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Abstract
Salient object detection has witnessed rapid progress, despite most existing methods still struggling in complex scenes,
unfortunately. In this paper, we propose an efficient framework for salient object detection based on distribution-edge
guidance and iterative Bayesian optimization. By considering color, spatial, and edge information, a discriminative metric
is first constructed to measure the similarity between different regions. Next, boundary prior embedded with background
scatter distribution is utilized to yield the boundary contrast map, and then a contour completeness map is derived through a
wholly closed shape of the object. Finally, the above both maps are jointly integrated into an iterative Bayesian optimization
framework to obtain the final saliency map. Results from an extensive number of experimentations demonstrate that the
promising performance of the proposed algorithm against the state-of-the-art saliency detection methods in terms of different
evaluation metrics on several benchmark datasets.

Keywords Background scatter · Contour completeness · Iterative Bayesian · Salient object detection

1 Introduction

Saliency detection is concentrated on detecting the most
attractive objects in an image. Recently, this area has
witnessed rapid progress. As a preprocessing procedure,
automatic saliency detection has been widely used in a
variety of computer vision tasks such as image segmentation
[1], object recognition [2], compression [3], image retrieval
[4], de-blurring [5], and others.

Several saliency models have been proposed in the past
years. Due to the lack of a uniform definition of salient
objects, most salient object detection methods are based
on effective assumptions. Contrast prior is one of the most
popular principles adopted by various kinds of models
from either a local or global view [12, 13]. Essentially,
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local contrast-based methods [14] prefer to detect the high-
frequency information such as edges, failing to pop out the
salient holistic object, as shown in Fig. 1b. On the contrary,
global contrast-based methods can locate the salient object
while the performance of these methods is limited in such
scenarios when the foreground regions are complex and
with diverse appearance, as shown in Fig. 1c [13].

To address the limitation of the contrast cue, boundary
prior is also applied to detect salient regions, where the
image boundary areas are looked upon as background [15–
17]. For example, Yang et al. [15] generated the saliency of
image regions via manifold ranking, in which the regions on
four boundary sides are treated as queries. However, such
methods are fragile and limited when the object appears on
the image boundary. To overcome this limitation, several
improvement mechanisms have been proposed. Lu et al.
[18] proposed an effective method based on dense and
sparse reconstruction using the background templates. Xia
et al. [19] exploited corner information together with the
convex hull to extract background seeds. Li et al. [9]
removed the top 30% border pixels with a considerable
color difference among a border set. Wang et al. [20]
dropped the untrustworthy superpixels with sharp edge
out of the border set to obtain the reliable background
regions. Zhou et al. [21] used diffusion-based techniques
on the proposed sparse graph. All of them perform well
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Fig. 1 Examples to illustrate the
differences among various
saliency models. (a) Input; (b)
FT [6]; (c) PCA [7]; (d) GS [8];
(e) LPS [9]; (f) RR [10]; (g)
MAP [11]; (h) Ours; (i)
Ground-truth
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in easy cases, but they still struggle in complex scenes for
two reasons: 1) the distinctiveness of their calculation is
confined to the border set instead of the entire image; 2) their
constructed similarity metric is weak, as shown in Fig. 1d-e.

Furthermore, it is insufficient for saliency detection
based on simple boundary prior, especially when the
image has an intricate background structure or the
salient object has a similar appearance with non-salient.
Accordingly, a variety of methods have been proposed.
Some researchers committed to conducting a robust
discriminative matrix based on high-level information to
enhance the difference between object and background. Lee
et al. [22] concatenated encoded low-level distance map
and high-level features to compute saliency. Hou et al.
[23] introduced short connections to the Holistically-Nested
Edge Detector (HED), which can effectively combine rich
multi-scale features to identify the whole salient object and
accurately capture its boundary. Liu et al. [24] proposed
Deeply-supervised Nonlinear Aggregation (DNA) to make
better use of the complementary information on various
side-outputs by using a nonlinear side-output prediction
aggregation. Even though these models show promising
performance on benchmark datasets, they need to collect
large hand-labeled images, yet expensive to set up the

learning framework. On the contrary, based on the boundary
prior, different propagation models have been put forward
to improve the visual quality of saliency maps. Li et al.
[10] estimated the saliency via regularized random walks
ranking, Jiang et al. [11] formulated saliency detection
based on Markov absorption probabilities on an image
graph model, and Yu et al. [25] presented a cross-diffusion
process for salient object detection. However, they still
suffer from a saliency overestimation of the background
when the background is clustered, and the similarity metric
is inefficient. Besides, they may not be able to highlight
salient objects fully and may even produce erroneous
results, because the graph-based approaches ignore the
overall consistency between different regions of the salient
object, as depicted in Fig. 1f and g.

