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Abstract
Recently, there has been a promising tendency to generalize convolutional neural networks (CNNs) to graph domain.
However, most of the methods cannot obtain adequate global information due to their shallow structures. In this paper, we
address this challenge by proposing a hierarchical graph attention network (HGAT) for semi-supervised node classification.
This network employs a hierarchical mechanism for the learning of node features. Thus, more information can be effectively
obtained of the node features by iteratively using coarsening and refining operations on different hierarchical levels.
Moreover, HGAT combines with the attention mechanism in the input and prediction layer. It can assign different weights
to different nodes in a neighborhood, which helps to improve accuracy. Experiment results demonstrate that state-of-the-
art performance was achieved by our method, not only on Cora, Citeseer, and Pubmed citation datasets, but also on the
simplified NELL knowledge graph dataset. The sensitive analysis further verifies that HGAT can capture global structure
information by increasing the receptive field, as well as the effective transfer of node features.

Keywords Graph convolutional networks · Hierarchical representation · Semi-supervisded

1 Introduction

Graphs can encode complex geometric structures that lie
in the non-Euclidian domain. They can be studied with
strong mathematical tools [1], and nowadays have become
ubiquitous. For example, in e-commerce, to make accurate
recommendations, it is necessary to exploit the interactions
between users and products [2, 3]. In chemistry, a new
drug can be discovered by using a graph-based learning
method that models the molecules as a graph [4]. In citation
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networks, papers can be categorized into different groups
through their citation graphs [5, 6]. Moreover, there are
many unlabeled data in the real world and labeling data
is sometimes unrealistic and time-consuming. The semi-
supervised manner means that only a small amount of
labeled data is used to train the model. Consequently, it is
often crucial to analyze graphs in that situation, and the key
issue is to maximize the effective utilization of the feature
information of the unlabeled data [7].

As an approach to graph analysis, graph neural net-
works (GNNs) are closely related to graph embedding.
Graph embedding [8] is a method that learns to represent
graph nodes in low-dimensional vectors. Approaches such
as word embedding [9], DeepWalk [10], node2vec [11] have
achieved a breakthrough. However, because they are unsu-
pervised algorithms, they cannot perform in an end-to-end
fashion. The early GNNs employ a recursive mechanism.
Gori [12] and Scarselli et al. [13] first introduced the oper-
ation of neural networks to the graph. It consists of a
repeated application of propagation function until the node
states equilibrium. As a result, it suffers a high cost of
calculation. This problem is alleviated by Li et al. [14],
who propose to use gated recurrent units in the propagation
step. As deep learning achieves great success for Euclidean
data [15, 16], there is a more promising way to generalize
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convolution to graph domain. However, the existing deep
learning algorithm cannot be directly implemented to the
irregular graph data. Specifically, each graph has a differ-
ent size of node, and each node has a different size of
neighbor. It means that some important operations, like con-
volution, cannot be applied directly. Furthermore, the core
assumption that instances are independent of each other is
not established in non-Euclidean space [17, 18].

Nevertheless, there are generally two categories of
graph convolutional networks (GCNs) [19]: spatial-based
and spectral-based. Spatial-based methods construct a
new feature vector for each node using its neighborhood
information. The convolution of the spectral-based methods
is defined by decomposing the graph signal on the spectral
domain and applying a spectral filter to the spectral
components [20]. However the learned filter depends on the
graph structure; the model trained cannot be directly applied
to another graph. Consequently, the spatial-based methods
begin to increase due to the ability to work with a different
graph and weight sharing. More recently, graph attention
networks (GATs) [5] have been developed by employing
attention mechanisms in GCNs. They are more advanced by
making the operator focus on the most relevant parts of the
inputs.

In the present work, the unique architecture of a
hierarchical graph attention network (HGAT) was proposed
for semi-supervised node classification on the graph. Our
work was based on GAT, which was introduced by
Petar et al. [5]. We applied a hierarchical mechanism in
our model, which could increase the receptive field of
nodes and more effectively transfer node features. The
HGAT consists of an input layer, a hierarchical layer,
and a prediction layer. Specifically, every level in the
hierarchical layer concludes two symmetrical calculations:
the coarsening operation and the refining operation. After
the coarsening operation, we got a smaller graph with
hyper-nodes. It could reflect the local structure and help to
exploit global information through overlying the operation.
Before the refining operation, we concatenated the node
representations of the coarsened graph with the next-level
refined node representations. The refining operation was
used to refine the graph structure of the previous level. Such
a model can capture node information from most relevant
neighbors, leading to a better node representation. To our
best knowledge, the experiments show that our method had
the best overall performance among different citation and
knowledge graph datasets.

