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Abstract
FunctionalData Analysis (FDA) has become a very important field in recent years due to its wide range of applications.
However, there are several real-life applications in which hybrid functional data appear, i.e., data with functional and static
covariates. The classification of such hybrid functional data is a challenging problem that can be handled with the Support
Vector Machine (SVM). Moreover, the selection of the most informative features may yield to drastic improvements in the
classification rates. In this paper, an embedded feature selection approach for SVM classification is proposed, in which the
isotropic Gaussian kernel is modified by associating a bandwidth to each feature. The bandwidths are jointly optimized
with the SVM parameters, yielding an alternating optimization approach. The effectiveness of our methodology was tested
on benchmark data sets. Indeed, the proposed method achieved the best average performance when compared to 17 other
feature selection and SVM classification approaches. A comprehensive sensitivity analysis of the parameters related to our
proposal was also included, confirming its robustness.

Keywords Feature selection · Functional data · Support vector machines · Classification · Feature scaling

1 Introduction

Functional Data Analysis (FDA)has become an outstand-
ing field in recent years [36, 71, 72]. Instead of assuming
scalar covariates, FDA handles problems in which the data
samples correspond to curves belonging to an infinite-
dimensional space, and this evolution is modeled via func-
tions. FDA is a fruitful line of research with applications in
various domains, such as spectrometry, meteorology, phys-
ical and chemical processes, customer segmentation, or
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speech recognition [7, 8, 65, 67, 74]. Theoretically, functio-
nal data are assumed to be infinite-dimensional. In practice,
such data are measured only on a (large) grid of points,
which represents, for instance, the time instants. Because
of their high dimensionality, functional data can be ana-
lyzed with the standard multivariate analysis techniques.
Nevertheless, the direct use of such methodologies may
have dramatic consequences, since the strong relationship
between the measurements in two consecutive time instants
is not taken into account, and limitations, such as the curse
of dimensionality, may appear.

Consequently, many multivariate data analysis techniques
have been developed in the FDA context, e.g. Principal
Component Analysis (PCA) [12, 44], classification [56, 74],
clustering [26, 57], or regression [17, 27].

Most studies on FDA have been focused on the univariate
case, whereas the multivariate counterpart has received little
attention. A multivariate functional datum is represented by
a finite-dimensional vector where each covariate is defined
by a different function. Moreover, the contributions on this
topic are mainly devoted to PCA [4, 22, 46], and clustering
[49, 52, 81], although we can also emphasize the recent work
of [11] in the classification area. In this paper, we focus on
a particular type of multivariate functional data, called hybrid
functional data. They are finite-dimensional vectors that
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combine static and functional features. By static features,
we mean real or scalar covariates, whereas a functional fea-
ture is simply a function. We can find a plethora of examples
of hybrid functional data in real life. For instance, in the field
of medicine, functional features of a patient as the tempe-
rature or the electrocardiogram can be recorded, but also
static variables, as the gender or the age. Despite its obvious
application in real-world problems, this type of data has not
been studied deeply in the literature. In fact, to the best of
our knowledge, hybrid functional data have been analyzed
only in [35] to select the most informative variables in terms
of prediction in a real data application coming from the
Spanish Energy Market, and in Chapter 10 of [72] where
this type of data is sketched in a PCA context.

In this article, we are interested in classifying the hybrid
functional data into two predefined classes. Functional data
classification has been deeply studied in the literature.
Although the standard multivariate classification methods
can be applied to the functional context, some differences,
such as the non-inversion of the covariance operator, are to
be mentioned. The authors of [50] explain different metho-
dologies to overcome this issue. On the other hand, the near
perfect classification phenomenon only takes place in the
functional context, as is detailed in [28]. Different classifi-
cation methods has been developed, e.g. Partial Least
Squares [70] or logistic regression, [73]. A survey with
different strategies for classification methods in functional
data can be seen in [3], whereas [66] presents some repre-
sentations of functional data in classification. In this paper,
we use the well-known technique Support Vector Machine
(SVM). It has gained popularity due to its numerous virtues:
the ability to construct nonlinear functions thanks to the
Kernel Trick, its superior predictive performance compared
to traditional parametric techniques, such as logistic regres-
sion, and the flexibility that allows its quadratic program-
ming (QP) formulation [2, 84]. It has been applied widely
in finite-dimensional data, e.g. [19, 24, 25, 62, 64]. Func-
tional data classification with SVM has been discussed in
several works in the literature. The first contributions on
this topic are done in [74, 75]. There are some articles
which focus on their interpretability [65] or their rep-
resentation [67]. To see recent works on the topic, the
reader is referred to [9, 11]. The SVM extension to hybrid
functional data is discussed in Section 2.1. Feature selec-
tion is a key preprocessing step in data mining. A large
number of covariates are usually associated with a lower
value of the classification rate, due to the redundant infor-
mation that they introduce. Furthermore, we should empha-
size that the model is more interpretable if the number of
variables is reduced. Hence, it is crucial to design a metho-
dology which selects the most important features in terms
of classification performance.

One of the issues related to kernel-based SVM classifi-
cation is that the method is unable to derive the relevance
of the variables automatically, constructing models using all
available information [42, 61, 62]. Several feature selection
strategies have been proposed to overcome this problem.
Specifically, filter methods aim to select the most relevant
features by ranking the covariates according to a metric.
These methods are usually very fast since they do not
take into account the training model. For instance, Fisher
Score [32], measures the existing relationship between a sin-
gle explanatory variable and the label vector, through the
associated features that are then ranked according to this
measure. An alternative type of feature selection approaches
are wrapper methods. They measure the relevance of the
features based on the classifier performance. The Recur-
sive Feature Elimination SVM (SVM-RFE) [31, 41] is one
of the most used wrapper methods applied in static feature
selection. It removes those features whose removal leads
to the largest margin of class separation in a backward
fashion. Finally, embedded methods aim at determining a
subset of relevant attributes during the classifier construc-
tion, encouraging sparsity via feature regularization, as done
for example with the Lasso approach [14] which seeks
an adequate balance between sparsity and predictive per-
formance by replacing the Euclidean norm in the SVM
formulation with the �1-norm.