In this paper, we propose a novel saliency detection
method, which is a hybrid of background scatter and
foreground contour completeness. The pipeline of the
proposed method is depicted in Fig. 2. First, we derive
superpixels from an edge guided segmentation. Different
from previous methods for the extraction of a robust
background, we consider it from the global view. Namely,
the background scatter of the whole image is introduced
to remove the foreground noise from the border set (BS)

Fig. 2 Main pipeline of the proposed saliency detection algorithm on an example image
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by setting different thresholds for different boundaries, so
then the solid boundary background (BG) can be achieved.
Based on the boundary prior, a boundary contrast saliency
map is then generated. Besides, with the help of the
BG together with the boundary contrast saliency map, a
contour completeness map can be produced by considering
the expectation of times of the regions being activated in
a hierarchical segmentation space. Finally, we refine the
integrated result to obtain a more smooth and accurate
saliency map based on an iterative Bayesian optimization
framework. Comprehensively, the main contributions of this
proposed research lie in the following aspects:

(1) We proposed a novel model for saliency detection via
background scatter and foreground contour complete-
ness. A selective mechanism for robust background
nodes is presented based on background scatter. To
maintain the completeness of the salient object, the
contour completeness saliency map is derived via the
completely closed shape of the object.

(2) An iterative Bayesian optimization framework is pro-
posed to achieve improved performance by optimizing
the integration result of background-based saliency map
and contour completeness saliency map into a more
favorable result.

(3) Extensive experiments and comprehensive analysis are
conducted on four public datasets that demonstrate the
effectiveness of the proposed method against state-of-
the-art saliency detection methods.

The work in this paper is a substantial extension of
our preliminary study titled “A hybrid of background
scatter and foreground contour completeness for salient
object detection” [26] (referred to as BSFC). Three-fold
extensions are made upon BSFC in this paper, namely
algorithm, framework, and experiment. Specifically, this
paper proposes to additionally develop a discriminative
metric to measure the similarity between different nodes,
which can improve the effectiveness of the proposed
algorithm (as demonstrated in Section 2.1). Secondly, we
improve the original framework by adding a refinement
step, which can highlight the foreground while suppressing
the background (as demonstrated in Section 2.5). Lastly, we
conducted more plentiful experiments by comparing with
more state-of-the-art methods and implementing the more
comprehensive and in-depth analysis of the algorithm.

2 The proposed approach

The remainder of the proposed algorithm is organized as
follows. First, a mechanism for extracting robust boundary
background regions based on scatter prior is proposed.
Next, two saliency cue maps (boundary contrast map and

contour completeness map) are generated via two different
computational schemes, and lastly, refinement to obtain the
final saliency map is proposed.

2.1 Background scatter

The structured random forest edge detector [27] to derive
the probability of boundary (PB) is adopted, so then
superpixels are obtained by thresholding an ultrametric
contour map (UCM) based on PB. Let us define the initial
segmentation P0 = {Ri} and the number of regions is K0.
Based on the superpixels segmentation result, an undirected
weighted graph G =< V, E > is constructed, where V

is the set of superpixels, and E is weighted by an affinity
matrix.