There are three main contributions of our work. First, for
the first time, the attention mechanism was combined with
the hierarchical representation learning on the graph, which
could help capture global structure information. Second, the
coarsening and refining operation based on the contraction
sets were defined. Third, our method achieved a better

performance than previous work in the semi-supervised
node classification task. Notably, parameter sensitivity
analysis showed that the proposed HGAT could get a larger
receptive field, and more effectively transfer node features.
All the experiment codes will be available at https://github.
com/LeeKangjie after the review process.

The remaining sections are organized as follows. A
review of the related work is given in Section 2. The
methodology adopted in this paper is described in Section 3.
Section 4 provides a comparative experiment and analysis.
Finally, we summarize the paper in Section 5.

2 Related work

In this section, some previous works about the hierarchical
representation learning on the graph and the graph
convolutional networks are reviewed.

2.1 Hierarchical representation learning on graph

Some works have been raised to get global information
using hierarchical models. Chen et al. [21] propose the
hierarchical representation learning for networks (HARP).
It works through finding a smaller graph that can
approximate the global structure, then using the embedding
method to learn the initial representation. Finally, it
inductively embeds the hierarchy of graph from the coarsest
one to the original graph. Homologous as Chen, Liang
et al. [22] use a hybrid matching technique to maintain
the backbone structure of the graph. Then they apply
existing embedding methods on the coarsest graph and
refines the embedding to the original graph. However, these
two methods are both unsupervised, which doesn’t use the
node features. Besides they are both designed for large
graph embedding, which introduces a huge computational
overhead, not suitable to deal with the node classification
task here. Hu et al. [23] propose hierarchical graph
convolutional networks (HGCN) to increase the receptive
field. It first repeatedly assigns nodes with similar structures
into a hyper-node and then refines the representation
for each node. However, each hierarchical level includes
a GCN operation, which suffers from the Laplacian
smoothing problem. Ying et al. [24] propose a differentiable
graph pooling module that could generate hierarchical
representations of graphs. The module can be combined
with numerous graph neural network architectures in an
end-to-end fashion. However they orient for link prediction
and graph classification, therefore, cannot be directly
applied in node classification tasks. Lv et al. [25] propose
ant colony based multi-level network embedding (ACE) to
preserve the features of hierarchical clustering structures. It
coarsens the graph by an ant colony based algorithm, then
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the embedding vectors are generated from multiple layers of
the coarsened graph. The idea is very impressive and we can
learn from it. But, the final vector can be very large and it
cannot handle node classification tasks either. In conclusion,
we can see that hierarchical is a useful trick that could help
to get a better result if used appropriately.

2.2 Graph neural networks for semi-supervised
learning

Advances in the graph convolutional networks are generally
categorized as spectral approaches and spatial approaches.
The spectral approaches have been successfully applied in
node classification tasks. In the work of Bruna et al. [20],
the eigendecomposition of the graph Laplacian is computed.
Then, the convolution operation is defined, which opens
a precedent for graph convolutional networks. Inspired
by that, Henaff et al. [26] introduce a parameterization
of the spectral filters. Then, the smooth coefficient is
used to localize them in space. Because the computation
of Laplacian eigenvector is computation inefficiently,
Defferrard et al. [27] raise a method to avoid it. They
build a K-localized ChebNet by approximating spectral
filter with Chebyshev polynomials up to the Kth order.
Later, Kipf et al. [6] simplify it by restricting the filters
to the 1st order, which means use the 1-step neighborhood
information. Based on Kipf work, Zhuang et al. [28]
raise a method to jointly consider global consistency and
local consistency. However, all the spectral-based methods
depend on the Laplacian eigenbasis of the given graph,
which is not portable. In addition, the computation is non-
parallel. These characteristics limit their development to
some extent. As for spatial approaches, the main challenge
is how to define the operator that can work with different-
sized neighborhoods at the same time maintain the weight
sharing properties. To achieve that, Duvenaud et al. [29]
present a method through learning a specific weight matrix
for each node degree in the molecular feature extraction
task. Atwood et al. [30] present a model to do the node
classification based on the diffusion-based representations.
It defines the neighborhood using a transition matrix while
learning weights for neighborhood degree and each input
channel. Then Niepert et al. [31] present a general approach
by extracting and normalizing locally connected regions
to learn convolutional neural networks for an arbitrary
graph. After that Hamilton [32] introduces GraphSAGE, a
general inductive framework to generate node embedding.
It operates by sampling the local neighborhood of nodes
and perform aggregators over it. Besides that, to enable
better structure-aware representation, Xu [33] explore a
jumping knowledge network (JK-Net) to leverage different
neighborhood ranges of each node. Based on GCNs,
Petar et al. [5] propose GAT by introducing the attention

