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Abstract
To conquer the shortcoming that general clustering methods cannot process big data in the main memory, this paper presents an
effective multi-level synchronization clustering (MLSynC) method by using a framework of “divide and collect” and a linear
weighted Vicsek model.We also introduce two concrete implementations ofMLSynCmethod, a two-level framework algorithm
and a recursive algorithm. MLSynC method has a different process with SynC algorithm, ESynC algorithm and SSynC algo-
rithm. By the theoretic analysis, we find the time complexity of MLSynC method is less than SSynC. Simulation and experi-
mental study on multi-kinds of data sets validate that MLSynC method not only gets better local synchronization effect but also
needs less iterative times and time cost than SynC algorithm. Moreover, we observe that MLSynC method not only needs less
time cost than ESynC and SSynC, but also almost gets the same local synchronization effect as ESynC and SSynC if the partition
of the data set is proper. Further comparison experiments with some classical clustering algorithms demonstrate the clustering
effect of MLSynC method.

Keywords Divide and collect . Kuramoto model . Shrinking synchronization clustering . Linear weighted Vicsek model . Near
neighbor point set

1 Introduction

Clustering is an unsupervised learning method that tries to
find some obvious distribution structures and patterns in un-
labeled data sets by maximizing the similarity of the objects in
a common cluster and minimizing the similarity of the objects
in different clusters [1]. Clustering has been used in many
areas such as machine learning, pattern recognition, image
processing, marketing and customer analysis, agriculture, se-
curity and crime detection, information retrieval, and

bioinformatics. Cluster is often one important step in the pro-
cess of data analysis.

Clustering algorithms have been studied for decades. There
have been hundreds of clustering algorithms until now, but
none of them is all-purpose. Almost all clustering algorithms
have flaws. Some clustering algorithms are suitable for deal-
ing with data with certain types, and others are suitable for
handling data with special distribution structures. Many real
data have complex distributions, diversiform types, great ca-
pacity, noises, or isolates. So there is a continuous demand for
researching different kinds of clustering methods. To obtain
better clustering results in real-world applications where the
amount of data is often very large and the types of data are
diversiform, researchers try their best to develop new efficient
and effective clustering algorithms.

The traditional clustering algorithms are usually classified
into partitioning methods [2, 3], hierarchical methods [4–7],
density-based methods [8, 9], grid-based methods [10, 11],
model-based methods [12] and graph-based methods
[12–14]. Recent clustering methods have quantum clustering
algorithms [15], spectral clustering algorithms [16, 17], kernel
clustering algorithms [18], affinity propagation clustering al-
gorithms [19], synchronization clustering algorithms [20–27],
and so on. Partitioning methods are divided into hard
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clustering and fuzzy clustering. Fuzzy clustering can cope
with overlapping or cluster boundaries. Partitioning methods
are sensitive to the predefined number of clusters, initial pro-
totypes, noise and outliers. They have linear time complexity
with the number of data points. K-Means [2] and FCM [3] are
two famous and often used partition-based clustering
algorithms.

Recently, several original clustering algorithms, such as
Affinity Propagation (AP) algorithm [19], Synchronization
Clustering (SynC) algorithm [20] and clustering by fast search
and find of Density Peaks (DP) algorithm [28], were pub-
lished. AP algorithm is a new type of clustering algorithm
published in Science. After AP algorithm was published, clus-
tering based on probability graph models grew a new research
direction. As we know, SynC algorithm is the first synchroni-
zation clustering algorithm. After SynC algorithm was pre-
sented, synchronization clustering attracts some researchers.
Some synchronization clustering methods [21–27] were pub-
lished from different views. DP algorithm is a clustering algo-
rithm based on the assumption that “cluster centers can be
characterized by a higher density than their neighbors and
by a relatively large distance from points with higher densi-
ties”. In DP algorithm, the number of clusters can be
obtained automatically, outliers can be identified easily,
and even nonspherical clusters can be explored quickly.
So we think DP algorithm can lead a new research
direction in clustering field.

Synchronization clustering is a kind of novel clustering
approach. The original synchronization clustering algorithm
(named as SynC) says that it can find the intrinsic structure of
the data set without any distribution assumptions and handle
outliers by dynamic synchronization [20]. This paper is in-
spired by several papers [20, 24, 25, 29–31] and the strategy
of “divide and conquer”.

In the circumstance of big data, general clustering algorithms
cannot process a large amount of data in the main memory at a
time. To conquer this problem, basing on SynC algorithm [20],
ESynC algorithm [25] and SSynC algorithm [24], this paper
researches a Multi-Level Synchronization Clustering
(MLSynC) method based on SSynC algorithm by using a
framework of “divide and collect” and a linear weighted
Vicsek model. MLSynC method has a different process with
SynC algorithm, ESynC algorithm and SSynC algorithm. SynC
algorithm [20] is based on an extensive Kuramoto model,
ESynC algorithm [25] is based on a linear version of Vicsek
model, SSynC algorithm [24] is based on a linear weighted
Vicsekmodel andMLSynCmethod uses the strategy of “divide
and conquer” and a linear weightedVicsekmodel for clustering.
Because the linear weighted Vicsek model has a nicer superpo-
sition characteristic for clustering,MLSynCmethod can be used
to process big data effectively and efficiently.

The idea of “divide and collect” in MLSynC method is
similar to the MapReduce framework [32] in some aspects,

although it is developed independently. MapReduce is a paral-
lel and distributed programming model that is used to process
very large data sets on a cluster. In the MapReduce framework,
the Map and Reduce operations affect the clustering result very
much, so they cannot be directly extended to clustering field.
MLSynC method can be used for clustering on a cluster with a
parallel programming model or on a personal computer with a
serial programming method. If the partition of the data set is
proper, MLSynC method is both efficient and effective.

The remainder of this paper is organized as follows.
Section 2 lists some related works. Section 3 gives some basic
knowledge. Section 4 introduces MLSynC method. Section 5
validates MLSynC method by some simulated experiments.
Conclusions and future works are presented in Section 6.

The symbols used in this paper are summarized in Table 1.