Boundary prior is a handy cue that has been widely used
in saliency detection that assumes the image boundary as
background regions. However, it may lead to adverse effects
if we directly use all border nodes as background when
the object appears on the border. Accordingly, we perform
boundary analysis to exclude salient superpixels on the four
boundaries of the image. In an image, the salient regions
usually represent a similar color and compact spatiality as
well, while non-salient regions generally show a different
appearance and loose scatter around. Hence, we introduce
the scatter prior measured by spatial variance that takes the
complete image as the research object instead of the border
set (BS). In detail, it is defined as below:

Divc(i) = normalize(

N∑
j=0

wij · |sj − ρi |), (1)

ρi = normalize(

N∑
j=0

wij · sj ). (2)

Herein, si and ρi indicate the position and the weighted
mean position of superpixel i, respective; N = K0

represents the number of superpixels; normalize(x) is a
function that normalizes x to [0,1]; wij is the edge weight
used to measure the similarity between different nodes. At
this point, a joint metric taking the color difference, spatial
distance, and edge information into consideration is adopted
to compute the edge weight wij . The following aspects are
considered:

(1) According to the cognitive property of color similarity,
image regions with similar colors usually belong to the
same class.

(2) According to spatial proximity property, spatially
adjacent image regions are likely to share the same
label.

(3) In some cases, using the edge map can be better
to highlight the outline between foreground and
background than (1) and (2), as shown in Fig. 3.
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Fig. 3 Effects of edge-weight.
(a) Input; (b) Only using color
affinity matrix; (c) Only using
spatial distance affinity matrix;
(d) Using both color and spatial
distance affinity matrix; (d)
Edge detection by [27]; (e) The
proposed affinity matrix
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Based on the above considerations, the proposed edge
weight is formulated as:

wij = exp(−dc(i, j) + ds(i, j) + de(i, j)

2σ 2
w

), (3)

where σw controls the strength of weight between a pair
of nodes, σw = 0.1 is empirically set, dc(i, j), ds(i, j),
and de(i, j) represents the color difference, spatial distance,
and contour magnitude, respectively. The color difference
dc(i, j) is defined:

dc(ij) = |Ri − Rj |, (4)

where |Ri − Rj | denotes the Euclidean distance between
superpixel i and j in CIELab color space. For spatial
distance ds(i, j), we combine geodesic distance and sine
spatial distance to measure the distance between superpixel
i and j :

sij = sqrt
(
min

(
Xij , Ix − Xij

)2 + min
(
Yij , Iy − Yij

)2)
,

s.t . Xij = |sin(π · |xi − xj |)|
Yij = |sin(π · |yi − yj |)|

(5)

where xi , yi , Ix and Iy refer to the x- and y-coordinates
of the region i and image, respectively. The calculation
mechanism can realize the connection of the regions with
the same structure well in an arbitrary shape and range.
de(i, j) is defined as the accumulated weight along the
shortest path on the graph, i.e.

de(ij) = min
u1=i,··· ,uk=j

k−1∑
j=1

euj uj+1 , (6)

where the weight of graph edge eij is assigned as the
strength of image edge between i and j in terms of UCM .

As shown in Table 1, it is noted that there are different
probabilities of the object appearing at different boundaries.
Accordingly, we choose different threshold values for
different sides instead of setting a single value, and a robust
boundary background set BG can be obtained from the
border set BS. As shown in Fig. 4, the proposed method is
superior to other methods.

2.2 Boundary contrast map

According to the boundary prior, a saliency map can
be obtained by measuring the contrast with the robust
background BG. However, superpixels in the background
may only be similar to a portion of the border set rather
than all of the background nodes. Therefore, it is unwise
to measure the saliency value of a superpixel by counting
all the differences between corresponding superpixel and
the background seeds. To solve it, several methods have
been proposed in previous works [10, 28]. In this paper, we
put forward a distinctive way of measuring the boundary
contrast map. First, the K − means algorithm is applied
to divide the set BG into K clusters (empirically set
K = 3). For each cluster k, we compute the mean
color c̄m

k , m ∈ {L, a, b, Lab} in CIELab color space
and the color covariance matrix V ark . Also, for each
superpixel, we select one of the K clusters that have the
minimum difference from the superpixel. Then the saliency
of superpixel Ri can be obtained based on the Mahalanobis
distance:

SB(Ri) =
∑

m∈{L,a,b,Lab}
vm(Ri), (7)

and

vm(Ri) =
|Ri |∑

(w,h)∈Ri

PRi

√
(cm

g (w, h)−c̄m
g )(V arm

g )−1(cm
g (w, h)−c̄m

g )T ,

(8)

where g represents the index of the cluster that has the
smallest difference with Ri ; (w, h) indicates a pixel in
superpixel Ri ; |Ri | is the cardinality of Ri ; PRi

provides
the proportion of superpixel Ri compared with the whole

Table 1 Probability distribution on different datasets

Dataset Top(%) Down(%) Left(%) Right(%)

Dataset Top(%) Down(%) Left(%) Right(%)

ASD 0.2 1.6 0.3 0.5

ECSSD 5.3 22.4 6.8 7

DUT 2.48 14.4 5.2 4.3
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Fig. 4 Robust boundary
background extraction. (a)
Input; (b) Original border set
BS; (c)-(e) Boundary
background extracted by
different methods: BFS [20],
LPS [9] and Ours

a b c d e

image. Then the background contrast saliency map SB can
be achieved by normalizing the obtained saliency values to
[0,1]. Fig. 5 shows the results of SB . It can be seen that SB

can highlight the salient regions.

2.3 Contour completeness map

Boundary contrast map SB in collaboration with BG works
well, whereas in some complex scenes. As is shown in
the second example of Fig. 5b, relying solely on the
boundary prior might lead to highlight the background
regions erroneously. Generally, the salient object has a
well-defined closed boundary [30]. As a consequence, the
contour completeness cue is introduced to facilitate the
salient object detection.

A hierarchical segmentation Pξ can be obtained by
setting different ξ ∈ [0, ξN ] for the derived hierarchical
UCM . In this paper, we compute the expectation of times
for which a region is superimposed in the whole hierarchical
segmentation space to determine whether a region has a
closed outline or not in segmentation Pξ = {Ri}. That is, the
more times the holistic homogeneous regions are activated,

the more salient they are. An indicator map Q at level ξ is
defined:

Qξ(x) =
{
1 if x ∈ R, R ∈ P in

ξ

s if x ∈ R, R ∈ P out
ξ ,

(9)

where P in
ξ = {Ri |Ri ∩ BG = ∅} is the set of inner regions,

P out
ξ = Pξ \ P in

ξ is the set of outer regions. Different from

[29], we adopt BG instead of BS in P in
ξ . The rationale

behind this is that it may yield a bad result if we adopt BS

in P in
ξ when the salient objects connect to the boundary (see

the third row in Fig. 5d).
Because the accuracy of the saliency map is sensitive

to the number of superpixels, the problem of an optimal
threshold selection needs to be solved in thresholding
segmentation. However, it is difficult for us to obtain
an optimal threshold value by computing directly. To
handle the problem, we first introduce saliency weights
to assign a different probability to each pixel belonging
to be the salient object. Here, we adopt the saliency
value of SB as the weights of each pixel, defined as s.
By statistically averaging the expectation of the entire

Fig. 5 Boundary contrast map
and contour completeness map.
From left to right: (a) Input; (b)
SB ; (c) Contour completeness
map without processing [29];
(d) SC ; (e) Ground-truth

a b c d e
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hierarchical segmentation space, we obtain the contour
completeness saliency map:

SC(x) =
∫

Qξ(x)· p(ξ)dξ, (10)

where ξ obeys a uniform distribution with the probability
density function Pξ . Besides, we compute the saliency map
at different resolutions to further deal with the problem that
salient objects are likely to appear at different scales, so
then they are resized into the standard size and integrated
to retrieve the strong map SC , as shown in Fig. 5e. From
observations, we note that the proposed method can work
well in the cases where salient regions appear at the
boundary.

2.4 Integration

The saliency maps measured by boundary contrast and
contour completeness are complementary to each other:
the former prefers to highlight the object while the latter
aims to suppress noise. Thus, effective integration is a
wise operation. Although previous works adopt linear
combinations to fuse individual saliency maps using weight
for simplicity, it is not feasible because such processing
will either weaken the suppression of background noise or
interfere with foreground detection.

