important role in the design of a
good feature selection method. Many different functions
have been proposed to cope with this issue, such as the
Information Gain [2], the Mutual Information [28], the R
measure [26], etc.

The R measure, first proposed by [26], was adjusted by
[31] to assess the predictive power of features in hierarchical
feature selection. As shown in (1), where k is the number of
classes, the R measure calculates the relevance of a binary

@ Springer

4416

P.N.daSilvaetal.

feature X based on the differences between the conditional
probabilities of each class ¢; given feature values x| and x5.
k

R(X) =) [P(cilx1) —

i=1

P(cilx)]? (1)

Note that (1) is an eager relevance measure, but features
may be useful or not depending on the feature values
of the test instance being currently classified [22]. Our
proposed feature selection method considers that taking into
account the feature values (specifically positive values) of
the current test instance may contribute to identifying a
subset of high-quality features for that particular instance,
in the spirit of lazy learning. For this reason, we propose
a new feature relevance measure, named Lazy Relevance
Measure (LazyR), which assesses the predictive power of a
given feature X taking a specific value x in the current test
instance. Defined in (2), LazyR calculates the relevance of
X with value x as a function of the sum of differences in the
conditional probabilities of each class (c;) given the specific
feature value x and the class probability % associated with a
uniform distribution—ignoring the other values of X, since
they do not occur in the current test instance. This measure
has the highest value when the feature value x is perfectly
correlated with one of the k classes, and presents the lowest
value when the conditional probability of each class ¢; is

exactly %
k

LazyR(X = x) Z[P() IT)
az =x) = cilx) — -
Y 2 i X
The LazyR measure has some benefits over eager mea-
sures. Eager relevance measures (e.g., R and Information
Gain) assess the relevance of all values of a feature to dis-
criminate among class labels. In contrast, LazyR assesses
the relevance of a specific feature value. Consider, e.g., a
feature A with positive and negative values, where the pos-
itive value discriminates well among class labels and the
negative value does not. An eager relevance measure could
assign a low score to feature A, leading to its removal. In
contrast, our lazy relevance measure would keep A in the
model if the instance being classified has a positive value
for A, and remove it if the instance has a negative value, a
principled data-driven decision.

4.2 The proposed lazy and restrictive hierarchical
feature selection method

We designed a new feature selection method for hierarchical
and sparse feature spaces called Select Relevant Positive
Feature Values (RPV). The intuition for this method is
twofold. First, in sparse feature spaces, positive feature
values are more informative and easier to interpret than
negative values. That is, since positive feature values
are quite rare, they provide more relevant and more

@ Springer

meaningful information than negative values. For instance,
in text mining, typically a document is described by
features representing the presence (positive value) or
absence (negative value) of words in that document, and
the class indicates a document’s subject. The presence
of the word “teacher” is relevant for predicting that
the document’s class is “Education”, but the absence
of the word “teacher” is not relevant for classification
nor meaningful, it is too broad information. Second,
the generalization-specialization structure of hierarchical
feature spaces creates hierarchical redundancy among
features, which intuitively reduces predictive accuracy. RPV
exploits generalization-specialization relationships in order
to eliminate hierarchical redundancy, which should improve
predictive accuracy.

More specifically, our method adopts the following ideas:
(i) it relies on a restrictive selection approach, where
selecting only positive feature values might increase the
accuracy of the classifier; (ii) it tries to identify a specific
subset of relevant positive features for each instance ¢
in the test set—using the lazy paradigm; (iii) taking into
account the hierarchy, it selects the most specialized positive
feature values as well as those positive feature values whose
relevance value is higher than (or equal to) the relevance of
all its positive descendants.

We now show, theoretically, that Naive Bayes—a clas-
sifier used in related work [24, 29, 31] and also employed
in our experiments—tends to give larger influence to posi-
tive feature values than to negative feature values in sparse
datasets, which is in agreement with the ideas behind the
proposed feature selection method.

Consider the log-odds ratio form of Naive Bayes (for
binary classes ¢ and ¢3):

d
P@IX) _, Pl PGiilen)

3
"PlX) P(62)+Z PGiler)’ ©)

which predicts class c¢; for the current instance if
In ﬁgg:g > 0, and predicts class ¢, otherwise. The
summation term of this formula can be divided into two
parts: Zl+ ,In 5&‘*:2; and Y9, In ﬁg’ IEI;, where i+
and i — index the set of positive and negative feature values
in the current instance, respectively; d+ and d— are the
number of positive and negative feature values in the current
instance, respectively; and d— 4+ d+ = d. In the case of
very sparse features, each term in the second summation
(over the d— negative feature values) will tend to zero. This
is because, since the vast majority of instances take the
negative value for a highly sparse feature, both the terms
P(x;_|c1) and P(x;_|c) will tend to have similar values
(both will tend to be close to 1), and therefore each term
l % will tend to be close to zero. L.e., negative feature
values will have little influence in the Naive Bayes formula.
On the other hand, for positive feature values, the terms

Prioritizing positive feature values: a new hierarchical...