2 Related works

2.1 Synchronization clustering methods

In 2010, Böhm et al. [20] presented a novel clustering ap-
proach, SynC algorithm, inspired by the synchronization prin-
ciple. SynC algorithm can find the intrinsic structure of the
data set without any distribution assumptions and handle out-
liers by dynamic synchronization. To implement automatic
clustering, those natural clusters can be discovered by using
the Minimum Description Length (MDL) principle [33].

After SynC algorithm was presented, some researchers
published several synchronization clustering papers [21–27].
To find subspace clusters of some high-dimensional sparse
data sets, a novel effective and efficient subspace clustering
algorithm, ORSC [21], was proposed. To find the intricate
patterns of a complex graph, a novel and robust graph clus-
tering algorithm, RSGC [22], was proposed by regarding the
graph clustering as a dynamic process towards synchroniza-
tion. To explore meaningful levels of the hierarchical cluster
structure, a novel dynamic hierarchical clustering algorithm,
hSync [23], was presented based on synchronization and the
MDL principle. Inspired by the work of [20] and Vicsek mod-
el [29], Chen [24] presented a Shrinking Synchronization
Clustering (SSynC) algorithm by using a linear weighted
Vicsek model. Inspired by the work of [20], Chen [25] pro-
posed an Effective Synchronization Clustering (ESynC) algo-
rithm based on a linear version of Vicsek model. Simulations
validate that the linear version of Vicsek model is an effective
synchronization model for clustering. Based on the metaphor
of gravitational kinematics and the central force optimization
method, Hang et al. [27] presented a local synchronization
clustering algorithm, which can find clusters of those data sets
with arbitrary size, shape and density, and determine the num-
ber of clusters automatically. Chen [26] presented a Fast
Synchronization Clustering (FSynC) method basing on the
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work of [20] and spatial index structure. FSynC algorithm,
which is a parametric algorithm, is an improved version of
SynC algorithm by combining a multidimensional grid
partitioning method and a Red-Black tree structure to con-
struct the near neighbor point sets of all points [26].

2.2 Competitive learning for clustering

Competitive learning is a type of unsupervised learning mod-
el. In simple competitive networks based on the winner-take-
all activation rule, the neuron with the highest activity in re-
sponse to the input wins the competition, inhibiting the other
neurons to quiescence. In self-organization maps, winner and
its neighborhood neurons may learn to update their weights.
After the competition, the input space is separated multiple
subspaces and each neuron will output maximum value for
those inputs in its responding subspace.

The famous competitive learning models have Von der
Malsburg’s model [34], Kohonen’s self-organization map
(SOM) [35, 36] and the adaptive resonance theory (ART)
based on the biological motivation [37, 38]. SOM uses a set
of heuristic procedures and does not use any minimization
objective function. It can often preserve clustering topology
well. But it is not suitable for non-vectorial data and has some
shortcomings, such as forced termination, unguaranteed con-
vergence, nonoptimized procedure and the sensitivity to the

sequence of data. ART family includes a series of unsuper-
vised learning models [39], such as ART1, ART2, ART3,
ARTMAPmodels and fuzzy ARTMAP. The distinctive char-
acteristics of ART are code representation, long-term memory
and corresponding geometric interpretation [40]. In super-
vised learning, semi-supervised learning, self-supervised and
other machine learning fields, ART-based models are also
researched. For example, the self-supervised ARTMAP [41]
can deserve partial knowledge previously acquired from la-
beled data and further learn new features from unlabeled data.
This model can integrate multiple knowledge from a teacher,
the environment and internal model activation. Recently,
Seiffertt [42] extends the core ART theory and algorithms to
some mixed input domains by establishing a dynamic equa-
tion model of ART in the time scales calculus.

The function of the concept root core in SSynC algorithm is
similar to the concept prototype of K-Means algorithm or the
concept neuron of competitive networks. The root cores after
the synchronization iteration in SSynC algorithm can often be
regarded as the prototypes of the clusters of the original data.
In our proposed model of this paper, the location of the root
core that represents some cores is regarded as their cluster
center, and the location of the root core that represents only
one or several cores is regarded as the final synchronization
location of one or several isolates. Each neuron of competitive
networks can represent one data subspace.

Table 1 Symbols used in this paper

Symbol Definition

D = S1 ∪··· ∪ Sm The data set D = {x1, …, xn} can be divided into m data subsets {S1,···, Sm}

n The number of points in the original data set D = {x1, …, xn}

δ1, ···, δm, δmerge m + 1 range parameters used in of Algorithm 1. They are used to compute near neighbor point set in
the m + 1 clustering modules based on SSynC algorithm

ε The deviation parameter used in SSynC algorithm

C1, …, Cm, C m + 1 core sets used in Algorithm 1

CInit = {c1, ···, cn} The initial core set created from the data set D in Algorithm 2

CRes The result core set represents the clusters and isolates of the data set D in Algorithm 2

T The times of synchronization iteration in SSynC algorithm

d The data dimension

n(t) The number of active cores in the t-step synchronization evolution

ni(t = 0) The initial number of active cores in the i-th clustering module

nave(t = 0) The initial average number of active cores in the first-lever m clustering modules

Tmax The max synchronization times in the first-lever m clustering modules

|C| The number of elements in the core set C

|C|(t) The number of active cores in the t-step synchronization evolution

Ki The number of clusters or isolates in the data subset Si (i = 1,…, m)

K The (predefined or final) number of clusters or isolates in the data set D

dist(·, ·) The dissimilarity measure in the Euclidean metric space

x = (x1, ···, xd) The vector of point x in d-dimensional Euclidean space

c = (c1, ···, cd) The location vector of core c in d-dimensional Euclidean space

MinPts The density threshold parameter used in DBSCAN algorithm
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Learning vector quantizatioin (LVQ) and SOM can repre-
sent all original data using some cluster centers. The weight
vectors of the SOM are often converged to the mean of input
vectors. ESynC algorithm [25] uses a linear version of Vicsek
model, and SSynC algorithm [24] uses a linear weighted
Vicsek model. Center or mean of the input vectors from one
data subspace is the common ground among SOM, ESynC
algorithm and SSynC algorithm.

