
https://doi.org/10.1007/s10489-020-01745-w

An adaptive GP-basedmemetic algorithm for symbolic regression

Jiayu Liang1 · Yu Xue2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Symbolic regression is a process to find a mathematical expression that represents the relationship between a set of
explanatory variables and a measured variable. It has become a best-known problem for GP (genetic programming), as GP
can use the tree representation to represent solutions as expression trees. Since the success of memetic algorithms (MAs
(Memetic algorithms (MAs) can be regarded as a class of methods that combine population-based global search and local
search [6, 30])) has proved the importance of local search in augmenting the global search ability of GP, GP with local search
is investigated to solve symbolic regression tasks in this work. An important design issue of MAs is the balance between the
global exploration of GP and the local exploitation, which has a great influence on the performance and efficiency of MAs.
This work proposes a GP-based memetic algorithm for symbolic regression, termed as aMeGP (adaptive Memetic GP),
which can balance global exploration and local exploitation adaptively. Compared with GP, two improvements are made in
aMeGP to invoke and stop local search adaptively during evolution. The proposed aMeGP is compared with GP-based and
nonGP-based symbolic regression methods on both benchmark test functions and real-world applications. The results show
that aMeGP is generally better than both GP-based and nonGP-based reference methods with its evolved solutions achieving
lower root mean square error (RMSE) for most test cases. Moreover, aMeGP outperforms the reference GP-based methods
in the convergence ability, which can converge to lower RMSE values with faster or similar speeds.

Keywords Adaptive memetic algorithm · Genetic programming · Local search · Crossover · Mutation

1 Introduction

Symbolic regression is to search the space of mathemati-
cal expressions to find a model that best fits a given dataset
in accuracy and simplicity [21]. As one of evolutionary
algorithms (EAs), genetic programming (GP) solves opti-
mization problems by imitating the evolution procedure in
nature to evolve computer programs for given tasks, which
is expected to find global optima [7]. Since tree-based GP
can represent solutions as expression trees, symbolic regres-
sion becomes one of the best-known application domains

� Jiayu Liang
yyliang2012@hotmail.com

Yu Xue
xueyu@nuist.edu.cn

1 Tianjin Key Laboratory of Autonomous Intelligent
Technology and System, Tiangong University, Tianjin,
300387, China

2 School of Computer and Software, Nanjing University
of Information Science and Technology, Nanjing,
210044, China

for GP [21]. GP and its variants in the existing GP-based
works [16, 17, 21, 31] show that GP is well-performing for
symbolic regression tasks. Since GP acts at the syntactic level,
a small syntactic modification in a GP solution can produce
a dramatic change in its fitness, which can harm search effi-
ciency [28]. To address this issue, the integration of local
search into GP, known as memetic algorithms, has attracted
significant attention, which can further improve the search
ability of GP [25].

Memetic algorithms (MAs) are a combination of popu-
lation-based evolutionary algorithms (EAs) and individual-
based local search [6, 30]. EAs imitate the evolutionary
process of natural selection in solving optimization prob-
lems, which can conduct global exploration of the solution
space; while local search methods exploit neighboring solu-
tions of the solutions evolved by EAs [19]. The success
of MAs has proved the importance of local search in aug-
menting the global search ability of EAs [19]. However, the
balance between the global exploration and local exploita-
tion in MAs has a great influence on the performance and
efficiency of the MAs [23, 28]. Specifically, applying local
search too frequently may lead to expensive computational
cost and loss of the exploration capacity [23]. For example,

Published online: 6 July 2020

Applied Intelligence (2020) 50:3961–3975

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01745-w&domain=pdf
mailto: yyliang2012@hotmail.com
mailto: xueyu@nuist.edu.cn


Banzhaf et al. apply local improvement on every individual
at the current population, which leads to an obvious com-
putational bottleneck [9]. In contrast, EAs without applying
local search may experience slow convergence [23].

There are existing works [2, 5, 20, 24, 27] that consider
balancing the global and local search in MAs, where not
every individual is subject to local search. Two types of com-
mon approaches, i.e. random selection and fitness-based selec-
tion, are used to select individuals that will undergo local
search [19]. Specifically, the works [2, 5, 24, 27] use fitness-
based selection, where they apply local search operators for
the best individuals of the population at the final generation
or at each generation. In addition, Nguyen et al. [20] com-
bine random selection and fitness-based selection. They pro-
pose a method that the population is sorted based on fitness
and divided into n levels (n is the number of local search
operations at each generation). Then one individual per level
is randomly selected for local improvement. However, the
random selection approach cannot take advantage of the
population performance information during evolution; while
the best-fitness selection approach is a fixed way, which does
not consider the evolutionary situation changes [19]. More-
over, the existing MAs [2, 5, 20, 24, 27] are rarely used to
solve symbolic regression tasks, which means that symbolic
regression based on MAs is insufficiently investigated.

1.1 Goals

To bridge the gap, this work proposes a GP-based memetic
algorithm for symbolic regression, which can balance the
global exploration and the local exploitation adaptively.
This method is termed as aMeGP (adaptive Memetic GP).
Specifically, compared with GP, two improvements are
made in aMeGP to invoke and stop local search adaptively
during evolution. Firstly, aMeGP introduces a stage to
check whether the evolution has degraded or not based on
the average fitness of the population. If the evolution is
considered to be at a degraded state, the local search will be
invoked. Secondly, two adaptive reproduction operators (i.e.
adaptive crossover and mutation) are designed for a further
check of whether local search should be invoked or stopped
based on the performance of their evolved solutions.