In order to better achieve the purpose of seeking common
ground while reserving differences, we have designed a
fine-grained fusion method. The mathematical definition of
the fusion mechanism can be expressed as follows:

SI = ϒ{S∗
C · S∗

B == 1}max(SC, SB)

+ϒ{S∗
C + S∗

B == 0}min(SC, SB)

+ϒ{S∗
C �= S∗

B}exp(SC) · exp(SB).
(11)

Here ϒ{x} = 1 if x is true, and ϒ{x} = 0 otherwise.
S∗ is a saliency vector by binarizing a saliency map with
a threshold calculated from S using the algorithm in [31].
Figure 6d demonstrates that the integration map is more

accurate than the saliency map of Fig. 6b and c in the
detection of foreground and background, which further
proves the effectiveness of the proposed integration method.

2.5 Iterative Bayesian optimization framework

In order to optimize the integration results, an iterative
Bayesian optimization framework is proposed. According
to Bayesian inference, posterior probability P(Θk, k ∈
{F, B}|xi) representing the probability that region xi

belongs to the salient ΘF (background ΘB ) can be
computed as:

P(ΘF |xi) = P(ΘF )P (xi |ΘF )

P (ΘF )P (xi |ΘF ) + P(ΘB)P (xi |ΘB)
, (12)

where P(xi |Θk, k ∈ {F, B}) is a conditional probability.
P(ΘF ) and P(ΘB) = 1- P(ΘF ) are the prior probabilities
of being salient and background, respectively. In this work,
we set the fusion result SI as the initial prior probability,
i.e., P(ΘF ) = SI and P(ΘB)=1-SI . How to calculate the
conditional probability will be described in detail as follows.

The key to the method based on the Bayesian framework
is to obtain conditional probability. The current conven-
tional method is to obtain a conditional probability by cal-
culating the proportion of each quantized feature in a binary
image. However, a simple thresholding operation may mis-
lead further inferences, and it is also challenging to get a
reliable threshold. Therefore, a soft approach is proposed
based on iterative optimization to solve the problem. We
define the probability of each region as the weighted aver-
age of all the saliency values. The conditional probabilities
can be defined by [32]:

P(xi |ΘF ) =
∑

j f (SFi)wij∑
j wij

, (13)

P(xi |ΘB) =
∑

j f (1 − SFi)wij∑
j wij

, (14)

Fig. 6 Integration and
refinement. (a) Input; (b) SB ; (c)
SC ; (d) SI ; (e) Final map without
iteration Fal(t0); (f) Final map
Fal(t); (g) Ground-truth

a b c d e f g
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f (z) = θ1T hτ

θ2(1 − z)τ + T hτ
+ θ3. (15)

f (z) is an enhancement function that makes the difference
between foreground and background more apparent while
keeping the saliency value of superpixel near the threshold
(T h). The parameter θi is mainly to make sure that f (z) can
pass through three defined coordinate points ((0, 0), (1, 1)
and (T h, T h)), and τ = 4. In this paper, we get the optimal
threshold T h by size prediction and feature weight:

T h = argmin
T

W
f
T Wb

T [ρi(S
i
T − Bi

T )]2, (16)

where Si
T (B

i
T ) and W

f
T (WB

T ) correspond to the mean value
and the weight of the foreground (background) histogram
in channel i of opponent color space [33], respectively. T

denotes the percentage of the potential salient regions, and
we set T ∈ [0.1, 0.5]. The rationality of this hypothesis lies
in that the size proportion of salient objects is usually in
a range from 0.05 to 0.6 [34]. ρi is feature weight, which
is measured by computing its separating power based on
variance ratio.

ρi = 1




V r(Lg, s+b
2 )

V r(L, s) + V r(L, b)
, (17)

V r(y, x) =
∑

i

x(i)y2(i) − [
∑

i

x(i)y(i)]2, (18)

Lg(i) = log
s(i) + φ

b(i) + φ
, (19)

where φ is a constant used to prevent the numerator and
denominator from being 0. 
 = ∑

i ρi . Lg(i) is the
log-likelihood of foreground and background, where s(i)

and b(i) denote the discrete probability distributions of
foreground and background, respectively.

