
https://doi.org/10.1007/s10489-020-01776-3

Multi-split optimized bagging ensemble model selection
for multi-class educational data mining

MohammadNoor Injadat1 · Abdallah Moubayed1 · Ali Bou Nassif2,1 · Abdallah Shami1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Predicting students’ academic performance has been a research area of interest in recent years, with many institutions
focusing on improving the students’ performance and the education quality. The analysis and prediction of students’
performance can be achieved using various data mining techniques. Moreover, such techniques allow instructors to determine
possible factors that may affect the students’ final marks. To that end, this work analyzes two different undergraduate
datasets at two different universities. Furthermore, this work aims to predict the students’ performance at two stages of
course delivery (20% and 50% respectively). This analysis allows for properly choosing the appropriate machine learning
algorithms to use as well as optimize the algorithms’ parameters. Furthermore, this work adopts a systematic multi-split
approach based on Gini index and p-value. This is done by optimizing a suitable bagging ensemble learner that is built from
any combination of six potential base machine learning algorithms. It is shown through experimental results that the posited
bagging ensemble models achieve high accuracy for the target group for both datasets.

Keywords e-Learning · Student Performance Prediction · Optimized Bagging Ensemble Learning Model Selection ·
Gini Index

1 Introduction

Data mining is rapidly becoming a part of software
engineering projects, and standard methods are constantly
revisited to integrate the software engineering point of
view. Data mining can be defined as an extraction of data
from a dataset and discovering useful information from it
[28, 34]. This is followed by the analysis of the collected
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data in order to enhance the decision-making process [17].
Data mining uses different algorithms and tries to uncover
certain patterns from data [1]. These techniques techniques
have proved to be effective solutions in a variety of fields
including education, network security, and business [29, 50,
66]. Hence, they have the potential to also be effective in
other fields such as medicine and education. Educational
Data Mining (EDM), a sub-field of data mining, has
emerged that specializes in educational data with the goal of
better understanding students’ behavior and improving their
performance [12, 22]. Moreover, this sub-field also aims at
enhancing the learning and teaching processes [17]. EDM
often takes into consideration various types of data such as
administrative data, students’ performance data, and student
activity data to gain insights and provide the appropriate
recommendation [35, 48].

The rapid growth of technology and the Internet has
introduced an interactive opportunities to help education
field to improve the teaching and learning processes. In
turn, this has led to the emergence of the field of e-
learning. This field can be defined as “the use of computer
network technology, primarily over an intranet or through
the Internet, to deliver information and instruction to
individuals” [33, 61]. There are various challenges facing
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e-learning platforms and environment [49]. This includes
the assorted styles of learning, and challenges arising
from cultural differences [16]. Other challenges also exist
such as pedagogical e-learning, technological and technical
training, and e-learning time management [38]. To this end,
personalized learning has emerged as a necessity in order
to better cater to the learners’ needs [30]. Accordingly, this
personalization process has become a challenging task [13],
as it requires adapting courses to meet different individuals’
needs. This calls for adaptive techniques to be implemented
[8, 14]. This can be done by automatically collecting data
from the e-learning environment [8] and analyzing the
learner’s profile to customize the course according to the
participant’s needs and constraints such as his/her location,
language, currency, seasons, etc. [8, 44, 46].

Many of the previous works in the literature focused
on predicting the performance of the students by adopting
a binary classification model. However, some educators
prefer to identify not only two classes of students (i.e. Good
vs. Weak), but instead they divide the students into several
groups and consider the associated multi-class classification
problem [58]. This is usually done because the binary model
often identifies a large number weak students, many of
which are not truly at risk of failing the course. Accordingly,
this work considers two datasets at two different stages of
the course, namely at 20% and 50% of the coursework, and
divides the students into three groups, namely Weak, Fair,
and Good students. Accordingly, the datasets are analyzed
as a set of multi-class classification problems.

Multi-class classification problems can be solved by
naturally extending the binary classification techniques for
some algorithms, [3]. In this work, we consider various
classification algorithms, compare their performances,
and use Machine Learning (ML) techniques aiming to
predict the students’ performance in the most accurate
way. Indeed, we consider K-nearest neighbor (k-NN),
random forest (RF), Support Vector Machine (SVM),
Multinomial Logistic Regression (LR), Naı̈ve Bayes (NB)
and Neural Networks (NN) and use an optimized systematic
ensemble model selection approach coupled with ML
hyper-parameter tuning using grid search optimization.

In this paper, we produced a bagging of each type of
model and the bagging was used for the ensembles as
opposed to single models. Bagging is itself an ensemble
algorithm as it consists of grouping several models of
the same type and defining a linear combination of the
individual predictions as the final prediction on an external
test sample, as explained in Section 6. Bagging is one of the
best procedures to improve the performance of classifiers as
it helps reduce the variance in many hard decision problems
[10, 52]. The empirical fact that bagging improves the
classifiers’ performance is widely documented [9], and in
fact ensemble methods placed first in many prestigious

ML competitions, such as the Netflix Competition [54],
KDD 2009 [24], and Kaggle [32]. Furthermore, a multi-split
framework is considered for the studied datasets in order to
reduce the bias of the ML models investigated as part of the
bagging ensemble models.

The main disadvantage of bagging, and other ensemble
algorithms, is the lack of interpretation. For instance, a
linear combination of decision trees is much harder to
interpret than a single tree. In the same way, bagging
several variable selections gives little clues about which of
the predictor variables are actually important.In this paper,
in order to have a rough idea of which variables are the
best predictors for each algorithm, we decided to average,
for each variable, its importance in every model and this
average is assigned to the variable and defined to be its
averaged importance. This was done in order to better
highlight the features that are truly important across the
multiple splits under consideration.

The remainder of this paper is organized as follows:
Section 2 presents some of the previous related work
and their limitations; Section 3 summarizes the research
contributions of this work; Section 4 describes the datasets
under consideration and defines the corresponding target
variables for both datasets; Section 5 describes the
performance measurement approach adopted; Section 6
presents the methodology used to choose the best classifiers
for the multi-class classification problem; Section 7
discusses the architecture used for training NN and shows
the features’ importance for each classifier for each dataset;
Section 8 presents and discusses the experimental results
both in terms of Gini Indices (also called Gini coefficient)
and by using confusion matrices; and finally, Section 9 lists
the research limitations, proposes multiple future research
opportunities, and concludes the paper.

2 Related work and limitations

2.1 Related work

Educational data mining has become a rich field of research
with the demand for empirical studies and research by
academia increasing in recent years. This is due to the
competitive advantages that can be gained from such kind
of research. Data mining can be used to evaluate and
analyze the different factors that improve the knowledge
gaining, skills improvement of the learners, and makes the
educational institution offer a better learning experience
with highly qualified students or trainees [60].

Several researchers have explored the use of data min-
ing techniques in an educational setting. Authors of [37]
used data mining techniques to analyze the learner’s
web usage and content-based profiles to have an on-line
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automatic recommendation system. In contrast, Chang et al.
proposed a k-NN classification model to classify the learner’s
style [11]. The results of this model was used to help the edu-
cational institution management and faculties to improve the
courses’ contents to satisfy the learner’s needs [11].

Another related study that used simple leaner regression
to check the effect of the student mother’s education level
and the family’s income in learner’s academic level was
presented in [26].