mechanism. The architecture leverages a masked self-
attentional layer to enable different weights to different
nodes. By stacking layers, the node can also attend over
their neighborhood features. It achieves state-of-art results
among established benchmarks and allows for dealing with
variable sized inputs. Due to these benefits, the attention
mechanism is employed in our method.

3Methodology

In this section, we define some notations used in the
representation of HGAT architecture. Then we decompose
the architecture into input layer, hierarchical layer, and
prediction layer, and explain the implementation details.

3.1 Preliminaries

An undirected graph is represented by G = (V , E), where
V is the set of nodes (also known as vertices ), E is the
set of edges. The notation || means the element number in
a particular set. The notation vi and ei represent the ith

node and the ith edge respectively. The adjacency matrix is
represented by A = [aij ] , which is nonnegative. Notation
D = diag(d1, d2, ..., dn) is the degree matrix of A, where
di = ∑

j aij is the degree of vi . The undirected graph

is associated with node representation matrix Hn×f (also
known as node features), where n is the total node number,
f is the node features dimension.

3.2 HGAT architecture

As shown in Fig. 1, the workflow of our HGAT architecture
is divided into three parts: input layer, hierarchical
layer, and prediction layer. Specifically, the hierarchical
layer includes l levels, each of which consists of two
symmetrical calculations: the coarsening operation and the
refining operation. We employed GAT as an input layer,
combined with a multi-head attention mechanism [5] to
stabilize the learning process. It takes the graph and the
node representation H0 as input, and outputs the node
representation H1. In the hierarchical layer, taking the ith

level as an example, the coarsening operation derives a
coarsened graph Gi+1 and node representation matrix Hi+1,
which will be fed into the next level. Then, we concatenated
Hi+1 and next-level refined node representation matrix
H ∗ resulting in H ∗

i+1. Through putting H ∗
i+1 into the

refining operation, we finally obtained the ith level node
representation matrix. After that, in order to classify each
node, we employed a softmax classifier after the GAT.
Outputting the classes of each node in the one-hot encoding.
An example of the two-level hierarchical layer is shown in
Fig. 2. After each coarsening operation, the graph becomes
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Fig. 1 The architecture of our
method. From left to right, there
are three layers: input,
hierarchical, and prediction. The
input layer employs multi-head
GAT to learn the node
representations. The hierarchical
layer includes l levels, each of
which has symmetric coarsening
and refining operations. We
employed a softmax classifier
after the GAT in the last
prediction layer

smaller. Before the concatenation, the smaller graph needs
to be refined first.

We employed the hierarchical mechanism in the architec-
ture of our model. Because it plays a key role in increasing
the receptive field, it could help improve classification accu-
racy. At each hierarchical level, after the graph coarsening
operation, the refining operation was used to help recover
the graph structure. It would lead to an effective transfer of

a node feature to the most relevant one. Through iteratively
refining operations, a node can receive information from
further places. More details can be found in the description
of the hierarchical layer.