Variable selection has also been applied in the univariate
functional data field in studies such as [5, 82]. Nevertheless,
in these cases, the variables are represented by the time
instants during which the functions are measured. We also
highlight the work of [39] in which functions are summari-
zed in a set of features containing the maximum possible
information, and then the most relevant covariates are selec-
ted with multivariate data analysis techniques.

To sum up, the contributions and objectives achieved in
this paper are:

– We propose a new embedded feature selection method
with a modification of the standard SVM-classification
to handle functional hybrid data sets, and as a bypro-
duct, selects the most informative features.

– We empirically demonstrate that such hybrid data sets
cannot be learned properly with the current methodo-
logies for SVM classification, due to the few number
of references regarding feature selection in multivariate
functional data and, more specifically, in hybrid func-
tional data is very scarce.

– The proposed method allows weighting the different
natures of the data, functional and static, by means
of the scaling factors of a modified Gaussian kernel.
The idea of considering different bandwidth values
for different features is not new. Indeed, it has been
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applied in [15, 21, 33, 76] for kernel density estimation
purposes and in [63] for clustering problems.

The remainder of this paper is structured as follows: in
Section 2 we formally describe the concepts used in our
methodology and give the details of our approach. Section 3
is devoted to the computational experience. It includes the
sensitivity analysis of our proposal given in Appendix A, as
well as extra performance metrics, apart from the accuracy,
namely the sensitivity, the specificity, and the Area Under
Curve in Appendix B. Finally, the conclusions and possible
future lines of research are described in Section 4.

2 Themathematical model

This section details the problem formulation of feature
selection in SVM-classification with hybrid functional data.
First, in Section 2.1 the main concepts of SVM for pure
multivariate functional data are explained. Next, Section 2.2
is devoted to the extension of SVM to hybrid functional
data, as well as to the problem formulation and the solving
strategy.

2.1 Support vector machines for multivariate
functional data classification

Let s be a sample of individuals with an associated pair
(Xi, Yi), i ∈ s. The datum Xi ∈ Fp, is formed by a set of
p functional features, i.e., Xi = (

X1
i (t), . . . , X

p
i (t)

)
, where

Xv
i : [0, T ] → R, v = 1, . . . , p are functions belonging

to the set F of Riemann integrable functions in the interval
[0, T ]. Moreover, Yi ∈ {−1, +1} denotes the class label of
the observation i.

The benchmark SVM methodology [25], builds a hyper-
plane yielding a classification rule. The dual formulation of
the SVM problem is stated as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
α

∑

i∈s

αi − 1

2

∑

i,j∈s

αiαjYiYjK(Xi, Xj )

s.t.
∑

i∈s

αiYi = 0

αi ∈ [0, C], i ∈ s,

(1)

where C > 0 is a regularization parameter, and K : X ×
X → R is the so-called kernel function. As the decision
rule: a new observation X ∈ X is assigned to class +1 if
and only if Ŷ (X) > β, with β being a given threshold value.
Here Ŷ (X) is the score function, given by

Ŷ (X) =
∑

i∈s

αiYiK(X, Xi), X ∈ X , (2)

One of the most used kernel functions, as reported in the
literature, is the Gaussian kernel. It has been applied widely
when finite-dimensional data are considered [18, 25, 54].

The extension to the functional case has also been studied.
Indeed, the functional isotropic Gaussian kernel is analyzed
in studies where univariate data appear [51, 67, 74, 75] and
also in references dealing with multivariate data [85]. The
expression of the isotropic Gaussian kernel for multivariate
functional data, i.e. X ∈ Fp, can be seen in (3):

K(Xi, Xj ) = exp

(

−ω

p∑

v=1

∫ T

0

(
Xv

i (t) − Xv
j (t)

)2
dt

)

(3)

for a single bandwidth ω which weighs all the covariates
equally. Section 2.2 formally defines the hybrid functional
data, describes how the kernel in (3) is extended to such type
of data, and explains the proposed formulation for SVM
classification and feature selection with hybrid functional
data.

2.2 Problem formulation

An hybrid functional datum Xi ∈ X , with X = Fp × R
q ,

is defined as a vector of p functional features and q static
features. In other words, Xi = (X1

i (t), . . . , X
p
i (t), X

p+1
i ,

. . . , X
p+q
i ), where Xv

i : [0, T ] → R, v = 1, . . . , p are
functions belonging to the set F of Riemann integrable
functions in the interval [0, T ], and Xv

i ∈ R, v = p +
1, . . . , p + q.

The main objective of this paper is to design a model
which obtains, via SVM, good classification rates in order
to determine the class Y ∈ {−1, +1} of a new observation
X ∈ X , at the same time that it yields the most informative
set of features V ⊂ {1, . . . , p + q}. To do this, we modify
the standard Gaussian functional kernel in (3), in which a
single bandwidth is considered, by associating a bandwidth
with each feature, yielding the following expression:

K(Xi , Xj , ω) = exp

⎛

⎝−
p∑

v=1

ωv

∫ T

0

(
Xv

i (t) − Xv
j (t)

)2
dt −

p+q∑

v=p+1

ωv(X
v
i − Xv

j )2

⎞

⎠ ,

(4)

for Xi, Xj ∈ X . Notice that the dependency of the
bandwidth ω = (ω1, . . . , ωp+q) on the kernel K is
highlighted through the notation K(Xi, Xj , ω).

Our proposed kernel in (4) differs from the kernel in (3)
in the role that the bandwidth plays. Whereas the bandwidth
in (3) is just a single value, common to all the variables, the
kernel in (4) has a bandwidth for each feature, which allows
more flexibility in our model, weighting each covariate
differently according to its contribution in the classification
model, and allowing the link between variables of different
nature, static and functional.

The feature selection problem implies the tuning of two
parameters: the regularization parameter C of the SVM
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problem (1), and the bandwidths ωv, v = 1, . . . , p +
q associated with each feature of X ∈ X through the
kernel (4).

In agreement with the methodologies of [9, 11], we
propose combining a grid search to get the optimal value of
C with a bilevel optimization problem which will yield the
optimal bandwidth ω.