The proposed aMeGP will be compared with GP-based
methods (standard GP and existing GP-based MAs) and
nonGP-based symbolic regression methods. In addition,
both benchmark test functions and real-world applications,
which are widely used by existing works, are selected for
testing the proposed and reference methods. Specifically,
we will investigate the following sub-objectives:

– explore whether aMeGP can improve the search ability
of GP for the given symbolic regression tasks;

– compare whether aMeGP can outperform existing GP-
based and nonGP-based symbolic regression methods;

– investigate further how aMeGP performs during evolution.

The rest of the paper is organized as follows. Section 2 intro-
duces the background, including GP, GP-based symbolic reg-
ression works and MAs. Section 3 describes the proposed
method, along with the reference methods. In addition, the
experiment preparations are presented in Section 4. The
results of the proposed and reference methods are described
and analyzed in Section 5. Moreover, Section 6 presents
further discussions of how the proposed method performs
during evolution. Conclusions are drawn in Section 7.

2 Background

This section provides the background information, includ-
ing the introduction to GP, the existing GP-based symbolic
regression methods and the introduction to MAs.

2.1 Genetic programming

Evolutionary algorithms (EAs) are generic population-based
meta-heuristic optimization algorithms, and use mechanisms
inspired by biological evolution, e.g. reproduction, mutation,
recombination and selection [22]. Popularly-used EAs include
genetic algorithm, genetic programming (GP), evolutionary
strategies, differential evolution and so forth [22]. GP is exten-
ded from the basic genetic algorithm, yet its main difference
from a genetic algorithm is as follows. GP can represent its
solutions in variably-sized structures, e.g. binary string, trees
or graphs, which encode the syntax of each individual solu-
tion; while GA can only use fixed-sized solution structures
[28]. The general framework of GP includes generating an
initial population, evaluating the population to assign a fitness
to each individual, checking the stop criteria, selecting indivi-
duals for reproduction, and generating offspring individuals
based on reproduction operators (i.e. crossover, mutation)
and elitism (copy the best-performing individuals directly to
the next generation).

There are three types of GP individual representations,
i.e. linear, tree and graph, among which the tree representation
(shown in Fig. 1a) is the most widely-used and suitable for
symbolic regression tasks [7]. This is because GP with the
tree representation can represent solutions as expression trees.
In addition, there are two standard reproduction operators in
GP, i.e. crossover and mutation [22]. For the crossover ope-
rator (shown in Fig. 1b), two parents are required. Speci-
fically, a crossover point is selected in each parent randomly,
and then two children are created by replacing the subtrees
rooted at the crossover point. For the mutation operator
(shown in Fig. 1c), there are also two stages. A mutation
point is selected firstly, and then the subtree rooted there is
replaced with a subtree generated randomly.

3962 J. Liang and Y. Xue



Fig. 1 The tree representation
and the crossover/mutation
operators of GP (the terminal set
includes nine input variables
xi , i = 1, 2, ..., 9 and constants
ci , i = 1, 2, ...; the function set
includes six operators
+, −, ∗, /, sin, cos)

(a) Tree representation

(b) Crossover

(c) Mutation

3963An adaptive GP-based memetic algorithm for symbolic regression



2.1.1 GP for symbolic regression

GP has been shown to be a powerful tool for program
induction and automatic modeling. It is well established that
GP exhibits good performance on symbolic regression tasks
with many existing works [16, 17, 21, 31].

Zhong et al. [31] propose a novel multi-factorial GP
(MFGP) algorithm, which can realize evolutionary search
on multiple tasks in one independent run. This is the first
work that attempts to use a single population to conduct
multiple tasks by GP. Pawlak et al. [21] propose a set of
semantic-aware initialization operators, selection operators
and search operators for GP. The proposed operators are
experimentally compared with existing semantic operators
for symbolic regression and boolean function synthesis
tasks. The results demonstrate that the proposed operators
are better in various performance indicators, such as
best-of-run fitness and program size. Kronberger et al.
[16] investigate the distribution of symbolic regression
solutions evolved by GP in the search space. They aim to
improve the search for well-fitting solutions based on model
similarity that can be pre-computed from a target function.
Specifically, they map candidate solutions generated by GP
during evolution to the enumerated search space, based
on which they find that GP initially explores the whole
space and later converges to the subspace of solutions with
highest quality. Uriel et al. [17] study the robustness of
GP-based methods for symbolic regression. Specifically,
they propose a hybrid method based on the RAndom
SAmpling Consensus (RANSAC) algorithm and GP, termed
as RANSAC-GP, to deal with datasets with outliers. It is the
first application of RANSAC to symbolic regression with
GP. The results show that the proposed algorithm is able to
deal with extreme amounts (90%) of outliers in the training
set, which can evolve highly-accurate models.

GP and its variants in the existing GP-based works [16,
17, 21, 31] show that GP is well-performing for symbolic
regression tasks. Since GP acts at the syntactic level, a small
syntactic modification in a GP solution can produce a dramatic
change in its fitness, which can harm search efficiency. To
address this issue, the integration of local search into GP, known
as memetic algorithms, has attracted significant attention,
which can further improve the search ability of GP [25].

2.2 Memetic algorithms

The term “Memetic Algorithms” (MAs) is proposed
initially in late 1980s to denote a class of algorithms that
blend EAs (Evolutionary Algorithms) with local search
methods [19], e.g. simulated annealing [8] and hill-climbing
[1]. EAs mimic the evolutionary process of natural selection
in solving optimization problems, which can explore the
solution space globally. In contrast, local search methods

exploit neighboring solutions of certain solutions evolved
by EAs and guide the search moving to the one with the
locally-best fitness [25].