As for the running time of our algorithm, it was
basically the same as GAT. GAT needs to compute attention
coefficients between every two nodes, which demands
numerous parameters to be learned. In the hierarchical layer

Fig. 2 Example of the two-level
hierarchical layer. From left to
right, the coarsened graphs
appear with the corresponding
node representations after the
coarsening operation. Then
through iteratively refining
operation and concatenation, we
get the final output
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of our method, we only need to do a matrix multiplication,
as shown in the subsequent section, in each level, which
has no parameters to be learned. As a result, our method
could improve accuracy without a big sacrifice of efficiency
compared to GAT.

3.2.1 Input layer

Because of the promising performance of GAT, we
employed attention mechanisms in the input layer. More-
over, we used a multi-head mechanism to stabilize the
learning process. The layer took initial G0 and H0 as input,
and the output node representation matrix H1 was calculated
as:

H1 =
K⋃

k=1

σ(αkWkH0) (1)

where ∪ represents concatenation, K is the multi-head
number, αk is a normalized attention coefficient matrix, Wk

is the corresponding transformation matrix [5], and σ () is
the nonlinearity ELU function.

3.2.2 Hierarchical layer

The hierarchical layer involves l levels, as shown in Fig. 1,
each level consisting of a coarsening operation and refining
operation. The hierarchical layer is based on the assumption
that nodes have similar connections are likely to share their
features with each other.

Coarsening is a type of graph reduction, which can
interpret the graph transformation using a set of constraints.
We first expressed a surjective map from the node set Vi to
Vi+1 as ϕi , then defined the set of nodes V r

i of Vi mapped
onto the same node vr of Vi+1 as a contraction set, which
is formulated in (2). We conducted the equivalent structure
selection and similar structure selection one after another to
construct all the contraction sets.

V r
i = {v ∈ Vi : ϕi(v) = vr} (2)

During the equivalent structure selection, we selected
nodes having the same neighbors to form contraction sets.
Also, we can say nodes are equivalent if their corresponding
rows in the adjacency matrix are identical. Each set
corresponds to a hyper-node in the coarsened graph. For
instance, as the example in Fig. 3 shows, nodes B and C

were selected to form a contraction set.
Then, we performed a similar structure selection.

Inspired by heavy edge matching [34], the connection
strength between node vj and vk is defined as (3).

si(vj , vk) = Ai(vj , vk)
√

Di(vj )Di(vk)
(3)

where Ai and Di are adjacency matrix and degree matrix of
graph i, respectively.

As nodes with fewer neighbors have fewer chances of
being selected in the contraction set, we sorted all the
nodes besides the contraction sets into ascending order of
degrees to give these nodes higher priority in terms of
selection. If nodes had the same degree, we sorted them into

Fig. 3 Example of graph coarsening from G1 to G2. From left to right,
we performed the equivalent structure selection and similar structure
selection one after another to construct the contraction sets. From top

to bottom, we used the contraction sets to derive the coarsened graph
G2. The adjacent matrix value of G2 after being directly calculated
using (6) is reflected on the edges
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ascending order of their row number in the adjacent matrix.
We iteratively picked up the node vj besides the contraction
sets and calculated the connection strength between all the
neighbors besides the contraction sets. Then, we selected
the pairs having the largest connection strength as a new
contraction set. In particular, if a node didn’t have neighbors
besides the contraction sets, we selected it alone as a
contraction set. Finally, every node would be selected in
the contraction sets. As the example in Fig. 3 shows, after
sorting the degree of node A, D, E, F , and G, we first
picked up node G. Because it only had one neighbor F ,
we selected node F and G to form a contraction set. Then,
we picked up the rest node which had a minimum degree,
namely node D. After calculating the connection strength,
we selected a pair (D, E) as a contraction set, for they had
the largest value. Finally, because the single node A didnot
have neighbors besides the contraction sets, it was selected
as a contraction set itself.

To obtain the coarsened graph Gi+1 from Gi including
its node representation matrix Hi+1 and adjacency matrix
Ai+1, we defined our contraction matrix Mi based on all the
contraction sets.

Mi(r, h) =

⎧
⎪⎨

⎪⎩

1

|V r
i | , if vh ∈ V r

i ,

0, otherwise.

(4)

where r is the contraction set number, h is the node number
in Vi , and V r

i is a contraction set in Gi .
The node representation matrix Hi+1 and adjacency

matrix Ai+1 of Gi+1 are determined by (5) and (6)
respectively.