2.3 The scalability of the clustering algorithm

Dealing with data sets with a very large sample size and (or) a
very high number of dimensions has always been an important
challenge in clustering field because of the time-space com-
plexity and clustering accuracy. A famous scalable version of
K-Means, scaleKM, was presented by Bradley et al. [43].
Although scaleKM is much faster than K-Means for big data
sets, it still requires a predefined input parameter, the correct
number of clusters, which is unknown for unlabeled
data. Another scalable version of K-Means for large data sets,
Mini-batch K-Means (MBKM), was proposed by Sculley
[44]. MBKM uses the same objective function and iteration
process as K-Means, but it improves the clustering speed by
selecting small random batches from the original data set.

Dimension reduction is widely used in high dimensional
data sets. A simple and efficient dimension reduction method
is random projection [45]. This kind of single random projec-
tion is often unstable. And ensemble-based techniques [46]
was developed by combining the result of multiple lower-
dimensional clustering results.

To explore those continuous data areas from massively
large high dimensional data sets, an orthogonal partitioning
clustering method, O-Cluster [47], was presented by combin-
ing an active random sampling strategy with an axis-parallel
partitioning technique. O-Cluster can get high-quality cluster-
ing results with excellent scalability and robustness, although
it needs a large buffer size and a sensitive parameter. Recently,
by using fast data-space reduction and an intelligent sampling
strategy, Rathore et al. [48] presented a rapid hybrid,
ensemble-based clustering algorithm named as FensiVAT.
FensiVAT can enhance the scalability ability of both dimen-
sions and sample size.

3 An effective multi-level synchronization
clustering method based on a framework
of “divide and collect” and SSynC algorithm

Facing big data, general clustering methods cannot process all
data in the main memory at a time. To conquer this problem,
we present an effective Multi-Level Synchronization
Clustering (MLSynC) method by using a framework of “di-
vide and collect” and a linear weighted Vicsek model. The

framework of “divide and collect” is an application of the
strategy of “divide and conquer” in clustering field. The linear
weighted Vicsek model described by Eq.(s5) of Sdefinition 5
of Supplementary Material is used in SSynC algorithm.

Although we use the Euclidean metric as our dissimilarity
measure in this paper, this method is by no means restricted to
this metric and this kind of data space. If we can construct a
proper dissimilarity measure in a hybrid-attribute space, this
method can still be used.

3.1 The application condition of MLSynC method

Sfig. 1 of Supplementary Material presents a figure that com-
pares the synchronization clustering results of MLSynCmeth-
od using two different partitioning methods, a random
partitioning method and a direct partitioning method. From
Sfig. 1, we observe that if the spatial distributions of two
partitioned data subsets vary very large and the clustering
structure of the original data set is dissevered by the
partitioning, MLSynC method will get a different clustering
result with SSynC algorithm. If the spatial distributions of two
partitioned data subsets have very small deviation, or the
partitioning is uniform, MLSynC method will get a similar
clustering result with SSynC algorithm.

3.2 The description of a two-level framework
algorithm of MLSynC method

MLSynCmethod has a different clustering process with SynC
algorithm [20], ESynC algorithm [25] and SSynC algorithm
[24]. Figure 1 presents a two-level framework algorithm of
MLSynC method. Sfig. 2 of Supplementary Material presents
a three-level framework algorithm of MLSynCmethod. In the
two-level framework algorithm of MLSynC method, the orig-
inal data set that is usually large and cannot be processed in the
main memory at a time is partitioned into m subsets. Each
subset is processed by a clustering model (or a clustering
machine) based on SSynC algorithm. After collected all root
cores from the m clustering models, a clustering model based
on SSynC algorithm is used again.

In Fig. 1, if m is too large, then the two-level framework
algorithm of MLSynC method should be replaced by a three-
level (or four-level and above) framework algorithm. A three-
level framework algorithm ofMLSynCmethod is presented in
Online Resource 3 of Supplementary Material of this paper.

From Fig. 1, we observe that MLSynC method has a natural
framework based on SSynC algorithm by integrating the cluster-
ing results of all subsets. MLSynC method also has nicer incre-
mental clustering ability. For example, in Fig. 1, if every subset in
{S2, ···, Sm} only has one point, then the two-level framework
algorithm becomes an incremental clustering algorithm.

Here, we present the description of the two-level frame-
work algorithm of MLSynC method.
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In Algorithm 1, steps 1 - 5 belong to the “divide stage”, and
steps 6 and 7 belong to the “collect stage”.

The Original Data Set D

Par�al Data Set S1 Par�al Data Set S2 Par�al Data Set Sm

Par��oning

Clustering all root cores
using SSynC algorithm

Collect all root cores

The final root cores represent 
clusters or isolates

Clustering S1 using 
SSynC algorithm

Clustering S2 using 
SSynC algorithm

Clustering Sm using 
SSynC algorithm

Fig. 1 A two-level framework
algorithm of MLSynC method
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3.3 The recursive algorithm of MLSynC method

Here, we present the description of the recursive algorithm of
MLSynC method.

3.4 Time and space complexity analysis of MLSynC
method

From the time complexity analysis of SSynC algorithm
that presented in another paper [24], we know that SSynC

algorithm needs Time = O d⋅ n2t¼0ð Þ þ⋯þ n2t¼T−1ð Þ
� �� �

<

O(Tdn2), which is usually less than SynC algorithm and
ESynC algorithm. Here T is the times of synchronization in
SSynC algorithm, d is the data dimension, n is the number of
points in the original data set D = {x1, ···, xn}, and n(t) is the
number of active cores in the t-step synchronization evolution.

3.4.1 Time and space complexity analysis of the two-level
framework algorithm of MLSynC method

In the two-level framework algorithm of MLSynC method,
step 1 needs Time =O(n) and Space =O(n).

The time cost of step 2 is:

Time ¼ O d⋅∑m
i¼1 n2i t ¼ 0ð Þ þ⋯þ n2i t ¼ Ti−1ð Þ� �� �

≈O d⋅
n2ave t ¼ 0ð Þ þ⋯þ n2ave t ¼ Tmax−1ð Þ

m

� � ð1Þ
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In Eq. (1), Ti is the synchronization times in the i-th clus-
teringmodule based on SSynC algorithm, ni(t = 0) is the initial
number of active cores in the i-th clusteringmodule, nave(t = 0)
is the initial average number of active cores in them clustering
modules, and Tmax is the max synchronization times in the m
clustering modules.