There are several common design issues to develop amemtic
algorithm, including which local search algorithms to select,
where to apply local improvement, how to balance the local
and global search (e.g. how often the local search will be
applied and how long should it last), and so on [19]. Among
them, the balance between the global exploration and local
exploitation affects the performance and efficiency of the
MAs greatly [23, 28]. Specifically, applying local search
too frequently may cause expensive computational cost and
loss of the exploration capacity; while applying local search
too less cannot help to speed up convergence of the global
exploration [23]. For example, Banzhaf et al. use local
improvement on every individual at the current population,
which causes an obvious computational bottleneck [9].

There are existing works that aims to balance the global
and local search in MAs [2, 5, 20, 24, 27], where not every
individual is subject to local search. To select individu-
als that will undergo local search, there are two types of
most common approaches, i.e. random selection and fitness-
based selection [19]. For the fitness-based selection, local
search is usually performed on best-performing solutions
for local improvement [2]. Specifically, the works [2, 5,
24, 27] use fitness-based selection, where they apply local
search operators for the best individuals at the final gener-
ation or at each generation of the population. For example,
Bansal et al. [5] propose a new local search phase to inte-
grate with the basic artificial bee colony (ABC) to exploit
the local search space of the best individual in the swarm.
It is aimed to balance between diversity and convergence
capability of the ABC. The proposed method is tested on 20
benchmark optimization problem and 4 well-known engi-
neering optimization problems. Results show that new solu-
tions generated locally around the best solution by memetic
ABC (MeABC) help to enhance the exploitation capability
of basic ABC. In addition, the work [20] combines ran-
dom selection and fitness-based selection. They propose a
method that the population is sorted based on fitness and
divided into n levels (n is the number of local search oper-
ations at each generation). Then one individual per level is
randomly selected for local improvement.

The existing works [2, 5, 20, 24, 27] that aim to balance
the global and local search in MAs select individuals
randomly or select best individuals in fitness for local
improvement. However, the random selection approach
cannot take advantage of the evolution information; while
the best-fitness selection approach is a fixed way, which
does not consider the evolutionary situation changes based
on both particular tasks and search stages. Therefore, it is
necessary to investigate theMAs that can adaptively balance
the global and local search for symbolic regression tasks.

3964 J. Liang and Y. Xue



3Methodology

In this section, the proposed aMeGP (adaptive Memetic
Genetic Programming) is described, along with the refer-
ence methods.

3.1 The proposedmethod: aMeGP

The proposed method, aMeGP, can balance the global
and local search adaptively, whose pseudo-code is shown
in Algorithm 1. Compared with GP (the base technique
of aMeGP), aMeGP makes two improvements that are
described as follows.

Firstly, it is decided whether the evolution has degraded
or not based on the average fitness of the population. If

the average population fitness at a generation is worse than
that of its previous (parent) generation, the evolution is
considered to be at a degraded state and the local search is
invoked. In contrast, if the average population fitness at a
generation becomes better than that of its previous (parent)
generation, the evolution is considered to be at a well-
performing state and the local search is not considered at the
current generation.

3965An adaptive GP-based memetic algorithm for symbolic regression



Secondly, two adaptive reproduction operators (i.e.
adaptive crossover and mutation) are designed. They are
able to conduct a further check of whether to invoke or
stop local search automatically based on the performance of
the evolved solutions. Note that local search is introduced
into GP by applying it in two reproduction (crossover and
mutation) operators, which is a common way and can be
easily fitted in a general evolutionary framework of EAs
[15]. The proposed adaptive crossover and mutation are
shown in Algorithms 2 and 3 respectively. Specifically,
the standard reproduction (i.e. crossover and mutation)
operators are improved to check whether the evolved
offspring solutions perform better than their parents. For a
specific reproduction operation (crossover or mutation), if

the evolved child solution(s) is/are better than its/their parent,
this reproduction operation does not apply local search;
otherwise, local search is introduced in this reproduction
operation until child solutions better than their parents are
found or the max number of local search is reached.

The evolution degradation check and the adaptive
reproduction operators are introduced into GP to form the
aMeGP, which enable aMeGP to balance local and global
search adaptively. Once the evolution is considered to be at
a degraded state, the adaptive operators (i.e. crossover and
mutation) are invoked until the evolved child solution(s) are
better than its/their parent(s) or until the maximum local
search number is reached.

3.2 Referencemethods

The proposed methods are compared with both GP-
based and nonGP-based methods for symbolic regression.
Specifically, the three GP-based reference methods include
the standard GP and two existing GP-based memetic
algorithms. In addition, the nonGP-based reference methods
are widely-used symbolic regression methods. Comparison
with GP can determine whether the proposed aMeGP
can improve the search ability of GP, since the only
difference of aMeGP and GP lies in that aMeGP applies
local search while GP does not. Comparison with two GP-
based memetic methods and four nonGP-based methods can
determine whether the proposed aMeGP can outperform
existing symbolic regression methods.

3.2.1 GP-basedmemetic algorithms

The work [4] proposes a local function search operator
(LFS) that can search the neighboring region of a given GP
solution. Figure 2 presents the search region of the LFS
operator. Note that the given function set to build symbolic
expressions consists of add (+), subtract (−), multiply (∗),
protected divide (/), sine (sin) and cosine (cos). The local
search region is defined based on the internal nodes (or
functions) of GP tree solutions, where each internal node
can be replaced by any swap-compatible functions in the
function set. To balance the global and local search, existing
works [2, 5, 24, 27] normally select best individuals at each
generation or at the final generation for local improvement.
Therefore, the two existing memetic algorithms that use the
LFS operator to improve the best individuals at the final
generation (termed as MA bestFinal) and at each generation
(MA bestEachGen) are utilized as reference methods.