4417

P(xi4+|c1) and P (x;4]|c2) will have quite different values in
general, and so the summation of the terms / nf;g;—ﬂg; over
the d+ positive feature values will tend to be a large number,
rather than close to zero. L.e., positive feature values tend to
have a larger influence than negative feature values in the
Naive Bayes formula.

The RPV method works as follows. Given a test instance
t, first, it evaluates the relevance of each feature in f.
Then, it identifies the list of ancestors for each positive
feature value, using the feature DAG. After that, RPV
marks every negative feature value in ¢t for removal. For
each positive feature X; in ¢, RPV evaluates each of its
ancestors and marks for removal those whose relevance is
lower than the relevance of X;. At the end of the process,
RPV removes every feature marked for removal, and the
remaining features are used in the lazy classification of the
current test instance.

Algorithm 1 describes how RPV works in detail. This
algorithm produces as output a subset of features named
Selected Feat SubSet. In the initialization phase (lines 1
to 5), the ancestors and the relevance value (measured by
LazyR) for each feature in the DAG are computed and
stored into the respective Ancestors and Relevance arrays
(indexed by the features’ ids). Also, the Status array is
initialized with the “Selected” value for all features.

Algorithm 1 Select relevant positive feature values (RPV).

Input : D (training dataset), ¢ (test instance) and DAG
(feature hierarchy)
Output: a subset of features Selected FeatSubSet
1: for each feature X; in DAG do
2: Ancestors[X;] < list of ancestors of X; in the
DAG
3: Relevance[X;] <« LazyR(X; =
{computed using the training set D}
Status[X;] < “Selected”
end for
for each feature X; in DAG do
if Value(X;,t) is positive then
for each feature A; € Ancestors[X;] do
if Relevance[A|] < Relevance[X;] then
10: Status[A;] < “Removed”
11: end if
12: end for
13: else
14: Status[X;] <~
Value(Xj,t) is negative}
15: end if
16: end for
17: Selected FeatSubSet <« features with Starus set to
“Selected”
18: return Selected FeatSubSet

positive)

R AN

“Removed” {since

The main phase of RPV works as follows. In line 7, for
each feature X; in DAG, the function Value(X;, t) returns
the value of X; in the test instance ¢. If the returned value
is positive, RPV looks at each ancestor A; of X; in the
DAG and marks for removal (setting the Status flag) those
with relevance value lower than the relevance of X; (lines
8 to 12). In line 14, every feature with negative value in
t is marked for removal, since negative values are much
less informative than positive values, as discussed earlier.
In lines 17 and 18, the feature subset Selected Feat SubSet
receives all features whose Status is still “Selected” and
this subset is returned by the algorithm. Then, a lazy
classifier is executed for test instance ¢ using only the
selected features. Note that, after initializing each feature’s
Status with “Selected”, the Status of a feature can only
be changed to “Removed” in lines 10 and 14, and once
this change is made, that feature’s Status is never set back
to “Selected” by the algorithm. Hence, the result of the
algorithm does not depend on the order in which the features
are processed.

The RPV algorithm is executed for each test instance in
a lazy learning fashion, but note that, in order to save time,
the values of the Ancestors and Relevance arrays can be
pre-computed in an eager fashion and stored to be accessed
whenever a new instance needs to be classified.

Figure 1 illustrates how RPV works. In this figure, each
vertex represents a feature, and the numbers on the right and
left side of each node represent, respectively, the feature’s
value (1 for positive, 0 for negative) and the relevance of that
feature value. After RPV’s initialization phase, each feature
in the DAG (denoted by letters A to N) is processed in turn.
When A, B, D, E, F and I are processed, their Starus will be
set to “Removed”, since their values are “0”. When C (with
value “1”) is processed, RPV sets to “Removed” the Status
of C’s ancestors in the DAG whose relevance (LazyR) value
is lower than C’s relevance—i.e., G and N are marked for
removal. When H is processed, L and N (ancestors with
lower relevance than H) are marked for removal, and M

O¥F O
0.33 0.30

Fig. 1 Example of a feature DAG showing the subset of features
selected by RPV

0.2

@ Springer

4418

P.N.daSilvaetal.