Multiple criteria can be used in the objective function of
the bilevel optimization problem. Minimizing the misclassi-
fication rate is the usual approach utilized. Nevertheless,
such a choice is a linear piecewise function which
prevents the use of gradient-based optimization searches.
We propose, instead, defining the objective function as the
maximization of the Pearson correlation, ρ, between the
class label Yi and the score Ŷ (Xi, ω, α) in (2). The Pearson
correlation coefficient has been used before in [9, 11] as
surrogate of the number of misclassified with outstanding
results. Although we are defining a linear relationship
between vectors of different nature, since Y is a binary
vector taking values in {−1, +1} and Ŷ is a real vector; the
numerical experience in [9, 11] has shown that the usage
of the Pearson correlation has two big advantages. On the
one hand, this coefficient is very easy and fast to compute.
On the other hand, the continuous behavior allows one
to apply smooth optimization strategies. Parameter tuning
usually leads to overfitting when the whole data set is
considered. To avoid this issue, we divided the sample s

into three independent parts, s1, s2 and s3. Sample s1 is
utilized to solve the SVM problem (1), for fixed C and
ω, yielding the variables α. The independent sample s2

is used to measure the goodness of fit via the correlation
ρ((Yi, Ŷ (Xi, ω, α))i∈s2) for α and C fixed. Finally, sample
s3 is employed to find the regularization parameter C, by
computing the accuracy on s3 for a given C in the grid, and
keeping the one with the largest value. Therefore, for a fixed
C, the bilevel optimization problem is stated as follows:
⎧
⎪⎨

⎪⎩

max
ω,α

ρ((Yi, Ŷ (Xi, ω, α))i∈s2)

s.t. α solves (1) in s1

ωv ≥ 0, ∀v,

(5)

Nonlinear bilevel optimization problems, such as (5), can
be solved with the off-the-shelf methodologies described
in [23]. Nevertheless, such strategies are computationally
expensive. We propose using an alternating approach
instead, as was done in [9, 11].

Our alternating approach consists of just a few iterations
of two steps. First, Problem (1) is solved, for fixed ω in
sample s1, yielding the optimal variables α. Secondly, for
fixed α, Problem (6) is solved in sample s2, giving the
optimal values of the parameter ω.
{

max
ω

ρ((Yi, Ŷ (Xi, ω))i∈s2)

s.t. ωv ≥ 0, ∀v,
(6)

Problems (1) and (6) have different natures and, con-
sequently, they should be solved with different strategies.
Problem (1) is a quadratic maximization problem with linear
constraints in which SMO-like algorithms can be applied
to easily reach the global optimum of the problem. In con-
trast, Problem (6) is a continuous optimization problem
whose optimal solution is obtained by combining classic
local searches and a multi-start approach.

The alternating procedure is run, for a fixed C, until
some stopping criterion is reached. Notice that, apart from
obtaining good classification rates, our goal is to select the
most informative features. To do this, once the alternating
approach is finished, we eliminate those covariates v whose
associated bandwidths ωv are close enough to zero, and
repeat the alternating algorithm with the remaining features.
In other words, we keep those features satisfying ωv > δ,
where δ > 0 is a threshold value. This process is repeated
until the selected features do not change in two consecutive
iterations.

Once the alternating approach provides good values for
α, ω, and therefore, the set V of selected features, the value
of C is chosen by computing the accuracy on s3 for all
C values in the grid, and the one that leads to the largest
accuracy is kept.

Finally, the effectiveness of our methodology is tested
on an independent sample s4, in which the classification
accuracy is computed. A pseudocode of our approach is
given in Algorithm 1.
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Table 1 Data description summary (including number of individuals
and records of each label)

Data set # individuals # records # records

label −1 label +1

batch 1000 500 500

trigonometric 1000 500 500

pen 296 171 125

retail 3602 1176 1826

3 Numerical Experiments

This section is devoted to the computational experience.
In Section 3.1, the different databases are explained.
Section 3.2 is devoted to the description of the experiments
performed. Section 3.3 details the approaches utilized to
compare our algorithm with. Finally, Section 3.4 gives the
results of our proposal, including the sensitivity analysis
explained in Appendix A.

3.1 Data Set Description

Two simulated examples, namely batch and trigonometric,
and two real databases, denoted here as pen and retail,
were studied. A summarized description of the data sets,
including the number of individuals in the sample, the
number of elements of each class, and the number of static
and functional covariates as well as their names, can be seen
in Tables 1 and 2.

Sections 3.1.1–3.1.4 detail how the different databases
have been generated and Figs. 1, 2, 3 and 4 show
respectively a subset of ten functions of the data sets batch,
trigonometric, pen and retail. The functional features are
depicted in a standard x − y plot, where the solid blue lines
indicate the individuals with class 1 and the dashed red line
mark the observations with class −1. On the other hand,
for the sake of visualization static covariates are shown in
boxplots (or barplots in the case of categorical features),

with the individuals with classes 1 and −1 colored in blue
and red respectively.

3.1.1 Batch data set

The three functional covariates of the first data set, batch,
come from Section 4.1 of Wang and Yao [85]. Although
Wang and Yao [85] consider that the upper bound for the
time interval in which the functions are measured follows an
uniform distribution on [0.9, 1.1], we assume, for the sake
of simplicity, that Xv : [0, 1] → R, v = 1, 2, 3. Formally:

X1
i (t) = ai · t + ε1

i (t)

X2
i (t) = ai · t2 + ε2

i (t)

X3
i (t) = bi (4 sin(t) + 0.5 sin(ν0 · t))

for t ∈ [0, 1], where (ai, bi) follows a bivariate Gaussian
distribution with mean vector (2.5, 2.5) and covariance
matrix diag(2.5, 2.5).

For each t ∈ [0, 1], the measurements errors ε1
i (t) and

ε2
i (t) are i.i.d. Gaussian noise with mean 0 and standard

deviation 0.2. The individuals Xi with label Yi = 1 have
ν0 = 10, whereas those with Yi = −1 are associated with
ν0 = 11.

Therefore, the third covariate is the only one that is
relevant for classification, if just the functional component
of the hybrid functional data is taken into account.