3.2.2 NonGP-basedmethods

Four nonGP-based methods are selected as reference,
since they are widely used for symbolic regression tasks,

3966 J. Liang and Y. Xue



Fig. 2 An example of the LFS
(local function search) operator
(the terminal set includes nine
input variables xi , i = 1, 2, ..., 9
and constants ci , i = 1, 2, ...; the
function set includes six
operators +, −, ∗, /, sin, cos)

Table 1 Benchmark functions (U [a, b, c] is c uniform random samples drawn from the range [a, b]; V.N. means the number of variables)

Name Function V.N. Training/Test data

Nguyen6(f1) sin(x1) + sin(x1 + x2
1 ) 1 U [−1, 1, 20]/U [−1, 1, 20]

Nguyen7(f2) log(x1 + 1) + log(x2
1 + 1) 1 U [0, 2, 20]/U [0, 2, 20]

Keijzer4(f3) x3
1e

−x1cosx1sinx1(sin
2x1cosx1 − 1) 1 E[0, 10, 0.05]/E[0.05, 10.05, 0.05]

Sphere5(f4) x2
1 + x2

2 + x2
3 + x2

4 + x2
5 5 U [1, 11, 1000]/U [1, 11, 1000]

Dic1(f5) x1 + x2 + x3 + x4 + x5 5 U [1, 11, 1000]/U [1, 11, 1000]
Dic3(f6) x1 + x2∗x3

x4
+ x3∗x4

x5
5 U [1, 11, 1000]/U [1, 11, 1000]

Nico20(f7)
∑5

i=1(1/xi) 5 U [−5, 5, 1000]/U [−5, 5, 1000]
Dic4(f8) x1 ∗ x2 + x2 ∗ x3 + x3 ∗ x4 ∗ x5 + x5 ∗ x6 6 U [1, 11, 1000]/U [1, 11, 1000]
Concrete(f9) Concrete compressive strength 8

Energy1(f10) Energy efficiency (Heating Load) 8

Energy2(f11) Energy efficiency (Cooling Load) 8

Table 2 GP parameter settings

Parameter Setting Parameter Setting

Population Size 500 Generation 50

Initialisation HalfBuilder Selection Method Tournament Selection

Crossover Rate 0.90 Mutation Rate 0.10

Elitism 0.05 Maximum Depth 10

3967An adaptive GP-based memetic algorithm for symbolic regression



Table 3 Performance (“TrRMSE” and “TeRMSE” refer to the performance in RMSE for training and testing respectively; “size” means the
solution size; “TrTime” and “TeTime” stand for the time cost for training and testing respectively; S.T. means significance test; ↑, ↓ and = mean
significantly better, worse and similar than/to aMeGP in TeRMSE)

Measure GP MA BestInd MA GenBestInd aMeGP

f1 TrRMSE 9.27E − 2 6.83E − 2 7.63E − 2 4.75E − 2

±5.61E − 2 ±6.15E − 2 ±5.24E − 2 ±4.61E − 2

TeRMSE 2.28E − 1 1.75E − 1 2.03E − 1 1.92E − 1

±1.48E − 1 ±2.34E − 1 ±1.98E − 1 ±3.53E − 1

S.T. ↓ ↑ ↓
size 82.35 ± 33.90 69.75 ± 30.02 66.75 ± 27.64 76.05 ± 29.05

TrTime 0.461 ± 0.176 0.597 ± 0.163 0.636 ± 0.152 1.754 ± 1.069

TeTime 0.0001 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

f2 TrRMSE 1.28E − 1 1.17E − 1 1.05E − 1 4.82E − 2

±1.05E − 1 ±9.46E − 2 ±1.02E − 1 ±4.39E − 2

TeRMSE 1.96E − 1 1.59E − 1 1.44E − 1 1.17E − 1

±2.05E − 1 ±1.24E − 1 ±1.31E − 1 ±1.8E − 1

S.T. ↓ ↓ ↓
size 55.30 ± 21.40 55.50 ± 21.03 50.05 ± 15.71 65.90 ± 27.22

TrTime 0.374 ± 0.167 0.479 ± 0.219 0.521 ± 0.217 1.621 ± 0.647

TeTime 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

f3 TrRMSE 3.03E − 1 2.96E − 1 2.94E − 1 2.73E − 1

±1.42E − 2 ±3.18E − 2 ±4.23E − 2 ±4.72E − 2

TeRMSE 3.11E − 1 3.01E − 1 3E − 1 2.74E − 1

±1.78E − 2 ±2.84E − 2 ±4.24E − 2 ±4.59E − 2

S.T. ↓ ↓ ↓
size 48.10 ± 34.90 48.50 ± 23.44 56.30 ± 28.99 61.40 ± 42.22

TrTime 3.972 ± 1.550 3.964 ± 1.426 7.929 ± 3.561 19.968 ± 10.594

TeTime 0.0004 ± 0.0006 0.0004 ± 0.0002 0.0007 ± 0.0004 0.0003 ± 0.0002

f4 TrRMSE 2.42E1 2.33E1 2.13E1 1.95E1

±3.46E0 ±3.07E0 ±3.7E0 ±3.9E0

including the simple linear regression (SLR), the additive
regression (AR), a decision tree based method (REPTree)
and a support vector regression method (SMOreg) from the
Weka package1 [11]. Specifically, the SLR aims to learn
a simple linear regression model; the AR can learn an
additive model (AM), which is a nonparametric regression
method; the REPTree is a fast decision tree learner, which
can develop a regression tree based on the information
gain/variance; the SMOreg is an implementation of
sequential minimal optimization (SMO) for support vector
regression.

4 Experiment preparation

In this section, the benchmark dataset and GP settings
(e.g. the terminal and function sets, the GP parameters

1Weka is a set of machine learning algorithms for solving real-world
data mining tasks [11].

and the fitness function) are introduced. In addition, the
algorithms in this work are run on the same computer. The
processor of this computer is “Intel(R) Core(TM) i5-7200U
@ 2.50GHz”. Its RAM is 16GB, whose frequency is 2133
MHz.