Suppose subset Si (i = 1, ···, m) has Ki clusters or isolates,
then step 3 needs Time =O(K1 + ··· +Km) =O(|C|). Here |C| is
the number of elements in the core set C.

Step 4 needs Time = O d⋅ Cj j2t¼0ð Þ þ⋯þ Cj j2t¼T−1ð Þ
� �� �

.

Here T is the synchronization times using SSynC algorithm in
step 4 and |C|(t) is the number of active cores in the t-step
synchronization evolution.

Step 5 needs Time =O(n) and Space =O(n).

3.4.2 Time and space complexity analysis of the recursive
algorithm of MLSynC method

In the recursive algorithm of MLSynC method, step 1 needs
Time =O(n) and Space =O(n).

In many cases, the time cost of step 2 is:

Time nð Þ ¼
O d⋅ n2t¼0ð Þ þ⋯þ n2t¼T−1ð Þ

� �� �
; if n≤FitNum;

O 1ð Þ þ 2⋅Time
n
2

� �
; if n > FitNum:

8<
: ð2Þ

Step 3 needs Time =O(n) and Space =O(n).
According to our analysis, MLSynC method often needs

less time than SSynC algorithm.

3.5 The setting of parameters δ, ε and m in MLSynC
method

For each subset or collected core set in MLSynC method,
SSynC algorithm is used for clustering with proper values of
parameters δ and ε.

3.5.1 The setting of parameter δ in MLSynC method

Parameter δ can affect the clustering result of MLSynC
method. There are several kinds of methods to select a
proper value for parameter δ. The first one [20] is that
parameter δ is optimized by the MDL principle. In
Chen [49], two other methods were presented to esti-
mate parameter δ. The third one is the heuristic selec-
tion of parameter δ in Chen [25]. The fourth one is a
linear-searching exploring method of parameter δ that is
described in Chen [26]. Here, we can also select a
proper value for parameter δ according to Stheorem 1
and Sproperty 1 of Supplementary Material.

3.5.2 The setting of parameter ε in MLSynC method

Parameter ε affects the time cost of MLSynC method slightly.
Usually, parameter ε has a long valid interval. For example, if
parameter δ > 15, then the valid interval of parameter ε is
about in (0, 10]. In simulations, we almost get the same results
for several different values (such as 0.00001, 0.0001, 0.001,
0.01, 0.1, 1 and 10) of parameter ε.

3.5.3 The setting of parameter m in MLSynC method

In the two-level framework algorithm of MLSynC meth-
od, parameter m affects its whole time cost. If parameter
m is set too large, then the number of points in each
part of the data set becomes less. So SSynC algorithm
in the two-level framework algorithm of MLSynC meth-
od needs less clustering time for each subset, and the
two-level framework algorithm of MLSynC method
needs much divide and collect time. Usually, there is
a balance between the increase of “divide and collect”
time and the decrease of clustering time with the in-
crease of parameter m. So we think that parameter m
cannot be set too large.

3.6 The improvement of MLSynC method

In MLSynC method, one improved version of SSynC algo-
rithm can be obtained by combining a multidimensional grid
partitioning method and a Red-Black tree structure to con-
struct the near neighbor point sets of all active cores.
The improving method that can decrease its time cost is
introduced in Chen [26]. Generally, we first partition
the data space of the data set D = {x1, ···, xn} by using
a kind of multidimensional grid partitioning method.
Then design an effective index of all grid cells and
construct δ near neighbor grid cell set for each grid cell.
If every grid cell uses a Red-Black tree to index its
active cores in each synchronization step, then con-
structing the δ near neighbor point set for every active
core will become quicker when the number of grid cells
is proper.

Before synchronization iterative evolution, if we set a prop-
er value for parameter δ to filtrate isolates, then these isolates
can be set as inactive cores that will not be operated in the next
iterative evolution. This improvement of the implementation
technique is often effective in some data sets.

3.7 The convergence of MLSynC method

In MLSynC method, SSynC algorithm is used to clustering
each subset and the collected core set. So the convergence of
MLSynC method is completely depended on the convergence
of SSynC algorithm. According to the convergence analysis
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of SSynC algorithm and our simulations, we know that
MLSynC method is also convergent.

4 The comparison of the dynamic clustering
processes among SynC algorithm, ESynC
algorithm, SSynC algorithm and MLSynC
method

SynC algorithm uses the extensive Kuramotomodel described
by Eq.(s2) of Sdefinition 2 of Supplementary Material at each
step evolution that is a nonlinear renewal model. ESynC
algorithm uses the linear version of Vicsek model de-
scribed by Eq.(s3) of Sdefinition 3 at each step evolu-
tion that is a linear renewal model. SSynC algorithm
uses the linear weighted Vicsek model described by
Eq.(s5) of Sdefinition 5 at each step evolution that is
a linear weighted renewal model. MLSynC method uses
a framework of “divide and collect” and the linear
weighted Vicsek model.

Figure 2 compares the tracks of 2000 data points from DS0
among the clustering processes of SynC algorithm, ESynC
algorithm, SSynC algorithm and MLSynC method. From
Fig. 2, we observe that MLSynC method, ESynC algorithm
and SSynC algorithm have better local synchronization effect
than SynC algorithm.

Figure 3a compares a measure index of clustering result,
the cluster order parameter with t-step evolution (t: 0 - 49)
[20], among SynC algorithm, ESynC algorithm, SSynC algo-
rithm and MLSynC method. Figure 3b compares another
measure index of clustering result, the t-step average length
of edges (t: 0 - 49) [25], among SynC algorithm, ESynC al-
gorithm, SSynC algorithm andMLSynCmethod. And Fig. 3c
compares the relationship between the final number of clusters
and parameter δ after finished clustering using the four algo-
rithms respectively.

From Fig. 3a and b, we observe that the t-step average
length of edges is better than the cluster order parameter with
t-step evolution in measuring the final synchronization results.
From Fig. 3c, we observed that parameter δ has a long valid
interval in ESynC algorithm, SSynC algorithm and MLSynC
method. From Fig. 3c, we also observe that the smaller pa-
rameter δ is set in SynC, ESynC, SSynC and MLSynC, the
larger the final number of clusters is. In many data sets with
obvious clusters, if we use a proper partitioning method to
group the data set, MLSynC method can often get the correct
number of clusters when parameter δ chooses any value from
its valid interval. ESynC algorithm and SSynC algorithm can
often get the correct number of clusters when parameter δ
chooses any value from its valid interval. But the final number
of clusters using SynC algorithm is often much larger than the
actual number of clusters whenever parameter δ gets any value
in a long interval.