A B C D Class
Instance 1 1 1 0 0 C1
Instance 2 1 0 1 0 C2
Instance 3 0 0 1 1 C2

Fig. 2 Example of a dataset with two features and three instances
where A is an ancestor of B and LazyR(B = 1) > LazyR(A=1)

will also be marked for removal when J is processed. After
processing all features, the only ones selected (never marked
for removal) are features C, K, H and J.

The reader might be questioning whether the rule “if
a given feature A is an ancestor of a feature B then
LazyR(A) > LazyR(B)” is always true. We demonstrate
that it is not always true by using the counter-example
presented in Fig. 2. Considering that feature A is an ancestor
of feature B (the value B = 1 in an instance implies
the value A = 1 in that instance), then we will show
that in this case LazyR(B) > LazyR(A). Note that we
evaluate the relevance of the value of the feature and how
well it is correlated with the class variable. So, LazyR is
higher when the feature values that appear in the instance
to be classified can describe the class well. In this specific
case, the features are binary and then the possible feature
values are 0 or 1. We evaluate the relevance of each one
of these two feature values for each feature in the datasets.
According to (2), we have that k = 2, so0 1/k = 0.5, then
LazyR(B = 1) = (1 — 0.5)% + (0 — 0.5)> = 0.5 and
LazyR(A = 1) = (1 —0.5)% 4+ (0.5 — 0.5)> = 0.25, i.e.,
LazyR(B =1) > LazyR(A = 1). In a second example, in
Fig. 2, consider that C is an ancestor of D (the value D = 1
in an instance implies the value C = 1 in that instance). In
this case, LazyR(C = 1) = (0 — 0.5)2 + (1 — 0.5)2 = 0.5
and LazyR(D = 1) = (0—0.5)% + (0.5 —0.5)> = 0.25, s0
LazyR(C = 1) > LazyR(D = 1), since C is much more
discriminative to the class variable than D. These values
demonstrate that the value of LazyR is not linked with the

Fig.3 Diagram illustrating the
inputs and output of the RPV
method for a given test instance,
and also showing that the

selected feature subset (RPV’s
output) is used by a lazy
classifier to classify that instance

Feature Hierarchy

position of the feature in the hierarchy, it is related with
the discriminative power of the feature value. The position
of the feature in the hierarchy is much more related to the
redundancy among feature values than to their relevance.

Figure 3 depicts the end-to-end process of employing the
RPV feature selection method in the pre-processing stage
of the classification procedure. First of all, since the RPV
method is a lazy filter feature selection method, it uses the
feature hierarchy and the training dataset to automatically
and intelligently select a subset of features for posterior use
in the classification of a given test instance f. Note that
this feature selection process follows the lazy paradigm,
i.e., the filter procedure is tailored to each instance that
passes through the RPV method. After the feature selection
procedure is executed, a lazy classifier (such as the Naive
Bayes or the Nearest Neighbor classifier) is used to predict
the class of the instance ¢ using only the subset of the
original features selected by the RPV method.

The RPV method presents some appealing characteris-
tics: (i) it selects only positive feature values, which are
more informative than negative values; (ii) it uses a lazy rel-
evance measure specifically adapted to assess the relevance
of a feature value in the current test instance; (iii) since it
selects only positive values, it tends to select fewer features
than the other methods used in our experiments (as shown
later); (iv) it selects the most specific positive feature values
and some of their most relevant ancestors.

4.3 An analysis of the worst-case time complexity
of RPV

The worst-case time complexity of RPV can be calculated
as follows. First of all, note that, in the worst case scenario,
the feature DAG has N nodes (features) and w
edges. Le., each feature is linked to all features but its
own descendants. Hence, line 2 of Algorithm 1 has worst-
case time complexity O(N), but this line is executed N
times since it is within a for loop, which takes O(N?).

Test instance t
Features Class
1

|
T T 111

Training

Subset of
Features Lazy

Class of t

Classifier

Set

@ Springer

Prioritizing positive feature values: a new hierarchical...