On the other hand, Baradwaj and Pal used classification
methods to evaluate the students’ performance using deci-
sion trees [6]. The study was conducted using collected data
from previous year’s database to predict the student result at
the end of the current semester. Their study aimed to provide
a prediction that will help the next term instructors identify
students that they may need help.

Other researchers [7] applied Naı̈ve Bayes classification
algorithm to predict students’ grades based on their previous
performance and other important factors. The authors disco-
vered that, other than students’ efforts, factors such as resi-
dency, the qualification standards of the mother, hobbies and
activities, the total income of the family, and the state of the
family had a significant effect on the students’ performance.

Later, the same authors used Iterative Dichotomiser 3
(ID3) decision tree algorithm and if-then rules to accurately
predict the performance of the students at the end of the
semester [56] based on different variables like Previous
Semester Marks, Class Test Grades, Seminar Performance,
Assignments, Attendance, Lab Work, General Proficiency,
and End Semester Marks.

Similarly, Moubayed et al. [51, 53] studied the student
engagement level using K-means algorithm and derived a
set of rulers that related student engagement with academic
performance using Apriori association rules algorithm. The
results analysis showed a positive correlation between
students’ engagement level and their academic performance
in an e-learning environment.

Prasad et al. [57] used J48 (C4.5) algorithm and conclu-
ded that this algorithm is the best choice for making the best
decision about the students’ performance. The algorithm
was also preferred because of its accuracy and speed.

Ahmed and Elaraby conducted a similar research in 2014
[2] using classification rules. They analyzed data from a
course program across 6 years and were able to predict
students’ final grades. In similar fashion, Khan et al. [36]
used J48 (C4.5) algorithm for predicting the final grade of
Secondary School Students based on their previous marks.

Kostiantis et al. [40] proposed an incremental majority
voting-based ensemble classifier based on 3 base classifiers,
namely NB, k-NN, and Winnow algorithms. The authors’
experimental results showed that the proposed ensemble
model outperformed the single base models in a binary
classification environment.

Saxena [62] used k-means clustering and J48 (C4.5)
algorithms and compared their performance in predicting
students’ grades. The author concluded that J48 (C4.5)
algorithm is more efficient, since it gave higher accuracy
values than k-means algorithm. Authors in [59] used and
compared K-Means and Hierarchical clustering algorithms.
They concluded that K-means algorithm is more preferred
to hierarchical clustering due to better performance and
faster model building time.

Wang et al. proposed an e-Learning recommendation
framework using deep learning neural networks model [65].
Their experiments showed that the proposed framework
offered a better personalized e-learning experience. Sim-
ilarly, Fok et al. proposed a deep learning model using
TensorFlow to predict the performance of students using
both academic and non-academic subjects [21]. Experi-
mental results showed that the proposed model had a high
accuracy in terms of student performance prediction.

Asogbon et al. proposed a multi-class SVM model to cor-
rectly predict students’ performance in order to admit them
into appropriate faculty program [4]. The performance of the
model was examined using an educational dataset collected
at the University of Lagos, Nigeria. Experimental results
showed that the proposed model adequately predicted the
performances of students across all categories [4].

In a similar fashion, Athani et al. also proposed the use
of a multi-class SVM model to predict the performance of
high school students and classify them into one of five letter
grades A-F [5]. The goal was to predict student performance
to provide a better illustration of the education level of the
schools based on their students’ failure rate. The authors
used a Portuguese high school dataset consisting mostly of
the students’ socio-economic descriptors as features. Their
experiments showed that the proposed multi-class SVM
model achieved high prediction accuracy close to 89%
[5].

Jain and Solanki proposed a comparative study between
four tree-based models to predict the performance of stu-
dents based on a three-class output [31]. Similar to the work
of Athani et al., the authors in this work also considered the
Portuguese high school dataset consisting mostly of the
students’ socio-economic descriptors as features. Experimental
results showed that the proposed tree-based model also achie-
ved high prediction accuracy with a low execution time [31].

2.2 Limitations of related work

The limitations of the related work can be summarized as
follows:

– Do not analyze the features before applying any ML
model. Any classification model is directly applied with-
out studying the nature of the data being considered.
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– Mostly consider the binary classification case. Such
cases often lead to identifying too many students which
are not truly in danger of failing the course and
hence would not need as much help and attention.
Even when multi-class models were considered, the
features used were mostly focused on students’ socio-
economic status rather than their performance in
different educational tasks.

– Often use a single classification model or an ensemble
model built upon randomly chosen group of base
classifiers. Moreover, to the best of our knowledge, only
majority voting-based ensemble models are considered.

– Often predict the performance of students from one
course to the other or from one year to the other.
Performance prediction is rarely considered during the
course delivery.

– Often use the default parameters of the utilized
algorithms/techniques without optimization.

3 Research contribution

To overcome the limitations presented in Section 2.2, our
research aims to predict the students’ performance during
the course delivery as opposed to other previous works
that perform the prediction at the end of the course. The
multi-class classification problem assumes that their is a
proportional relationship between the students’ efforts and
seriousness in the course and their final course performance
and grade.

More specifically, our work aims to:

– Analyze the collected datasets and visualize the
corresponding features by applying different graphical
and quantitative techniques (e.g. dataset distribution
visualization, target variable distribution, and feature
importance).

• Optimize hyper-parameters of the different ML algo-
rithms under consideration using grid search algorithm.

– Propose a systemic approach to build a multi-split-
based (to reduce bias) bagging ensemble (to reduce
variance) learner to select the most suitable model
depending on multiple performance metrics, namely
the Gini index (for better statistical significance and
robustness) and the target class score.

– Study the performance of the proposed ensemble
learning classification model on multi-class datasets.

– Evaluate the performance of the proposed bagging
ensemble learner in comparison with classical classifi-
cation techniques.

Note that in this work, the term Gini index refers to the Gini
coefficient that is calculated based on the Lorenz curve and

area under the curve terms [43]. Therefore, the remainder of
this work adopts to the term Gini index.

4 Dataset and target variable description

4.1 Dataset description

In this section,the two datasets under consideration are
described at the two course delivery stages (20% and 50%
of the coursework). This corresponds to the results of a
series of tasks performed by University students. Moreover,
Principal Components Analysis (PCA) is conducted to
better visualize the considered datasets.

– Dataset 1: The experiment was conducted at the
University of Genoa on a group of 115 first year
engineering major students [63]. The dataset consists of
data collected using a simulation environment named
Deeds (Digital Electronics Education and Design
Suite). This e-Learning platform allows students to
access the courses’ contents using a special browser and
asks the students to solve problems that are distributed
over different complexity levels.

Table 1 shows a summary of the different tasks for
which the data was collected. It is worth mentioning that
52 students out of the original 115 students registered
were able to complete the course.

The 20% stage consists of the grades of tasks ES 1.1
to ES 3.5. On the other hand, the 50% stage consists of
tasks ES. 1.1 to ES 5.1.

To improve the accuracy of the classification model,
empty marks were replaced with a 0. Moreover, all
tasks’ marks were converted to a scale out of 100.
Furthermore, all decimal point marks were rounded to
the nearest 1 to maintain consistency.

– Dataset 2: This dataset was collected at the University
of Western Ontario for a second year undergraduate
Science course. The dataset is composed of two main
parts. The first part is an event log of the 486 students
enrolled. This event log dataset consists of 305933
records. In contrast, the other part, which is under
consideration in this research, is the grades of the 486
students in the different evaluated tasks. This includes
assignments, quizzes, and exams.