4.1 Dataset

The proposed methods are tested on both benchmark
functions (e.g. Nguyen, Sphere, Dic, Nico functions)
and three real-world tasks from two UCI (University of
California Irvine) datasets [10] (e.g. the Concrete and
Energy datasets). Details are shown in Table 1. These
functions are selected since they have been widely used in
the existing works [3, 12, 18], and they vary in difficulty
levels. Specifically, there are relatively simpler functions,
e.g. Nguyen and Keijzer functions that contain one or three
variables; while there are also more complex functions, e.g.
Sphere, Dic and Nico functions that have 5 or 6 variables.
In addition, the Concrete task is from the UCI Concrete

3968 J. Liang and Y. Xue



Table 4 Performance (“TrRMSE” and “TeRMSE” refer to the performance in RMSE for training and testing respectively; “size” means the
solution size; “TrTime” and “TeTime” stand for the time cost for training and testing respectively; S.T. means significance test; ↑, ↓ and = mean
significantly better, worse and similar than/to aMeGP in TeRMSE)

Measure GP MA BestInd MA GenBestInd aMeGP

TeRMSE 2.48E1 2.38E1 2.59E1 2.03E1

±3.39E0 ±3.21E0 ±1.76E1 ±4.16E0

S.T. ↓ ↓ ↓
size 63.70 ± 16.94 65.05 ± 21.48 69.70 ± 24.79 70.10 ± 16.83

TrTime 19.083 ± 7.947 18.273 ± 5.751 25.438 ± 13.243 69.669 ± 36.907

TeTime 0.0017 ± 0.0011 0.0013 ± 0.0010 0.0014 ± 0.0008 0.0010 ± 0.0004

f5 TrRMSE 7.18E − 4 7.18E − 4 7.18E − 4 7.19E − 4

±2.29E − 6 ±1.68E − 6 ±1.64E − 6 ±1.62E − 6

TeRMSE 6.96E − 4 7.01E − 4 6.94E − 4 6.94E − 4

±2.61E − 6 ±2.77E − 5 ±2.04E − 6 ±8.67E − 7

S.T. = = =
size 33.55 ± 19.23 28.45 ± 12.61 37.40 ± 16.08 22.65 ± 16.12

TrTime 13.200 ± 3.881 9.439 ± 2.878 14.391 ± 5.715 34.490 ± 27.684

TeTime 0.0011 ± 0.0006 0.0007 ± 0.0003 0.0012 ± 0.0006 0.0004 ± 0.0003

f6 TrRMSE 7.53E0 7.06E0 6.59E0 6.13E0

±1.44E0 ±1.85E0 ±1.73E0 ±2.66E0

TeRMSE 7.22E0 6.91E0 6.49E0 5.93E0
±1.35E0 ±1.69E0 ±1.52E0 ±2.47E0

S.T. ↓ ↓ ↓
size 55.60 ± 18.82 57.50 ± 19.79 60.45 ± 18.27 65.90 ± 24.16
TrTime 18.124 ± 6.897 12.281 ± 5.116 21.395 ± 14.033 71.264 ± 36.333
TeTime 0.0016 ± 0.0012 0.0011 ± 0.0006 0.0015 ± 0.0013 0.0011 ± 0.0005

f7 TrRMSE 6.77E0 5.91E0 6.7E0 4.76E0
±1.78E0 ±2.21E0 ±2.6E0 ±2.35E0

TeRMSE 1.13E1 1.04E1 1.14E1 7.88E0
±2.12E0 ±4.11E0 ±8E0 ±4.16E0

S.T. ↓ ↓ ↓
size 41.70 ± 18.75 36.10 ± 13.65 43.35 ± 18.72 51.75 ± 16.15
TrTime 21.610 ± 7.502 14.674 ± 2.949 16.786 ± 6.886 106.906 ± 28.435
TeTime 0.0015 ± 0.0010 0.0011 ± 0.0006 0.0014 ± 0.0009 0.0015 ± 0.0007

f8 TrRMSE 2.45E1 2.1E1 2.07E1 1.55E1
±1.62E1 ±1.14E1 ±1.29E1 ±9.03E0

TeRMSE 2.55E1 2.18E1 2.11E1 1.59E1
±1.72E1 ±1.2E1 ±1.32E1 ±9.2E0

S.T. ↓ ↓ ↓
size 58.60 ± 26.87 65.60 ± 22.93 55.85 ± 18.14 48.20 ± 19.53
TrTime 17.483 ± 5.515 15.825 ± 5.060 15.765 ± 5.917 52.717 ± 24.703
TeTime 0.0016 ± 0.0010 0.0015 ± 0.0006 0.0011 ± 0.0004 0.0009 ± 0.0004

f9 TrRMSE 1.41E1 1.44E1 1.35E1 1.29E1
±1.01E0 ±1.1E0 ±1.79E0 ±1.73E0

TeRMSE 1.56E1 1.91E1 1.53E1 1.67E1
±1.49E0 ±1.22E1 ±2.73E0 ±7.63E0

S.T. = ↓ ↑
size 107.55 ± 47.95 104.70 ± 41.73 82.95 ± 29.29 104.95 ± 36.20
TrTime 29.340 ± 15.919 22.947 ± 10.397 27.424 ± 16.117 122.258 ± 59.459
TeTime 0.0021 ± 0.0018 0.0013 ± 0.0008 0.0010 ± 0.0006 0.0011 ± 0.0006

f10 TrRMSE 3.8E0 3.65E0 3.42E0 3.01E0
±4.36E − 1 ±5.98E − 1 ±5.38E − 1 ±4.97E − 1

TeRMSE 5.18E0 4.7E0 4.89E0 3.96E0
±1.09E0 ±9.31E − 1 ±1.13E0 ±1.03E0

3969An adaptive GP-based memetic algorithm for symbolic regression



Table 4 (continued)