To complete the data set, we added two real variables,
X4 and X5, in agreement with (7) and (8) for all i =
1, . . . , 1000:

X4
i ∼

⎧
⎨

⎩

N (μ = 39, σ = 1), if Yi = 1

N (μ = 40, σ = 1), if Yi = −1
(7)

X5
i ∼

⎧
⎨

⎩

N (μ = 2, σ = 1), if Yi = 1

N (μ = 3, σ = 1), if Yi = −1
(8)

where N (μ, σ ) indicates a normal distribution of mean μ

and standard deviation σ .

Table 2 Data description
summary (including number
of features and their names)

Data set # functional Name functional # static Name static

covariates covariates covariates covariates

batch 3 1, 2 and 3 2 4 and 5

trigonometric 2 1 and 2 2 3 and 4

pen 2 x trajectory and 1 force

y trajectory

retail 5 Amount, Quantity, 1 UK Customer?

Recency, Frequency

and Monetary
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Fig. 1 Subset of batch data set

3.1.2 Trigonometric data set

The trigonometric database is formed by two functional
features and two scalar covariates. Functional components
Xv

i : [1, 21] −→ R, v = 1, 2 are based on the data
generated in Section 5.2.2 of [49] and have the form:

X1
i (t) = −21

2
+ t + ν0U1 cos

(
ν0

t

10

)

+ν0U1 sin

(
ν0 + t

10

)
+ ε1

i (t)

X2
i (t) = −21

2
+ t + ν0U1 sin

(
ν0

t

10

)

+ν0U2 cos

(
ν0 + t

10

)

+ν0U3

((
t

10

)2

+ t

10
+ 1

)

+ ε2
i (t)

where t ∈ [1, 21], U1, U2, U3 ∼ N (1, 1) are independent
Gaussian variables and ε1

i (t) and ε2
i (t) are white noise of

unit standard deviation.

The value of ν0 is dependent on the class label. More
specifically, the individuals with label Yi = 1 have ν0 = 1,
while the observations corresponding to Yi = −1 have
ν0 = 2.

The remaining static variables X3 and X4 have been
created according to (9) and (10)

X3
i ∼

⎧
⎨

⎩

N (μ = 0, σ = 15), if Yi = 1

N (μ = 20, σ = 20), if Yi = −1
(9)

X4
i ∼ N (μ = 0, σ = 1), ∀i (10)

3.1.3 Pen data set

The pen data set comes from the Character Trajectories
data set of the UCI Machine Learning repository [30] and
has been used in papers such as [47, 48]. It contains the
x and y trajectories, and the force with which multiple
characters have been written. This data set is usually applied
in multiclass classification frameworks, e.g., [77, 78, 80],
where the labels of 20 characters are to be predicted. Since
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Fig. 2 Subset of trigonometric
data set

in this paper, we focus on a binary classification problem,
we have adapted this data set to our setting. In particular, our
aim is to classify between two randomly selected characters.
In this case, we have chosen to distinguish between m and
z, corresponding to the class labels 1 and −1, respectively.
The two functional features here considered are the x and y

trajectories, while the pen tip force is the static covariate.

3.1.4 Retail data set

The second real-world application database retail is
extracted from the Online Retail Data Set of the UCI
Machine Learning Repository [30] and has been studied in
[20]. It contains the monthly transactions of the customers
of a UK-registered non-store, online retail during the first
10 months of the 13 months available. This database
is originally used for clustering problems, where the
customers are to be grouped according to their monthly
transactions. In this paper, we focus on binary classification,
and therefore the original database has been conveniently
modified. Indeed, here the aim is to predict whether the
customer will buy products in the last three months.
Customers that only purchased items in the last three

months were removed from the data set since no purchase
history is available for constructing covariates, yielding an
amount of 3,602 individuals instead of the original number
of 3,630. The first functional feature is the amount of money
spent by the customers. The second functional variable
denotes the quantity of products bought. The last three
functional covariates are the variables Recency, Frequency,
and Monetary described in [20]. Finally, the scalar variable
is a binary feature that indicates whether the customers
come from the UK, coded by 1, or not, coded by 0.

3.2 Description of the experiments

This section explains the details of the computational
experiments carried out to show the efficiency of our
approach. Algorithm 1 has been run on the databases
described in Section 3.1. Each data set is split into four
parts, s1 − s4, whose roles are explained in Section 2.2.
Since the features of the hybrid functional data may have
different scales, we have normalized separately each feature
before performing our approach, as explained in [85]. When
selecting the most informative covariates, we remove those
features such that ωv ≤ 10−5, i.e. δ = 10−5. The stopping
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Fig. 3 Subset of pen data set

criterion is reached when the number of iterations is equal
to five or when the values of the bandwidths, and therefore
the selected features, do not change in two consecutive
iterations. The parameter C moves in the set {2−7, . . . , 27}
on a logarithmic scale. In order to have stable results,
Algorithm 1 was run five times, and the average accuracy
on the test sample s4 is reported in Table 3. To compare
our methodology with others, we consider the approaches
detailed in Section 3.3 on the normalized data sets. The
average accuracy of the comparative methods on the very
same test sample is also given in Table 3.

In order to confirm our results, we perform the Friedman
and Holm tests to evaluate the statistical significance,
widely applied in the literature in papers such as [37,
59]. These tests were proposed in [29] to compare various
machine learning strategies on multiple data sets. Firstly, the
average rank is calculated for our approach and for all the
alternative algorithms based on the accuracy of all data sets.
Secondly, the Friedman test is applied for the hypothesis
test which checks whether all the algorithms are equivalent
or not in terms of performance. If the null hypothesis of
similar performance is rejected, then the Holm post-hoc test
is applied for pairwise comparisons between the algorithm
with the highest rank and the rest of them. Each hypothesis

test assesses whether the average accuracy of the algorithm
with the highest rank and the comparative methodology is
equal or not. The resulting p−values are sorted in increasing
order, and the null hypothesis is rejected if the p−value
is below a fixed significance threshold. In all these tests,
we use α = 0.05 as significance level. Furthermore, we
executed a sensitivity analysis in order to study the accuracy
with respect to the parameters involved in the algorithm.
The details of this analysis are explained in Appendix A.
All the experiments were coded in R, [79], and carried out
in a cluster with 2 terabytes of RAM memory at 6.2 TFlops,
running CentOS Linux 7.3.