Hi+1 = MiHi (5)

Ai+1 = MiAiM
T
i (6)

The graph coarsening operation can capture the global
structure, and neglect some details. As the hierarchical
level increased, the number of nodes decreased. At each
hierarchical level, the coarsening techniques reduced the
size of the graph by an approximate factor of two, which
offers control over the size. We then introduced the refining
operation to help recover its structure. The refinement
meant calculating the node representation of the current
graph from the node representation of its coarsened graph
as illustrated in (7). It would average the node features
once in the hyper-node, leading to an effective transfer of
node features to the most relevant one. Through iteratively
refining operations, a node could receive information from
further places, that is, obtain a large receptive field.

Hi+1 = MT
2l+1−iHi (7)

where Hi+1 is the refined graph node representation, and Hi

is the original graph node representation.

Algorithm 1 summarizes the steps of hierarchical layer
calculation. The hierarchical layer input H1 and finally
output H2l+1.

3.2.3 Prediction layer

Finally, we applied a softmax classifier after GAT to make
the prediction.

Hout = sof tmax(
1

K

K∑

k=1

αkWkH ∗
1 ) (8)

where Hout ∈ R
|V |×|Y | is the prediction of nodes belonging

to the class yi ∈ |Y |, and H ∗
1 is the concatenated node

representation of H1 and H2l+1.
To train the proposed model for classification, the cross-

entropy error on the labeled nodes was defined:

L = −
∑

i∈YL

|Y |∑

j=1

Zij log Hout
ij (9)

where YL represents the node indices that have labels, Z ∈
R

|V |×|Y | is the mask matrix. Zij will be 1 if node i belongs
to class j ; otherwise, it will be 0.
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Table 1 Summary of datasets used in experiments

Cora Citeseer Pubmed Simplified NELL

Type Citation network Knowledge graph

#Nodes 2708 3327 19717 9891

#Edges 5429 4732 44338 13142

#Classes 7 6 3 210

#Features 1433 3703 500 5414

Labeling rate 0.052 0.036 0.003 0.01

4 Experiment and analysis

In this section, the validity of our methodology is
verified by presenting the results from several experiments.
The experiments were implemented on a Windows 10
system with 4 GPUs and 32GB RAM. They are based
on a TensorFlow 1.14.0 package and programmed with
Python 3.7. Firstly, we present the datasets used in the
semi-supervised node classification task. Then, we list
the experiment parameters and compare the results with
the previous methods. Finally, a sensitivity analysis is
conducted.

4.1 Experiment setup

4.1.1 Datasets

The citation network datasets closely followed the exper-
iment setup in Yang et al. [35]. Specifically, there were
three citation network datasets: Cora, Citeseer and Pubmed.
The nodes were documents and edges were citation
links. Each document had a sparse bag-of-words feature
vector and a class label. We also included a knowledge
graph dataset: never-ending language learning (NELL).
This is because the preprocessing of it needed more
than 64GB memory, which was infeasible for us. To
further verify the algorithm’s robustness, we employed the
simplified NELL provided by Zhuang et al. [28]. The
details of the datasets are summarized in Table 1. The
labeling rate refers to the ratio of labeled nodes to total
nodes.

Table 2 Results of node
classification in terms of
accuracies for Cora, Citeseer,
Pubmed and simplified NELL