Measure GP MA BestInd MA GenBestInd aMeGP

S.T. ↓ ↓ ↓
size 64.95 ± 24.91 63.20 ± 22.73 71.65 ± 26.05 83.10 ± 23.68

TrTime 9.354 ± 4.223 7.458 ± 2.772 8.819 ± 3.524 42.770 ± 17.891

TeTime 0.0005 ± 0.0003 0.0004 ± 0.0002 0.0004 ± 0.0003 0.0004 ± 0.0002

f11 TrRMSE 3.57E0 3.68E0 3.53E0 3.11E0

±3.86E − 1 ±3.57E − 1 ±4.63E − 1 ±5.34E − 1

TeRMSE 4.46E0 4.56E0 4.53E0 3.69E0

±9.15E − 1 ±5.39E − 1 ±8.8E − 1 ±5.8E − 1

S.T. ↓ ↓ ↓
size 55.65 ± 21.29 57.55 ± 21.23 62.40 ± 21.30 71.70 ± 33.12

TrTime 8.801 ± 4.270 7.260 ± 2.758 8.267 ± 4.207 49.825 ± 33.581

TeTime 0.0005 ± 0.0004 0.0003 ± 0.0001 0.0003 ± 0.0002 0.0004 ± 0.0003

dataset, which aims to generate the concrete compressive
strength based on eight-dimensional features (or variables).
The Energy1 and Energy2 tasks are both from the UCI
Energy dataset. Energy1 is to generate the energy efficiency
measured by the heating load; while Energy2 is to generate
the energy efficiency measured by the cooling load.

4.2 GP settings

In this part, the terminal set, the function set, the fitness
function, and major GP parameters are described. Note that
GP develops solutions using the elements from the terminal
set and the function set [22]. The function set contains
six simple arithmetic operators, i.e. add (+), subtract (-),
multiply (*), protected divide (/), sine (sin) and cosine (cos)
functions. Specifically, the protected division operator is
shown in (1) that considers the case when the divisor is
zero. In addition, the terminal set consists of input variables
(xn, n is the number of variables) and constant values that
are randomly selected from [−1, 1]. The terminal set and
the function set are set based on the existing symbolic
regression works [12, 18].

x/y =
{

x/y if y != 0
0 if y == 0

(1)

A fitness function should be pre-defined to evaluate how
well each individual has learned to solve a target problem
[22]. root mean square error (RMSE, shown in (2)) is
popularly utilized to evaluate symbolic regression tasks [12,
18], which is selected as the fitness function in this work.
In addition, major GP parameters are presented in Table 2,
which follow the settings of Zhang’s work [29], since Zhang
decides the suitable GP parameters using experiments for
symbolic regression problems in his work. Other default
parameters follow the settings of Koza’s works [13, 14],

who is known for pioneering the use of GP. Moreover, as
GP-based methods are not deterministic, each GP-based
method run 20 times and the results reported in this work
are average values of 20 runs.

RMSE =
√
√
√
√ 1

N

N∑

i=1

(yi − ŷi )2; (2)

where N is the number of samples; yi and ŷi are the real
output and the predicted output of the i sample respectively.

5 Experiment

In this section, the results of the proposed aMeGP are
analyzed by comparing with the three GP-based and four
nonGP-based reference methods.

5.1 Comparison with GP-basedmethods

In this part, the proposed aMeGP is compared with three
GP-based methods, i.e. GP and two memetic algorithms
(termed as MA BestInd and MA GenBestInd). Specifically,
MA BestInd applies local search on the best individual
of a GP run; while MA GenBestInd applies local search
on the best individuals of each generation during a run.
Tables 3 and 4 show the performance of the four methods
in training/testing RMSE, the solution size (the number of
the node in a GP solution), the training/testing time, and the
significance test based on Mann-Whitney U-Test. Note that
Mann-Whitney U-Test is often used to determine whether
two given independent samples have the same distribution
[26], which is used for significance test at the default 5%
significance level in this work.

3970 J. Liang and Y. Xue



Fig. 3 Comparison of aMeGP
with nonGP-based methods in
RMSE for testing (the smaller
the better)

3971An adaptive GP-based memetic algorithm for symbolic regression



Fig. 4 The performance in
RMSE at each generation during
evolution (the smaller the better
for RMSE)

3972 J. Liang and Y. Xue



In terms of RMSE, the proposed aMeGP outperforms
the other three methods for training on all the test
functions, except for function f5. On function f5, the four
methods achieve similar TrRMSE (RMSE for training)
values. In addition, aMeGP also performs better than others
in TeRMSE (RMSE for testing) generally. Specifically,
aMeGP outperforms GP in TeRMSE for 9 out of 11 cases,
and outperforms MA BestInd and MA GenBestInd for 10
and 9 out of 11 cases respectively. This reflects that the
proposed aMeGP is generally better than the reference GP-
based methods in symbolic regression. For example, on
function f2, the mean TeRMSE of aMeGP is 1.17E-1; while
those of others are 1.96E-1, 1.59E-1 and 1.44E-1. In terms
of the solution size, compared with the reference methods,
the results are varied that aMeGP solutions can be larger,
similar or smaller.

In terms of the time cost, aMeGP consumes more time
for training than the three reference methods. It is obvious
that aMeGP is more time-consuming than GP, since the
difference of aMeGP and GP lies in that aMeGP introduces
local search while GP does not, which can increase time
cost in aMeGP. In addition, compared with the other two
reference methods (i.e. MA BestInd and MA GenBestInd)
that also involve local search, aMeGP uses more training
time. This is because local search of MA BestInd and
MA GenBestInd is only applied on the best individuals;
while local search of aMeGP is invoked adaptively, which
involve more individuals. In contrast, compared with
GP, MA BestInd and MA GenBestInd, aMeGP consumes
similar or even less time for testing. This reflects that even
though aMeGP needs more time for training, the evolved
solutions are efficient.