Table 2 summarizes the different tasks evaluated
within this course. The 20% stage consists of the
results of Assignment 01 and Quiz 01. On the other
hand, the 50% stage consists of the grades of Quiz 01,
Assignments 01 and 02, and the midterm exam.

Similar to Dataset 1, all empty marks were replaced
with a value of 0 for better classification accuracy.
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Table 1 Dataset 1 - Features

Feature Description Type Value/s

Id Student Id. Nominal Std. 1,..,Std. 52

ES 1.1 Exc. 1.1 Mark Numeric 0..2

ES 1.2 Exc. 1.2 Mark Numeric 0..3

ES 2.1 Exc. 2.1 Mark Numeric 0..2

ES 2.2 Exc. 2.2 Mark Numeric 0..3

ES 3.1 Exc. 3.1 Mark Numeric 0..1

ES 3.2 Exc. 3.2 Mark Numeric 0..2

ES 3.3 Exc. 3.3 Mark Numeric 0..2

ES 3.4 Exc. 3.4 Mark Numeric 0..2

ES 3.5 Exc. 3.5 Mark Numeric 0..3

ES 4.1 Exc. 4.1 Mark Numeric 0..15

ES 4.2 Exc. 4.2 Mark Numeric 0..10

ES 5.1 Exc. 5.1 Mark Numeric 0..2

ES 5.2 Exc. 5.2 Mark Numeric 0..10

ES 5.3 Exc. 5.3 Mark Numeric 0..3

ES 6.1 Exc. 6.1 Mark Numeric 0..25

ES 6.2 Exc. 6.2 Mark Numeric 0..15

Final Grade Total Final Mark Numeric 0..100

Total Final Course Grade Nominal G,F,W

Moreover, all marks were scaled out of 100. Additio-
nally, decimal point marks were rounded to the nearest 1.

4.2 Target variable description

For the two datasets under consideration, the target variables
were constructed by considering the final grade. More speci-
fically, the students were grouped into three groups as follows:

1. Good (G) – the student will finish the course with a
good grade (70 − 100%);

2. Fair (F) – the student will finish the course with a fair
grade (51 − 69%);

3. Weak (W) – the student will finish the course with a
weak grade (≤ 50%).

In this case, the target group is the Weak students (W) who
are predicted to receive a mark below 50%, meaning that
they are at risk of failing the course. Figure 1 shows that
Datasets 1 and 2 are characterized by being small sized and
unbalanced respectively. These two issues have more of an
impact on the classification problem. It can be seen that
for the first dataset, the three classes are relatively evenly
distributed, but each class consists of only a few students.
On the other hand, the second dataset is not small sized but
is strongly unbalanced, having only 8 Weak students out of
486 students.

To better visualize the three classes, we applied PCA
to the datasets (both considered at Stage 50%) as shown

in Figs. 2 and 3. Looking at these two figures, we note
that it can be possible to draw a boundary that separates
Weak Students from the rest of the students, whereas
Fair and Good students are too close and not separable
by a boundary. We will see in the next sections that the
performance of the models is affected by this distribution
and that most of the algorithms fail in distinguishing
between Fair and Good students, especially for Dataset 1.

5 Performance evaluationmetrics
description

In general there are two standard approaches to choosing
multiple class performance measures [3, 25]. One approach,
namely OVA (One-versus-all), is to reduce the problem of
classifying among N classes into N binary problems. In this
case, every class is discriminated from the other classes.
In the second approach, called AVA (All-versus-all), each
class is compared to each other class. In other words, it is
necessary to build a classifier for every pair of classes, i.e.
building N(N−1)

2 classifiers, while discarding the rest of the
classes.

Due to the size of our datasets, we chose to follow the
first method as opposed to the second one. In fact, if we
were to use the second approach for Dataset 1, we would
need to train three binary models, one for each pair of
classes (G,F), (F,W), and (G,W). In particular, the subset of
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Fig. 1 Dataset 1 and Dataset 2-
Target Variables
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Table 2 Dataset 2 - Features

Feature Description Type Value/s

Id Student Id. Nominal std000,..,std485

Quiz01 Quiz1 Mark Numeric 0..10

Assign.01 Assign.01 Mark Numeric 0..8

Midterm Midterm Mark Numeric 0..20

Assign.02 Assign.02 Mark Numeric 0..12

Assign.03 Assign.03 Mark Numeric 0..25

Final Exam Final Exam Mark Numeric 0..35

Final Grade Total Final Mark Numeric 0..100

Total Final Grade Nominal G,F,W
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Fig. 2 Dataset 1 - multi-class target visualization
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Fig. 3 Dataset 2 - multi-class target visualization

data for the (F,W) model would consist of only 28 students,
which would be split into Training Sample (70%) and Test
Sample (30%). This corresponds to training a model using
20 students and testing it using only 8 students. Due to
the relatively small size of the (F,W) model, we determine
that the AVA approach would not be suitabe for accurate
prediction.

It is well-known that the Gini Index metric, as well
as the other metrics (Accuracy, ROC curve etc.) can be
generalized to the multi-class classification problem. In
particular, we choose the Gini Index metric instead of the
Accuracy because the latter depends on the choice of a
threshold whereas the Gini Index metric does not. This
makes it statistically more significant and robust than the
accuracy, particularly given that it provides a measure of the
statistical dispersion of the classes [27].

In particular, we implemented a generalization of Gini
index metric: during the training phase, that computes the
Gini Index of each one of the three binary classifications
and optimizes (i.e. maximizes) the average of the 3
performances, i.e. the performances corresponding to
classes G, F, W.

6Methodology

For the multi-class classification problem we used several
algorithms. More specifically we explored RF, SVM - RBF,
k-NN, NB, LR, and NN with 1, 2 and 3 layers (i.e. 3 diffe-
rent NN models), for a total of eight classifiers per dataset.

In order to achieve better performances, we did not build
only one individual model for each algorithm, instead we

constructed baggings of classifiers. In fact, as explained in
the previous section, bagging reduces the variance.

We built a bagging of models for each algorithm in the
following way: we started by splitting each dataset into
Training and Test samples in proportions 70%-30% then
we used the training sample to build baggings of models.
More precisely the Training sample was split 200 times into
sub-Training and sub-Test samples randomly but forcing the
percentages of Fair, Good and Weak students to be the same
as the ones in the entire datasets.

The models resulting from the 200 splits were trained on
the sub-Training samples and inferred on the corresponding
sub-Test samples. If the Average Gini Index was above a
certain fixed threshold (lowest acceptable Gini Index) then
the model was kept otherwise it was discarded. For each
algorithm we obtained in this way a set of models having
the best performances, and we averaged their scores on the
(external) Test sample, class by class. This procedure is
explained in Fig. 4.

Once we had the eight baggings of models (one for
each algorithm), we considered all the possible ensembles
that could be constructed with them and compared their
performances in terms of Gini Index, as explained in
Section 5. Moreover, for each dataset, we computed the
p-values corresponding to each one of the 256 possible
ensembles and aimed to choose as the final ensemble the
one that had best Gini Index and, at the same time, that was
statistically significant.