5 Simulated experiments

5.1 Experimental design

Our experiments are finished on a personal computer.
Experimental programs are developed using C / Python /
Matlab language under Windows 7.

To verify the improvement in the clustering effect
and time cost of MLSynC method, there will be some
simulated experiments of some artificial data sets, eight
UCI data sets [50] and three bmp pictures in the next
several sections.

Four kinds of artificial data sets (DS1 - DS4) are produced
in a 2-D region [0, 600] × [0, 600] by a program presented in
Online Resource 4 of Supplementary Material of this paper.
Other kinds of artificial data sets (DS5 - DS16) are produced
in an interval [0, 600] in each dimension by a similar program.
DS0 is produced in a 2-D region [0, 200] × [0, 200] by a
similar program. Iris et al. [50] are eight UCI data sets used
in our experiments. Three bmp pictures (named Picture1,
Picture2 and Picture3) are obtained from the Internet. Stable
2 of Supplementary Material presents the description of the
experimental data sets.

In our simulated experiments, the maximum times of syn-
chronization evolution in the while repetition of SynC algo-
rithm, ESynC algorithm, SSynC algorithm and MLSynC
method is set as 50. MLSynC method is implemented using
the two-level framework algorithm of MLSynC method.

The comparison results of these clustering algorithms are
presented by eight figures (Figs. 4 - 5, Sfigs. 3 - 8 of
Supplementary Material) and eleven tables (Stables 3 - 13 of
Supplementary Material). Because of the limited pages, we
only select two figures from Sfigs. 3 - 8 in the manuscript.
Sfigs. 3 - 8 and Stables 3 - 13 are presented in Online Resource
6 of Supplementary Material. And the performance of algo-
rithms ismeasured by time cost (second). Clustering quality of
algorithms is measured by display figures of clustering results
and three robust information-theoretic measures, Adjusted
Mutual Information (AMI) [51], Normalized Mutual
Information [52] (NMI) and Adjusted Variation Information
(AVI) [51]. According to Vinh et al. [51], the higher the value
of the three measures gets, the better the clustering quality of
algorithms is. In simulations, we use a revised Matlab code
according to [51] to compute the three clustering quality
measures.

In Section 5.2, MLSynC method will be compared
with SynC algorithm, ESynC algorithm, SSynC algo-
rithm and some other classic clustering algorithms (K-
Means [2], FCM [3], AP [19], DBSCAN [9], Mean
Shift [53, 54], spectral clustering algorithm [16, 17],
information-based clustering algorithm [49], DP cluster-
ing algorithm [28]) in clustering quality and time cost
using some artificial data sets.
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In Section 5.3, MLSynC method will be compared with
SynC algorithm, ESynC algorithm, SSynC algorithm and
some other classic clustering algorithms in clustering quality
and time cost using eight UCI data sets.

In Section 5.4, MLSynC method will be compared with
SynC algorithm, ESynC algorithm, SSynC algorithm and
some other classic clustering algorithms in the compressed
effect of clustering results, clustering quality and time cost
using three bmp pictures.

In the experiments, parameter δ used in SynC algorithm,
ESynC algorithm, SSynC algorithm, MLSynC method,
DBSCAN algorithm and Mean Shift algorithm is the thresh-
old of Sdefinition 1 of Supplementary Material. In DBSCAN
algorithm, parameter MinPts = 4, and parameter Eps is the
same as parameter δ.

The detailed discussion on how to select a proper
value for parameter δ in SynC algorithm is discussed
in [20]. ESynC algorithm, SSynC algorithm and
MLSynC method use Stheorem 1 and Sproperty 1 to
select a proper value for parameter δ. In SSynC algo-
rithm and MLSynC method, parameter ε has a trivial
effect on time cost and clustering results.

To simplify our simulation of the two-level frame-
work algorithm of MLSynC method, we set the same
value for parameter δ1, δ2, ···, δm and δmerge. So they are
also named as δ.

5.2 Experimental results of some artificial data sets
(from DS1 - DS16)

5.2.1 The comparison of the clustering results among SynC
algorithm, ESynC algorithm, SSynC algorithm and MLSynC
method (from DS1- DS4)

Stable 3 of Supplementary Material presents the com-
parison results of four synchronization clustering algo-
rithms (SynC, ESynC, SSynC and MLSynC) by using
four artificial data sets (from DS1 - DS4). In Stable 3,
by intercomparing SynC, ESynC, SSynC and MLSynC,
we observe that MLSynC is the fastest clustering algo-
rithm. At the same time, MLSynC, SSynC and ESynC
can get better local synchronization results than SynC in
the four data sets.

In the two-level framework of MLSynC method, pa-
rameter m is set as 10. If we use two different
partitioning methods (a near unevenly partitioning meth-
od and a near evenly partitioning method) in the four
data sets, the two sequences of the number of clusters
of 10 subsets in each data set are different. The comparison
results are presented in Stable 4 of Supplementary Material.
From Stable 4, we observe that two different partitioning
methods result in different clustering distributions of 10 sub-
sets in each data set.

5.2.2 The comparison of the clustering results among SynC
algorithm, ESynC algorithm, SSynC algorithm, MLSynC
method and some classical clustering algorithms
(from DS1 - DS8)

Fig. 4 and Sfigs. 4 - 6 of Supplementary Material present the
comparison clustering results of several clustering algorithms
by some display figures that reflect the clustering quality.
From Fig. 4 and Sfigs. 4 - 6, we observe that MLSynC,
SSynC and ESynC can get better clustering quality (obvious
clusters or isolates displayed by figures) than SynC, AP, K-
Means and FCM in the four artificial data sets (from DS1 -
DS4). Mean Shift, DBSCAN can obtain similar clustering
quality (obvious clusters displayed by figures) with
MLSynC, SSynC and ESynC in these artificial data sets.
Especially, MLSynC, SynC, ESynC and SSynC can all easily
find some isolates if setting a proper value for parameter δ, and
MLSynC can get the same clustering results (the same clusters
displayed by figures) with SSynC, ESynC in these data sets.