5.2 Comparison with NonGP-basedmethods

In this part, the proposed aMeGP is compared with
four popularly-used symbolic regression methods, i.e.
SLR (simple linear regression), AR (additive regression),
REPTree (a decision tree based method) and SMOreg (a
support vector regression method).

Figure 3 presents the testing performance of the five
methods in RMSE that is the smaller the better. In Fig. 3,
aMeGP ranks first on 6 test functions (f1, f4, f5, f6, f7
and f8) out of 11 cases; while it ranks second or performs
similar to the second one on 4 test functions (f2, f9, f10 and
f11) out of 11 cases. Even though on the left one function
f3, AR and REPTree are better than the proposed aMeGP,
they cannot perform consistently well for most of the given
tasks. For example, aMeGP outperforms AR and REPTree
on functions f1, f2, f4 and so forth. Therefore, aMeGP
performs better than or similar to most reference methods
consistently.

6 Further analyses

In this section, the performance of aMeGP during evolution
is investigated, along with the three GP-based reference
methods. Figure 4 presents the training performance in
RMSE of the four methods during evolution. Note that it is
the smaller the better for RMSE.

In Fig. 4, it can be seen that aMeGP converges to
lower RMSE values than the other three reference methods
eventually for most of the given tasks. Specifically, aMeGP
achieves lower RMSE values at generation 50 for 9 out of
11 cases (i.e. functions f1, f2, f3, f6, f7, f8,- f9, f10, f11);
while it achieves similar RMSE values for the left two
cases (i.e. functions f4 and f5). For example, the RMSE
performance of aMeGP reaches around 0.05 on function f2;
while that of all the other three methods are all higher than
0.1.

Figure 4 also shows that aMeGP converges faster than
or similar to the other reference methods on all the given
tasks. Specifically, aMeGP converges faster than others
on four functions, i.e. f1, f2, f3, f7, especially at the first
several generations. In other words, the performance curve
of aMeGP in Fig. 4 is steeper than those of others, which is
obvious in the beginning of evolution. In addition, aMeGP
has similar convergence speed to the reference methods on
the left test functions.

In summary, the proposed aMeGP performs better than
the reference GP-based methods during evolution, as it
can converge to lower RMSE values with faster or similar
speeds. In other words, the convergence ability of aMeGP
is better than GP and two existing MA methods (i.e. fs-
bestFinal and fs-bestEachGen).

7 Conclusions

In this work, a new GP-based memetic algorithm for
symbolic regression is designed, which can balance global
exploration and local exploitation adaptively. This method is
termed as aMeGP (adaptive Memetic GP), which takes GP
as the base technique and introduces adaptive local search
into GP. Specifically, to balance global and local search,
aMeGP introduces the evolution degradation check and
the adaptive crossover/mutation operators into GP, which
helps to invoke and stop local search adaptively during
evolution. The proposed aMeGP is compared with GP-
based and nonGP-based symbolic regression methods on
both benchmark test functions and real-world applications.
The results show that aMeGP is generally better than both
GP-based and nonGP-based reference methods with its
evolved solutions achieving lower RMSE values for most
test cases. In addition, even though aMeGP consumes more

3973An adaptive GP-based memetic algorithm for symbolic regression



training time, its evolved solutions are efficient for testing.
Moreover, aMeGP outperforms the GP-based reference
methods in the convergence ability, which can converge to
lower RMSE values with faster or similar speeds.

Memetic algorithms have achieved success in various
areas, e.g. scheduling, routing and combinatorial optimiza-
tion problems. In real-life applications, multiple conflicting
points of view are often taken into account, which leads to
multiple objective optimization problems (MOP). Memetic
algorithms have been proved to be one of the most efficient
algorithms for single objective optimization. Therefore, the
attempt of extending memetic algorithms to multi-objective
optimization is increasing, which we would like to investi-
gate in the future.

Acknowledgments This study is funded by National Natural Science
Foundation of China (grant number 61902281 and 61876089)
and Tianjin Science and Technology Program (grant number
19PTZWHZ00020).

Compliance with Ethical Standards This article does not
contain any studies with human participants or animals performed by
any of the authors.

Conflict of interests Author Jiayu Liang declares that she has no
conflict of interest. Author Yu Xue declares that he has no conflict of
interest.

References

1. Al-Betar MA, Aljarah I, Awadallah M, Faris H, Mirjalili S (2019)
Adaptive β - hill climbing for optimization. Soft Computing
23(1):13489–13512

2. Aleb N, Tamen Z (2011) A memetic algorithm for program
verification. In: Proceedings of the UKSim 5th European
Symposium on Computer Modeling and Simulation, EMS 2011,
Madrid, Spain, November 16-18, 2011

3. Anjum A, Sun F, Wang L, Orchard J (2019) A novel continuous
representation of getic programmings using recurrent neural
networks for symbolic regression. arXiv:1904.03368

4. Azad RMA, Ryan C (2014) A simple approach to lifetime learning
in genetic programming-based symbolic regression. Evol Comput
22(2):1–30

5. Bansal JC, Sharma H, Arya KV, Nagar A (2013) Memetic search
in artificial bee colony algorithm. Soft Comput 17(10):1911–1928

6. Boryczka U, Szwarc K (2019) Selected variants of a memetic
algorithm for jsp – a comparative study. Int J Prod Res 44:1–16

7. Burlacu B, Affenzeller M, Kommenda M, Kronberger G (2018)
Winkler s.: Schema analysis in Tree-Based genetic programming