Based on the above formulas, we can get P(ΘF |xi). In
order to optimize the results, we iteratively re-assign the
prior function with P(ΘF ) = P(ΘF |xi) and the feature
weights ρi with new ρi . To eliminate the disconnectedness
and small fragments and improve the accuracy of detection,
we utilize the smooth result of P(ΘF |xi) to re-assign the
prior function in the experiment. Herein, we adopt the
guided filter [35] to smooth P(ΘF |xi), which can well
preserve the integrity of the edge of the object. Finally, we
denote Fal(t), t = {t0, t1,
· · · , tn} as the saliency map corresponding to various
iterations (t), and Fal(t0) indicates the saliency map
without iteration. Figure 6e-f show the result refined by
the proposed iterative Bayesian optimization framework.
Our model can always highlight the full salient objects
while suppressing the background, which illustrates the
effectiveness of our system.

3 Experimental results

In this paper, we extensively present comparison of the
proposed algorithm against 15 state-of-the-art saliency
detection methods that includes BFS [20], BL [36], BSCA
[28], BSFC [26], FCB [37], CGV [38], GS [8], HCC [29],
LPS [9], MR [15], MB [39], MILPS [34], RCRR [40],
SF [41], SRD [42] on the ASD [6], DUT-OMRON [15],
SOD [43], and ECSSD [44] datasets. For fair evaluation
purposes, either the results provided by the original authors
be directly used or execute their own implementations
through the source codes publicly available. Admittedly,
compared with the traditional methods, saliency methods
using deep learning such as MDF [45] and ILS [46] can
achieve better performance, although they require a large
amount of training data. Considering that this paper is
mainly focused on unsupervised learning, the proposed
method is solely compared to traditional saliency methods.

3.1 Evaluationmetrics

To compare the performance, several popular evaluation
metrics are used in our experiments, which include the
precision-recall curve (PR), average precision (AP), F-
measure, overlapping ratio (OR) and mean absolute error
(MAE).

We first use the Precision-Recall (PR) curves to evaluate
the performance of the proposed method. For each saliency
map, binary maps are generated by binarizing a saliency
map with fixed thresholds varying from 0 to 255, and the
PR curves are obtained by comparing the ground truth with
binary maps.

For saliency detection, precision, and recall are often
required to be high, though these two indicators are usually
negatively correlated. To comprehensively assess the salient
object detection model, the weighted harmonic mean of
precision (P ) and recall (R) called F-measure is calculated,
given as:

Fβ = (1 + β)P · R
β2P + R

, (20)

where β2 is set to 0.3 to emphasize precision [13]. Since
a high recall rate can easily be obtained by detecting the
complete image as the salient object, it is not possible to
guarantee such accuracy, unfortunately.

Noting that the above metrics mainly focus on the
probability of salient pixels being correctly detected and
ignore the effects of correct assignment of non-salient
pixels, and therefore OR and MAE are adopted to address
these issues. MAE represents the measure of the similarity
between saliency map S and ground-truth G [41]: MAE =
mean(|S − G|). OR is defined as the overlapping ratio
between the segmented object mask S′ and ground truth G:

2983Salient object detection based on distribution-edge guidance and iterative Bayesian optimization...



OR = |S′ ∩ G|/|S ∪ G|, where S′ can be obtained by
binarization of S with an adaptive threshold, i.e., twice the
mean values of S as in [47].

3.2 Quantitative results

We extensively present a comparison of the proposed
algorithm against 15 recently proposed algorithms on four

datasets, and the experimental results are summarized in
Fig. 7 and Table 2. The results show that, in most cases,
the algorithm ranks first or second in different evaluation
indicators on the test datasets.

Specially, we can observe that our model achieves the
best performance in terms of AP (0.9372, 0.8158, 0.7848),
F-measure (0.9299, 0.7851, 0.7171), and OR (0.85159,
0.58105, 0.44333) on ASD, ECSSD, and SOD datasets.

a b c d

Fig. 7 Quantitative evaluations by precision-recall curves (left two columns), F-measure (third column), and mean absolute error (MAE) (right
column) on four benchmark datasets: from top to bottom are ASD, DUT, ECSSD, and SOD
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For the challenging DUT-OMRON dataset, our method
performs the highest F-measure (0.669) and OR (0.48892),
and the second-best MAE (0.11734) with a minor margin
(0.00259) to the best results HCC (0.11475). Besides,
except for the MAE on the SOD dataset, all indicators
of the algorithm on other datasets are better than BSFC.
Besides, our method can achieve the highest precision
and recall simultaneously, which ensures that the results
obtained by our method are closer to their ground truth,
and the proposed method is more applicable to practical
applications. Furthermore, our method achieves relatively
superior performance compared to the other methods for PR
curves on four datasets.