4419

Line 3 of Algorithm 1 requires the value of the LazyR
(Lazy Relevance) measure for each feature, which is pre-
computed before Algorithm 1 is run, with a time complexity
of O(N - M), where N is the number of features and M is
the number of training instances. Lines 3 and 4 take constant
time (simple assignment), and so they can be ignored in the
analysis, since their time complexity is dominated by the
one of line 2. During RPV’s feature elimination procedure,
performed by the nested loop starting in line 6, in the worst
case, in line 9 the relevance value of the most specific
feature is compared to the relevance of N — 1 ancestors, the
second most specific feature is compared to N — 2 ancestors
and so on, until all features have been evaluated. The other
lines in the nested loop, lines 10 and 14, do not change the
time complexity associated with this loop. In total, in the
worst case, the nested loop starting at line 6 of Algorithm 1
performs N'UX*D comparisons, i.e., O(N?).

Hence, in addition to the time O(N - M) to pre-compute
all LazyR values, Algorithm 1 takes O (N?)+0O(N?), which
in total is O (N - M + N?). Note that Algorithm 1 is executed
once for each test instance to be classified. Hence, the total
worst-case time complexity of the RPV feature selection
method is O(N - M + ¢ - N?), where N is the number of
features, M is the number of training instances, and ¢ is the
number of test instances to be classified.

Note however, that in practice the time taken by RPV
tends to be much smaller than suggested by this worst-case
analysis, because in practice the number of ancestors of
each feature is usually much smaller than the theoretical
maximum of N —1 (a key assumption in the above analysis).

5 Computational experiments
5.1 Datasets

In this work, the proposed method was evaluated on 17
distinct datasets, 12 from the bioinformatics domain and 5
from other classification domains.

Following the same methodology described in [29, 31],
we created 12 datasets of ageing-related genes, involving
the effect of genes on an organism’s longevity. These
datasets were created by integrating data from the Human
Ageing Genomic Resources (HAGR) GenAge database
(version: Build 17) [21] and the Gene Ontology (GO)
database (version: 2015-10-10) [27]. HAGR is a database
of ageing- and longevity-associated genes in four model
organisms: C. elegans (worm), D. melanogaster (fly),
M. musculus (mouse) and S. cerevisiae (yeast). The GO
database provides information about three ontology types:
biological process (BP), molecular function (MF) and
cellular component (CC). Each ontology contains a separate
set of GO terms (features), i.e., a distinct feature hierarchy

(a DAG). For each of the 4 model organisms, we created
3 datasets, one for each feature type (feature hierarchy),
denoted by BP, CC and MF. Hence, each dataset contains
instances (genes) from a single model organism. Each
instance is formed of a set of binary features indicating
whether or not the gene is annotated with each GO term in
the GO hierarchy and a binary class variable indicating if the
instance is either positive (“pro-longevity”” gene) or negative
(“anti-longevity” gene) according to the HAGR database.
That is, the class variable indicates whether a gene has the
effect of extending or reducing the lifespan of an organism,
which is some important information for biologists trying
to understand the process of ageing. In order to avoid
overfitting, GO terms which occurred in less than three
genes were discarded.

Note that GO terms are a particularly suitable type
of predictive feature in the context of our experiments,
because they have a clear hierarchical structure, they
are available in different types of biological hierarchies
(involving biological processes, molecular functions and
cellular localization information), and they have also been
used in benchmark datasets used in previous research in this
area, as mentioned earlier. In addition, GO terms are popular
in bioinformatics, because they allow biologists to describe
biological properties of genes in a standardized way, as well
as allowing the description of gene properties at different
levels of abstraction. Hence, genes whose properties are
known in detail can be annotated with very specific GO
terms (around the bottom of the GO hierarchy), whilst genes
whose properties are mainly unknown can be annotated
with very high level GO terms (around the top of the GO
hierarchy). This makes GO terms a flexible approach for
representing biological knowledge.

The remaining 5 datasets, previously used in a related
work [24], represent different classification tasks with
features and hierarchies extracted from either the Open
Directory Project! or DBpedia [14]. These datasets are
described below.

— Tweets T and Tweets C: in these datasets, the task is
to identify sports-related tweets, where each tweet can
be either related to sports (positive class) or not related
to sports (negative class). The hierarchy and features
were generated by extracting types (in Tweets T) and
categories (in Tweets C) from DBpedia.

— NY Daily: this dataset is a set of news headings
augmented with DBpedia’s types, where the classifi-
cation task is to identify a sentiment variable (posi-
tive/negative).

— Stumbleupon (Stb.upon): it is a user-curated web
content discovery engine that recommends relevant,
high quality pages and media to its users, based on

Thttp://www.dmoz.com

@ Springer

http://www.dmoz.com

4420

P.N.daSilvaetal.

their interests. The aim is to classify webpages into the
“ephemeral” class if they are visited on specific periods
of time or into the “evergreen” class if they are visited
for a long period of time.