The Gini Index, also commonly referred to as the Gini
coefficient, can be seen geometrically as the area between
the Lorenz curve [43] and the diagonal line representing
perfect equality. The higher the Gini Index, the better the

M. Injadat et al.4512



Fig. 4 Bagging Ensemble
Model Building Methodology

performance of the model. Formally the Gini index is
defined as follows:

Let F(z) be the cumulative distribution of z and let a and b

be the highest and the lowest value of z respectively, then the
we can calculate half of Gini’s expected mean difference as:

2
∫ b

a

F (z)[1 − F(z)]dz (1)

Alternatively, the Gini index can be calculated as 2 ∗ Area
Under Curve − 1.

On the other hand, the statistical significance of our
results is determined by computing the p-values. The gen-
eral approach is to test the validity of a claim, called the
null hypothesis, made about a population. An alternative
hypothesis is the one you would believe if the null hypoth-
esis is concluded to be untrue. A small p-value (≤ 0.05)
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indicates strong evidence against the null hypothesis, so you
reject the null hypothesis. For our purposes, the null hypoth-
esis states that the Gini Indices were obtained by chance. We
generated 1 million random scores from normal distribution
and calculated the p-value. The ensemble learners selected
have p-value ≤ 0.05, indicating that there is strong evidence
against the null hypothesis. Therefore, choosing an ensem-
ble model using a combination of Gini Index and p-value
allows us to have a more statistically significant and robust
model.

The classifiers were inferred on the test sample, giving
as output three vectors of predictions to be analyzed.
These three vectors express the chance that each student
is classified as Weak, Fair and Good. In order t o build
the confusion matrices, we fixed a threshold for each class,
namely τF , τG, and τW . To determine each threshold, a one-
vs-all method is considered for each class with the threshold
being chosen as the score for which the point on the ROC
curve is closest to the top-left corner (commonly referred
to as the Youden Index) [20]. This is done in order to find
the point that simultaneously maximizes the sensitivity and
specificity.

For each student belonging to the Test sample, we
defined the predicted class according to the following steps:

1. The 3 scores corresponding to the 3 classes were
normalized in order to make them comparable.

2. For each class, if the probability is higher than the
corresponding threshold then the target variable for the
binary classification problem associated to that class is
predicted to be 1, otherwise it’s 0.

3. In this way we obtained a 3-column matrix taking
values 1’s and 0’s. Comparing the 3 predictions, if
a student has only one possible outcome (i.e. only
one 1, and two 0’s) then the student is predicted to
belong to the corresponding class. Otherwise, if there is
uncertainty about the prediction because there is more
than one 1 predicted for the student, then the class with
the highest score is chosen to be the predicted one.

For instance, consider the following example:

Example 1 Suppose we have trained a classifier using 70%
of Dataset 1. When we infer the model on the test sample
(remaining 30%, consisting of 15 students), we obtain 3
vectors of scores, one for each class and we can compute
their Gini Indices, see Fig. 5.

In this example, the Gini Indices of Classes F , G, W are
97.2%, 76.8%, 98% respectively, hence the Averaged Gini
Index is 90.7%.

We map the three scores linearly to the interval [0, 1],
i.e. we normalize them to make them comparable. The
normalized scores are represented in Table 3 in columns
score F, score G, score W.

Column Actual Class corresponds to the actual target
variable that we aim to predict. Treating each score as if it
was the score associated to a binary classification problem,
we need to set a threshold for each class such that if the score
is greater than the threshold then the student belongs to such
class otherwise he/she doesn’t (i.e., he/she belongs to one
of the other two classes). Therefore we set three thresholds
τF , τG, and τW for Class, F , G, and W respectively. For
instance, let τF = 0.267, τG = 0.323, and τW = 0.740.
For student 1 in Table 3, the chance to be classified as F is
0.365 ≥ τF , whereas the probabilities to belong to classes G

and W are less than τG and τW respectively. In conclusion,
once the three thresholds are set, we can claim that student
1 is a Fair student.

Student 6 has score F = 0.389 ≥ τF and score G =
0.620 ≥ τG so he/she belongs either to Class F or to class
G. Since the scores are normalized and are comparable, we
set the predicted class to be the one corresponding to the
highest score, hence we predict student ID=6 to belong to
class G.

For student 2 (7 and 14) note that the three scores are
all below the thresholds so the predicted class is the one cor-
responding to the greatest score, i.e. the student is predicted
as Weak.

Fig. 5 Example - Averaged Gini Index Computation
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Table 3 Example - Predicting Classes

ID Actual Class score F score G score W Max Pred. F G W Predicted Class

1 F 0.365 0.1 0.707 W 1 0 0 F

2 F 0.015 0.25 0.647 W 0 0 0 W

3 G 0.828 0.232 0.337 F 1 0 0 F

4 G 0.085 0.13 0.758 W 0 0 1 W

5 W 0.663 0.038 0.853 W 1 0 1 W

6 G 0.389 0.62 0.142 G 1 1 0 G

7 G 0.234 0.078 0.723 W 0 0 0 W

8 W 0 0.054 0.793 W 0 0 1 W

9 W 0.009 0 0.944 W 0 0 1 W

10 G 0.33 0.797 0 G 1 1 0 G

11 F 0.266 0.818 0.01 G 0 1 0 G

12 G 0.33 0.797 0 G 1 1 0 G

13 G 0.248 0.58 0.22 G 0 1 0 G

14 W 0.18 0.167 0.648 W 0 0 0 W

15 W 0.061 0.186 0.745 W 0 0 1 W

The max probability associated to each student is
expressed in column Max Pred., and if we compare this
column with column Actual Class we note that taking the
max score as the predicted class would not have been a good
strategy.

By setting the three thresholds τF , τG, and τW and
considering the max score only in case of uncertainty we
obtained for each student a predicted class, expressed in
column Predicted Class. If we compare the actual class
with the predicted class we can build the corresponding
confusion matrix (Table 4).

The threshold for class W in dataset 1 is typically higher
than that for the other two classes due to the combination
of two reasons. The first is that the test sample is fairly
small. The second is that the number of class W instances
is also small. As such, based on the fact that the threshold
is determined by finding the score that results in the closest
point on the ROC curve to the top left corner, the threshold
has to be high in order to make sure that the points are
identified correctly. Therefore, since the number of class
W points is low, missing one of them would result in
a significant drop in specificity and sensitivity. Thus, the
optimal threshold should be high to be able to identify and
classify them correctly.

Table 4 Example - Confusion Matrix

F G W

F 1 1 1

G 1 4 2

W 0 0 5

7ML parameter tuning and application

We chose one algorithm for each area of ML aiming to
cover all types of classification methods including tree-
based (RF), vector-based (SVM-RBF), distance-based (k-
NN), regression-based (LR), probabilistic (NB), and neural
network-based (NN1, NN2, and NN3 with 5 neurons per
layer). The corresponding bagging ensemble models consist
of all possible combinations of the aforementioned base
models. In Section 7.1, we explain how we train a NN. In
the following sections, for each dataset, we show the impact
of each variable on the performance of each classifier.
As explained in Section 1, in order to understand which
variables are the best predictors for each algorithm, we
decided to average, for each variable, its importance on
every model and this average is assigned to the variable
and defined to be its averaged importance. In Section 8
we will show that the most important variables affect the
performances of some classifiers.