3.3 Comparative algorithms

Since, to the best of our knowledge, no methodology
has been reported in the literature that deals with feature
selection in hybrid functional data, we suggest some
techniques with which to compare our proposal, even
though not all of them are able to perform feature selection.
Notice that the main objective of our approach is to obtain
good classification rates at the same time that we select
the most important features. The first algorithm gives the
results of the classification of the hybrid functional data
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Fig. 4 Subset of retail data set

when no feature selection is made. The second comparative
method treats the functional component of the hybrid
functional data as static by summarizing the functions into
a finite-dimensional vector. Such static extraction is done
in two different ways. On the one hand, we summarize
each functional component into a 4−dimensional vector
including the mean value, the standard deviation, the
maximum and the minimum values. On the other hand, each
functional covariate is considered as a finite-dimensional
vector whose components are the evaluation of the functions
in the discretization time points where they have been
actually measured. We also compare our proposal with
the eight regularized classification methods which can be
found on the R library LiblineaR. Particularly, we have
applied the eight classification regularization schemes they
provided on the discretized hybrid functional data. Finally,
we include the comparison of our approach with six filter
methods included in the R library mlr on the discretized
hybrid functional data. In all the above-explained algorithms
the data set is divided into three parts, namely, training,
validation, and test. For the sake of comparison with our
proposed approach, the division is made in such a way

that the test sample coincides exactly with the so-called
sample s4 described in Section 2.2. Furthermore, all the
comparative algorithms were run five times for each data
set, as stated in Section 3.2. The accuracy over all the runs,
measured on the test sample, is used as the performance
metric, and is given in Table 3. Sections 3.3.1–3.3.3 give
details about all the comparative methods.

3.3.1 Functional SVM (FSVM)

The first alternative method corresponds to the SVM
algorithm for functional data. In this case, the different
types of features are not taken into account, and no variable
selection is made. A grid search is performed to obtain
the scalar parameters C and ω based on the following
set of values: {2−7, . . . , 27} on a logarithmic scale. The
SVM problem (1) is run with an isotropic Gaussian kernel
in (11):

K(Xi, Xj ) = exp

⎛

⎝−ω

⎛

⎝
p∑

v=1

∫ T

0

(
Xv

i (t) − Xv
j (t)

)2
dt +

q∑

v=p+1

(
Xv

i − Xv
j

)2

⎞

⎠

⎞

⎠

(11)
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Table 3 Result summary

Data set batch trigonometric pen retail

Alt. appr. 95.68 98.64 99.20 64.06

FSVM 74.08 96.32 99.20 62.73

�2-SVM (4 dim) 76.72 83.76 98.93 62.08

�2-SVM (disc) 90.48 96.00 98.93 63.83

�2-LRp 95.20 90.88 99.20 66.70

�2�2-SVMd 92.88 88.08 99.20 60.70

�2�2-SVMp 93.84 91.20 99.20 67.06

�2�1-SVMd 92.80 91.12 99.20 63.98

SVMCS 92.72 80.96 99.20 66.65

�1�2-SVM 93.68 92.64 99.20 67.00

�1-LR 93.76 92.32 99.20 66.96

�2-LRd 93.44 92.16 99.20 67.30

X 2 test 54.32 98.08 98.93 63.28

information gain 54.32 98.40 98.93 63.28

kruskal test 55.04 98.32 98.93 64.03

min depth 51.68 98.40 99.20 63.51

rf importance 52.32 98.48 98.67 63.90

variance 53.52 98.24 99.20 63.28

Accuracy as performance measure. For each data set, we have
highlighted in bold the highest accuracy value among all the methods.
The average accuracy on the test sample for all the approaches is given

for Xi, Xj ∈ X . The parameters C and ω that lead to
the best results in terms of the classification rate on the
validation sample are kept. Finally, the accuracy of the
selected parameters C and ω is computed as a measure of
performance.

3.3.2 Standard (static) SVM (�2−SVM)

The second alternative approach corresponds to the soft-
margin SVM model [24] when the functions of the hybrid
functional data are summarized in scalar values. We solved
the SVM problem (1) on the training set, for each of the
values of C and ω belonging to the set {2−7, . . . , 27} in
logarithmic scale.

In this case, the kernel function used in Problem (1) is
the isotropic kernel in (12) for multivariate data, in which a
transformation of Xi , namely Zi , is used:

K(Zi, Zj ) = exp
(
−ω‖Zi − Zj‖2

)
, (12)

where ‖ · ‖ denotes the �2−norm.
The best values of C and ω are chosen by measuring the

accuracy on the validation sample, and then, the final results
are estimated with the optimal values for C and ω on the test
sample.

Two different transformations Zi are here suggested.
In the first one, each functional component Xv

i (t), v =

1, . . . , p is summarized in a 4−dimensional vector which
includes the mean value, the standard deviation, the
minimum and the maximum values. Moreover, we add the
values of the static covariates Xv

i , v = p + 1, . . . , p + q.
Such transformation Zi is given in (13):

Zi =
(

mean(X1
i (t)), sd(X1

i (t)), min(X1
i (t)), max(X1

i (t)), . . . ,

mean(X
p
i (t)), sd(X

p
i (t)), min(X

p
i (t)), max(X

p
i (t)),

X
p+1
i , . . . , X

p+q
i

)
(13)

The second transformation here proposed consists of sub-
stituting each functional covariate by the H discretization
points, t1, . . . , tH , where it has been recorded. We also
add the values of the static covariates. In other words, the
transformation Zi turns out to be as in (14):

Zi =
(
X1

i (t1), . . . , X
1
i (tH ), . . . , X

p
i (t1), . . . , X

p
i (tH ), X

p+1
i , . . . , X

p+q
i

)

(14)

3.3.3 Regularized classification methods

We also compare our proposal with eight regularized
algorithms in order to assess the performance of various
feature selection strategies that has been used with SVM
classification in recent studies (see e.g. [1, 43, 58, 69, 86]).
These eight methods stem from the well-known LiblineaR
library [34]. The following strategies are studied:

– �2−regularized logistic regression, primal implementa-
tion (�2−LRp).