— Cities: this dataset was generated from a list of the most
and the least liveable cities according to the Mercer
survey augmented with DBpedia types. The task is to
classify each city into low, medium and high liveability,
where liveability is a variable that combines many
factors (such as political stability, medical supplies and
services, censorship, among others) to measure to what
extent it is desirable to live in a city.

Information about the datasets is shown in Table 1.
For each of the four model organisms, each of the three
rows shows information about a specific dataset. The
first column identifies the group of datasets for each of
the four organisms or the general-domain datasets. The
second column shows the feature hierarchies used to build
the bioinformatics datasets or, in the last five rows, the
names of the datasets from general (non-bioinformatics)
domains. The other columns show, respectively, the number
of features (#features), the number of edges in the feature
DAGs (#edges), the number of instances (#instances),
the percentage of positive-class instances (% Pos), the
percentage of negative-class instances (% Neg), and the
percentage of positive feature values (% Pos feat values).
In the last row, columns 6 and 7 show the class distribution
(low, medium and high) for the dataset Cities.

5.2 Experimental methodology

We implemented our RPV method and other methods used
in this work within the open-source WEKA data mining
tool [7]. The datasets used in the experiments and the
program code of the RPV method are available at http://
github.com/pablonsilva/RPV. The methods were evaluated
on the 17 datasets described earlier. The lazy k-NN with
Euclidean distance (with k = 1) and a lazy version of Naive
Bayes (NB) (both from WEKA) were used as classification
algorithms for all evaluated feature selection methods, and
the predictive accuracy was measured by 10-fold cross-
validation.

It is worth mentioning that Naive Bayes has also been
used in previous work on hierarchical feature selection [20,
24, 30, 31], as well as k-NN [30, 31]. In addition, in some
preliminary experiments with the datasets used in this work
and without employing any feature selection method, Naive
Bayes achieved the best predictive accuracy, followed by
1-NN, when compared with other traditional classification
algorithms, namely SVM (with various types of kernel),
Random Forest and Decision Trees (C4.5). The results of
these preliminary experiments are reported in Appendix B.

As shown in Table 1, the majority of the datasets
have imbalanced class distributions, so we evaluated the
methods’ predictive accuracy by using the Geometric
Mean (GM) of sensitivity and specificity, the Area Under
the Precision-Recall Curve (AUCPR), and the Area Under
the Receiver Operating Characteristics curve (AUROC)

Table 1 Detailed information about the datasets used in the experiments

Group Dataset #features #edges #instances % Pos % Neg %Pos feat values
CE BP 991 1707 657 34.40 65.60 4.50
CC 178 277 484 36.36 63.64 6.49
MF 263 331 504 37.70 62.30 5.07
DM BP 800 1355 132 71.97 28.03 8.32
CC 89 130 122 70.49 29.51 12.02
MF 146 182 126 70.63 29.37 7.72
MM BP 1333 2406 109 68.81 31.78 10.65
CC 143 214 107 68.22 31.78 16.41
MF 240 289 106 67.92 32.08 9.73
SC BP 844 1511 331 13.29 86.71 5.35
CC 145 230 331 13.29 86.71 9.04
MF 221 277 331 13.29 86.71 5.73
General Tweets T 4082 36019 1179 55.64 44.36 1.14
Tweets C 10883 15189 1179 55.64 44.36 1.02
NY Daily 5145 44152 1016 57.09 4291 1.21
Stb.upon 3976 12354 3020 45.36 54.64 1.17
Cities 727 7051 212 18.40/50.00/31.60 3.31

@ Springer

http://github.com/pablonsilva/RPV
http://github.com/pablonsilva/RPV

Prioritizing positive feature values: a new hierarchical...

4421

measures [8, 10]. The GM is defined in (4), which was also
used in [29-31].

GM = \/Sensitivity * Specificity (@)

GM takes into account the balance between the sensi-
tivity and specificity of the classifier. Sensitivity (or true posi-
tive rate) is the proportion of positive class instances correctly
predicted as positive, whereas specificity (or true negative
rate) is the proportion of negative class instances correctly
predicted as negative. The AUCPR plots the precision of the
classifier as a function of its recall, then the area under this
curve is used to evaluate the classifier (the higher the better).
The ROC curve is created by plotting the true positive rate
(TPR)—also know as Sensitivity—against the false positive
rate (FPR), and again, the higher the area under this curve,
the better the performance of the classifier.