7.1 Neural network tuning

Finding the optimal number of neurons for NN is still an
open field of research and requires a lot of computational re-
sources. The authors in [64] summarize some formulas for the
computation of the optimal number of hidden neurons Nh:

– Nh =
√

1+8Ni−1
2

– Nh = √
NiNo

– Nh = 4N2
i +3

N2
i −8

where Ni is the number of input neurons (number of
variables) and No is the number of output neurons (3
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Fig. 6 NN with 1 hidden layer

classes). Applying the latter formulas to our datasets at
the two different stages, we obtained a number of neurons
between 2 and 6. Considering that we adopted the early
stopping technique in order to prevent over-fitting and
reduce variance, we decided to choose this number in the
high range of the interval [2, 6] and set it to be equal to 5
instead of performing a full optimization (i.e., brute force
searching).

The results obtained by using 1 hidden layer with 5
neurons were so promising that we decided to stress our
hypothesis about early stopping and tried NN with 2 and 3
hidden layers with 5 neurons each, obtaining similar results.

The NN models we built are as in Figs. 6, 7 and 8.
The initialization of the weights of neural networks was

implemented by using the Nguyen-Widrow Initialization
Method [55] whose goal is to speed up the training process
by choosing the initial weights instead of generating them
randomly. Simply put, this method assigns to each hidden
node its own interval at the start of the training phase. By
doing so, during the training each hidden layer has to adjust
its interval size and location less than if the initial weights
are chosen randomly. Consequently, the computational cost
is reduced.

Levenberg-Marquardt backpropagation was used to train
the models: this algorithm was introduced for the first
time by Levenberg and Marquardt in [47], and is derived
from Newton’s method that was designed for minimizing
functions that are sums of squares of nonlinear functions
[45]. This method is confirmed to be the best choice in
various learning scenarios, both in terms of time spent and
performance achieved, [15] . Moreover, the datasets were
normalized in input by mapping linearly to [−1, 1] (the
activation function used in the input layer is the hyperbolic
tangent) and in output to [0, 1] (the activation function in the

output layer is linear) in order to avoid saturation of neurons
and make the training smoother and faster.

7.2 ML algorithms’ parameter tuning

Hyper-parameter tuning has become an essential step to
improve the performance of ML algorithms. This is due
to the fact that each ML algorithm is governed by a set
of parameters that dictate its predictive performance [39].
Several methods have been proposed in the literature to
optimize and tune these parameters such as grid search
algorithm, random search, evolutionary algorithms, and
Bayesian optimization method [29, 39].

This work adopts the grid search method to perform
hyper-parameter tuning. Grid search optimization method is
a well-known optimization method often used to hyper tune
the parameters of ML classification techniques. Simply put,
it discretizes the values for the set of techniques’ parameters
[39]. For every possible combination of parameters,
the corresponding classification models are trained and
assessed. Mathematically speaking, this can be formulated
as follows:

max
parm

f (parm) (2)

where f is an objective function to be maximized (typically
the accuracy of the model) and parm is the set of
parameters to be tuned. Despite the fact that this may seem
computationally heavy, grid search method benefits from
the ability to perform the optimization in parallel, which
results in a lower computational complexity [39].

In contrast to traditional hyper-parameter tuning algo-
rithms that perform the optimization with the objective
of maximizing the accuracy of the ML model, this work

Fig. 7 NN with 2 hidden layers

M. Injadat et al.4516



Fig. 8 NN with 3 hidden layers

tunes the parameters used for each model using the grid
search optimization method to maximize the average Gini
index (for more statistical significance and robustness [27])
over multiple splits [42]. More specifically, the objective
function is:

max
parm

Average Gini Index = max
parm

1

N

N∑
i=1

Gini Indexi(parm)

(3)

where parm is the set of parameters to be tuned for each
ML algorithm and N is the number of different splits
considered. For example, in the case of K-NN algorithm,
parm = {K} which is the number of neighbors used to
determine the class of the data point.

R was used to implement the eight classifiers and the
corresponding ensemble learners. As mentioned above, the
eight classifiers considered in this work are SVM-RBF, LR,
NB, k-NN, RF, NN1, NN2, and NN3. All the classifiers
were trained using all the variables available. Moreover, the
parameters of the algorithms were tuned by maximizing the
Gini Index of each split. Furthermore, 200 different splits
of data were used to reduce the bias of the models under
consideration.

Table 5 summarizes the range of values for the parame-
5ers of the different ML algorithms considered in this work.

Note the following:

– For the NB algorithm, density estimator used by the
algorithm is represented using the usekernel parameter.
In particular, usekernel=false means that the data
distribution is assumed to be Gaussian. On the other

hand, usekernel = true means that the data distribution
is assumed to be non-Gaussian.

– The LR algorithm was not included in the table. This is
due to the fact that it has no parameters to optimize. The
sigmoid function, which is the default function, was
used by the grid search method to maximize the Gini
index.

– The NN method was not included in the table because
it was explained in the previous Section 7.1.

The features are ordered according to their importance. This
is done for the two datasets and for each of the algorithm
used. This provides us with better insights about which
features are important for each algorithm and each dataset.
The importance of the features is determined using the
CARET package available for R language [41]. Depending
on the classification model adopted, the importance is
calculated in one of multiple ways. For example, when
using RF method, the prediction accuracy on the out-of-bag
portion of the data is recorded. This is iteratively done after
permuting each predictor variable. The difference between
the two accuracy values is then averaged over all trees
and normalized by the standard error [41]. In contrast,
when the k-NN method is used, the difference between the
class centroid and the overall centroid is used to measure
the variable influence. Accordingly, the separation between
the classes is larger whenever the difference between the
class centroids is larger [41]. On the other hand, when
using the NN method, the CARET package uses the same
feature importance method proposed in Gevrey et al. which
uses combinations of the absolute values of the weights

Table 5 Grid Search Parameter Tuning Range

Algorithm Parameter Range in Dataset 1 Parameter Range in Dataset 2

SVM-RBF C=[0.25, 0.5, 1] & sigma = [0.05-0.25] C=[0.25, 0.5, 1] & sigma = [0.5-3.5]

NB usekernel=[True,False] usekernel=[True,False]

K-NN k=[5,7,9,...,43] k=[5,7,9,...,43]

RF mtry=[2,3,...,12] mtry=[2,3,4]
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Table 6 Dataset 1 - Stage 20% - Features’ importance for Different Base Classifiers

Ranking RF SVM-RBF NN1 NN2 NN3 k-NN LR NB

1 ES2.2 ES2.2 ES2.2 ES2.2 ES2.2 ES2.2 ES1.1 ES2.2

2 ES3.3 ES3.3 ES3.5 ES3.3 ES3.3 ES3.3 ES1.2 ES3.3

3 ES2.1 ES2.1 ES3.3 ES3.5 ES3.5 ES2.1 ES3.5 ES2.1

4 ES1.1 ES3.5 ES3.2 ES2.1 ES2.1 ES3.5 ES3.3 ES3.5

5 ES3.5 ES1.2 ES1.1 ES3.2 ES3.2 ES3.4 ES3.4 ES3.4

6 ES1.2 ES3.4 ES2.1 ES1.1 ES1.1 ES1.2 ES3.2 ES1.2

7 ES3.4 ES1.1 ES1.2 ES3.4 ES3.4 ES1.1 ES3.1 ES1.1

8 ES3.1 ES3.1 ES3.4 ES1.2 ES1.2 ES3.1 ES2.2 ES3.2

9 ES3.2 ES3.2 ES3.1 ES3.1 ES3.1 ES3.2 ES2.1 ES3.1

[23]. This importance is reflected in the weights calculated
for each feature for each classification model with more
important features contributing more towards the prediction.