The above quantitative comparisons show that the
proposed method consistently outperforms all the compared
state-of-the-art approaches on various scenes.

3.3 Qualitative results

We provide some saliency maps of the proposed algorithm
and other thirteen state-of-the-art algorithms in Fig. 8. From
the results, we can see that the saliency maps generated
by our algorithm are of the best similarity to the ground
truth. For images with a single object, in the first two
rows, our method can ultimately retain salient objects while
background noise is well suppressed simultaneously. When

an image has complex background structures, the proposed
algorithm can still obtain favorable results with a less
noisy background. For example, in the 3rd and 4th rows,
our saliency maps can uniformly pop out the foreground
object of the images, but other algorithms fail to extract the
salient object from the scattered background. Also, when
salient objects and backgrounds share a similar appearance,
our algorithm can detect salient regions accurately. At
the same time, other methods either fail to identify the
salient objects or incorrectly include background regions
into detection results, as shown in the 5th and 6th two
rows. Furthermore, as shown in the 7th and 8th two rows,
our results perform well and can preserve the completeness
while other methods are a weakness when salient objects
are on the boundaries, which conclusively prove our high
robustness of background selection. All the above results
demonstrate the robustness and the effectiveness of our
method in highlighting salient objects and restraining the
background regions.

3.4 Analysis of our algorithm

(1) Effectiveness of the proposed boundary prior map
To demonstrate the effectiveness of the proposed
boundary prior map, we compute the PR curves
and quantitative results of F-measure for boundary

a b c d e f g h i j k l m n o p

Fig. 8 Comparison of our saliency maps with other thirteen state-of-the-art algorithms. (a) Input; (b) SF; (c) GS; (d) MR; (e) BFS; (f) LPS; (g)
BSCA; (h) MB; (i) RR; (j) BL; (k) CGV; (l) SRD; (m) HCC; (n) MILPS; (o) Ours; (p) Ground-truth
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prior map on the ASD dataset. Different background
seeds are received by three methods (BFS [20], MR
[15], and LPS [9]) and construct their corresponding
boundary-based saliency maps. The resulting curves
and quantitative results are shown in Fig. 9a,
where the dotted line shows the performance of
each method using their own boundary set while
the solid line provides the performance using our
boundary nodes. Also, the red line shows the
performance of our boundary contrast map. As shown
by these curves, the proposed method outperforms
those competitive methods. Yet, the performance of
three saliency models has also been conspicuously
improved, illustrating the effectiveness of the selection
of boundary nodes and the computation of the
background-based saliency map.

(2) Validation of components in contour completeness
map Since both the robust boundary background
set BG and saliency weights are introduced into
the contour completeness map, we further examine
the effectiveness of each component for the contour
completeness map. Herein, we consider different
components for comparative analysis, including:

(a) contour completeness map based on BS without
saliency weights (SCBS),

(b) contour completeness map based on BG and
without saliency weights (SCBG),

(c) contour completeness map based on BS with
saliency weights (SCBSW),

(d) contour completeness map based on BG with
saliency weights (SCBGW).

The resulting curves on SOD and the corresponding
quantitative results are shown in Fig. 9b. We note
that the performance of SCBG (SCBGW) is higher
than the performance of SCBS (SCBSW) since the
former takes the issue of the object connecting to
boundary into consideration while the latter directly
use all boundary nodes as background, effectively
demonstrating the effectiveness of BS in improving
the contour completeness map. Besides, we observe
that the performance of SCBSW (SCBGW) is higher
than the performance of SCBS (SCBG), due to the
recent introduction of saliency weights that assign
a different probability to each pixel belonging to
be a salient object. Furthermore, Compared with
SCBS, SCBG, and SCBSW, SCBGW achieves the best
performance, which conclusively proves the necessity
of considering the two indexes (BG and saliency
weights) in the calculation of the contour completeness
map.