Method Cora Citeseer Pubmed Simplified NELL

DeepWalk[10] 67.2% 43.2% 65.3% 28.2%

Planetoid[35] 75.7% 64.7% 77.2% 37.7%

GCN[6] 81.5% 70.3% 79.0% 38.0%

GAT[5] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3% 38.2 ± 0.6%

HGAT 83.7 ± 0.3% 73.3 ± 0.4% 79.8 ± 0.1% 41.1 ± 0.5%

4.1.2 Parameter setting

The hyper-parameters were set as follows. The datasets
were all trained for a maximum of 100,000 epochs using
Adam [36] with a learning rate of 0.005 and early stopping
with a window size of 100, which meant the training
would stop if the validation loss didnot decrease for 100
consecutive epochs. The hyperparameters were optimized
for each dataset. For the Cora dataset, the hierarchical
level was 1, and the input layer consisted of 8 attention
heads computing 8 features each. The prediction layer
consisted of 1 attention head, with L2 regularization of
0.001, and dropout of 0.6 applied to the layer input. The
hyperparameter in Citeseer dataset was the same as Cora
except for a higher L2 regularization value of 0.004, and the
hierarchical level was 2. For the Pubmed dataset, we chose
a lower dropout rate of 0.4 and set the L2 regularization to
0.002. The prediction layer consisted of 8 attention heads.
The hierarchical level was 1. For the simplified NELL
dataset, we computed 210 features for each head and set the
L2 regularization to 0.0003, and the hierarchical level to 2.
The remaining parameter settings were the same as Cora.

4.2 Node classification results

The performance of our method was compared with the
baseline methods in the semi-supervised node classification.
Table 2 summarizes the experimental results over four
datasets. With random weight initializations, we reported
the mean accuracy of our method in an inductive manner of
20 runs.

The comparison results in Table 2 are very encouraging.
The HGAT outperforms all the baseline methods to the
best of our knowledge, which verifies the effectiveness of
the hierarchical layer. Specifically, HGAT exceeds GAT
on Cora, Citeseer, and Pubmed by 0.7%, 0.8%, and
0.8% respectively. For the simplified NELL dataset, our
method outperformed the GAT by 2.9%. The improvement
was much bigger than the other two. It demonstrated
the significance of being able to learn global structure
information by the effective transfer of node features.
DeepWalk is a random-walk based algorithm, which
cannot model the attribute information. That leads to
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poor performance. Another random-walk based algorithm
Planetoid had a relatively poor performance too, for it could
not fully utilize the graph structure knowledge due to its
random sampling strategies. To avoid this problem, the
neighborhood aggregation scheme was employed by GCN.
It produced node embedding by using a linear function on
the graph Laplacian spectrum. However, the shallow model
restricted the scale of the receptive field. As for GAT, it can
be seen removing the hierarchical layer in our algorithm
to some extent. It is relatively improved by employing

Fig. 4 Visualization of graphs on the Cora dataset. a t-SNE plot of the
initial node representations. b t-SNE plot of node representations of
the 1st level hierarchical output. c t-SNE plot of node representations
of the 2nd level hierarchical output. The clusters are represented by
different colors. The node size is proportional to the number of nodes
it contains

the trick to assign different weights to different neighbors.
However, it is still inferior to our method. In conclusion,
as there were fewer training samples in the semi-supervised
node classification task, the baseline method with a fixed
receptive field was unable to transfer the feature to more
nodes. Although there are overlaps of the variance intervals
compared to GAT, it can be seen that our algorithm
had a relatively low variance and high mean value.
Making the hypothesis that our algorithm accuracy is less
than GAT, the significance level of all datasets is less than
0.001, which means we have 99.9% confidence in saying
that our method is more advanced than GAT. Our HGAT
method is more promising in terms of improving accuracy
than others by learning global information. Because,
in the hierarchical layer, more receptive fields can be
obtained, most importantly, node features can be effectively
transferred in the hierarchical layer.

For an intuitive understanding of the coarsening opera-
tion in the hierarchical layer, we made the t-SNE [37] plots
of the node representations, as seen in Fig. 4. Different
node colors correspond to different classes, each of which
is clustered by applying K-means on the node representa-
tions. Also, there are seven different colors in the graph. The
node size is proportional to the number of nodes it contains.
Figure 4a is a visualization of the original Cora dataset fea-
tures, different nodes being mixed together. Figure 4b is the
visualization of the 1st hierarchical level outputs. The total
number of nodes is the same as Fig. 4a. However, we can see
the cluster of different classes, which verifies the discrimi-
native power across the seven topic classes of our algorithm.
Figure 4c is the visualization of the 2nd level output. As the
hierarchical level increases, the graph size becomes smaller.