The final step consist of selecting the most suitable
bagging ensemble learner for both datasets at the two course
delivery stages.

7.3 Features importance: Dataset 1 - Stage 20%

– RF: The variables’ importance in terms of predictivity
is described in Table 6 that shows that the most relevant
features are ES2.2 and ES3.3.

– SVM-RBF: The variables’ importance for SVM is
described in Table 6, that shows that the most relevant
features are ES2.2 and ES3.3.

– NN1: For NN1, the variables’ importance in terms of
predicativity is described in Table 6 that shows that the
most relevant features are ES2.2 and ES3.5.

– NN2: The most important variables for NN2 are ES2.2
and ES3.2, as shown in Table 6.

– NN3: The variables’ importance in terms of predica-
tivity is described in Table 6 that shows that the most
relevant features are ES2.2 and ES3.2.

– k-NN: Table 6 shows that the most relevant features for
k-NN are ES2.2 and ES3.3.

– LR: The variables’ importance in terms of predicativity
is described in Table 6 that shows that the most relevant
features are ES1.1 and ES1.2.

– NB: Table 6 shows that the most relevant features are
ES2.2 and ES3.3.

7.4 Features importance: Dataset 1 - Stage 50%

It is important to point out that, for Dataset 1 at stage 50%,
features ES4.1 and ES4.2 are the most important for every
classifier.

– RF: For RF, the variables’ importance in terms of
predicativity is described in Table 7 that shows that the
most relevant features are ES4.1 and ES4.2.

Table 7 Dataset 1 - Stage 50% - Features’ importance for Different Base Classifiers

Ranking RF SVM-RBF NN1 NN2 NN3 k-NN LR NB

1 ES4.1 ES4.1 ES4.1 ES4.1 ES4.1 ES4.1 ES4.1 ES4.1

2 ES4.2 ES4.2 ES4.2 ES4.2 ES4.2 ES4.2 ES4.2 ES4.2

3 ES2.2 ES2.2 ES3.3 ES3.5 ES5.1 ES2.2 ES1.1 ES1.1

4 ES5.1 ES5.1 ES3.5 ES3.3 ES3.5 ES5.1 ES2.1 ES2.1

5 ES2.1 ES3.3 ES2.1 ES5.1 ES3.3 ES3.3 ES1.2 ES1.2

6 ES1.1 ES2.1 ES5.1 ES2.1 ES2.1 ES2.1 ES3.3 ES3.3

7 ES3.5 ES3.5 ES1.1 ES3.4 ES2.2 ES3.5 ES3.4 ES3.4

8 ES3.3 ES1.2 ES3.4 ES2.2 ES1.1 ES3.4 ES5.1 ES5.1

9 ES3.4 ES3.4 ES3.2 ES1.1 ES3.4 ES1.2 ES3.5 ES3.5

10 ES3.1 ES1.1 ES2.2 ES3.1 ES3.2 ES1.1 ES2.2 ES2.2

11 ES3.2 ES3.1 ES1.2 ES3.1 ES3.1 ES3.1 ES3.1 ES3.1

12 ES1.2 ES3.2 ES3.1 ES1.2 ES1.2 ES3.2 ES3.2 ES3.2
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Table 8 Dataset 2 - Stage 20% - Features’ importance

Ranking Feature

1 Assignment01

2 Quiz01

– SVM-RBF: The variables’ importance in terms of
predicativity is described in Table 7 that shows that the
most relevant features are ES4.1 and ES4.2.

– NN1: The variables’ importance in terms of predica-
tivity is described in Table 7 that shows that the most
relevant features are ES4.1 and ES4.2.

– NN2: The variables’ importance in terms of predica-
tivity is described in Table 7 that shows that the most
relevant features are ES4.1 and ES4.2.

– NN3: The variables’ importance in terms of predica-
tivity is described in Table 7 that shows that the most
relevant features are ES4.1 and ES4.2.

– k-NN: Table 7 shows that the most relevant features for
k-NN are ES4.1 and ES4.2.

– LR: Table 7 shows that the most relevant features for
LR are ES4.1 and ES4.2.

– NB: The variables’ importance in terms of predicativity
is described in Table 7 that shows that the most relevant
features are ES4.1 and ES4.2.

In general, the most important features for almost all the
classifiers are ES4.1 and ES4.2. These features correspond
to the Evaluate category as per Bloom’s taxonomy which
represents one of the highest level of comprehension of
the course material from the educational point of view.

Table 9 Dataset 2 - Stage 50% - NN1, NN2, k-NN, and NB, Features’
importance

Ranking Feature

1 Assignment02

2 Assignment01

3 Midterm Exam

4 Quiz01

Therefore, it makes sense for these features to be suitable
indicators and predictors of student performance.

7.5 Features importance: Dataset 2 - Stage 20%

We have only two features for Dataset 2, Stage 20% and for
all the classifiers, the list of features ordered by importance,
see Table 8.

Since Dataset 2 at stage 20% has only two variables we
can represent it graphically in order to have a better under-
standing of the situation and to explain why all the algorithms
agree that Assignment01 is the most important predictor.

Figure 9 shows that it is straightforward to identify
the categories of students by setting some thresholds on
the Assignment01 feature. For instance, most of the Weak
students have grade zero in Assignment01.

7.6 Features importance: Dataset 2 - Stage 50%

The variables’ importance for NN1, NN2, k-NN, and NB is
described in Table 9, whereas the variables’ importance for
NN3, LR, RF, and SVM is described in Table 10.

Fig. 9 Dataset 2 - Stage 20% -
scatter plot
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Table 10 Dataset 2 - Stage 50% - NN3, LR, RF, and SVM-RBF,
Features’ importance

Ranking Feature

1 Assignment01

2 Assignment02

3 Midterm Exam

4 Quiz01

Based on the aforementioned results, it can be seen
that assignments are better indicators of the student
performance. This can be attributed to several factors. The
first is the fact that assignments typically allow instructors
to assess the three higher levels of cognition as per Bloom’s
taxonomy, namely analysis, synthesis, and evaluation [18].
As such, assignments provide a better indicator of the
learning level that a student has achieved and consequently
can give insights about his/her potential performance in
the class overall. Another factor is that students tend
to have more time to complete assignments. Moreover,
they are often allowed to discuss issues and problems
among themselves. Thus, students not performing well
in the assignments may be indicative of them not fully
comprehending the material. This can result in the students
receiving a lower overall final course grade.

8 Experimental results and discussion

Matlab 2018 was used to build the Neural Networks
classifiers, whereas all the other models were built using R.

All possible combinations of ensembles of eight bag-
gings of models (256 in total) were computed for the initial
Train-Test split and for 5 extra splits. For each dataset, the
average of the performances, namely averaged Gini Index,

Table 11 Dataset 1 - Stage 20% Ensemble (NN2) Confusion Matrix
τF = 0.158, τG = 0.310, τW = 0.682

F G W

F 1 1 1

G 1 4 2

W 0 0 5

on the 6 splits was used to select the most robust ensem-
ble learner. In addition, we computed the p-values of all
the ensembles for all the splits aiming to select the ensem-
ble learner with highest averaged Gini index that was also
statistically significant on every split. Note that the contribu-
tion of each feature is determined by the base learner model
being used in the ensemble as per the ranking determined for
each dataset at each stage. For example, if the RF learner is
part of the ensemble being considered for Dataset 1 at 50%
stage, the first split is done over feature ES 4.1, the second
split is over feature ES 4.2, and so on.