Stable 5 of Supplementary Material presents the clustering
quality of several clustering algorithms (SynC, ESynC,
SSynC, MLSynC and some classical clustering algorithms)
by using six kinds of artificial data sets (DS2, DS4, DS5,
DS6, DS7 and DS8). When computing AMI and NMI, the
predefined cluster labels of the eight artificial data sets are
used in the true_mem that is an input file of the MATLAB
code from [51]. In Stable 5, by intercomparing MLSynC,
SynC, ESynC, SSynC and some classical clustering algo-
rithms, we observe that MLSynC can get acceptable and sim-
ilar clustering results with SSynC and ESynC in the eight data
sets if the partitioning of the data set in MLSynC method is
near evenly. Because the two data sets (DS4 (n = 1000) and
DS5 (n = 12,000)) have two connected clusters, MLSynC,
SSynC and ESynC do not get the largest values of AMI and
NMI.We also observe that the partitioning method of the data
sets can affect the clustering results of MLSynC method.

Stable 6 of Supplementary Material presents the compari-
son results of several clustering algorithms in time cost. In
Stable 6, for DS1, parameter δ = 18 in SSynC, ESynC, SynC
and DBSCAN; parameter δ = 25 in MLSynC. For DS2, pa-
rameter δ = 25 in MLSynC, SSynC, ESynC, SynC and
DBSCAN. For DS3, parameter δ = 18 in MLSynC, SSynC,
ESynC, SynC and DBSCAN. For DS4, parameter δ = 18 in
SSynC, ESynC, SynC and DBSCAN; parameter δ = 20 in
MLSynC. Parameter ε = 1 in SSynC and MLSynC. In
MLSynC, parameter m is set as 10, and the two-level frame-
work algorithm is used.

In Stable 6, intercomparing MLSynC, SynC, ESynC,
SSynC, DBSCAN, FCM and K-Means, we observe that
MLSynC is faster than SynC, ESynC, DBSCAN and
SSynC. K-Means is the fastest clustering algorithm. Mean
Shift and AP cannot run normally on a personal computer
because the number of data points is set as 40,000.
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Sfigs. 7 - 11 and Stable7 of Supplementary Material pres-
ent appended experimental results in clustering quality among
three famous clustering algorithms, spectral clustering algo-
rithm [16, 17], information-based clustering algorithm [55]
and DP clustering algorithm [28]. Stable 7 presents the setting
of parameters for three clustering algorithms in four artificial
data sets (DS1 - DS4, n = 400). Sfig. 7 presents the clustering
results and decision graphs of DP clustering algorithm.

Sfigs. 8 - 11 present the comparison of the clustering results
of three famous clustering algorithms using four artificial data
sets. In four artificial data sets (DS1 - DS4, n = 400), DP
clustering and MLSynC method can find correct clusters,
spectral clustering and information-based clustering cannot
obtain actual clustering results. DP clustering cannot explore
isolates of two data sets (DS1 and DS3, n = 400), and
MLSynC method can explore isolates from them.

(a) t = 0 (The original locations of (a*) MLSynC method, t = 0

2000 data points from DS0)

(b-1) SynC algorithm, t = 1 (b-2) ESynC algorithm, t = 1

(b-3) SSynC algorithm, t = 1 (b-4) MLSynC method, t = 1

Fig. 2 The comparison of the
dynamical clustering processes
with time evolution among SynC
algorithm, ESynC algorithm,
SSynC algorithm and MLSynC
method. From a to e of Fig. 2, the
data set is from DS0 with 2000
points, parameter δ is set as 18 in
the four algorithms, and
parameter ε is set as 1 in SSynC
algorithm and MLSynC method.
In MLSynC method, parameterm
is set as 10, and the two-level
framework algorithm is used. a*,
b-4, c-4, d-4 and e-4 are the evo-
lution displays in the “collect
stage” of the two-level framework
algorithm of MLSynC method
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5.2.3 The comparison of the valid interval of parameter
δ among MLSynC method, SynC algorithm, ESynC algorithm,
SSynC algorithm, DBSCAN algorithm and mean shift
algorithm using some artificial data sets (from DS5 - DS16)

Here we compare the valid interval of parameter δ among
MLSynC method, SynC algorithm, ESynC algorithm, SSynC
algorithm, DBSCAN algorithm and Mean Shift algorithm.

Stable 8 of Supplementary Material presents the compari-
son results of the valid interval of parameter δ among
MLSynC, SynC, ESynC, SSynC, DBSCAN and Mean
Shift. Here, [ek, ek + 1] can be obtained from Eq.(8) of
[49]. In Stable 8, intercomparing MLSynC, SynC,
ESynC, SSynC, DBSCAN and Mean Shift, we observe
that although the valid interval of parameter δ in MLSynC is
shorter than that in SSynC and ESynC, the valid interval of

(c-1) SynC algorithm, t = 2 (c-2) ESynC algorithm, t = 2

(c-3) SSynC algorithm, t = 2 (c-4) MLSynC method, t = 2

(d-1) SynC algorithm, t = 5 (d-2) ESynC algorithm, t = 5

Fig. 2 (continued)
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parameter δ in MLSynC is long enough in many kinds
of data sets.

Stable 9 of Supplementary Material compares the val-
id interval of parameter δ in MLSynC method for sev-
eral different values of parameter ε using some artificial
data sets with different dimensions. In Stable 9,
intercomparing several different values of parameter ε, we
observe that if parameter ε is less than parameter δ, the valid

interval of parameter δ has a very small difference for several
different values of parameter ε.

5.3 Experimental results of eight UCI data sets

Because we do not know the true dissimilarity measure of
these UCI data sets, all points of these UCI data sets are stan-
dardized into an interval [0, 600] in each dimension in the

(d-3) SSynC algorithm, t = 5 (d-4) MLSynC method, t = 5

(e-1) SynC algorithm, t = 45 (e-2) ESynC algorithm, t = 45

(e-3) SSynC algorithm, t = 45 (e-4) MLSynC method, t = 45

Fig. 2 (continued)
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experiments. When computing AMI and NMI, because we do
not know the true cluster labels of these UCI data sets, the
class labels of these UCI data sets are used in the true_mem
that is an input file of the MATLAB code from [51].