– �2−regularized SVM with �2−norm loss function, dual
implementation (�2�2−SVMd ).

– �2−regularized SVM with �2−norm loss function,
primal implementation (�2�2−SVMp).

– �2−regularized SVM with �1−norm loss function, dual
implementation (�2�1−SVMd ).

– The SVM implementation by Cramer and Singer
(SVMCS).

– �1−regularized SVM with �2−norm loss function
(�1�2−SVM).

– �1−regularized logistic regression (�1−LR).
– �2−regularized logistic regression, dual implementa-

tion (�2−LRd ).

For each regularized method, the functional covariates
were transformed into static variables by using (14). The
trade-off parameter C is sought in the set {2−7, . . . , 27}
using a logarithmic scale, and the value yielding the best
accuracy on the validation sample is saved. Finally, the
accuracy of the best value of C is given as a result.
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3.3.4 Filter methods

Finally, the proposed approach has been also compared with
the following six filter methods provided by the recent R
library mlr, [6, 13]:

– Chi-squared test (X 2 test).
– Information gain entropy (information gain).
– Kruskal-Wallis test (kruskal test).
– Minimal depth variable selection (min depth).
– Random forest variable importance (rf importance).
– Low-variance method (variance).

These methodologies have been recently applied in
works such as [16, 38, 40, 45, 53, 55, 60, 68, 83]. More
precisely, the functional covariates have been transformed
according to (14). Then, each of the above methods has
been run on the transformed covariates and the 25% of the
most relevant ones is selected. Such selected variables are
used to train the SVM model (1) for a given C and applying
different kernel functions. In particular, we have run the
experiments using the standard multivariate Gaussian kernel
with a fixed bandwidth, ω ∈ {2−7, . . . , 27}, the polynomial
kernel with degree parameter d ∈ {1, . . . , 5} and constant
c in the set {−2, . . . , 2}, and the sigmoid kernel with offset
parameter ranging also in the set {−2, . . . , 2}. The best
values of C are found in the set {2−7, . . . , 27} in logarithmic
scale, and the value with the largest accuracy and the best
kernel choice on the validation sample is kept. The final
results collect the accuracy on the test set for the best kernel
hyperparameters and the regularization parameter C.

3.4 Experimental results

Algorithm 1 and all the comparative methods of Section 3.3
have been run five times. Table 3 shows the average
accuracy values on the test sample. For each data set,
we have highlighted in bold the best algorithm which
is associated with the highest accuracy. Moreover, our
approach is denoted as Alt. appr., and the FSVM strategy
of Section 3.3.1 is designated with the very same name.
The �2-SVM method for the finite-dimensional data in
(13) and (14) are denoted as �2-SVM (4 dim) and �2-
SVM (disc), respectively. Finally, the accuracy results of
the eight classification methodologies of LiblineaR in
Section 3.3.3 are indicated by �2-LRp, �2�2-SVMd , �2�2-
SVMp, �2�1-SVMd , SVMCS , �1�2-SVM, �1-LR, �2-LRd ,
whereas the accuracy given by the six filter methods of
mlr detailed in Section 3.3.4 are denoted by X 2 test,
information gain, kruskal test, min depth, rf importance
and variance.

As a general conclusion from Table 3 we can state
that our strategy is the best one in data sets batch and
trigonometric. In the pen data set, we obtain comparable

results with the existing methods, whereas the retail
database is slightly better classified with the �2-LRd

strategy than with ours. More detailed information about the
results is given in Sections 3.4.1–3.4.4.

The results obtained in Table 3 using accuracy as per-
formance measure are complemented in Appendix B, in
which we present the Area Under the Curve (AUC), sen-
sitivity, and specificity metrics for all methods and data
sets. These new metrics support the conclusions reported
for Table 3, confirming that our proposal achieves the best
predictive performance compared to the alternative classifi-
cation techniques. In particular, our approach achieved the
best sensitivity in all four data sets, the best specificity in
two of the four data sets, and the best AUC in three of the
four data sets. Furthermore, our proposal achieved compet-
itive results in the data sets in which was not able to be the
best-ranked method.

Apart from Table 3, we provide the average rank and
the average accuracy of all the tested methods. For each
methodology, the average rank is computed as the mean
over all the ranks associated to the four databases. Such
a rank is obtained by sorting in decreasing order the
accuracy values. The average accuracy is simply obtained
by computing the mean value over all the data sets of
the accuracy results which appear in Table 3. It is clear
that our approach is the best one when comparing with
the remaining 17 methods. Indeed the average rank of the
proposed methodology is 3.875 which is clearly far from the
second and third best methods, �1�2SVM and �2�2SVMp,
both of them with an average rank of 6.125 (Table 4).

Table 4 Average rank and accuracy for all the methods

Method Average rank Average accuracy

Alt. appr. 3.8750 89.3950
�1�2-SVM 6.1250 88.1300
�2�2-SVMp 6.1250 87.8250
�1-LR 6.3750 88.0600
�2-LRd 6.3750 88.0250
�2-LRp 7.1250 87.9950
�2�1-SVMd 9.3750 86.7750
SVMCS 9.8750 84.8825
min depth 10.0000 78.1975
kruskal test 10.2500 79.0800
FSVM 10.6250 83.0825
variance 10.6250 78.5600
�2-SVM (disc) 11.2500 87.3100
information gain 11.7500 78.7325
rf importance 11.7500 78.3425
�2�2-SVMd 11.8750 85.2150
X 2 test 12.6250 78.6525
X 2 test 12.5000 77.8650
�2-SVM (4 dim) 15.0000 80.3725
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3.4.1 Batch data set

If we observe Table 3, it is quite apparent that the
proposed methodology yields better results. Furthermore,
we are able to identify the most informative features
as a byproduct. In fact, the third variable was selected
to be important by our algorithm in all the five runs.
Remember that this feature is the only functional covariate
that is correlated with the target variable. In the third run,
for instance, we obtain the following optimal bandwidth:
ω = (0, 0, 165.9076, 0.0703, 0), i.e. the third and the
fourth variables are identified as relevant. Notice that our
methodology is not influenced by the static or functional
nature of the covariates. In fact, in this example, one variable
of each type is selected.