In the following sections we will see the results obtained
for the two datasets at each stage.

8.1 Results: Dataset 1 - Stage 20%

If we based our choice only on the Gini index corresponding
to the initial split, the ensemble learner we would have
selected for Dataset 1 at Stage 20% would have been formed
by NB, NN1, and SVM-RBF. Instead, the ensemble learner
that appears to be the most stable on every split and with
statistical significance is the one formed by a bagging of
the NN2 model and the combination of the bagging of NN2
and NB as a bagging ensemble. Figure 10 shows the results
obtained by inferring the ensemble on the initial test sample.

Classes G, F, W have Gini Indices equal to 46.4%, 38.9%
and 94.0% respectively. Hence, the Averaged Gini Index is

Fig. 10 Dataset 1 - Stage 20% -
Ensemble Learner
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Table 12 Dataset 1 - Stage 20% - Ensemble Performances

Precision Recall F-measure False Positive Rate

F 0.33 0.50 0.40 0.50

G 0.57 0.80 0.67 0.20

W 1.00 0.63 0.77 0.38

Avg 0.64 0.64 0.61 0.36

59.8%. On average, on Test sample and the 5 extra splits the
Averaged Gini Index is 62.1%. The corresponding p-values
are all less than 0.03.

The confusion matrix for the Test sample (consisting of
15 students), obtained as explained in Section 6, is shown in
Table 11.

Table 12 illustrates the performances of the ensemble
learner in terms of precision, recall, F-measure and false
positive rate per class and on average. These quantities
depend on the thresholds τF , τG and τW and the way we
defined the predictions. The Accuracy is 66.7%. Although
this may seem to be low, it actually outperforms all of the
base learners used to create the bagging ensemble. Note that
the low accuracy may be attributed to the fact that the dataset
itself is small and hence did not have enough instances to
learn from.

8.2 Results: Dataset 1 - Stage 50%

For Dataset 1 at Stage 50%, none of the ensembles
we constructed were statistically significant even if their
Averaged Gini Indices are on average higher than the
ones obtained for Dataset 1 at Stage 20%. In fact, the
performance for class F gets worse when we add the three
variables. More precisely, when we add Features ES4.1,

ES4.2 and ES5.1 to Dataset 1 at stage 20% obtaining Dataset
1 at stage 50%, they end up being the ones that have
the main impact on the predictions. These variables help
distinguish between W and G and in fact the performance
corresponding to these two classes improve. However, since
Fair students are closely correlated with the Good students
class, the classifier becomes less confident in predicting the
Fair students.

The best ensemble in terms of performance is the one
obtained from a bagging of NB and k-NN. The Averaged
Gini Index on 6 splits is 74.9% and on the initial test sample
the Averaged Gini Index is 86.5%. Figure 11 shows the
performance obtained on Split 1, having Averaged Gini
Index equals 50%, with Gini Indices -22.2%, 76.8%, 86.0%
respectively on Classes F, G and W. On a different split,
the ensemble formed by a bagging of NB and k-NN on
Dataset 1 at stage 20% gives Gini Indices 77.8%, 53.6% and
48.0% respectively on Classes F, G and W. This proves that
the performance heavily depends on the split. In general,
when we add the new three features (obtaining Dataset1 at
stage 50%), the performance improves on classes G and W
whereas it gets much worse for class F.

The confusion matrix obtained is shown in Table 13.
Table 14 illustrates the performances of the ensemble

learner in terms of precision, recall, F-measure and false

Fig. 11 Dataset 1 - Stage 50% -
Ensemble Learner
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Table 13 Dataset 1 - Stage 50% Ensemble (NB and k-NN) Confusion
Matrix τF = 0.10, τG = 0.29, τW = 0.88

F G W

F 0 2 1

G 0 7 0

W 1 1 3

positive rate per class and on average. These quantities
depend on the thresholds τF , τG and τW and the way we
defined the predictions. The Accuracy is 66.7%. Again, the
bagging ensemble outperforms all of the base learners used
to create it despite it potentially being low. This is due to the
fact that the dataset itself is small and hence did not have
enough instances for the ensemble to learn from. Note that
we cannot compute the F-measure for class F as Precision
and Recall are zero.

It is worth noting that the low average Gini index can be
attributed to 2 main reasons:

– This dataset is a small dataset.
– The Fair class is highly correlated with the Good

students class. Hence, this is causing some confusion to
the models being trained.

This is further highlighted by the large false positive rate
obtained for the Fair class.

8.3 Results: Dataset 2 - Stage 20%

The ensemble learner selected for Dataset 2 at Stage 20%
is formed by bagging of NB, k-NN, LR, NN2, and SVM-
RBF. For instance, we show the results corresponding to the
initial test sample. For each class, we normalized the scores
obtained by the five baggings of models on the test sample
in order to make these probabilities comparable, then we
averaged them. The performances obtained are shown in
Fig. 12.

Classes G, F, W have Gini Indices equal to 48.1%, 38.6%
and 99.7% respectively. The confusion matrix associated is
shown in Table 15.

Table 14 Dataset 1 - Stage 50% - Ensemble Performances

Precision Recall F-measure False Positive Rate

F 0.00 0.00 - 1.00

G 1.00 0.70 0.82 0.30

W 0.60 0.75 0.67 0.25

Avg 0.53 0.48 - 0.52

Furthermore, Table 16 illustrates the performances of the
ensemble learner in terms of precision, recall, F-measure
and false positive rate per class and on average. These
quantities depend on the thresholds τF , τG and τW and
the way we defined the predictions. The Accuracy is
88.2%, which is very good compared with respect to the
performances obtained for Dataset 1. In a similar fashion
to Dataset 1, the bagging ensemble outperforms the base
learners in terms of classification accuracy.

8.4 Results: Dataset 2 - Stage 50%

The ensemble learner selected for Dataset 2 at Stage 50% is
formed by a bagging of LR models only. The performances
obtained on the initial test sample are shown in Fig. 13.
On average, almost all the ensembles we constructed have
very good performances and are statistically significant. The
ensemble we selected is very robust on every split.

Classes G, F, W have Gini Indices equal to 92.3%, 90.7%
and 99.3% respectively.

The confusion matrix obtained is shown in Table 17.
Table 18 illustrates the performances of the ensemble

learner in terms of precision, recall, F-measure and false
positive rate per class and on average. These quantities
depend on the thresholds τF , τG and τW and the way we
defined the predictions. The Accuracy is 93.1%. Again, the
bagging ensemble at this stage also outperforms the base
learners in terms of classification accuracy.

8.5 Performance comparison with base learners

Table 19 shows the classification accuracy of the different
base learners in comparison with the average accuracy
across the 256 splits of the bagging ensemble. It can be
seen that the bagging ensemble on average outperforms
all of the base learners at the two course delivery stages
for both datasets. This is despite the fact that some of the
splits may have had poor distribution which often leads to
lower classification accuracy of the ensemble. This further
highlights and emphasizes the effectiveness of the proposed
ensemble in accurately predicting and identifying students
who may need help.