(3) Examination of refinement Since the system opti-
mization adopts an iterative mechanism, we first verify
the stability of the system. To this end, we compute
the performance of the proposed method on a different

a b c

Fig. 9 Precision-recall curves and quantitative results of F-measure
to measure the effectiveness of our algorithm. (a) Evaluation of our
background-based saliency map on the ASD dataset; (b) Evaluation

of our contour completeness saliency map on the SOD dataset; (c)
Evaluation of each component in the proposed algorithm on the SOD
dataset.
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a b

Fig. 10 Quantitative evaluation on two salient object datasets for our
method with various iteration steps (a) SOD and (b) ECSSD

step of iteration with both PR curve and F-measures on
two datasets (SOD and ECSSD), as shown in Fig. 10.
We note that the system obtains a stable performance
with only three steps of iterations (i.e., Fal(t3)), since
the performance of the proposed system cannot further
be improved by increasing the steps of iterations.
Furthermore, to validate the effectiveness of the refine-
ment, a comparison between the final result and other
steps from both quantitative and qualitative aspects are
processed and shown in Fig. 9c, where the quantita-
tive comparison results of the saliency refinement
mechanism on the SOD dataset present performance
enhancement of the saliencymap.Also shown inFig. 6e
and f, the salient object can be highlighted uniformly,
and the background can be suppressed effectively due
to the refinement, which qualitatively verifies the effec-
tiveness of the refinement mechanism.

3.5 Running time

The execution time test is conducted on a 64-bit PC with
Intel Core i5-4460 CPU @ 3.20GHz and 8G memory. All
codes for the experimentation testings are provided by the
corresponding authors and executed without any change in
MATLAB R2015a with C++ mex implementation, and the
average running time is computed on the ASD dataset.

We selected several competitive accuracy methods or
those akin to the proposed algorithm, and the results are
shown in Table 3. It is significantly faster than LPS,

Table 3 Running average time test results (seconds per image) on
ASD

Method GS LPS MR RR BFS Our

Times 0.425 3.376 0.715 3.56 7.513 1.637

RR, and BFS, even though being slower than MR and
GS, the proposed method still outperforms them both
considering the overall evaluation performance. Therefore,
it can be attained that the proposed algorithm can achieve a
reasonable balance between accuracy and efficiency.

3.6 Limitation and analysis

Although the proposed method can perform well in most
of the cases, there remain some challenging scenarios that
cannot accurately extract the complete salient objects. The
last two rows of Fig. 8 show some failure cases. When an
image contains multiple salient objects in complex scenes,
the proposed method may not work well in highlighting all
objects in an image due to the difference and diversity of
multi-objects in terms of size and position. However, it is
also tricky for state-of-art saliency detection methods. For
an image with a complex background structure and small
differences between object and background, it is inadequate
for our method to achieve the satisfactory detection results
by the proposed low-level and mid-level features. Hence, it
is an excellent choice to design an even more discriminative
similarity metric by incorporating the traditional low-level
features and the high-level, in-depth learning features.
Besides, the study on the reliability of edge and the selection
of an optimal segmentation threshold can improve the
performance of saliency detection as well.

4 Conclusions and future work

In this paper, we present an efficient salient object detec-
tion algorithm via background scatter and foreground con-
tour completeness. To accurately extract robust background,
background scatter is proposed and designed, and the cor-
responding boundary contrast map can be obtained via
boundary prior. Besides, contour completeness embedded
with boundary contrast map can be applied together with
robust boundary nodes, to generate contour completeness
saliency map, so finally, an optimization function is pro-
posed to highlight salient objects uniformly. Experimental
results not only demonstrate the superior performance of
the proposed method but also the right balance between
accuracy and computation cost.

As future work, we investigate efficient methods that
incorporate high-level features with the support of deep
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learning to achieve higher performance. Taking into
consideration that image depth information plays an
essential role in saliency detection and challenging to collect
image depth information via camera, ways how to use
non-camera methods to obtain image depth information
and improve saliency detection in also be investigated and
validated.
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