Regarding the sensitivity analysis of the parameters (see
Appendix A), we observe that the value of C should be
carefully chosen since, as can be seen in Fig. 5, the resulting
accuracy depends on the value of C.

By contrast, our proposal is robust with respect to the
elimination threshold δ and the number of iterations of the
alternating approach, as shown by the stable behavior in
Figs. 5b and c, respectively.

Finally, in Fig. 6 we see how the optimal values
of the bandwidths evolve in the five runs. We observe
that independent of the initial bandwidths selected, the
bandwidth associated with the third variable tends toward a
value greater than zero.

3.4.2 Trigonometric data set

Table 3 shows that our proposal improves the performance
measure of the comparative algorithms. With respect to the
feature selection output, features one and three are selected
in the five runs, and variable two in three out of five. Indeed,
the fourth run gives ω = (0.3758, 0.1281, 0.0929, 0) as
optimal solution. Focusing on the sensitivity analysis with
respect to δ and the number of iterations, we state that
stability in the results is obtained. Nevertheless, the value
of C has an important role in the accuracy values. See
Fig. 7 in Appendix A for more details. The evolution of the
values of the bandwidths in all the five runs is depicted in
Fig. 8.

3.4.3 Pen data set

Focusing on Table 3 we observe that our methodology
is comparable with the rest of the strategies. As it was
sketched in Section 3.1.3, this database is usually applied
for multiclass classification purposes. Even though the
results are not comparable, we want to remark that the

best accuracy results obtained in this data set for multiclass
classification in [77, 78, 80] are 94.50%, 88% and 84.5%,
respectively. Regarding the number of relevant features,
we should say that our approach selects just one variable
out of three in two of the five runs. The evolution of the
bandwidths values can be seen in Fig. 10 of Appendix A.
In this example, the value of C is a critical point as can be
observed in Fig. 9c, since the difference between the best
and the worst case is around 40 points. However, our method
is robust with respect to δ and the number of iterations, as
shown in Figs. 9b and c.

3.4.4 Retail data set

We observe in Table 3 that our proposal yields better
results than the strategies FSVM, �2-SVM (4 dim), �2-SVM
(disc), �2�2-SVMd , �2�1-SVMd , X 2 test, information gain,
kruskal test, min depth, rf importance and variance, and
slightly worse results than the remaining methodologies.
Moreover, the selected variables are the third and sixth in
four of five runs. As an illustration, the optimal bandwidth
in one of these runs is ω = (0, 0, 1.5887, 0, 0, 45.5919).
Feature 3 and Feature 6 correspond to Recency (number
of months since the last purchase) computed for each of
the 10 months, and UK Customer (a dummy variable that
indicates whether the customer comes from the UK). Since
our objective is to predict whether a customer will buy
products or not in the last three months, it seems that it
is important to know the elapsed number of months since
the last purchase. In addition, we observe that the customer
origin plays an important role; customers in the UK tend to
buy less than foreign customers. Finally, similar conclusions
to the ones shown in the rest of the examples can be stated
with respect to the sensitivity analysis.

In this example, it is even more clear that the choice of the
parameter C is a crucial issue for obtaining good accuracy.
See Fig. 11c in Appendix A for more details.

Figures 11b and c show again that the elimination
threshold δ and the number of iterations do not affect the
effectiveness of our approach. In Fig. 12 we can observe the
evolution of the values of the different bandwidths which
converge in a small number of iterations.

4 Conclusions and extensions

In this paper, we have shown how the well-known SVM
technique can be embedded with a feature selection
strategy to get the most informative covariates of hybrid
functional data. In fact, we have compared our approach
with 17 benchmark methodologies from the literature, and
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our proposal achieves the best average accuracy. In
our proposed approach, we have modified the standard
Gaussian kernel by associating a bandwidth with each
variable. Such bandwidths and the rest of the SVM
parameters are sought via a bilevel optimization problem
solved with an alternating approach. Instead of minimizing
the misclassification rate, we propose maximizing the
Pearson correlation between the class label and the score.
Other measures such as the correlation in [82] can also
be applied. Our methodology can also be used if all
the components of the data are functions, i.e. the pure
multivariate functional data case. A sensitivity analysis of
the setting parameters involved in our approach was made
to show its robustness. We observe that the choice of the
parameter C is critical to yielding good classification rates.
Some standard cross-validation methods may be used to get
a good value of C. In contrast, the elimination threshold
and the maximum number of iterations allowed in the
alternating approach do not affect the accuracy obtained.
Moreover, the values of the bandwidths associated with
the features converge in few iterations to their final value.
We have restricted ourselves to the binary classification
problem. The extension to other related fields, such as
multiclass classification or regression, [10], deserves further
study. In our proposal, we use standard optimization
techniques solve Problems (1) and (6). As a future research
line, we can develop more efficient optimization strategies
compatible with the world of Big Data, e.g. methodologies
applied to Problem (1) which do not need the computation
of the whole kernel matrix, or the use of stochastic gradients
to iterate in the bandwidth parameters of Problem (6).
Finally, the application of our approach to other real-world
contexts, such as the field of medicine, should be analyzed
too.
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Appendix A: Sensitivity analysis