5.3.1 The comparison of the clustering results among MLSynC
method, SynC algorithm, ESynC algorithm and SSynC
algorithm

Stable 10 of Supplementary Material presents the comparison
results of four synchronization clustering algorithms
(MLSynC method, SynC algorithm, ESynC algorithm and
SSynC algorithm) by using eight UCI data sets. In Stable
10, intercomparing MLSynC method, SynC algorithm,
ESynC algorithm, SSynC algorithm, we observe that

MLSynC method, ESynC algorithm and SSynC algorithm
can get better local synchronization results than SynC algo-
rithm in the eight UCI data sets, and MLSynC method is the
fastest algorithm. From this simulated experiment, we also
find that if the number of points in the data set is small and
we use an uneven partition method, the difference of cluster-
ing effect between MLSynC method and SSynC algorithm is
large.

5.3.2 The comparison of the clustering quality
among MLSynC method, SynC algorithm, ESynC algorithm,
SSynC algorithm and some classical clustering algorithms

Stable 11 of Supplementary Material presents the comparison
clustering quality of several clustering algorithms (MLSynC

(c) The relation between the final number of clusters and parameter δ (δ: 0 - 99) among four 

synchronization algorithms.
(a) The cluster order parameter with t-step evolution (t: 0 - 49)

(b) The t-step average length of edges (t: 0 - 49)

Fig. 3 The comparison of SynC algorithm, ESynC algorithm, SSynC
algorithm and MLSynC method in two measure indexes of clustering
result and the relation between the final number of clusters and
parameter δ. In Fig. 3, the data set is from DS0 with 2000 points, and
parameter ε is set as 1 in SSynC algorithm and MLSynC method. In
MLSynC method, parameter m is set as 10, the two-level framework

algorithm is used. In a and b, parameter δ is set as 18 in the four algo-
rithms. In MLSynC method of a and b, two indexes (The cluster order
parameter with t-step evolution and the t-step average length of edges) are
computed in the “collect stage” of the two-level framework algorithm of
MLSynC method
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(a) Clusters identified by MLSynC (15 clusters or isolates) (b) Clusters identified by ESynC and 

SSynC (15 clusters or isolates)

(c) Clusters identified by K-Means (predefined 5 clusters) (d) Clusters identified by FCM 

(predefined 5 clusters)

(e) Clusters identified by AP (13 clusters) (f) Clusters identified by DBSCAN (5 clusters)

(g) Clusters identified by Mean Shift (18 clusters) (h) Clusters identified by SynC (192 clusters or isolates)
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method, SynC algorithm, ESynC algorithm, SSynC algorithm
and some classical clustering algorithms) using eight UCI data
sets. In Stable 11, by intercomparing these clustering algo-
rithms, we observe that MLSynC method gets the largest val-
ue of AMI and NMI in five UCI data sets (Iris, Wdbc, Glass,
Segmentation and Cloud) if it uses a sequential and uneven
partitioning method. So we can say that MLSynC method
often gets better clustering results than some clustering algo-
rithms in some UCI data sets. From the final number of clus-
ters in Stable 11, we observe that MLSynC method, SSynC
algorithm and ESynC algorithm can get better local synchro-
nization results than SynC algorithm.

Stable 12 presents the comparison of clustering quality
among three famous clustering algorithms (spectral clustering
algorithm [16, 17], information-based clustering algorithm
[55] and DP clustering algorithm [28]) using eight UCI data
sets. Stable 13 presents the comparison of clustering quality
among MLSynC method, spectral clustering algorithm,
information-based clustering algorithm and DP clustering al-
gorithm. In eight UCI data sets, spectral clustering and DP
clustering get better clustering results than information-based
clustering. MLSynC method obtains the best clustering qual-
ity in seven UCI data sets, and DP clustering obtains the best
clustering quality in one UCI data set.

5.4 Experimental results of three bmp pictures

The value in RGB (Red, Green and Blue) color space of pixel
points is in an interval [0, 255] in each dimension. In Stable 14
and Sfig. 13 of SupplementaryMaterial, parameter ε is set as 1
in MLSynCmethod and SSynC algorithm. InMLSynC meth-
od of Stable 14 and Sfig. 13, parameter m is set as 10, and the
two-level framework algorithm is used.

5.4.1 The comparison of the clustering results among SynC
algorithm, ESynC algorithm, SSynC algorithm and MLSynC
method

Stable 14 presents the comparison results of four synchroni-
zation clustering algorithms (SynC, ESynC, SSynC and
MLSynC) using three pixel-point data sets from RGB color
space of three bmp pictures. In Stable 14, by intercomparing
SynC, ESynC, SSynC and MLSynC, we observe that
MLSynC is the fastest clustering algorithm. At the same time,
MLSynC, SSynC and ESynC can get better local synchroni-
zation results than SynC in these pixel-point data sets.

5.4.2 The comparison of the clustering compressed effect
among MLSynC method, SynC algorithm, ESynC algorithm,
SSynC algorithm and some classical clustering algorithms

Sfig. 12 lists Picture3 and its RGB space distribution of 200 *
200 pixel points. Sfig. 13 of Supplementary Material lists the
original picture and several compressed pictures of Picture3.
In Sfig. 13, several compressed pictures are drawn by using
the means of clusters obtained by clustering the 200 * 200
pixel points of Picture3 in RGB color space using different
algorithms. Because AP algorithm needs too much time and
space for Picture3, this experiment does not use it. Although
the queue of DBSCAN algorithm slops over, it still gets a
compressed picture basing on the clustering results. From
Sfig. 13, we observe that MLSynC method, ESynC algorithm
and SSynC algorithm can get multi-level clustering com-
pressed effects for different values of parameter δ.

5.5 Analysis and conclusions of experimental results

From the comparison experimental results of these tables
(Stable 3, Stable 6, Stable 10 and Stable 14 of
Supplementary Material), we observe that MLSynC method
is faster than SSynC algorithm, ESynC algorithm and SynC
algorithm. We think that MLSynC method is superior to
SSynC algorithm, ESynC algorithm and SynC algorithm in
time cost because of its framework of “divide and collect”.