To determine whether the differences in performance
are statistically significant, we ran the Friedman test
and the Holm post-hoc test [9], as recommended by
Demsar [4]. First, the Friedman test was executed with

the null hypothesis that the performances of all methods
are equivalent. The alternative hypothesis is that there
is a difference between the results of all methods as a
whole, without identifying specific pairs of methods with
significantly different results. If the null hypothesis is
rejected, we run the Holm post-hoc test (which corrects for
multiple hypothesis testing) to compare the results of the
proposed RPV method (with the LazyR measure) against
each of the other methods. Both the Friedman and Holm
test were used at the 0.05 significance level in all our
experiments.

5.3 Results

Tables 2, 3,4, 5, 6,7, 8 and 9 report the predictive accuracy
results for three experiments: the first one (Tables 2, 3,
and 4) compares our proposed RPV method to baseline
approaches; the second one (Tables 5 and 6) compares
RPV against the well-known traditional (non-hierarchical)
feature selection methods CFS and ReliefF; and the third

Table2 Comparing RPV with different feature relevance measures against baseline methods in terms of AUCPR—in %

Naive Bayes 1-NN
Baseline RPV Baseline RPV
Datasets NoFS All-Neg All-Pos IG R LazyR NoFS All-Neg All-Pos IG R LazyR
CE BP 55.1 53.1 54.6 557 553 564 48.0 41.8 48.3 494 474 504
CC 56.3 56.5 55.1 53.1 545 543 494 53.5 54.5 532 539 54.6
MF 50.2 47.8 50.5 506 514 517 47.6 49.9 51.7 51.7 505 50.1
DM BP 83.1 80.2 83.4 835 822 825 78.2 76.2 80.0 80.7 802 793
CC 87.6 84.0 87.8 885 89.8 90.0 79.6 81.9 85.2 835 84.0 834
MF 81.9 79.7 81.9 820 828 8I.1 79.3 80.0 81.9 82.1 822 824
MM BP 82.5 82.1 84.4 855 851 852 77.1 75.9 76.0 782 777 776
CC 84.5 82.2 86.0 86.5 859 844 74.1 69.6 75.1 771.8 789 76.6
MF 87.1 83.9 86.5 858 863 85.6 77.6 74.1 81.8 787 792 79.1
SC BP 45.6 43.2 40.2 428 383 464 29.2 259 32.8 395 355 364
CC 34.0 325 339 346 316 353 30.6 31.7 345 369 373 37.6
MF 26.8 204 27.0 20.8 207 252 28.9 26.3 32.0 36.0 343 358
General Tweets T 81.6 71.1 82.2 827 828 833 76.5 58.8 81.0 81.6 824 82.6
Tweets C 98.3 95.4 98.3 984 985 985 94.5 90.2 96.6 969 970 975
NY Daily 64.1 60.7 64.1 64.1 635 648 60.4 57.9 59.5 589 588 60.1
Stb.upon 77.8 75.7 78.0 719 717 787 71.6 74.8 74.1 741 742 744
Cities 70.7 64.8 71.7 712 709 741 60.2 61.2 69.5 69.0 692 694
Avg.Rank 3.6 5.5 32 2.8 3.6 23 5.1 53 3.1 2.7 2.6 2.2
#Win 1.0 1.0 1.0 3.0 1.5 9.5 1.0 1.0 35 4.5 1.0 6.0

Naive Bayes: {RPV-LazyR} > {No FS, All-Neg, RPV-R}
1-NN: {RPV-LazyR} > {No FS and All-Neg}

@ Springer

4422

P.N.daSilvaetal.

Table 3 Comparing RPV with different feature relevance measures against baseline methods in terms of AUROC—in %