In order to study the robustness of our proposed algorithm
with respect to the parameters involved, we ran a sensitivity
analysis. We tested how sensitive our methodology is to
the regularization parameter C, the threshold at which
the features are removed δ, the maximum number of
iterations of the alternating approach, and the bandwidths
ωv , v = 1, . . . , p + q. First, we ran five times
the alternating approach of Algorithm 1 to test the
sensitivity of the algorithm with respect to the parameter
C, computing the average accuracy on s3. Second, the
sensitivity analysis for the elimination threshold δ is
performed by running Algorithm 1 five times for the
values given in the set {10−10, . . . , 10−5} in logarithmic
scale. The average accuracy is estimated on s3. Third,
the maximum number of iterations of the alternating
approach may affect the classification rates. In order to
check the robustness of our proposal, Algorithm 1 is
run five times with the maximum number of iterations
belonging to the set {5, . . . , 10}. The average accuracy
measured on the sample s3 is then computed. Finally,
we studied the convergence of the bandwidths. Note
that in this paper, convergence does not mean that the
bandwidths tend to the same value in all the runs, but
that they are greater or less than δ, and yield the same
features in most of the cases. For each of the five times that
Algorithm 1 was run, the optimal values of the bandwidths
after the alternating approach were obtained. The goal is to
assess the importance of the variables visually. In all the
sensitivity analysis studied, the remaining parameters which
were not under study took the values given in Section 3.2.
For instance, when the sensitivity with respect to C was
analyzed, the elimination threshold was equal to 10−5,
and the maximum number of iterations of the alternating
approach was set to five. Plots of results of the sensitivity
analysis for all the parameters above mentioned in the batch
data set are depicted in Figs. 5 and 6. Figures 7 and 8 depict
the results for trigonometric data set, whereas the results of
the pen data set are shown in Figs. 9 and 10. Finally, Figs. 11
and 12 show the sensitivity analysis of the retail data set.

Appendix B: Analysis of sensitivity,
specificity and area under the curve

This section provides three tables with new performance
metrics, namely sensitivity (Table 5), specificity (Table 6)
and Area under the Curve (Table 7). More details about
the conclusions derived from these tables can be seen in
Section 3.4.
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Fig. 5 Results of the sensitivity analysis for the batch data set
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Fig. 6 Convergence of the bandwidths for the batch data set
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Fig. 7 Results of the sensitivity analysis for the trigonometric data set
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Fig. 8 Convergence of the bandwidths for the trigonometric data set
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Fig. 9 Results of the sensitivity analysis for the pen data set
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Fig. 10 Convergence of the bandwidths for the pen data set
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Fig. 11 Results of the sensitivity analysis for the retail data set
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Fig. 12 Convergence of the bandwidths for the retail data set
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Table 5 Result summary

Data set batch trigonometric pen retail

Alt. appr. 0.96 0.98 1 0.64

FSVM 0.75 0.94 1 0.57

�2-SVM (4 dim) 0.75 0.81 0.98 0.57

�2-SVM (disc) 0.88 0.97 1 0.59

�2-LRp 0.95 0.88 1 0.64

�2�2-SVMd 0.93 0.84 1 0.61

�2�2-SVMp 0.94 0.88 1 0.64

�2�1-SVMd 0.92 0.88 1 0.62

SVMCS 0.93 0.80 1 0.63

�1�2-SVM 0.93 0.92 1 0.64

�1-LR 0.93 0.91 1 0.64

�2-LRd 0.93 0.90 1 0.64

X 2 test 0.54 0.98 1 0.61

information gain 0.54 0.98 1 0.61

kruskal test 0.55 0.98 1 0.63

min depth 0.51 0.98 1 0.62

rf importance 0.52 0.98 1 0.62

variance 0.53 0.97 1 0.61

Sensitivity as performance metric

Table 6 Result summary

Data set batch trigonometric pen retail

Alt. appr. 0.95 0.99 0.98 0.66

FSVM 0.81 0.98 0.98 0.79

�2-SVM (4 dim) 0.78 0.88 0.99 0.77

�2-SVM (disc) 0.92 0.94 0.98 0.78

�2-LRp 0.94 0.94 0.98 0.69

�2�2-SVMd 0.92 0.92 0.98 0.60

�2�2-SVMp 0.93 0.95 0.98 0.69

�2�1-SVMd 0.92 0.95 0.98 0.66

SVMCS 0.92 0.81 0.98 0.72

�1�2-SVM 0.93 0.93 0.98 0.70

�1-LR 0.93 0.93 0.98 0.69

�2-LRd 0.93 0.93 0.98 0.70

X 2 test 0.54 0.98 0.98 0.65

information gain 0.54 0.98 0.98 0.65

kruskal test 0.55 0.98 0.98 0.65

min depth 0.51 0.98 0.98 0.65

rf importance 0.52 0.97 0.97 0.66

variance 0.53 0.98 0.98 0.66

Specificity as performance metric

Table 7 Result summary

Data set batch trigonometric pen retail

Alt. appr. 0.95 0.99 0.99 0.64

FSVM 0.74 0.96 0.99 0.63

�2-SVM (4 dim) 0.76 0.83 0.98 0.62

�2-SVM (disc) 0.90 0.96 0.98 0.64

�2-LRp 0.95 0.90 0.99 0.66

�2�2-SVMd 0.92 0.88 0.99 0.60

�2�2-SVMp 0.93 0.91 0.99 0.67

�2�1-SVMd 0.92 0.91 0.99 0.64

SVMCS 0.92 0.80 0.99 0.66

�1�2-SVM 0.93 0.92 0.99 0.67

�1-LR 0.93 0.92 0.99 0.67

�2-LRd 0.93 0.92 0.99 0.67

X 2 test 0.54 0.99 0.99 0.63

information gain 0.54 0.99 0.98 0.63

kruskal test 0.55 0.99 0.98 0.64

min depth 0.51 0.98 0.99 0.63

rf importance 0.53 0.98 0.98 0.63

variance 0.53 0.98 0.99 0.63

Area Under the Curve (AUC) as performance metric

References

1. Alber M, Zimmert J, Dogan U, Kloft M (2017) Distributed
optimization of multi-class svms. Plos One 12(6):1–18

2. Baesens B (2014) Analytics in a Big Data World. Wiley
3. Baı́llo A, Cuevas A, Fraiman R (2011) Classification methods for

functional data
4. Berrendero J, Justel A, Svarc M (2011) Principal components for

multivariate functional data. Comput Stat Data An 55(9):2619–
2634

5. Berrendero JR, Cuevas A, Torrecilla JL (2016) Variable selection
in functional data classification: a maxima-hunting proposal. Stat
Sin 26:619–638

6. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E,
Casalicchio G, Jones ZM (2016) mlr: Machine learning in. R. J
Mach Learn Res 17(170):1–5

7. Blanquero R, Carrizosa E, Chis O, Esteban N, Jiménez-Cordero
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