4.3 Parameter sensitivity

4.3.1 Lower labeling rate impact

As in reality, there are many situations that we cannot get
more training data. It is important for the algorithm to work
in this scenario. In this section, we decrease the labeling
rate of two different class datasets: Citeseer and simplified
NELL. And the performance of our method is compared to
others. We decrease the labeled number of citation datasets
per class from 20 to 15, 10 and 5, getting the labeling

Table 3 Results in terms of classification accuracies for Citeseer with
different labeling rates

Method 0.036 0.027 0.018 0.009

GCN 70.3% 69.7% 68.6% 57.6%

GAT 72.5% 69.9% 68.8% 64.2%

HGAT 73.3% 70.6% 70.5% 67.4%
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Table 4 Results in terms of classification accuracies for simplified
NELL with different labeling rates

Method 0.01 0.006 0.003 0.001

GCN 38.0% 37.6% 22.0% 16.2%

GAT 38.2% 33.9% 23.3% 16.4%

HGAT 41.1% 38.3% 23.6% 21.8%

rate: 0.036, 0.027, 0.018 and 0.009 respectively. We use
a simplified NELL dataset of labeling rate: 0.01, 0.006,
0.003 and 0.001 following the method of Zhuang et al. [28].
The corresponding average result of 20 runs is reported in
Tables 3 and 4.

From the tables above, it can be seen that our method
beats the baselines in different labeling rates. With
the labeling percentage decreasing, the accuracy margin
between HGAT and the best baseline method becomes
bigger. Especially when the labeling rate is 0.009 on the
Citeseer dataset, the accuracy of HGAT exceeds the GCN
and GAT by 9.8% and 3.2% respectively. For the labeling
rate of 0.001 in simplified NELL, the accuracy of HGAT
exceeds the GCN and GAT by 5.6% and 5.4% respectively.

With the labeling rate decreasing, the connections between
the labeled and unlabeled nodes become fewer, that is,
the number of edges used for propagation features are
fewer. Only when the receptive field is large enough and
the information from the unlabeled nodes is passed to the
labeled one efficiently can we get a better result. Thus,
the results prove that the proposed HGAT can get a larger
receptive field and have a more effective node features
transfer. In other words, by introducing the hierarchical
layer, our method is more robust in much lower training data
situations.

4.3.2 Effects of the hierarchical level

The hierarchical level is a key factor in Algorithm 1. A too
high value will produce a “smoothing” effect, causing an
inferior result. A too low value will not use larger receptive
field information. For a better understanding of the hier-
archical effect, we analyzed the accuracy of two different
labeling rates with different hierarchical levels as shown
in Fig. 5.

It can be seen from Fig. 5, before the peak point, that the
accuracy grows as the hierarchical level increases. Then the

(a) (b)

(c) (d)

Fig. 5 Results of HGAT with varying hierarchical levels in terms of accuracies on (a) Cora dataset, b Citeseer dataset, c Pubmed dataset, and d
simplified NELL dataset. Two labeling rates of different datasets are shown in the legend
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accuracy falls with a higher hierarchical level. This could be
explained by the fact that a higher hierarchical level helps
capture the useful node features by increasing the receptive
field. Nevertheless, too high levels lead to a bad feature
because of the smoothing effect. The best hierarchical level
for Cora and Citeseer becomes larger as the labeling rate
decreases. It moves from 1 to 3 for the Cora dataset and
moves from 2 to 4 for the Citeseer dataset. However, the
best hierarchical levels for Pubmed and simplified NELL
are the same in two different labeling rates. This could be
explained that the labeling rate for Pubmed is extremely
sparse, and the advantages of the hierarchical mechanism
are not obvious in this case. Although the labeling rate of
simplified NELL is the same order of magnitude as Citeseer,
there are many more classes in their classification tasks. On
average, for each class, the training number is still extremely
sparse.

5 Conclusions and future work

In this work, we presented a novel hierarchical graph
attention network for semi-supervised node classification.
Through employing a hierarchical layer, the larger receptive
field of nodes could be obtained, and node features could
be effectively transferred. Besides, our method didnot need
a costly matrix operation. It could be parallelized across
all nodes. The results show that our method achieved state-
of-the-art performance on four different datasets. There are
several possible improvements that could be addressed in
future work. Firstly, our method could be extended to other
interesting tasks like graph classification, which is useful in
practice. Secondly, many other datasets like text could also
be treated as graphs. How to implement our method to these
datasets is expected to be explored. Finally, our method
cannot be directly applied to the directed graph, which is
also due to be improved.
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