Naive Bayes 1-NN
Baseline RPV Baseline RPV
Datasets NoFS All-Neg All-Pos IG R LazyR NoFS All-Neg All-Pos IG R LazyR
CE BP 69.9 66.6 69.7 69.7 69.8 69.8 63.4 583 62.7 633 632 644
CC 70.4 66.8 69.2 660 672 674 64.2 65.4 68.9 669 683 682
MF 62.8 584 63.2 63.1 628 64.0 62.2 64.4 64.2 647 629 63.6
DM BP 63.2 59.6 63.4 629 61.1 610 62.0 52.5 64.4 63.7 614 622
CC 76.3 69.0 76.6 782 79.0 78.7 66.4 66.6 69.6 68.1 692 678
MF 64.8 59.7 64.8 646 646 630 59.9 59.2 65.6 662 66.0 66.5
MM BP 69.7 65.7 71.1 748 742 742 65.3 59.8 62.8 664 648 645
CC 69.4 65.6 72.4 733 716 709 55.7 45.1 56.4 575 592 568
MF 72.2 64.8 71.3 71.0 717 709 61.9 514 69.7 646 652 650
SC BP 74.7 73.6 75.2 72.1 7277 748 69.7 60.5 67.1 721 68.1 694
CC 66.6 65.2 66.8 663 645 67.0 63.8 65.4 64.3 66.1 705 648
MF 61.4 533 61.4 574 570 605 67.0 62.5 67.8 69.6 667 70.0
General Tweets T 80.6 73.0 81.1 827 835 832 70.2 70.4 73.6 720 731 717
Tweets C 73.1 72.0 73.6 706 71.1 73.1 68.1 59.2 65.6 70.5 667 679
NY Daily 55.1 494 52.5 520 521 56.1 46.2 48.8 46.8 477 49.1 528
Stb.upon 78.1 74.1 78.2 782 78.1 78.1 76.6 78.9 78.2 78.1 78.0 78.1
Cities 66.7 58.2 68.9 69.6 698 69.7 60.9 53.6 67.6 672 672 673
Avg.Rank 3.1 5.6 24 3.6 34 2.8 4.6 4.9 3.1 24 32 2.8
#Win 35 0.0 5.0 2.5 3.0 3.0 0.0 1.0 6.0 4.0 2.0 4.0

Naive Bayes: {RPV-LazyR} > {All-Neg}
1-NN: {RPV-LazyR} > {No FS and All-Neg}

one (Tables 7, 8 and 9) compares RPV against state-of-the-
art hierarchical feature selection methods. These results are
discussed in the following three subsections.

5.3.1 Comparison against baseline feature selection
approaches

This first experiment aims to evaluate the effectiveness of
the two main characteristics of the proposed RPV method,
i.e., its focus on selecting only a subset of positive feature
values and its new lazy relevance measure.

Tables 2, 3 and 4 report the AUCPR, AUROC and GM
results, respectively. In these Tables, columns 3 to 8 show
the results of six methods using Naive Bayes and the last
six columns show the results of the same six methods
using 1-NN. The 6 methods are our RPV method using the
LazyR relevance measure, two RPV versions with different
relevance measures and three baseline methods. The first
baseline is the base classifier using no feature selection
method (No FS). Le., it uses the full set of predictive
features. We also implemented two baseline lazy non-

@ Springer

hierarchical feature selection methods: one that selects all
features with positive value in the current test instance (All-
Pos); and another one that selects all features with negative
values in the current test instance (All-Neg). Moreover,
in order to evaluate the benefit of our proposed feature
relevance measure (LazyR), we compare our RPV (with the
LazyR measure) against two other RPV versions. The first
version uses the original eager relevance measure R (RPV-
R), defined in (1), and the second version uses the traditional
Information Gain measure (RPV-IG).

The last two rows of Tables 2, 3 and 4 show, for each
method, its average rank (Avg. Rank) and its number of
wins (#Win). The lower the Avg. Rank, the better (higher)
the AUCPR, AUROC or GM value. Note that the Avg. Rank
and #Win values for the 6 methods are computed separately
for each of the two classifiers (NB and 1-NN). For each
classifier, the highest AUCPR, AUROC or GM value for
each dataset is highlighted in bold type. This bold type
highlighting is also used to indicate the best methods in
other result tables. In the row right below Tables 2, 3 and 4,
the symbol > represents a statistically significant difference