8.6 Results summary

The performances obtained for Dataset 1 and Dataset 2
are very different. For Dataset 1, the models performances
depend strongly on the splits. For instance, the same
ensemble might perform very well on certain splits but have
very low Averaged Gini Index on others, due to a negative
Gini index on class F. Moreover, only 25% of the ensembles
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Fig. 12 Dataset 2 - Stage 20% -
Ensemble Learner

for Dataset 1 at the 20% had averaged Gini Index above 50%
and of all the ensembles only one of them is statistically
significant, the one corresponding to a bagging of NN2
models.

Although the evidence shows that this ensemble performs
decently on each split we have considered for our
experiments, we cannot assume that this is true on every
other possible split we might have chosen instead. The
problem is so dependent on the split selected, that even the
ensemble we chose results in lack of robustness and poor
performances.

For Dataset 1 at stage 50%, the averaged Gini Index is
in general higher than the averaged Gini Index obtained at
stage 20% because the Gini Indices corresponding to classes
G (Good students) and class W (Weak students) improve
when we add the three features ES4.1, ES4.2, ES5.1. Since
the Fair students class is highly correlated with the Good
students class, the consequence is that when we add the
best predictors, they predict incorrectly the Fair students.
Consequently, the Gini Index for class F for each ensemble
and for almost every split is negative or very low, leading
to statistically insignificant results. In particular, there is not
an ensemble among the 256 constructed such that the p-
value corresponding to class F is lower than 0.03 on every

Table 15 Dataset 2 - Stage 20% Ensemble (NB,k-NN,LR,NN2,SVM)
Confusion Matrix τF = 0.12, τG = 0.62, τW = 0.40

F G W

F 5 11 1

G 5 120 0

W 0 0 2

split. Note that the ensemble chosen at the 50% stage is
bagging of NB and k-NN. Although the ensemble was not
statistically significant due to class F, it was statistically
significant for the target class W.

For this reason, even though for completeness we are
going to show the results for Dataset 1 at both stages, it is
important to point out that if we were aiming to classify
correctly the students for Dataset 1 and to use the classifier
for applications in real world, we should not include the last
three features, i.e. we should use Dataset 1 at stage 20%.

Dataset 2 was easier to deal with and also the choice
of the best ensemble was straightforward. For Dataset
2 at stage 50%, 88% of the ensembles have averaged
Gini Indices above 90%, and 96% of the ensembles were
statistically significant.

For Dataset 2, the highest averaged Gini Index led us to
choose:

– the ensemble of baggings of NB, k-NN, LR, and NN2
for the 20% stage.

– the ensemble consisting of bagging of LR for the 50%
stage.

Note that in general, it is better to perform the prediction at
the 50% stage rather than at the 20% stage. This is due to

Table 16 Dataset 2 - Stage 20% - Ensemble Performances

Precision Recall F-measure False Positive Rate

F 0.29 0.50 0.37 0.50

G 0.96 0.92 0.94 0.08

W 1.00 0.67 0.80 0.33

Avg 0.75 0.69 0.70 0.31
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Fig. 13 Dataset 2 - Stage 50% -
Ensemble Learner

Table 17 Dataset 2 - stage 50% Ensemble (LR) Confusion Matrix
τF = 0.12, τG = 0.62, τW = 0.30

F G W

F 11 5 1

G 3 122 0

W 1 0 1

Table 18 Dataset 2 - Stage 50% - Ensemble Performances

Precision Recall F-measure False Positive Rate

F 0.65 0.73 0.69 0.27

G 0.98 0.96 0.97 0.04

W 0.50 0.50 0.50 0.50

Avg 0.71 0.73 0.72 0.27

Table 19 Performance of Bagging Ensemble and Base Learners

Accuracy

Technique Dataset 1 Dataset 2

Stage 20% Stage 50% Stage 20% Stage 50%

RF 46.7% 66.6% 82.8% 89.0%

NN 66.7% 60% 86.2% 91.7%

K-NN 60% 66.6% 86.2% 89.0%

NB 53.3% 66.6% 85.5% 85.5%

LR 53.3% 53.3% 86.9% 90.3%

SVM 46.7% 33.3% 86.2% 90.3%

Ensemble 66.7% 66.7% 88.2% 93.1%

the fact that more features are collected at the 50% stage,
resulting in the learners being able to gain more information.
Although this observation was not evident for dataset 1, this
is due to the dataset being small with only a few instances
of the F class that were at the border between the G and W
classes. However, it was observed that the F-measure was
high at both stages for the target class W.

For dataset 2, the results showed that indeed predicting
at the 50% stage is better since the performance of the
ensemble improved with the added number of features.
However, the results at the 20% stage were still valuable
as they helped provide vital insights at an extremely early
stage of the course delivery as evident by the fact that the
F-measure was close to 0.7 at that stage.

9 Conclusion, research limitations,
and future work

In this paper, we investigated the problem of identifying
student who may need help during course delivery time
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for an e-Learning environment. The goal was to predict
the students’ performance by classifying them into one of
three possible classes, namely Good, Fair, and Weak. In
particular, we tackled this multi-class classification problem
for two educational datasets at two different course delivery
stages, namely at the 20% and 50% mark. We trained eight
baggings of models for each dataset and considered all the
possible ensembles that could be generated by considering
the scores produced by inferring them on a test sample.

We compared the performances, and concluded that the
ensemble learners to be selected are formed by:

– a bagging of NN2 models for Dataset 1 at stage 20%.
– a bagging of NB and k-NN models for Dataset 1 at stage

50%.
– a bagging of NB, k-NN, LR, NN2, and SVM-RBF for

Dataset 2 at stage 20%.
– a bagging of LR models for Dataset 2 at stage 50%.

whereas it was not possible to select a good ensemble
for Dataset 1 at stage 50% as none of the ensembles was
statistically significant.

The results are good for Dataset 2 both in terms of
Averaged Gini Index and p-values, especially if we consider
the issues encountered. In particular, the issues are mainly
the size of Dataset 1 and the unbalanced nature of Dataset
2. In turn, this makes the multi-class classification problem
more complex. This was evident by the fact that it was
impossible to find a good classifier for Dataset 1 at stage
50% and that the performance obtained for Dataset 1 at
stage 20% was poor.

Based on the aforementioned research limitations, below
are some suggestions for our future work:

– The best way to face the dataset size issue would be
to have more data available, by collecting training and
testing datasets for every time the course is offered.

– We also suggest to perform several additional splits for
Dataset 1 at Stage 20% to check the robustness of the
model as well as the statistical significance.

– It might be worth trying to optimize the topology of the
neural network with a dedicated algorithm. Even though
our choice was based on recent literature it is unlikely
that we reached the optimum. One could consider to
try, for instance, all the possible combinations with 1,
2, and 3 layers and 1,..,20 neurons in each layer. If we
considered all such combinations we would have had
20 + 202 + 203 NNs to train. Of course it would be
computationally not viable and would probably result
in a massive over-fitting. However, there are several
approaches proven to be effective in this kind of tasks,
such as genetic optimization or pre-trained models
capable to predict the optimal topology of a network
for a given problem, considering parameters such as the

dimension of the dataset and the intensity of the noise
[19].
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