8. Chopard B, Tomassini M (2018) Simulated annealing. In: An
introduction to metaheuristics for optimization. Springer, Cham,
pp 59-79

9. Deb K, Poli R, Banzhaf W, Beyer H, Burke E, Darwen
P, Dasgupta D (2003) Floreano d.: Genetic and evolutionary
computation - GECCO

10. Dua D, Graff C (2017) UCI machine learning repository. http://
archive.ics.uci.edu/ml

11. Frank E, Hall MA, Witten IH (2016) Data mining: Practical
machine learning tools and techniques (fourth edition)

12. Izadi Rad H, Feng J, Iba H (2018) GP-RVM: Genetic programing-
based symbolic regression using relevance vector machine

13. Koza JR (1999) Genetic programming III: Darwinian invention
and problem solving, vol 3, Morgan Kaufmann

14. Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza
G (2006) Genetic programming IV: Routine human-competitive
machine intelligence, vol 5, Springer Science and Business Media,
Berlin

15. Krasnogor N, Hart WE, Smith J, Pelta DA (1999) Protein
structure prediction with evolutionary algorithms. Available at
http://eprints.uwe.ac.uk/11083

16. Kronberger G, Kammerer L, Burlacu B, Winkler SM, Kommenda
M, Affenzeller M (2019) Cluster analysis of a symbolic regression
search space. Genetic Programming Theory and Practice XVI
85–102

17. López U., Trujillo L, Martinez Y, Legrand P, Naredo E, Silva
S (2017) RANSAC-GP: Dealing with outliers in symbolic
regression with genetic programming. Eur Conf Gene Program
10196:114–130

18. de Melo VV (2014) Kaizen programming. In: GECCO ’14:
Proceedings of the 2014 conference on Genetic and evolutionary
computation, pp 895–902

19. Neri F, Eiben ÁE, Smith JE, Oca MAMD, Cotta C, Sudholt D
(2012) Handbook of memetic algorithms

20. Nguyen QH, Ong YS, Krasnogor N (2007) A study on the design
issues of memetic algorithm. In: IEEE Congress on evolutionary
computation, CEC

21. Pawlak TP, Krawiec K (2018) Competent geometric semantic
genetic programming for symbolic regression and boolean
function synthesis. Evol Comput 26(2):1–36

22. Poli R, Langdon WB, McPhee NF (2008) A Field Guide to
Genetic Programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, UK

23. Sabar NR, Aleti A (2017) An adaptive memetic algorithm
for the architecture optimisation problem. In: Artificial life
and computational intelligence: Third australasian conference,
ACALCI 2017, geelong, VIC, Australia, January 31–February 2,
2017

24. Shao W, Pi D, Shao Z (2017) Memetic algorithm with node
and edge histogram for no-idle flow shop scheduling problem to
minimize the makespan criterion. Appl Soft Comput 54:164–182

25. Trujillo L, Z-Flores E, Juarez P, Legrand P, Silva S, Castelli
M, Vanneschi L, Schütze O, Muñoz L (2018) Local search is
underused in genetic programming. Gene Evol Computation 119–
137

26. Vengatesan K, Bhaskar Ranjana M, Sanjeevikumar P, Mangrule
R, Kala V, Pragadeeswaran (2018). Performance Analysis of Gene
Expression Data Using Mann–Whitney U, Test ,701–709

27. Yang Y, Liu Y, Du L, Chang C, Wang D, Wang D (2010) MDE
based memetic algorithm using openmp and its application in
engineering project scheduling problems with dynamic due dates.
In: International conference on logistics systems & intelligent
management

28. Zflores E, Trujillo L, Schuetze O, Legrand P (2014) Evaluating
the effects of local search in genetic programming. Springer
International Publishing, Cham

3974 J. Liang and Y. Xue

http://arxiv.org/abs/1904.03368
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://eprints.uwe.ac.uk/11083
http://lulu.com
http://www.gp-field-guide.org.uk


29. Zhang C. Genetic programming for symbolic regression. Avai-
lable at https://pdfs.semanticscholar.org/e5ee/ddd04b8344fd4f39a
5836be686886c80df13.pdf

30. Zhang K, Cai Y, Fu S, Zhang H (2019) Multiobjective memetic
algorithm based on adaptive local search chains for vehicle routing
problem with time windows. Evol Intell 3:1–12

31. Zhong J, Liang F, Cai W, Ong YS (2018) Multifactorial genetic
programming for symbolic regression problems. IEEE Trans Syst
Man Cybern Syst PP(99):1–14

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jiayu Liang received her B.Sc. and M.Sc. degree in 2011 and 2014
respectively from University of Science and Technology Beijing,
China. She got her Ph.D degree in Computer Science from Victoria
University of Wellington, New Zealand. From 2018, she works as a
lecturer in Tiangong University, China. Dr. Liang focuses on research
areas, e.g. Evolutionary Computation, Multi-objective Optimization
and Image Processing. She has published over 10 papers in top journals
and international conferences in those areas.

3975An adaptive GP-based memetic algorithm for symbolic regression

https://pdfs.semanticscholar.org/e5ee/ddd04b8344fd4f39a5836be686886c80df13.pdf
https://pdfs.semanticscholar.org/e5ee/ddd04b8344fd4f39a5836be686886c80d f13.pdf

	An adaptive GP-based memetic algorithm for symbolic regression
	Abstract
	Introduction
	Goals

	Background
	Genetic programming
	GP for symbolic regression

	Memetic algorithms

	Methodology
	The proposed method: aMeGP
	Reference methods
	GP-based memetic algorithms
	NonGP-based methods


	Experiment preparation
	Dataset
	GP settings

	Experiment
	Comparison with GP-based methods
	Comparison with NonGP-based methods

	Further analyses
	Conclusions
	References