Prioritizing positive feature values: a new hierarchical... 4423
Table 4 Comparing RPV with different feature relevance measures against baseline methods in terms of GM—in %
Naive Bayes 1-NN
Baseline RPV Baseline RPV
Datasets NoFS All-Neg All-Pos IG R LazyR NoFS All-Neg All-Pos IG R LazyR
CE BP 62.0 0.0 59.4 60.5 609 65.7 58.4 20.6 61.0 609 593 60.1
CC 65.7 39.9 65.5 63.6 653 63.6 59.9 62.9 64.0 62.1 632 630
MF 57.6 442 59.1 570 541 567 534 244 45.4 462 446 444
DM BP 594 0.0 514 53.8 546 555 58.8 18.1 62.4 586 568 59.6
CC 66.7 0.0 75.6 762 757 744 71.9 50.3 71.0 69.5 695 689
MF 58.0 0.0 67.0 63.8 633 672 51.3 0.0 70.1 70.5 705 709
MM BP 59.1 25.7 66.3 699 684 679 65.1 33.8 57.9 61.6 62.1 595
CC 64.1 28.1 68.3 69.0 664 694 55.0 37.0 54.1 56.1 568 546
MF 63.5 57.6 65.9 653 647 679 61.3 42.1 68.1 639 61.8 66.1
SC BP 61.5 0.0 54.7 562 524 61.6 54.7 0.0 57.3 67.1 60.1 572
CC 57.6 0.0 59.3 589 592 599 52.5 0.0 38.7 390 390 388
MF 34.2 0.0 57.8 542 441 546 43.5 0.0 34.0 342 343 340
General Tweets T 68.2 8.8 72.2 73.0 731 73.6 73.0 0.0 74.2 747 748 751
Tweets C 87.6 0.0 94.5 948 95.0 948 91.2 59.1 95.0 945 944 95.0
NY Daily 50.3 0.0 56.7 571 559 56.6 53.0 0.0 51.3 51.1 515 526
Stb.upon 68.7 15.1 70.6 706 71.0 70.7 70.6 71.8 71.0 709 70.7 71.1
Cities 73.5 0.0 73.6 639 710 718 59.3 247 61.2 612 60.8 614
Avg.Rank 3.8 6.0 29 3.0 32 2.2 35 5.6 3.0 3.0 3.1 2.9
#Win 2.0 0.0 3.0 3.0 2.0 7.0 6.0 1.0 4.5 1.0 1.0 35

Naive Bayes: {RPV-LazyR} > {No FS and All-Neg}
1-NN: {RPV-LazyR} > {All-Neg}

between one or more methods, such that {a} > {b, ¢} means
that a is significantly better than b and c.

Considering the results for the AUCPR measure in Table 2,
RPV-LazyR obtained the best #Win and the best Avg. Rank
values for both Naive Bayes and 1-NN. For these two algo-
rithms, the Holm post-hoc test indicated that RPV-LazyR
is significantly better than No FS and All-Neg. Addi-
tionally, for NB, RPV-LazyR is significantly better than
RPV-R.

The AUROC results in Table 3 show that All-Pos
obtained the best #Win for both NB and 1-NN. For NB,
the best Avg. Rank was obtained by All-Pos, while RPV-
IG obtained the best result for 1-NN. For both classifiers,
RPV-LazyR obtained the second best Avg. Rank among all
other baselines. The Holm post-hoc test indicated that RPV-
Lazy is significantly better than All-Neg for both classifiers
and significantly better than No FS for 1-NN. Note that, for
both classifiers, there is no significant difference between
the AUROC results of All-Pos and RPV-LazyR.

The GM results in Table 4 show that, for Naive Bayes,
RPV-LazyR obtained the smallest (best) Avg. Rank among
all six methods. It also obtained the highest GM value in
7 out of the 17 datasets. The Holm post-hoc test indicated
that RPV-LazyR is significantly better than No FS and
All-Neg. For 1-NN, RPV-LazyR achieved the best Avg.
Rank, but the No FS baseline achieved the highest #Win.
Moreover, the Holm post-hoc test indicated that RPV-LazyR
is significantly better than All-Neg.

In summary, the results reported in Tables 2, 3 and 4
involve six comparison settings, i.e., three predictive
performance measures times two classifiers. Regarding the
Avg. Ranks, RPV-LazyR was the best method in four
settings (for both the NB and 1-NN classifiers with both the
AUCPR and GM measures), All-Pos was the best method
in one setting (for NB with AUROC) and RPV-IG was the
best in one setting (for 1-NN with AUROC). Regarding the
#Wins, RPV-LazyR was the best method in three settings
(for both classifiers with AUCPR and for NB with GM),

@ Springer

4424

P.N.daSilvaetal.

Table 5 Comparing RPV with traditional feature methods CFS and ReliefF in terms of AUCPR, AUROC and GM using NB as base classifier—in

%
Naive Bayes
AUCPR AUROC GM
Datasets CFS ReliefF RPV CFS ReliefF RPV CFS ReliefF RPV
CE BP 474 474 56.4 71.5 63.3 69.8 472 46.2 504
CC 48.6 50.7 54.3 69.4 67.4 64.0 50.8 50.3 54.6
MF 41.8 40.6 51.7 62.8 51.9 64.0 40.2 42.1