From the simulations of some artificial data sets (from DS5
- DS16), we observe that the effective interval of parameter δ
in MLSynC method is enough long just like Mean Shift algo-
rithm, DBSCAN algorithm, SSynC algorithm and ESynC al-
gorithm. In some cases, the effective interval of parameter δ in
MLSynC method is longer than that in DBSCAN algorithm.

In some display figures (Sfigs. 3 – 6 of Supplementary
Material), by intercomparing MLSynC method, SSynC algo-
rithm, ESynC algorithm and SynC algorithm, we observe that
MLSynC method can explore the same clusters and isolates
(displayed by some figures) with ESynC algorithm and
SSynC algorithm if the partition in MLSynC method is near
well-proportioned or unaided (each subset is independent with
each other in the space). In many kinds of data sets, MLSynC
method, SSynC algorithm and ESynC algorithm can explore
obvious clusters or isolates if selecting a proper value for
parameter δ, and SynC algorithm cannot explore obvious clus-
ters in many data sets.

From simulations of some data sets, we observe that the
iterative times of SynC algorithm, AP algorithm, K-Means
algorithm and FCM algorithm is larger than that of MLSynC
method, SSynC algorithm and ESynC algorithm. In many
data sets, MLSynC method, ESynC algorithm, SSynC algo-
rithm, DP algorithm, Mean Shift algorithm and DBSCAN
algorithm have a better ability than SynC algorithm, K-
Means algorithm, FCM algorithm, spectral clustering

�Fig. 4 The comparison of the clustering results of several algorithms
(DS1, n = 400). In Fig. 4, parameter δ = 18 in SynC, ESynC, SSynC,
DBSCAN, Mean Shift and MLSynC method; the number of data points
n = 400; parameter ε = 1 in SSynC algorithm and MLSynC method. In
MLSynC method, parameter m is set as 2, and the two-level
framework algorithm is used
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algorithm, information-based clustering algorithm and AP al-
gorithm in exploring clusters and isolates. Especially, AP al-
gorithm needs the longest time. From the simulation, we also
find that DP clustering algorithm cannot explore isolates and
determine the number of clusters automatically.

MLSynC method is an improved clustering algorithm
with faster clustering speed than SSynC algorithm and
ESynC algorithm almost in all cases. Usually, parameter
ε has a long effective interval (for example, the effec-
tive interval of parameter ε is about (0, 10] if parameter
δ > 15). In simulations, we observe that if parameter ε
gets some different values in its effective interval, the
clustering results of MLSynC method is almost the
same except the time cost.

Because the values in RGB space, the pixel points of
Picture3 are almost continuous and have no obvious
clusters. In this case, MLSynC method, SSynC algo-
rithm and ESynC algorithm can get more obvious
multi-level compressed effects than some other cluster-
ing algorithms, such as K-Means algorithm and FCM
algorithm. In simulations, we also observe that
DBSCAN algorithm needs more space than MLSynC
method, SSynC algorithm and ESynC algorithm because
of its recursive process.

Because of the limited page space, we only select some
typical data sets (sixteen kinds of artificial data sets, eight
UCI data sets and three bmp pictures) used in our experiments.
For all experimental data sets, we observe thatMLSynCmeth-
od improves ESynC algorithm in time cost. For other data
sets, we think MLSynC method is still superior to SynC algo-
rithm in time cost. We believe that the selection of experimen-
tal data sets is not biased.

From Fig. 1 and some other simulated experimental results,
we conclude the application condition ofMLSynCmethod. In
any one of the following two cases, MLSynC method can get
a similar clustering effect with SSynC algorithm and ESynC
algorithm.

Case 1: The spatial distribution of any partitioned data
subset is almost the same as that of the original
data set.
Case 2: Any two partitioned data subsets cannot inter-
sect, cannot be joined, or cannot be much near (less
than or equal to parameter δ). In this case, any
unabridged cluster of the original data set will not
be partitioned into multiple near (larger than param-
eter δ) small clusters after the partition process of
MLSynC method.

When the partition of the original data set does not
satisfy any case above, MLSynC method will often get
different clustering effects with SSynC algorithm and
ESynC algorithm.

6 Conclusions

This paper presents an improved synchronization clustering
method, MLSynC, which often gets better clustering results
than the original synchronization clustering algorithm, SynC.
From the experimental results, we observe that MLSynC
method can often obtain less iterative times, faster clustering
speed and better clustering quality than SynC algorithm in
multi-kinds of data sets.

The major contributions of this paper can be summarized
as follows:

(1) It develops an effective framework of “divide and col-
lect” in clustering field by using a linear weighted Vicsek
model.

(2) It presents two concrete implementations of MLSynC
method, a two-level framework algorithm and a recur-
sive algorithm.

(3) It validates the improved effect of MLSynC method in
time cost and clustering quality by some simulated
experiments.

MLSynC method is also robust to outliers and can
find obvious clusters with different shapes. The number
of clusters does not have to be fixed before clustering.
Usually, parameter δ has some valid interval that can be
determined by using an exploring method presented in
[49], the heuristic method described by Stheorem 1 and
Sproperty 1, or using the MDL-based method presented
in [20].

Usually, some clustering algorithms will get a large devia-
tion when they are transplanted on the MapReduce frame-
work. Only some specially designed clustering methods based
on MapReduce framework and ensemble clustering methods
can obtain the same, similar, or better clustering results.
MLSynC method has some similarities with the MapReduce
framework. So we can say it is an application example of the
MapReduce framework in clustering field. In MLSynC meth-
od, the relation between the distribution deviation of
partitioned data subsets and the clustering results should be
investigated. How the partitioning strategies of the original
data set affect the clustering results can also be further
researched.

This work opens some possibilities for further im-
provement and investigation. First, improve MLSynC
method in time cost further. For example, designing a
similarity-preserving hashing function that needs O(1)
time complexity is valuable in the process of construct-
ing δ near neighbor point set. Second, extend the appli-
cability and explore the clustering effect of our algo-
rithms in high-dimensional data. Third, implement
MLSynC method on a cluster with a parallel program-
ming model or the MapReduce framework.
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